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Modelling of fatigue crack closure via the concept of plastic inclusions 

Ebtesam Alousta 

 

AbstractAbstractAbstractAbstract    

    

The phenomenon of closure is one of the most important phenomena that have been 

linked to the deeper understanding of fatigue cracks. Various methods have been 

employed to model the plastic zone around the crack tip which appears to give rise to 

the closure phenomena. 

 

In this thesis, our goal is to model the plastic region near the crack tip by using a 

suitable adaptation of an Eshelby inclusion. To do this, the first task is to translate 

Eshelby’s solution in terms of Muskhelishvili’s complex potential functions for 2D 

elasticity and then solve these equations for a suitable shape of plastic inclusion. In 

this thesis, we have concentrated only on the case where the inclusion is a disc in front 

of the crack just touching the crack tip.  
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NomenclatureNomenclatureNomenclatureNomenclature    

    

a :  Crack length 

i : Square root of -1   

z :  Complex coordinate of the points around the crack tip, z=x+iy  

E : Young’s modulus 
 

A, B, C, D, F : Coefficients  

11 22 12σ ,σ ,σ : Components of the crack tip stress field 

11 22 12σ ,σ ,σ∗ ∗ ∗ : Components of the eigenstress in the inclusion 

 

λ ,  µ  are independent elastic constants, called the Lamé constants 
 

υ : Poisson’s ratio 
 

IK : Mode I  stress intensity factor 

 

IIK : Mode II  stress intensity factor 
 

φ(z),ψ(z) : Muskhelishvili complex potentials 

φ (z),ψ (z)∗ ∗
: Muskhelishvili complex potentials arising from eigenstress in inclusion 

r,θ : Notation for polar coordinates 

r θ rθσ ,σ ,σ : Components of stress tensor in polar coordinates  

1 2u ,u : Horizontal and vertical displacements 

Z : Westergaard function for Mode I problems 

 T, -
10xσ : T - stress  

P, Q : Forces 

t  : The distance from point force to crack tip  

1 1 1A ,B ,C :  Coefficients of the displacement inside the inclusion 

w :  Complex representation of the displacement relative to a point force  
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Chapter 1 Chapter 1 Chapter 1 Chapter 1 IntroductionIntroductionIntroductionIntroduction    

    

Fracture mechanics is the branch of applied mechanics that deals with the mechanics 

of cracked bodies under load and provides tools to predict crack extension and 

fracture, and hence to assess residual life. Fracture mechanics allows engineers to 

design fracture-safe and fatigue-reliable structures with defined fatigue life. Some of 

the mechanisms associated with plastic deformation and crack growth and that 

influence the magnitude of the range of stress intensity factor at a crack tip are still 

incompletely understood, among of these are the plasticity-induced crack closure (or 

crack tip shielding) effect [1, 59].  

 

The term crack closure describes the phenomena of a decrease in fatigue crack growth 

rate by an apparent decrease in the effective stress intensity factor range, ∆K���, due 

to the contact between the crack faces. The lack of understanding comes from the 

difficulties of measuring this phenomenon and evaluating its impact on the crack 

driving force [2]. 

 

The material inside a plastically transformed region in an isotropic elastic solid can be 

considered as an “inclusion” in the elastic material with the surrounding material called 

the “matrix” as shown in Fig 1.1. The solution of the problem of finding the elastic field 

both in the inclusion and in the surrounding matrix has been given by Eshelby (1957). 

He solved this problem by imagining cutting around the area which has been deformed 

and removing it from the matrix [3]. Eshelby showed that the mathematical solution of 
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this problem can be based on the superposition principle of linear elasticity via a 

Green’s function [4]. 

 

 

 

Figure 1.1:  A homogeneous linear elastic solid with volume V and surface S. A 

subvolume 0V  with surface 0S  undergoes a permanent deformation. An inclusion is 

the material inside 0V  and the surrounding material is called the matrix [4]. 

