Palaeobiodiversity and Palaeoenvironments

Reconciling the stratigraphy and depositional history of the Lycian orogen-top basins, SW Anatolia

--Manuscript Draft--

<table>
<thead>
<tr>
<th>Manuscript Number:</th>
<th>PBPE-D-18-00058R1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Title:</td>
<td>Reconciling the stratigraphy and depositional history of the Lycian orogen-top basins, SW Anatolia</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Original Paper</td>
</tr>
<tr>
<td>Corresponding Author:</td>
<td>M.Cihat Alcicek, Prof. Dr. Pamukkale Üniversitesi Mühendislik Fakültesi Denizli, Denizli TURKEY</td>
</tr>
<tr>
<td>Corresponding Author's Institution:</td>
<td>Pamukkale Üniversitesi Mühendislik Fakültesi</td>
</tr>
<tr>
<td>First Author:</td>
<td>M.Cihat Alcicek</td>
</tr>
<tr>
<td>First Author Secondary Information:</td>
<td>M.Cihat Alcicek</td>
</tr>
<tr>
<td>Order of Authors:</td>
<td>M.Cihat Alcicek</td>
</tr>
<tr>
<td></td>
<td>Serdar Mayda</td>
</tr>
<tr>
<td></td>
<td>Hülya Alçıçek</td>
</tr>
<tr>
<td></td>
<td>Alexey Tesakov</td>
</tr>
<tr>
<td></td>
<td>Gerçek Saraç</td>
</tr>
<tr>
<td></td>
<td>Fikret Göktas</td>
</tr>
<tr>
<td></td>
<td>Alison Murray</td>
</tr>
<tr>
<td></td>
<td>Gonzalo Jiménez-Moreno</td>
</tr>
<tr>
<td></td>
<td>Yeşim Büyükmeriç</td>
</tr>
<tr>
<td></td>
<td>Frank Wesselingh</td>
</tr>
<tr>
<td></td>
<td>Arzu Demirel</td>
</tr>
<tr>
<td></td>
<td>Johannes Bouchal</td>
</tr>
<tr>
<td></td>
<td>Tanju Kaya</td>
</tr>
<tr>
<td></td>
<td>Kazim Halaçlar, MSc.</td>
</tr>
<tr>
<td></td>
<td>Melike Bilgin, Dr.</td>
</tr>
<tr>
<td></td>
<td>Lars W. van den Hoek Ostende, Dr.</td>
</tr>
<tr>
<td></td>
<td>Johan H. ten Veen, Dr.</td>
</tr>
<tr>
<td></td>
<td>Sarah J. Boulton, Dr.</td>
</tr>
<tr>
<td>Funding Information:</td>
<td>Türkiye Bilimler Akademisi</td>
</tr>
<tr>
<td></td>
<td>Dr. M.Cihat Alcicek</td>
</tr>
<tr>
<td></td>
<td>The Scientific and Technological Research Council of Turkey (111Y192)</td>
</tr>
<tr>
<td></td>
<td>Dr. Serdar Mayda</td>
</tr>
<tr>
<td></td>
<td>The Russian Scientific Foundation</td>
</tr>
<tr>
<td></td>
<td>Dr. Alexey Tesakov</td>
</tr>
</tbody>
</table>
Abstract:

Terrestrial fossil records from the SW Anatolian basins are crucial both for regional inter-basinal correlation and their palaeoenvironmental reconstruction. By reassessing biostratigraphic constraints and incorporating new fossil data, we calibrate and place the late Neogene and Quaternary palaeoenvironments within a regional palaeogeographic framework.

Culmination of the Taurides in SW Anatolia was followed by a regional crustal extension from the late Tortonian onward that created a broad array of NE-trending orogen-top basins with a strongly synchronous basin-fill succession comprising alluvial-fan, fluvial and lacustrine deposits. The initial infill of these basins is documented by a transition from coarse-clastic alluvial fans and axial fluvial systems into central shallow-perennial lakes. The basal alluvial-fan deposits abound in fossil macro-mammals of an early Turolian (MN11-12; late Tortonian) age. The Pliocene period in the region was punctuated by more humid conditions resulting in a rise of local base-levels and expansion of lakes as evidenced by marsh-swamp deposits containing diverse fossil mammal assemblages indicating a late Ruscinian (late MN15; late Zanclean) age. A second pulse of extension, accompanied by regional climatic changes, prompted subsequent deepening of the lakes as documented by thick and laterally extensive carbonate successions. These lakes later shrank due to renewed progradation of alluvial-fans and eventually filled up and dried out, reflected by marsh-swamp deposits at the top of a complete lacustrine succession that contain a diverse micro-mammal assemblage indicating a latest Villanyian (MN17; Gelasian) age. A third pulse of extension dissected the basins into their present-day configuration from the late Pleistocene onward.

The new age control provides adequate means to place the basin development in a regional tectonic framework which can be attributed to the consequence of well-articulated regional phenomenons of slab-tear induced uplift followed by crustal extension and basin formation (late Tortonian), the outward extension of the Aegean arc (middle Pliocene) and eventually accompanied by westward extrusion of the Anatolian plate (early Pleistocene).

Response to Reviewers:

The revised version includes all required changes. The Abstract has now been improved and more focused along the required changes. Terminological corrections from the Reviewer 1 is now carefully followed. Missed references are included. Redundant information and statements irrelevant to the topic are removed. Repetitions throughout the text have been eliminated. Mixing up of the descriptions and interpretations of the environmental interpretations, fossil determinations and geodynamics are now carefully eliminated. Along that determination and interpretation of the fossil data are separated, biostratigraphic data are clearly separated from the geodynamic interpretations. Introductive sentences removed from elsewhere of the paper and only restricted to the introduction chapter. The localities mentioned in the text are now indicated on the geological map. The basin descriptions separated from the fossil data. To have all biostratigraphic data traceable, two fossil figures of Fig. 2 and 3 are united into the Fig. 2. Moreover we did our own improvements as well.
Reconciling the stratigraphy and depositional history of the Lycian orogen-top basins, SW Anatolia

M.Cihat Alçıçek(1), Serdar Mayda(2), Johan H. ten Veen(3), Sarah J. Boulton(4), Hülya Alçıçek(1), Alexey S. Tesakov(5), Gerçek Saraç(6), H. Yavuz Hakyemez(6), Fikret Göktas(6), Alison M. Murray(7), Gonzalo Jiménez-Moreno(8), Yeşim Büyükmeric(9), Frank P. Wesselingh(10), F. Arzu Demirel(11), Johannes M. Boucha(12,15), T. Tanju Kaya(2), Kazım Halaçlar(13), Melike Bilgin(14,10), Lars W. van den Hoek Ostende(10,2)