   
 

1.1 Motivations and aims of the research1.1 Motivations and aims of the research1.1 Motivations and aims of the research1.1 Motivations and aims of the research    

 

The main motivation for this research topic is contribute to a better understanding of 

the fatigue crack closure phenomenon and thus help to clarify the nature of the plastic 

region surrounding the crack tip. This should result in giving better predictions of crack 

behaviour, for example growth rates. The aim of this thesis is to model the plastic 

region near the crack tip by using a suitable adaptation of Eshelby’s approach. To do 

this, we translate Eshelby’s solution in terms of Muskhelishvili’s complex potential 

functions for 2D elasticity. Using an adaptation of Eshelby’s analysis, we find the 

solution for the stress, strain and displacement fields both inside and outside the 

inclusion, for the case where the inclusion is a circular disc just in front of the crack tip. 
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1.2 Description of the contents1.2 Description of the contents1.2 Description of the contents1.2 Description of the contents    

 

The current research is intended to contribute to the understanding of how we can use 

theoretical methods to find stress and displacement around the crack via a modified 

Eshelby's inclusion in 2D. This work has been organized into seven chapters as 

follows: 

 

ChapterChapterChapterChapter    2 2 2 2 gives some background into    the most commonly used mathematical models 

characterising the stress field or the displacement field around the crack tip. After to 

this, the phenomenon of fatigue crack closure is described. 

 

Chapter Chapter Chapter Chapter 3333    is a literature review of work related to this thesis.  

 

Chapter 4Chapter 4Chapter 4Chapter 4    presents the complex potential function method and how it can be used to 

analyse the stresses and displacements around a crack tip.  

 

Chapter Chapter Chapter Chapter 5555 Eshelby’s approach to modelling an inclusion is reviewed. 

 

Chapter 6Chapter 6Chapter 6Chapter 6    the model of the plastic region near the crack tip is analysed and solved to 

calculate the stress and the displacement around crack tip using Eshelby’s approach. 

Chapter Chapter Chapter Chapter 7777 provides a summary of this thesis, and gives some recommendations for 

future work. 
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Chapter 2 Chapter 2 Chapter 2 Chapter 2 Background Background Background Background     

    

2.1 Introduction2.1 Introduction2.1 Introduction2.1 Introduction    

 

The purpose of this chapter is to describe briefly some of the fundamental concepts of 

continuum mechanics and fracture mechanics, and classic approaches to modelling 

cracks and plastic zones that will be employed later in this thesis. 

    

    

2.2 2.2 2.2 2.2 Fundamental theory of continuum mechanics  Fundamental theory of continuum mechanics  Fundamental theory of continuum mechanics  Fundamental theory of continuum mechanics      

    

2.2.1 Stress and e2.2.1 Stress and e2.2.1 Stress and e2.2.1 Stress and equilibriumquilibriumquilibriumquilibrium    

    

Consider a body at equilibrium with a volume, V , enclosed by a surface, S .There 

are two types of forces acting on this body: traction and body forces. The traction, jT ,

acts over the surface area with normal vector, i in=n e  , and i=1,2,3, and  is related to 

the stresses by [4]  

 

ij i jσ n =T , i, j=1,2,3,                    (2.1) 

 

where it is understood that the summation convention applies and the stress tensor, 

denoted by  ijσ , gives the force per    unit area on the i- face in the j- direction [4].  
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Figure 2.1: An elastic body V under applied loads [4] 
 

 

The body force per unit volume, jb ,  as shown in Fig 2.1 represents the external force 

field. The equilibrium of the forces in the j -direction can be written as 

 

j j

V S

b dV+ T dS=0.∫ ∫                      (2.2) 

 

Substituting from (2.1), we get  

 

j ij i

V S

b dV+ σ n dS=0.∫ ∫                   (2.3) 

 

Using Gauss’s theorem we have, 

 

j ij,i

V

(b +σ )dV=0,∫  
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which, since V  is arbitrary, gives the equation for equilibrium as 

 

j ij,ib +σ =0.                            (2.4) 

 

 

2.2.2 Strain and c2.2.2 Strain and c2.2.2 Strain and c2.2.2 Strain and compatibilityompatibilityompatibilityompatibility    

    

Let X  be the coordinate of a point in the undeformed body and x  be the point after 

deformation as shown in Fig.2.2. The displacement of the point X , denoted u(X) , is 

 
u(X)=x-X . 

 

We can write  

 

x=u+X . 

    

    

    

Figure 2.2: illustrating the configuration of a undeformed and deformed body [4]     
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Now, if  i idS= dX dX  is the length of a small vector dX  in the undeformed body and 

i ids= dx dx is the length of a small vector dx  after deformation, then the strain 

tensor, ijε , which is a measure of the body’s stretching, can be defined by 

 

2 2
ij i j(ds) -(dS) =(ds+dS)(ds-dS) 2ε dx dx .=  

 

Writing ds and  dS in terms of the displacements, iu , we get, 

 

 

2 2 i i
i j i j i j ij ij j ik k

j k

ji i k
i j ij jk j,k k,j i,j i,k j k

j k j k

2
ij i k

u u
(ds) -(dS) x dx -dX dX =dx dxδ -(δ - )dx (δ - )dx

x x

uu u u
=dx dx δ -( - - +δ )=(u +u -u u )dx dx

x x x x

=ε dx dx +O(x ),

∂ ∂=
∂ ∂

∂∂ ∂ ∂
∂ ∂ ∂ ∂

 

 

which, assuming the strain tensor is symmetric, i.e. ij jiε =ε , gives the strain tensor, ijε , 

as  

 

ij i,j j,i

1
ε = (u +u ),

2
                          (2.5) 

 

where we have ignored the terms in 2O(u ). Now, from the definition of the strain 

tensor, (2.5), we obtain the following equations  

 

xx x,x yy y,y zz z,z xy x,y y,x

1
ε =u , ε =u , ε =u , ε = (u +u ),

2 xz x,z z,x yz y,z z,y

1 1
ε = (u +u ),ε = (u +u ),

2 2
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hence, we obtain  

 

xx,yy x,xyy yy,xx y,yxx xy,xy x,xyy y,yxx

1
ε =u , ε =u , ε = (u +u ),

2
 

 

and thus xx,yy yy,xxε , ε and xy,xyε  must satisfy 

 

xx,yy yy, xx xy,xyε + ε -2ε =0. 

 

Similarly, we have  

 

xx,yz x,xyz xy,xz x,xyz y,xxz

1
ε =u , ε = (u +u ),

2 xz,xy x,xyz z,xxy yz,xx y,xxz z,xxy

1 1
ε = (u +u ), ε = (u +u ),

2 2
 

 
which gives  

 

xx,yy yy, xx xy,xyε + ε -2ε =0. 

 
In the same way we can get two more equations. All six equations can be expressed 

in index notation by 

 

pmk qnj jk,nmε ε ε =0,                       (2.6)           

 

where  

 

ijk

1 for even permutatationsof ijk

ε = -1 for odd permutatationsof ijk .

0 for repeated indices






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Conversely, if equation (2.6) holds, one can prove that there exist iu such that  

 

ij i,j j,i

1
ε = (u +u )

2
. 

    
2.2.3 2.2.3 2.2.3 2.2.3 The eThe eThe eThe equilibrium quilibrium quilibrium quilibrium eeeequation quation quation quation wwwwrrrritten in itten in itten in itten in tttterms of erms of erms of erms of ddddisplacementsisplacementsisplacementsisplacements    

    
The constitutive equation for the strain as a function of the stress is  

 

ij ijkl klσ=C:ε σ =C ε ,⇔                  (2.7) 

 

where C  is a fourth order tensor called the elastic stiffness tensor (or elastic constant 

tensor). This relation is known as the generalized Hooke’s law. 

 

It is will become that all isotropic fourth order tensors can be written in the form  

 

ijkl ij kl ik jl il jkC =λδ δ +µ(δ δ +δ δ ),          (2.8) 

 
 
where λ  and µ  are independent elastic constants, called the Lamé constants, and 

ijδ  is the Kronecker delta defined as  

 

ij

1 if i=j
δ =

0 if i j.


 ≠
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The parameter µ  is called the shear modulus, and λ  is related to Poisson’s ratio, υ , 

by 
2µυ

λ=
1-2υ

. Substituting (2.8) into (2.7), we obtain 

 

ij ij kk ijσ =λδ ε +2µε .                         (2.9)  

 

In matrix form, Hooke’s law for isotropic materials can be written in terms of the Lamé 

constants as  

 

11 11

22 22

33 33

23 23

13 13

12 12

σ ε2µ+λ λ λ 0 0 0

σ ελ 2µ+λ λ 0 0 0

σ ελ λ 2µ+λ 0 0 0
=

2σ 2ε0 0 0 µ 0 0

0 0 0 0 µ 02σ 2ε

0 0 0 0 0 µ2σ 2ε

    
    
    
    
    
    
    
    
       

. 