(1) Pamukkale University, Department of Geology, 20070, Denizli, Turkey
(2) Ege University, Faculty of Science, Department of Biology, 35100, Izmir, Turkey
(3) TNO-Geological Survey of the Netherlands, Princetonlaan 6, 3584 CB, Utrecht, the Netherlands
(4) School of Geography, Earth and Environmental Sciences, Plymouth University, Plymouth, PL48AA, UK
(5) Russian Academy of Sciences, Geological Institute, Staromonetny per., 119017, Moscow, Russia
(6) General Directorate of the Mineral Research and Exploration of Turkey (MTA), Ankara, Turkey
(7) Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
(8) Departamento de Estratigrafía y Paleontología, Univ. de Granada, Fuente Nueva s/n, 18002, Granada, Spain
(9) Bülent Ecevit University, Department of Geology, 67100, Zonguldak, Turkey
(10) Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, the Netherlands
(11) Mehmet Akif Ersoy University, Department of Anthropology, 15030, Burdur, Turkey
(12) Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
(13) University of Chinese Academy of Sciences, UCAS, Beijing, PR China
(14) Department of Geology and Palaeontology, Comenius University, 84215 Bratislava, Slovakia
(15) Department of Palaeontology, University of Vienna, 1090 Vienna, Austria

Abstract

Terrestrial fossil records from the SW Anatolian basins are crucial both for regional inter-basinal correlation and their palaeoenvironmental reconstruction. By reassessing biostratigraphic constraints and incorporating new fossil data, we calibrate and place the late Neogene and Quaternary palaeoenvironments within a regional palaeogeographic framework.

Culmination of the Taurides in SW Anatolia was followed by a regional crustal extension from the late Tortonian onward that created a broad array of NE-trending orogen-top basins with a strongly synchronic basin-fill succession comprising alluvial-fan, fluvial and lacustrine deposits. The initial infill of these basins is documented by a transition from coarse-clastic alluvial fans and axial fluvial systems into central shallow-perennial lakes. The basal alluvial-fan deposits abound in fossil macro-mammals of an early Turolian (MN11-12; late Tortonian) age. The Pliocene period in the region was punctuated by more humid conditions resulting in a rise of local base-levels and expansion of lakes as evidenced by marsh-swamp deposits containing diverse fossil mammal assemblages indicating a late Ruscinian (late MN15; late Zanclean) age. A second pulse of extension, accompanied by regional climatic changes, prompted subsequent deepening of the lakes as documented by thick and laterally extensive carbonate successions. These lakes later shrank due to renewed progradation of alluvial-fans and eventually filled up and dried out, reflected by marsh-swamp deposits at the top of a complete lacustrine succession that contain a diverse micro-mammal assemblage indicating a latest Villanyian (MN17; Gelasian) age. A third pulse of extension dissected the basins into their present-day configuration from the late Pleistocene onward.

The new age control provides adequate means to place the basin development in a regional tectonic framework which can be attributed to the consequence of well-articulated regional phenomena of slab-tear induced uplift followed by crustal extension and basin formation (late Tortonian), the outward extension of the Aegean arc (middle Pliocene) and eventually accompanied by westward extension of the Anatolian plate (early Pleistocene).

Key words: Correlation, synchronicity, palaeoenvironments, mammal, post-orogeny, Taurides
Introduction

The terrestrial fossil record from these basins, developed on the Taurides in SW Anatolia, is important for the understanding of regional inter-basinal correlation as well as for deconvolving basin spatio-temporal evolution of the basins. The sedimentary architecture combined with biostratigraphic evidence constrains the timing and evolutionary history of the region. In addition, the sedimentary record in these orogen-top basins provides vital information for understanding palaeoenvironmental changes during the last stages of orogeny, which can then be corroborated by faunal changes controlled by these environmental shifts. Documenting these environmental shifts is in turn important in recognising the role of Anatolia in faunal migration routes.

Some of these basins, such as the Çameli and Eşen, have been comprehensively studied, however, for others, the work is still in progress. In order to understand the tectonostratigraphic development of the basins in SW Anatolia, detailed biostratigraphic
information for dating the tectonic events in the region is essential. This need stimulates progress in further explorations and discovery of new fossil mammal sites to enhance the resolution of terrestrial Neogene stratigraphy in the region. The faunas from these localities are crucial for these terrestrial basins, as they provide invaluable data for understanding the stratigraphic, palaeoenvironmental and palaeogeographic evolution of the region (Alçiçek 2001). Furthermore, because it is located at the junction of Eurasia and Africa, Anatolia is in a unique position for the study of Neogene and Quaternary ecosystems, and for understanding key developments in the biogeography of western Eurasia. This includes the environmental shifts, interregional faunal exchanges including the dispersal of *Homo* through this region (Alçiçek 2010, Vialet et al. 2012, Alçiçek et al. 2017, Krijgsman et al. 2018).

The primary aim of this study is to fine-tune the stratigraphic framework, and to increase the resolution of timing of geodynamic events related to the deformation history of the eastern Mediterranean. This comparative study is a contribution towards a greater understanding of the development of an array of extensional basins on top of the Lycian nappes, and provides new insights into the tectonic history of the Taurides, with analogies drawn with other branches of the Alpine orogen.

Regional geological setting

The palaeo-Mediterranean region underwent diverse geodynamical processes linked to the syn-tectonic development of both perisutural (foreland) and episutural (thrust-top, back-arc) sedimentary basins, characterized by different subsidence rates and sedimentary processes (Cipollari et al. 1999). In SW Anatolia, the compression- and extension-related basins were developed as a consequence of the Tauride Orogeny associated with the overall convergence of the African-Eurasian plates during the Neogene to Quaternary (Sözbilir 2005, Alçiçek et al. 2005, 2006, Alçiçek 2007, Alçiçek & Ten Veen 2008, Ten Veen et al. 2009).

The western Taurides in SW Anatolia constitute the eastern extension of the Alpine orogeny and correlate with the Hellenides of Greece (Poisson 1984, Özgül & Arpat 1973, Bernoulli et al. 1974). They are subdivided into three main structural units: the Beydağları autochthon, Lycian nappes, and Antalya complex (Özgül 1976, 1984; Fig.1). On a regional scale, these structural units are attributed to different stages of the Neotethyan closure that involved the genesis and emplacement of large-scale carbonate platform units and ophiolitic nappes since the late Mesozoic times (de Graciansky 1972, Collins & Robertson 1997, 1998). The Beydağları autochthon forms a broad north-south trending anticlinorium underlying the
Lycian and Antalya nappes emplaced at its western and eastern flanks respectively, and contains Liassic to middle Miocene platform carbonates (Waldron 1981, Hayward & Robertson 1982, Collins & Robertson 1999). The Lycian nappes correspond to a segment of the orogenic-belt that originated in the northern Neotethys and comprise composite allochthonous thrust sheets transported from the Late Cretaceous to the middle Miocene and emplaced onto the Beydağları platform (Hayward & Robertson 1982, Robertson et al. 2003, Collins & Robertson 2003). The Antalya complex probably originated from the southern Neotethyan domain. It was emplaced on the eastern flank of the Beydağları platform by the Late Cretaceous-Neogene, and consists of allochthonous Mesozoic and older sedimentary, igneous and metamorphic rocks (Waldron 1981, Woodcock & Robertson 1982, Poisson et al. 2003, Koç et al. 2016).