 

The equation (2.9) can be rewritten alternatively in terms of E and υ  as 

 

( )( )ij ij kk ij

E vE
σ = ε + ε δ

1+υ 1+υ 1-2υ
, 

 

and in matrix form as 

 

( )( )

11 11

22 22

33 33

23 23

13 13

12 12

σ ε1-υ υ υ 0 0 0

σ ευ 1-υ υ 0 0 0

σ ευ υ 1-υ 0 0 0E
=

2σ 2ε0 0 0 1-2υ 0 01+υ 1-2υ

0 0 0 0 1-2υ 02σ 2ε

0 0 0 0 0 1-2υ2σ 2ε

    
    
    
    
    
    
    
    
       

. 
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We can invert (2.7) to get a constitutive equation for the stress as function of the 

strain:  

 

ij ijkl klε=S:σ ε =S σ ,⇔                 (2.10) 

 

where S is a fourth order tensor called the compliance tensor. We can determine the 

compliance tensor, ijklS , as the inverse of ijklC  , i.e., 

 

( )ijkl klmn im jn in jm

1
C S = δ δ +δ δ

2
 

 

Now, seeking a solution in the form  

 

( )klmn kl mn km ln kn lmS =αδ δ +β δ δ +δ δ , 

 

we need  

 

( )
( ) ( )

( )

ijkl klmn ij kl ik jl il jk kl mn km ln kn lm

ij mn im jn in jm

im jn in jm

C S = λδ δ +µ(δ δ +δ δ ) αδ δ +β δ δ +δ δ

= 3λα+2µα+2βλ δ δ +2βµ δ δ +δ δ

1
= δ δ +δ δ ,

2

     

 

 

and therefore, 
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( )
1 -λ

β= ,α= .
4µ 2µ 3λ+2µ

  

 

It follows that the compliance tensor, ijklS , is  

 

( ) ( )ijkl ij kl ik jl il jk

-λ 1
S = δ δ + δ δ +δ δ

2µ 3λ+2µ 4µ
. 

 

One can write equation (2.10) as 

 

ij ij kk ij

1 λ
ε = σ - σ δ .

2µ 2µ(3λ+2µ)
 

 

In matrix form, a constitutive equation for the stress as a function of the strain can be 

written as 

 
 

11

22

33

23

13

12

λ+µ -λ -λ
0 0 0

µ(3λ+2µ) 2µ(3λ+2µ) 2µ(3λ+2µ)

-λ λ+µ -λ
0 0 0

ε 2µ(3λ+2µ) µ(3λ+2µ) 2µ(3λ+2µ)
ε -λ -λ λ+µ

0 0 0
ε 2µ(3λ+2µ) 2µ(3λ+2µ) µ(3λ+2µ)

=
2ε 1

0 0 0 0 0
µ2ε

12ε 0 0 0 0 0
µ

1
0 0 0 0 0

µ

 
 
 
 
  
  
  
  
  
  
 
 
  




 

11

22

33

23

13

12

σ

σ

σ

2σ

2σ

2σ

 
 
 
 
 
 
  
  
   





. 
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The components of strain as a function of the components of stress alternatively in 

terms of E and υ  are  

 

( )ij ij kk ij

1
ε = 1+υ σ -υσ δ

E
   , 

 
and in matrix form as 

 

( )

( )

( )

11 11

22 22

33 33

23 23

13 13

12 12

1 -υ -υ
0 0 0

E E E
-υ 1 -υ

0 0 0ε σE E E
ε σ-υ -υ 1

0 0 0
E E Eε σ

=
1+υ2ε 2σ0 0 0 0 0
E2ε 2σ

1+υ2ε 2σ0 0 0 0 0
E

1+υ
0 0 0 0 0

E

 
 
 
 

    
    
    
    
    
    
    
    
       

 
 
 
 

, 

 

in which E and υ  are given in terms of the Lamé constants by  

 

µ(3λ+2µ) λ
E= ,υ=

λ+µ 2(λ+µ)
. 

 
Now, substituting (2.7) in (2.4) we get, 

 

ijkl kl,i jC ε +b =0.           (2.11) 

 
From (2.11), and the definition of the strain tensor, we obtain  
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ijkl k,li l,ki j

1
C (u +u )+b =0.

2
 

 

Since ijkl jikl ijlkC =C =C ,then  

 

ijkl k,li ijlk l,ki j

1
(C u +C u )+b =0.

2
 

 

Now, we can combined the equation above into  

 

ijkl k,li jC u +b =0.                      (2.12) 

 

The following relations hold among Young’s modulus E, Poisson’s ratio v , the bulk 

modulus K , and the shear modulusµ : 

 

2µυ λ (3K-2µ)
λ= , E=2(1+υ)µ, υ= = .

(1-2υ) 2(λ+µ) 2(3K+µ)
 

 

2.3 Linear e2.3 Linear e2.3 Linear e2.3 Linear elastic in 2D lastic in 2D lastic in 2D lastic in 2D     

 

2222.3.1 Re.3.1 Re.3.1 Re.3.1 Review of plane stress and view of plane stress and view of plane stress and view of plane stress and plane splane splane splane strain field etrain field etrain field etrain field equations quations quations quations     

 

As in [48], plane strain and plane stress are defined as follows. 