The Lycian nappe stacks are covered, unconformably, by alluvial redbeds that are in turn overlain by Burdigalian shallow-marine reef limestones (Altınlı 1955, Becker-Platen 1970, Şenel et al. 1989, Hakyemez & Örçen 1982, Hakyemez 1989, Şenel 1997a, İslamoğlu et al. 2005, Alçiçek & Ten Veen 2008, Özcan et al. 2009, Akdeniz 2011a, b, Büyükmeriç 2017). Farther to the southeast, the nappe front is eventually overlain by Serravalian shallow marine clastics (Hayward 1984). The supra-allochthonous units are considered to be deposits of a piggy-back basin, transported jointly with the nappe progradation during the middle Miocene (Alçiçek & Ten Veen 2008, Ten Veen et al. 2009). The final movement of the nappes was followed by regional uplift corresponding to a non-depositional period that lasted c. 7 Myr (Alçiçek et al. 2018). This phase took place under NE-SW directed extension and resulted in an array of graben-type depressions stretched parallel to the transport direction of the nappe front and include Çal, Baklan, Acıgöl, Burdur, Çameli, Eşen and Beyağac basins (Ten Veen 2004, Alçiçek et al. 2005, 2006, Alçiçek 2007, Ten Veen et al. 2009, Alçiçek et al. 2013). The tectono-sedimentary development of these basins is relatively uniform in the sense that all basins comprise a tripartite basin-fill that consists of an association of alluvial-fan, fluvial and lacustrine facies. Faunal evidence from the stratigraphic record of each basin indicates coeval terrestrial deposition through the early Turolian to the Gelasian.

Comparative basin stratigraphy

The first lithostratigraphical description and subdivision of SW Anatolian terrestrial successions was made by Becker-Platen (1970), who proposed a lithostratigraphic *Standard Profile* for regionally correlative, discernible sedimentary units comprising Yatağan and Milet
beds restricted to the Lycian hinterland. In this area sedimentation is represented by a coeval tripartite sequence ranging from alluvial-fan, fluvial and lacustrine deposits that laterally and vertically grade into each other. These units are collectively considered as ‘neoautochthonous’ and lithostratigraphically designated as the Çameli Formation by the Turkish Petroleum Corporation (TPAO) (Erakman et al. 1982a, b, Meşhur & Akpınar 1984, Erakman & Alkan 1986) and the Mineral Research and Exploration Directorate (MTA) (Şenel et al. 1989, Konak & Şenel 2002).

A first attempt at incorporating faunal evidence in order to strengthen both correlations and palaeoenvironmental reconstructions of the SW Anatolian basins was undertaken by Alçiçek (2010). Although that study was largely based on Saraç (2003), a scientific report with many preliminary identifications, it did manage to produce a general framework confirming the three pulses of crustal extension caused the basin formation as earlier proposed by Alçiçek (2001), Alçiçek et al. (2005) and Alçiçek (2007). Since then, palaeontological information on the area has increased tremendously. In addition to recent biostratigraphical studies (e.g., Van den Hoek Ostende et al. 2015a, b), newly discovered localities which are currently being studied, as well as literature on the faunal evidence (e.g. Saraç 2003) that previously had gone unnoticed, have contributed to a more accurate definition of the timing of the major changes in the sedimentation mode in the region and the accompanying environmental changes. As part of the work is still in progress, we can anticipate further advances in the reconstruction of the late Neogene and Quaternary history of SW Anatolia. On the other hand, only very few palynological investigations of this region and period have been published. Reasons for this are mainly the lack of palynomorph bearing sediments (e.g. oxidised or Ca-carbonate or gypsum rich sediments) and a very limited stratigraphical value of terrestrial palynomorphs for this period. For instance the appearance of Fagus, Cedrus and Ilex defined the latest Miocene and early Pliocene pollen zone (“Yeni Eskihisar Pollen Bild”) of Benda (1971), while recent palynological investigations of the Yatağan Basin documented these taxa already for the middle Miocene (Bouchal in press, in this issue). Here, we synthesise existing palaeontological, sedimentological and various chronostratigraphic data with new observations on the pre-existing and new mammal fossil locations from the Lycian orogen-top basins (such as Çameli, Eşen, Beyağaç, Yatağan, Baklan, Acığöl, Burdur) in SW Anatolia to (re)define the stratigraphic framework and constrain the timing of broad palaeoenvironmental transitions in key Neogene basins of SW Anatolia.
The Çal Basin

The Çal Basin resides on the Lycian nappes and partly on the metamorphic Menderes Massif (Konak et al. 1986, Konak 2002). The basin succession unconformably overlies the bedrock and consists of two sequences which are separated by an angular unconformity. These sequences comprise sediments deposited in alluvial-fan, fluvial and palustrine environments. The alluvial-fan association constitutes the basal part of the basin-fill, which thickens towards the basin boundary faults and shows a basinward fining trend.

From the Asarlık locality, Kaya et al. (2008) and Alçiçek et al. (2012) reported Giraffidae (Samotherium sp., Paleotragus sp.), Bovidae (Gazella sp., Palaeoeras cf. elegans), Suidae (Microstonyx sp.), Chalicotheriidae (Ancylotherium pentelici) and Equidae (Hipparion sp.), indicating a middle Turolian age (MN12) (Table 1; Fig.2). The alluvial-fan deposits gradually pass upward into fluvial and palustrine facies associations that contain Pliocene freshwater molluscs Bythinia, Dreissena and ostracods Cyprideis, Ilyocypris, which are indicative of a standing body of water. The lower unit is unconformably overlain by alluvial floodplain deposits with a distinct palaeosol horizon at the top. This unit is restricted to the central part of the basin and forms an extensive plateau preserved as hanging terraces. The flood-plain deposits near Kırmızıtepe locality yielded Equidae (Equus sp.) and are considered to be of a Biharian age (Alçiçek et al. 2012) (Table 1; Fig.2).

The Burdur Basin

The Burdur Basin (Fig.1) resides on Mesozoic carbonate and ophiolite units of the Lycian nappes and Eocene–Oligocene supra-allochthonous sedimentary units (Şenel 1997a, 2002, Konak & Şenel 2002). The basin successions are composed of alluvial-fan to fluvial and shallow to deep lacustrine facies associated with volcanic intercalations (Karaman 1986, Price & Scott 1989, Alçiçek et al. 2013a, Demirel & Mayda 2014, Alçiçek et al. 2017a). Price (1989) reported some giraffid remains from the basal part of the basin-fill, representing the oldest fossil record reported in the basin (Fig.2). The morphology of the astragalus of this taxon is notably different from Plio-Pleistocene forms, suggesting a Turolian age for the specimen. Saraç (2003) also listed Dipoides sp., an extinct beaver genus from the Burdur-Akören-2 locality that belongs to the late Miocene/early Pliocene Anatolian faunas (MN12-MN14).