 

Plane strain is defined to be a state where  
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α α 1 2 3u =u (X ,X ), u =0, α=1,2. 

 

Plane strain is a good choice when the material is thick. 

 

In a state of plane strain the scalar components of strain ij i,j j,i

1
ε = (u +u )

2
 must be in 

the form 13 23 33 αβ αβ 1 2ε =ε =ε =0,ε =ε (X ,X ), and 
αβ α,β β,α

1
ε = (u +u ),α,β=1,2.

2
 

 

The scalar components of stress ij ij kk ijσ =2µε +λε δ , must correspondingly have the 

form 13 23 αβ αβ 1 2σ =σ =0,σ =σ (X ,X ) and 33 γγσ =λε , where kk 11 22 γγε =ε +ε =ε . Then stresses in 

plane strain are  

 

  αβ αβ γγ αβσ =2µε +λε δ ,               (2.13) 

 

alternatively, putting this in terms of E and v , we get  

 

( )( )αβ αβ γγ αβ

E υE
σ = ε + ε δ ,

1+υ 1+υ 1-2υ
                (2.14) 

 

or 
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( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

11 11

22 22

12 12

E 1-υ υE
0

1+υ 1-2υ 1+υ 1-2υ
σ ε

υE E(1-υ)
σ = 0 ε

1+υ 1-2υ 1+υ 1-2υ
2σ 2ε

E
0 0

1+υ

 
 
                    
 
  

, 

where 

( )
( )( ) ( ) ( )

( )( ) ( ) ( )

( )

ijkl

E 1-υ υE
0

1+υ 1-2υ 1+υ 1-2υ

υE E(1-υ)
c = 0

1+υ 1-2υ 1+υ 1-2υ

E
0 0

1+υ

 
 
 
 
 
 
 
 
  

. 

 

Noting that αα 11 22δ =δ +δ =2 , it follows from (2.13) and 33 γγσ =λε  that  

 

αα αα 33 33

2(µ+λ) 1
σ =2(µ+λ)ε = σ = σ .

λ υ
 

 

Since kk γγ 33 γγσ =σ +σ =(1+υ)σ , one can obtain the strains in plane strain from the 

expression  

 

( )ij ij kk ij

1
ε = 1+υ σ -υσ δ .

E
    

 

Therefore, the strains in plane strain are  

 



Chapter 2Chapter 2Chapter 2Chapter 2 BackgroundBackgroundBackgroundBackground 

 

29 

 

( )
αβ αβ γγ αβ

1+υ
ε = σ -υσ δ .

E
                    (2.15) 

 

This means that ij ijkl kl
ˆε =s σ , 

 

or 

( )

( )

2

11 112

22 22

12 12

-υ 1+υ1-υ
0

E E
ε σ

-υ 1+υ 1-υ
ε = 0 σ ,

E E
2ε 2σ1+υ

0 0
E

 
 
    
    
    
        
 
 

 

 

where 

 

( )

( )

2

2

ijkl

-υ 1+υ1-υ
0

E E
-υ 1+υ 1-υ

ŝ = 0
E E

1+υ
0 0

E

 
 
 
 
 
 
 
 
 

. 

 

 By calculations, [ ]-1
ŝ =c.  

 

Let ijklC  be the elastic stiffness tensor of a homogeneous solid and ijklS  be the 

compliance tensor ( ijklS  is the inverse of ijklC ). Let ijklc  be the 2D elastic stiffness tensor.  
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Therefore, 

 

ij ijkl klσ =c ε , where  i,j,k,l=1,2.   (plain strain ) 

 

Where ijkl ijklC =c  for i,j,k,l=1,2.   

 

PlanePlanePlanePlane    stressstressstressstress is defined as a state where  

 

αβ αβ 1 2 13 23 33σ =σ (X ,X ), σ =σ =σ =0, α,β=1,2. 

 

Plane stress is a good choice when the material is thin. Since kk 11 22 γγσ =σ +σ =σ ,  one 

can get the scalar components of strain in plane stress from the expression    

 

( )ij ij kk ij

1
ε = 1+υ σ -υσ δ ,

E
    

 

where 13 23 αβ αβ 1 2ε =ε =0,ε =ε (X ,X ), and 33 γγ

-υ
ε = σ

E
 by 

 

( )αβ αβ γγ αβ

1
ε = 1+υ σ -υσ δ ,

E
                     (2.16) 

 

the strain in plane stress is given by  
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ij ijkl klε =s σ , i, j, k, l=1,2.ɶ  

 

Or 

 

11 11

22 22

12 12

1 -υ
0

E Eε σ
-υ 1

ε = 0 σ ,
E E

2ε 2σ1+υ
0 0

E

 
 

    
    
    
       

 
  

 

 

where 

ijkl

1 -υ
0

E E
-υ 1

s = 0
E E

1+υ
0 0

E

 
 
 
 
 
 
 
  

ɶ . 

 

Obviously, 

 

[ ]

2 2

-1

2 2

E υE
0

1-υ 1-υ
v E E

s =c= 0
1-υ 1-υ

E
0 0

1+υ

 
 
 
 
 
 
 
  

ɶ ɶ . 
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Since  
αα αα γγ αα αα 33

1 1-υ 1-υ
ε = [(1+υ)σ -υσ δ ]= σ =- ε

E E υ
, then the component of strain 33ε  in 

terms of  λ  and µ  is 

  

33 αα αα

-υ -λ
ε = ε = ε .

1-υ λ+2µ
 

 

Now, from ij ij kk ijσ =2µε +λε δ and by noting that kk γγ 33 γγ

2µ
ε =ε +ε = ε

λ+2µ
, the components of 

stress in plane stress are given by    

 

αβ αβ γγ αβ

2µλ
σ =2µε + ε δ ,

λ+2µ
                     (2.17) 

 

or, alternatively in terms of E and υ ,  

 

αβ αβ γγ αβ2

E υE
σ = ε + ε δ ,

1+υ 1-υ
              (2.18) 

 

the stress in plane stress is therefore related to the strain by  

 

ij ijkl klσ =c ε , i, j, k, l=1,2.ɶ  

 

or 

 



Chapter 2Chapter 2Chapter 2Chapter 2 BackgroundBackgroundBackgroundBackground 

 

33 

 

2 2

11 11

22 222 2

12 12

E υE
0

1-υ 1-υσ ε
υE E

σ = 0 ε
1-υ 1-υ

2σ 2εE
0 0

1+υ

 
 

    
    
    
       

 
  

, 

where 

 

2 2

ijkl 2 2

E υE
0

1-υ 1-υ
υE E

c = 0
1-υ 1-υ

E
0 0

1+υ

 
 
 
 
 
 
 
  

ɶ . 

 

By comparing the equations of plane strain and plane stress elasticity (2.14), (2.15), 

(2.16) and (2.17), one can see that each of plane strain equations can be transformed 

into its corresponding plane stress equation, and vice versa, by for example, to go from 

plane stress to plane strain, *
2

E υ 2µλ
E ,υ , λ

1-υ 1-υ 2µ-λ
→ → →  and µ µ→ . 

 

2.4 The linear elastic f2.4 The linear elastic f2.4 The linear elastic f2.4 The linear elastic field by ield by ield by ield by using the Green’s fusing the Green’s fusing the Green’s fusing the Green’s functionunctionunctionunction    

 

2.4.1 Equilibrium equation for an infinite b2.4.1 Equilibrium equation for an infinite b2.4.1 Equilibrium equation for an infinite b2.4.1 Equilibrium equation for an infinite bodyodyodyody    

    
Let j jF=F δ(x-x )e′  be a constant point force acting at x ′  in an infinite body. Suppose 

that V  is an arbitrary volume bounded by a surface S with an outward normal n  as 

shown in Fig.1.3. Then, the displacement field generated by this applied force is 

given by 
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i ij ju (x)=G (x-x )F ,′  

 

for some Green’s function ij ijG (x,x )=G (x-x )′ ′  which only depends on the displacement 

between the points. Now,  

 

i,m ij,m ju (x)=G (x-x )F ,′  

 
and, by using Hooke’s law, the stress field can be written as   

 

kp kpim ij,m jσ (x)=C G (x-x )F .′                             (2.19) 

 

Since V   is the volume surrounding the point 0x , then the force F must be balanced 

by the tractions acting over the surface S. This means that  

 

 

k kp p

S

F + σ (X)n (X)dS(X)=0,∫  

 

rewriting this equation using (2.19), we get  

 

k kpim ij,m p j

S

F + C G (x-x )n (X)F dS(X)=0.′∫  

 
Now, by using Gauss’s theorem on the surface integral, we have 

   

k kpim ij,mp j

V

F + C G (x-x ) F dV(X)=0.′∫                    (2.20)  

 
Since the three dimensional Dirac delta function is defined as  
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V

1 if x V
δ(x-x )dV(x)=

0 if x V,

′∈′  ′∉
∫  

 
then we can write (2.20) in the form  

  

kpim ij,mp kj j

V

[C G (x-x )+δ δ(x-x ) ]F dV(X)=0.′ ′∫  

 
Consequently, since V  is arbitrary,  

 

kpim ij,mp kjC G (x-x )+δ δ(x-x )=0′ ′ . 