Recently, new macro-mammal remains were discovered in marsh/swamp deposits that stratigraphically lie in between the fluvial and lacustrine deposits of the basin succession. The
micro- and macro-mammal fossil content from the Sultandere locality (Fig.1) revealed a diverse fauna implying a wide variety of habitats were present during the early/middle Pliocene (MN14/15, Ruscinian). Among the fossil mammals, the medium-sized deer *Croizetoceros* (Mayda et al. 2017) and the antelope *Gazellospira* are typical of the Pli-Pleistocene taxa, whereas the primitive gerbil genus *Pseudomeriones* has its latest representative in the late Pliocene (MN15) locality of Çalta, Turkey (Şen 1977, 1998, Sylvéntrou & Kostopoulos 2007) (Fig.2). A recent magnetostratigraphic study (Özkaptan et al. 2018) assigns 5.0-4.5 Ma age for the base of the lacustrine succession of the Burdur. This age determination calibrates our recent finding of MN15 biota in the Sultandere locality underlying the lacustrine succession of the Burdur basin (Table 1).

The uppermost reach of the basin succession, which consists of fluvio-deltaic deposits, yielded a Villanyian (MN17) fauna from the localities of Elmacık, Yassıgüme and Kocakır (Alçiçek et al. 2013b, Alpagut et al. 2015, Demirel & Mayda 2014, Demirel et al. 2016, 2017; Table 1, Fig.2) aligned along the SE-margin of the basin. The Elmacık locality contains Proboscidea (*Mammuthus meridionalis*, Elephantidae indet.), Equidae (*Equus stenonisaltidens, Equus* sp.), Rhinocerotidae (*Stephanorhinus cf. etruscus*), Bovidae (*Gazellospira torticornis, Leptobos etruscus, Eobison* sp., Bovidae indet.), Cervidae (*Eucladoceros* sp., Cervidae indet.), Testudinidae (*Testudo* sp.) and avian remains (Alpagut et al. 2015). The Yassıgüme locality (Demirel & Mayda 2014) contains *Leptobos cf. etruscus, Gazellospira torticornis* and *Equus* sp. indicating a late Villafranchian association, which was typical for western and southeastern European taxa. This assemblage suggests an early late Villafranchian (~1.5 Ma) age of the uppermost part of the basin succession. The new locality of Yassıgüme provided two differently-sized bovids and *Equus*. Pleistocene fossil bovid remains from Turkey are rare. The Yassıgüme bovine *Leptobos etruscus* is the first occurrence of this species in Anatolia, expanding the known range of the species.

The Kocakır-1 locality contains *Equus* sp. and *Paracamelus gigas* (Alçiçek et al. 2013b). Kocakır-2 is stratigraphically comparable but is much richer in species than Kocakır-1. The tentative results of the initial survey of Kocakır-2 showed the presence of two equids of different size (*Equus cf. altidens* and *Equus suessenbornensis*), a small rhino (*Stephanorhinus cf. hundsheimensis*), a giant camel (*Paracamelus gigas*), a panther (the size of *P. gombaszoegensis*), a wolf like dog (*Canis arnensis*), a hippo (*Hippopotamus* sp.) and a medium-sized bovid (Bovidae indet.) (Table 1). Overall, this fairly diverse fauna reflects an open habitat with a limited number of water bodies. The combination of *Paracamelus, Equus*
and a medium-sized deer is typical for the middle-late Villafranchian associations of eastern Europe and western and central Asia (Alçıçek et al. 2013, Kallhke et al. 2011).

Further to the south, a locality near the village of Hasanpaşa is situated in the uppermost part of the lacustrine unit. This site yielded *Mammuthus meridionalis* and *Gazella* sp., indicating a late Pliocene-early Pleistocene age interval of 3.0-2.0 Ma (MN17; middle Villanyian, Sickenberg et al. 1975, Saraç 2003). A recent magnetostratigraphic study indicates 2.5 Ma for the top of the succession (Özkaptan et al. 2018). This age determination calibrates MN17 biota from the Kocaktır-1 (Alçıçek et al. 2013) and Kocaktır-2 and Yassıgüme localities (Demirel & Mayda 2014) overlying the lacustrine succession of the Burdur basin (Table 1).

In the Gölcük volcanic province, c. 20 km to the NE of the basin, the basin succession interfingers with volcanioclastics of 4.77±0.25 to 4.07±0.20 Ma in age (Lefevre et al. 1983). Price (1989) undertook K-Ar dating from tephra at the centrally placed Gölcük Maar, which provided an age of 4.6±0.2 Ma. The volcanic intrusions and lava flows overlie Miocene deposits and interfinger with the basin-fill. The middle parts of the volcanics were assumed to be of late Pliocene age based on the tephra interlayers of that age in the adjacent Burdur graben. By using K-Ar age determination from tephra interlayers Nemec et al. (1998) showed that explosive activity of the Gölcük volcano continued until early Pleistocene time with the youngest activity in historical times at 1.50±0.18 and 1.38±0.13 Ka ago.

The Baklan Basin

The Baklan Basin developed on the Mesozoic sequence of the Lycian nappes (Sözbilir 2005, Konak & Şenel 2002, Alçıçek et al. 2013a; Fig.1). The basin-fill consists of alluvial-fan to fluvial and lacustrine deposits. The base of sequence was dated as early Turolian based on large mammal fossils from the Mahmütgazi locality (Sickenberg & Tobien 1971, Sickenberg et al. 1975, Pickford 2016, Geraads 2017). The locality includes three main fossil localities, which comprise a faunal assemblage including following species; *Adcrocuta eximia*, *Protictitherium crassum*, *Machairodus aphanistus*, *Indarctos atticus*, *Chilotherium schlosseri*, *Diceros neumayri*, *Ancylotherium pentelicum*, *Cremohipparion matthewi*, *Palaeoryx pallasii*, *Plesiadax inundates*, *Tragoportax amalthea*, *Samotherium major*, *Hippopotamodon erymanthius*, *Orycteropus* sp., and *Cheorolophodon pentelici*. This diverse fauna resembles the late Miocene assemblage from the Greco-Iranian bioprovince and this locality can be assigned to the late MN11 biozone (Table 1; Fig.2). Higher up in the succession, in the fluvio-deltaic deposits, a *Pseudomeriones tchaltaensis* reported by Wesselingh & Alçıçek (2010)
suggests a Ruscinian (MN15) age. Even higher up, a Microtus sp. found during this study indicates an Biharian age.