 
This is equilibrium equation for an infinite body. 

 

 

Figure 2.3: A point force F acting at x ′  inside an infinite elastic. V  is a finite volume 

bounded by a surface S with an outward normal n  [4].  

 
  
 

2.2.2.2.4.2 Green’s function in Fourier s4.2 Green’s function in Fourier s4.2 Green’s function in Fourier s4.2 Green’s function in Fourier space pace pace pace     

    

The Fourier transform of the elastic Green’s function is defined as  
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3

ij ij

R

g (k)= exp(ik x)G (x)dx.⋅∫  

 
Standard theory shows that we can invert this expression to obtain ijG  in terms of ijg : 

 

( ) 3

ij ij3

R

1
G (x)= exp(-ik x)g (k)dk.

2π
⋅∫  

   
Using the formula above we can express the three dimensional Dirac delta function 

as 

 

( ) 3
3

R

1
δ(x)= exp(-ik x)dk.

2π
⋅∫  

 

The equilibrium equation for the elastic Green’s function can now be solved in the 

Fourier space. Substituting in the definitions of ijG (x)  and δ(x) (setting x =0′ ), we 

have   

 

( ) 3

2

kpim ij kj3
m pR

1
[C g (k) +δ ]exp(-ik x)dk=0.

x x2π

∂ ⋅
∂ ∂∫  

 

The vector z  is defined as  

 

k
z=

k
. 

 

Therefore, 
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( ) 3

2
kpim m p ij kj3

R

1
[-C z z k g (k)+δ ]exp(-ik x)dk=0.

2π
⋅∫  

 

It follows that, 

 

2
kpim m p ij jkC z z k g (k)=δ .                      (2.21)   

 

The tensor ki(zz)  is defined by  

 

ki pkim p m(zz) C z z .≡  

 

Using this definition by substituting in equation (2.21), we get  

 
2

ki ij kj(zz) g k =δ . 

 
The inverse of the ij(zz)  tensor is defined such that 

 
-1
nk ki ni(zz) (zz) =δ .  

 
Hence the Green’s function in Fourier space is 

 

-1
ij

ij 2

(zz)
g (k)= .

k
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2.4.3 The elastic s2.4.3 The elastic s2.4.3 The elastic s2.4.3 The elastic stress tress tress tress ffffield in 2Dield in 2Dield in 2Dield in 2D    

    

The main objective of the current calculation is finding the stress, strain and 

displacement fields by using the Green’s function in 2D. The calculations below may 

not be new, but are included for lack of a suitable reference. We start first by calculating 

the Green’s function in 2D as following:  

 

The displacement field caused by applied force βF  is  

 

( ) ( )'
α αβ βu x =G x-x F ,                    (2.22)

 

 

which gives the displacement gradients  

 

( ) ( )'
α,γ αβ,γ βu x =G x-x F .             (2.23)

 

 

From Hooke’s low δε δεαγ αγσ (x)=C ε  and the relation between the strain and the 

displacement, we have  

 

( )αγ α,γ γ,α

' '
αβ,γ β γβ,α β

' '
αβ,γ γβ,α β

1
ε = u +u

2
1

= [G (x-x )F +G (x-x )F ]
2
1

= [G (x-x )+G (x-x )]F ,
2

                        (2.24) 

 

the stress field can be obtained from Hook’s law as  
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δε δεαγ αγ

'
δεαγ αβ,γ β

σ (x)=C ε

=C G (x-x )F .
                    (2.25)

 

 

As before, since V  is the volume surrounding the point 0x , then the force F must be 

balanced by the tractions acting over the surface S . This means that  

 

δ δε ε

S

F + σ (x)n (x)ds(x)=0.∫                      (2.26) 

 

Rewriting this equation using (2.25), we get  

 

'
δ δεαγ αβ,γ β ε

S

F + [C G (x-x )F n (x)ds(x)=0.∫                 (2.27) 

 

Now, using Gauss’s theorem on the surface integral, we have   

 

'
δ δεαγ αβ,γε β

V

F + C G (x-x )F dV(x)=0.∫             (2.28)

 

 

Since the two dimensional Dirac delta function is defined as  

 

'
'