The Acıgöl Basin

The Acıgöl Basin resides on Mesozoic basement composed of allochthonous rocks of limestones and ophiolitic rocks of the Lycian Nappes, and overlying Oligocene marine to continental sediments (Konak et al. 1986, Şenel 1997, Konak & Şenel 2002, Turan 2002, Sözbilir 2005; Fig.1). The basin strikes NE-SW and is developed within an eastward-tilted tectonic depression in which upper Miocene coarse-grained terrestrial sediments were initially deposited (Göktaş et al. 1989, Alçıçek 2009, Helvacı et al. 2013, Alçıçek et al. 2013a). From the Zanclean to Gelasian, a progressive deepening of the basin provided accommodation space for the deposition of lacustrine units, which unconformably overlie the pre-Neogene basement rocks. The only fossil mammal material from the basin was discovered by MCA in the alluvial-fan deposits of the uppermost reach of the Acıgöl basin-fill and represents a typical late Pleistocene element in the form of Equus hydruntinus (Alçıçek et al. 2013b).

The Çameli Basin

The Çameli Basin resides on the Lycian nappes and constitutes NE-trending interconnected tilt-block compartments associated with NW-dipping secondary normal faults (Fig.1). The basin-fill was designated as the Çameli Formation by Erakman et al. (1982a, b) and Erakman & Alkan (1986), and comprises alluvial-fan, fluvial and lacustrine deposits. Progressive angular unconformities are present within the proximal facies along the basin margins. The alluvial-fan deposits occur in the lower and upper parts of the basin-fill along the basin margin and grade laterally and vertically into the fluvial deposits. The fluvial deposits also grade laterally and vertically into lacustrine facies that are restricted to the central and upper part of the sequence. In the basin center, these tripartite deposits grade into each other and reach up to 500 m in thickness. The age of the basin-fill is determined to be Turolian to Villanyian based on mammal fauna and radiometric dating (Şenel 1997a,b,c, Saraç 2003, Alçıçek et al. 2005, Van den Hoek Ostende et al. 2015a,b, Elitez et al. 2017). The biostratigraphical studies by Van den Hoek Ostende et al. (2015a, b) have contributed to accurate definition of the exact timing of major changes in the basin’s sedimentation mode.

The vertebrate fauna of coal-bearing deposits in the Elmalıyurt (Pınaz) locality on the SE margin of the basin contains an upper dentition of a medium-sized hipparionine (Saraç 2003;
Table 1). This mammal specimen was preliminarily identified by Saraç (2003) as the Vallesian species *Hippotherium primigenium*, and this identification was reiterated by other workers (Alçiçek 2001, Alçiçek et al. 2005). The characteristics of the *H. primigenium* group as defined by Bernor et al. (1996) are complex pre- and post-fossette enamel plications; maintaining deeply amplified plis, and an incised hypoglyph accompanying the lingually flattened, labially rounded and more lingually placed protocone. Comparing the mean protoconal length and the plication count, the Elmalıyurt specimen differs from those of *H. primigenium* from Höweneg (MN9-Vallesian), and Eppelsheim (MN9-10; Vallesian) by having a moderate enamel plication (15-20 plicae) with short-narrow plis, oval, relatively small protocone (6-8 mm) free from protoloph with weak and asymmetrical double pli caballin. Instead, the medium-sized Elmalıyurt hipparion is comparable with the Tuorian forms of Bulgaria and Greece, especially those from the Anatolian faunas of Sivas-Düzyayla (MN11, early Tuorian, Kaya & Forsten 1999), Uşak-Kemiklitepe A-B (MN11-12, early-middle Tuorian, Koufos & Kostopoulos 1994), Muğla-Şerefköy (MN12; early Tuorian, Kaya et al. 2012) and Özlace (MN11, early Tuorian, Alpagut et al. 2014). In particular, *H. mediterraneum*, which is well-represented from middle Tuorian (MN 12) localities from Greece (Pikermi and Perivolaki), Bulgaria (Kalimantsi and Hadjidimovo) and Turkey (Kemiklitepe A-B and Düzyayla, closely resembles the Elmalıyurt hipparion in size and morphology. In view of the existing material, we classify the Elmalıyurt specimen as *Hipparion* cf. *mediterraneum*, noting that it certainly does not represent *H. primigenium*, but rather resembles Tuolian forms, especially *H. mediterraneum*. Consequently, the Elmalıyurt locality in the lowermost part of the Çameli basin succession is considered to be Tuorian in age.

The lacustrine unit in the basin is confined by coal-bearing marsh-swamp deposits at the bottom and top. At the base, the Ericek locality contains murines (*Apodemus* cf. *dominans, Rhagapodemus* cf. *primaevus, Orientalomys* cf. *similis*), arvicoline (*Mimomys occitanus*), cricetine (*Cricetulus*), glirid (*Muscardinus*), and shrew (*Asoriculus* sp.), which were assigned to late MN15, i.e., late Ruscinian (Van den Hoek Ostende et al. 2015a, Table 1; Fig.2). Higher in the section, the unit grades from a shallow to deep lake environment. The mollusce content, with *Paludina, Lymnaea, Radix, Lithoglyphus, Pyrgula* (Becker-Platen 1970), *Melanopsis, Pseudamnicola* (Alçiçek et al. 2005) and ostracods of *Cyprideis pannonica, Candona parallela pannonica, Heterocypris salina, Ilyocypris* sp., *Eucypris* sp. (Darbaş 2017), marks the transition from shallow to deeper lake environments. The uppermost part of the succession grades again into coal-bearing marsh-swamp deposits abounding in mammal remains
including cricetines, arvicolines and murines, similar to the locality of Bıçakçı (MN17, late Villanyian; Alçıçek et al. 2005, Van den Hoek Ostende et al. 2015b; Table 1; Fig.2).

The Eşen Basin

The Eşen Basin, a NE-trending extensional graben, resides on the hinterland ramp-fold near the Lycian nappe front (Alçıçek 2007; Fig.1). This terrestrial basin is highly comparable with the adjacent Çameli basin from which fossil mammals allow reliable time-stratigraphic comparisons with recognized extensional pulses (Alçıçek et al. 2005). The early basin-fill was described as comprising alluvial-fan deposits including *Palaeotragus rouneii* (Artiodactyla, Giraffidae) (MN9-12, Vallesian-middle Turolian, Karamusalar locality, Alçıçek 2007), and an ostracod fauna of *Hemicythere, Candona, Eucypris, Cyprideis* and *Pontocypris* (Becker-Platen 1970). In this study, new large mammal remains have been unearthed from the same locality reported by Alçıçek (2007). The newly collected fauna contains a small-sized bovid (*Gazella* sp.), cervid (Cervidae indet.), equid (*Hipparion* sp.) and a small-sized giraffid (*Palaeotragus* sp.), constraining the age to Turolian (MN11-12; Table 1, Fig. 2).

The alluvial-fan deposits grade upward into fluvial and eventually shallow lacustrine deposits. Initial lacustrine deposition is represented by marsh-swamps comprising freshwater ostracods and mollusks including *Miocyprideis, Limnocythere, Candona, Pisidium, Ilyocypris, Cypridopsis, Cyprideis, Adelina, Corymbina, Paludina, Unio* and *Bulimus* (Colin 1962, Becker-Platen 1970) and Cyprinodeni remains of *Onychoden, Mitraden* and *Tinca* (Alçıçek 2007). The *Corymbina* gastropod species are very similar to those found in the Apolakkia Formation of SE Rhodos with middle-late Ruscinian age (MN15; lower-middle Pliocene; Van de Weerd et al. 1982). Upward the lacustrine deposits abound in mollusc, ostracod and fish assemblages representing deeper lake environment (Table 1). Later, the deep lacustrine basin eventually shrank and was filled in owing to renewed progradation of alluvial-fan and fan-deltaic deposits derived from the basin margins.

The Beyağaç (Barz) Basin

The Beyağaç basin was first described by Becker-Platen (1970; Barz Plain in there) and its geological map has recently been compiled by Akdeniz (2011a; Fig.3). The basin contains two distinct sedimentary units; the Yatağan beds at the base, comprising alluvial-fan and fluvial deposits, and the Milet beds with lacustrine sediments at the top.
The basal Yatağan unit consists of alluvial-fan and fluvial deposits which thicken towards the basin boundary faults and show basinward thinning and fining trends. The Sazak locality, at the western basin margin, yielded fossils of *Hipparion matthewi, Ceratotherium neumayri, Helladotherium duvernoyi, Protoryx carolinae, Tragoportax amalthea, Gazella deperdita* and *Adcrocuta eximia*, indicating a middle Turolian age (MN12; Schmidt-Kittler 1976, Kaya 1993, Tuna 1999, Koufos et al. 2018). The new Kozlar locality at the eastern basin margin was discovered during this study and is still under investigation, but revealed equid (*Hipparion*) and rhinoceros (*Ceratotherium*) material suggesting a middle Turolian age (MN12, Table 1; Fig.2). Higher up in the sequence, the alluvial-fan deposits gradually pass upward into the fluvial facies association and are eventually overlain by the lacustrine Milet unit with a coal seam at the bottom. The basin-fill is unconformably overlain by younger alluvial-fan deposits.

Discussion

Regional crustal extension following the culmination of the Tauride orogeny gave rise to the development of several terrestrial basins in SW Anatolia (Şengör & Yılmaz 1981, Robertson & Dixon 1984, Şengör et al. 1985, Zanchi et al. 1993, Ten Veen et al. 2009). A combination of detailed bio- and lithostratigraphy of the basin fills underpins a well-constrained model for the basin evolution that is used here as a solid time-stratigraphic framework enabling the improved timing of tectonic events along the Lycian hinterland.

The final nappe-related sedimentation in the region occurred during the early Miocene in piggy-back basins composed of terrestrial deposits, which were subsequently drowned by a Burdigalian transgression. This marine transgression was followed by regional uplift that led to local extension and formation of a NE-trending array of normal-fault bounded graben type basins. The reef unit presently stands at maximally 1846 m attributed to the gravitationally isostatic (orogenic) rebound of the nappe stack (Alçıçek & Ten Veen 2008). A 7 my period of non-deposition was followed by terrestrial sedimentation during the late Tortonian that dominated the extensional basins in the Lycian hinterland. The non-deposition period corresponded with a shift from compression to extension (Alçıçek et al. 2018).

On the Taurides in the SW Anatolia, Alçıçek (2001) attempted to obtain stratigraphic resolution that would enable an accurate definition for the duration of tectonic phases related to crustal deformation. Following that approach, Alçıçek et al. (2005) and Alçıçek (2007) described terrestrial orogen-top basins such as Çameli and Eşen and distinguished three
distinct pulses of crustal extension that occurred in the late Miocene, middle Pliocene and early Pleistocene times, respectively. Spatial and temporal correlation of the facies associations in each individual basin indicate that they are correlative and deposited coevally with typical tripartite facies associations; alluvial-fan facies at the margin, fluvial and lacustrine facies in the centre.

The post-orogenic terrestrial basins collectively provide sedimentary and stratigraphic data describing synchronicity of the individual basin development and related sedimentation as well as describing interconnections between the tectonic provinces. The new age control presented here provides the means to place the basin development in the well-articulated regional tectonic framework (Ten Veen 2004, Alçiçek et al. 2006, Ten Veen et al. 2009). Late Neogene and Quaternary neotectonic developments in western Anatolia are characterized by extensional crustal deformation that resulted in the development of fault-bounded basins. This extension has strongly influenced the basin configuration, changed the sedimentation mode and given rise to several graben-type basins such as Çal, Baklan, Açıgöl, Burdur, Çameli, Eşen and Beyağac. These basins, related to post-orogenic processes, were formerly presented as multiply pulsed orogen-top basins (Alçiçek 2001, Purvis & Robertson 2004, Alçiçek et al. 2005, Alçiçek 2007). Here, we synthesise the available data to develop a unified three phase model for basin sedimentation across the SW Anatolian region.

Phase I – Basin formation (late Tortonian)

The basal alluvial flood plain deposits of the SW Anatolian basins abound in large fossil mammal remains including the localities of Mahmutgazi in Baklan, Asarlık in Çal, Elmalıyurt (Pınaz) in Çameli, Karamusalar in Eşen, Şerefköy in Yatağan, Sazak and Kozlar in Beyağac, Kemer in Burdur basins (Table 1, Fig.2). The fossils found in these localities are typical of the so-called Greco-Iranian or sub-Paratethyan province, also known as the Pikermi biome (Geraads 2017, Kaya et al. 2012, Pickford 2016). This assemblage is suggestive of open forested landscapes ranging from sclerophylous evergreen to mixed conifer and deciduous woodlands to open xerophytic terrains forming a mosaic of different plant associations (Jiménez-Moreno et al. 2007, Biltekin et al. 2015) and indicating relatively humid climatic conditions in the late Tortonian. Around 5.9 Ma (late Turolian), an onset of drastic climatic change with greater aridity and continentality and cooler climate occurred in the eastern Mediterranean in combination with the continued convergence between Africa and Europe. This led to easier and more rapid faunal exchanges between the two continents. However,
only a sparse record of large grazing mammals, living in open areas, is found in the late Turolian. These taxa adapted to more dry and open environments. Climate became more arid at the end of the late Miocene, resulting in more open vegetation and more rare forest vegetation (Biltekin et al. 2015).

All of the fossil localities observed in the lowermost stratigraphy of each basin have a similar age range of early-middle Turolian (MN11-12). Therefore, it appears that the SW Anatolian post-orogenic basins subsided synchronously and initially filled with alluvial-fan deposits in a high-energy setting. During the basin subsidence, the marginal alluvial-fans from the basin-bounded escarpments supplied rivers running along the basin axis and accompanied by ephemeral lakes in the basin center. The basins were underfilled, represented by the rate of potential accommodation exceeding rate of sediment/water supply, gradually filling with a fining-upward fluvial sequence in which braided streams predominated, punctuated by sheet-floods and graded into meandering systems (Caroll & Boharcs 1999). Eventually these fluvial systems were gradually drowned by shallow-lacustrine marsh-swamp environments.

Phase II – Lacustrine period (early Pliocene)

The initial basin-fill composed of alluvial-fan and fluvial deposits was subsequently drowned by extensive lakes by the early Pliocene. These initial lacustrine deposits are marked by shallow-lacustrine facies assemblages of marsh-swamp environment, which abound in fossil micro-mammals and amphibians. These conditions are most common in balanced-fill lake, characterized by the rates of sediment/water supply in balance with potential accommodation (Carroll & Bohacs 1999). The timing of the lacustrine inundation has been well established by microvertebrate remains from the locality of Ericek in the Çameli basin (Alçiçek 2001, Alçiçek et al. 2005, Van den Hoek Ostende et al. 2015a). At the lowermost part of the lacustrine succession, cypriniform fish assemblages were reported by Rutte & Becker-Platen (1980) in the Baklan basin and Alçiçek (2007) found similar cypriniform assemblages in the Eşen basin. New fossil mammals yielded from the Sultandere locality of Burdur and the Afşar locality of Sandıklı are of Ruscinian age, supporting the lacustrine inundation throughout SW Anatolia and also implying humid climatic conditions at that time, given, for instance, the high proportion of desmanine moles in the locality of Afşar (Table 1, Fig.2). A similar fossil mammal reported by Saraç (2003) from the Bozarmut locality in the Yatağan basin extends the lacustrine inundation further to the west. The Mio-Pliocene boundary saw a major faunal turnover in the Mediterranean mammal faunas, which in the east
marks the end of the Pikermian biome (Eronen et al. 2009). In SW Anatolia, this turnover is marked by the presence of various wood mice and a palaeobatrachid frog in the Ericek locality of the Çameli basin (Van den Hoek Ostende et al. 2015b).

Initial shallow lacustrine basins gradually deepened as marked by thick, homogeneous marly carbonate deposits. The deep lacustrine deposits are concentrated to the centres of the basins, and locally overlap the basin margins implying a lacustrine inundation following renewed basin subsidence possibly owing to renewed extension. Eventually the individual lakes were united to constitute a single mega-lake in SW Anatolia during the Pliocene (Spratt & Forbes 1847, Becker-Platen 1970, Luttig & Steffens 1976, Görür et al. 1995, 1998). Such a palaeo-lake environment was envisaged by Bering (1971) as the Pisidic Lake. Pamir (1974) has further extended this connection up the Denizli basin to the north on the basis of the presence of Cardium assemblages.

Phase III – Basin dissection (early Pleistocene)

The adjoined lake basins gradually and synchronously shrunk by the early Pleistocene as indicated by a gradual transition of homogeneous lacustrine marls into shallow lacustrine marsh-swamp deposits. The shallow lacustrine environments abound in fossil micro- and macro-mammal assemblages across the entirety of SW Anatolia. Locations include the Bıçakçı locality in Çameli, Kırmızitepe locality in Çal, Gelinören locality in Baklan, Yelalan locality in Acıgöl and Kocakır, Elmacık, Yassıgüme and Arıçtekke localities in Burdur basins (Alçıçek 2001, Alçıçek et al. 2005, Wesseling & Alçıçek 2010, Alçıçek et al. 2012, 2013a, Demirel & Mayda 2014, Van den Hoek Ostende et al. 2015a, b, Alçıçek et al. 2017). The more open vegetation conditions are well-reflected in the Bıçakçı fauna at the demise of the lacustrine period with subhumid climatic conditions. That fauna is dominated by hamsters (cricitines), and shows in addition a large variety of voles (microtines). Murids, which were dominant in the preceding period, now play a far more modest role (Van den Hoek Ostende et al. 2015a, Alçıçek et al. 2017).

During the early Pleistocene, a renewed pulse of extension prompted the deposition of coarse-grained alluvial-fan sediments derived from the basin margins interfingering with the lacustrine sediments towards the basin centre. In this stage, the lake accommodation space was eventually exhausted, as is indicated by the basin-wide expansion of alluvial to fluvial sedimentation. This stage was attributed to a change in the direction of extension that is considered to have affected the entire area of SW Anatolia (Ten Veen 2004, Alçıçek et al.)
2006, Ten Veen et al. 2009). During this phase, the mega-basin became totally dissected. Lower Pleistocene coarse clastic alluvial-fan deposits that unconformably overlie older Neogene units in SW Anatolia exemplify the renewed extension. This alluvial unit has a distinct dark-red colour with prominent pedogenic horizons in the over-bank deposits. The succeeding (i.e., Holocene) period is characterized predominantly by degradation of topographic highs through deeply incising river erosion. Newly generated faults as well as reactivated faults are thought to have been associated with subduction roll-back extension, which further enhanced the basin-and-range topography of SW Turkey (Alçiçek et al. 2005, Alçiçek 2007, Ten Veen et al. 2009).

Conclusions

The sedimentary architecture of SW Anatolian terrestrial basins has been linked to multiple pulses of extension that are reflected in palaeoenvironmental changes. Strongly concerted environmental changes in the basins are based on their integrated faunal- and depositional assemblages. Stratigraphy and sedimentation patterns of the mammal bearing strata in this Lycian orogen-top domain allows us to present a regional inter-basinal correlation and palaeobiogeographical reconstruction over the Anatolian gateway, which is uniquely located along the migration route critical to the fauna of the Old World. Biostratigraphic constraints in these basins have been reassesed with the support of new fossil finds to calibrate and age-constrain the palaeoenvironments within a regional palaeogeographic framework. The fossil associations have been combined with the sedimentation pattern to refine the post-orogenic basin development and regional palaeobiogeographical throughout the Lycian Taurides. Our studies have reaffirmed the triparte nature of the sedimentation in the various basins, which is synchronous and represents a late Miocene, Pliocene and early Pleistocene phase, each with its own particular environments.

Terrestrial sedimentation on the Lycian hinterland had commenced by the late Tortonian (early Turonian) following c. 7 my of non-deposition following the latest marine transgression in the region. In the early stage, the basins subsided to form a transition from coarse-clastic alluvial-fans and axial fluvial systems. These alluvial flood-plain deposits abound in large mammal taxa of the Pikermi biome, implying an open, seasonal palaeoenvironment with grass-dominated steppe ecosystem. The terrestrial fossil assemblages correlate with those of adjacent basins indicating palaeobiogeographical connections.
By the early Pliocene (late Ruscinian), gradual transition from an alluvial-fan environment into a fluvial system was initiated by regional climatic variations changing into warm and more humid conditions with savannah-type open habitats, resulting in base-level rise, lake expansion, ascending river gradient and increased flow-capacity. The humidity was sustained until the late Pliocene, when shallow-palustrine lacustrine environments comparable with the modern SW Anatolian lacustrine basins appeared. The fossil associations underlying and overlying the Pliocene lacustrine deposits indicate the duration of the lake phase of at least 1 ma.

By the early Pleistocene (latest Villanyian), the basin was dissected by newly generated faults and the the basin configuration was re-arranged. The base-level changes resulted in coarse-clastic alluvial-fan to fluvial material unconformably overlying the earlier deposits in the basins. This unit contains large mammal taxa representing an open steppe ecosystem under more temparate (i.e. semiarid) climatic conditions.

Acknowledgements

We are grateful to the support of the international bilateral project between The Scientific and Technological Research Council of Turkey (TUBITAK) and The Russian Scientific Foundation (RFBR) with grant number of 111Y192. MCA is grateful to the Turkish Academy of Sciences (TUBA) for a GEBIP (Young Scientist Award) grant. MCA, HA, SM and MB have obtained Martin and Temmick Fellowships at Naturalis Biodiversity Center (Leiden). FAD is supported by Mehmet Akif Ersoy University Scientific Research Grant. We are indebted to the comments from N. Kaymakçı (METU) and A. Brogi (Bari U.), and stimulating discussions with W. Nemec (Bergen U.).

Conflict of Interest: The authors declare that they have no conflict of interest.

References

a part of The Taurus Project). The Turkish Petroleum Corporation (TPAO), Technical Report No: 1732, Ankara, Turkey.

Age and kinematics of the Burdur Basin: Inferences for the existence of the Fethiye Burdur Fault Zone in SW Anatolia (Turkey). Tectonophysics, 744, 256-274

Captions

Fig.1. (A) Tectonic map of the Aegean and western Turkey showing the major tectonic structures (Bozkurt 2003); (B) Overview of the prominent extensional basins of western Anatolia surrounding the Çameli Basin (based on Konak 2002, Konak & Şenel 2002, Şenel 2002, Turan 2002). The fossil localities subjected in this study are indicated. See Fig. 2 and 3 for the stratigraphic position of the fossil sites and Table 1 for their contents.

(2015), Över et al. (2010, 2016), Howell et al. (2017) and Kaymakçı et al (2018). Note that the SW Anatolian terrestrial basins are strongly synchronic and compatible to the lithostratigraphic Standard Profile (SP) which was initially proposed for the lithostratigraphical subdivision of entire SW Anatolian Neogene formations by Becker-Platen (1970). See Fig. 1 for the location of the basins, and Fig. 2 for the stratigraphic position of the fossil sites.
7 Ma of non-depositional stage corresponding to the regional uplift accompanied by the final advance of the Lycian nappes. The regional gap between the marine to terrestrial sedimentation corresponds to a change from regional contraction to extension.

Regional transgression drowned entire SW Anatolia

Closure of the Neo-Tethyan Ocean, collision of continental blocks Culminating the allochthonous Lycian nappes over autochthonous Beydağları carbonate platform forming the Tauride Orogen.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Fossil assemblages</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alluvial-fan</td>
<td>Çal-Kırımtaşte locality: Equus hydruntinus (late Pleistocene, Alçiçek et al. 2012)</td>
<td>Torigian-early Biharian</td>
</tr>
<tr>
<td></td>
<td>Açgöl: Equus hydruntinus (late Pleistocene, Alçiçek et al. 2013)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burdur Basin: 1.50±0.18; 1.38±0.13 Ka (Nemec et al. 1998), 115±3 to 24±2 Ka (Platevoet et al. 2008)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baklan: Pseudomeriones tchaltaensis (Wesselingh & Alçiçek 2010), Microtus sp.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Açgöl: 3760 BP (Sulpizio et al. 2013, Athanassas et al. 2018), 2.5 Ma (Lebatard et al. submitted)</td>
<td></td>
</tr>
<tr>
<td>Anatostoming fluvial</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Burdur Yassıgüme: Equus sp., Gazellospira torticornis, Leptobos sp., Cervidae indet., Testudo sp. (Alpagut et al. 2015).</td>
<td>Latest Villanyian (latest MN17)</td>
</tr>
<tr>
<td></td>
<td>Burdur Basin: Pmag, 2.5 Ma (Özkaptan et al. 2018).</td>
<td>Latest Villanyian (latest MN17)</td>
</tr>
<tr>
<td></td>
<td>Burdur-Hasanpaşa: Mammuthus meridionalis, Gazella sp. (MN17, Saraç 2003)</td>
<td>Latest Villanyian (latest MN17)</td>
</tr>
<tr>
<td>Lacustrine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Çameli Basin: Melanopsis narzolina, Pseudamnicola kochi, P. margarita margarita, P. margarita nuda, Paludina, Lymnaeae, Radix, Lithoglyphus and Pyrgula, Ostracod: Amphlocypris marginata, Candona sp., C. sieberi nodosa, C. exigua, Darwilia cylindrica, Eucypris sp., and Metacypris sp. (Becker-Platen 1970), Cyprideis pannonica, Candona paralela pannonica, Heterocypris salina, Ilyocypris sp. Eucypris sp. (Darbaş et al. 2017).</td>
<td>Late Pliocene</td>
</tr>
</tbody>
</table>

Denizli-Beydağ-Kozlar: Hipparion sp., Ceratotherium sp.

Muğla-Özlüce: Dinocrocuta gigantea, Choeoroophodon anatolicum, Hipparion sp. (I), Hipparion sp. (II), Ceratherium neumayri, Chilotherium cf. kiliasi, Chilotherium nov. sp., Sporadotragus nov. sp., Microstonyx sp. (early Turolian (MN11), Alpagut et al. 2014).

Burdur Basin: 4.77±0.25 to 4.07±0.20 Ma (Lefevre et al. 1983), 4.6±0.2 Ma (Price 1989).

Çameli Basin: 6.9 Ma (Elitez et al. 2017), 6.52±0.33 to 4.59±0.57 (Paton 1992), 6.71±0.2 (Westaway et al. 2005).

No deposition, ca 7 Ma (late Burdigalian-late Tortonian)
<table>
<thead>
<tr>
<th>Reef Limestone (brackish-shallow marine)</th>
<th>Acipayam reef:</th>
<th>Late Burdigalian</th>
</tr>
</thead>
</table>

Autochthonous and allochthonous basement units (Mesozoic-Miocene)