'
V

1 if x V
δ(x-x )dV(x)=

0 if x V,

 ∈


∉
∫

 

 

then we can write (2.28) in the form   
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' '
δεαγ αβ,γε β δ

V

[C G (x-x )F +Fδ(x-x )]dV(x)=0.∫
 

 

Factoring βF after replacing δF  with β βδF δ  we obtain  

 

' '
δεαγ αβ,γε δβ β

V

[C G (x-x )+δ δ(x-x )]F dV(x)=0.∫               (2.29) 

 

Consequently, since V  is an arbitrary,  

 

' '
δεαγ αβ,γε δβ

C G (x-x )+δ δ(x-x )=0,                      (2.30)
 

 

which is the  equilibrium equation satisfied by the Green’s function in an infinite 

elastic body. Now, one can solve equation (2.30) using Fourier transforms. The 

Fourier transform of the elastic Green’s function is defined as  

 

( ) ( )ik.x
αβ αβ

-

g k = e G x dx.
∞ ∞

−∞ ∞
∫ ∫                     (2.31)

 

 

Standard theory shows that we can invert this expression to obtain αβG  in terms of 

αβg :  

 

( )
( )

-ik.x
αβ αβ2

-

1
G x = e g (k)dk.

2π

∞

∞
∫                  (2.32) 
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Using the formula above we can express the two dimensional Dirac delta function as 

 

( )
-ik.x

2
-

1
δ(x)= e dk.

2π

∞

∞
∫

    
 

The equilibrium equation for the elastic Green’s function can now be solved in the 

Fourier space. From (2.30) and using definition of ( )αβ
G x ,δ(x) , when  'x =0, we 

obtain  

 

( )
2

-ik.x
δεαγ αβ δβ2

γ ε-

1
C g (k)+δ e dk=0.

x x2π

∞

∞

 ∂
 ∂ ∂  
∫                  (2.33) 

We define the vector z  as  

 

k
z= .

k
                            (2.34) 

 

Equation (2.33) then simplifies to  

 

( )
-ik.x 2

δεαγ γ ε αβ δβ2
-

1
e -C z z k g (k)+δ dk=0.

2π

∞

∞

  ∫                   (2.35) 

 

It follows that 

 

2
δεαγ γ ε αβ δβ-C z z k g (k)+δ =0.
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Therefore,  

 

2
δεαγ γ ε αβ δβC z z k g (k)=δ .                     (2.36) 

 

We define the tensor ( )
δα

zz by   

 

( ) δεαγ γ εδα
zz =C z z .               (2.37)

 

 

Using this definition, and substituting in equation (2.36), we get  

 

( ) 2
αβ δβδα

zz k g (k)=δ .                     (2.38) 

 

The inverse of the ( )
δα

zz tensor is defined by 

 

( )-1

δα εαεδ
zz (zz) =δ .                     (2.39)

 

 

Therefore 

 

( ) ( )
( )

( )

-1 -12
δα αβ δβεδ εδ

-12
εα αβ εβ

-12
εβ εβ

zz (zz) k g (k)= zz δ

δ k g (k)= zz

k g (k)= zz .

⇒

⇒
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It follows that the Green’s function in Fourier space is 

 

( )-1

εβ

εβ 2

zz
g (k)= .

k
                            (2.40) 

 

Now, 

 

( )

( )
( )

-ik.x
αβ αβ2

-

-1

αβ-ik.x
2 2

-

1
G (x)= e g (k)dk

2π

zz1
= e dk.

k2π

∞

∞

∞

∞

∫

∫

                            (2.41)

 

 

Now we can calculate 11 22G (x),G (x)and 12G (x)  as follows: 

 

 From (2.41) we have  

 

( )
2π

-ik.x
11 112

0 0

1
G = e g k dkdθ .

4π

∞

∫ ∫                  (2.42) 

  

The integral can be written as  

( ) ( )-12π
-ikxcos φ-θ 11

11 2 2
0 0

zz1
G = e k dkdθ.

4π k

∞

∫ ∫                    (2.43) 

 

The definition of ( )
αβ

zz  gives 
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( ) δ γ αδβγαβ

*
δ γ αδ βγ αβ δγ αγ βδ

*
α β α β αβ γ γ

*
α β αβ

zz =z z C

=z z [λ δ δ +µ(δ δ +δ δ )]

=λ z z +µ(z z +δ z z )

=(λ +µ)z z +µδ ,

                     (2.44) 

 

where  * 3-k
λ = µ

k-1  
and   

 

3-4υ for planestrain
k= 3-υ

for planestress
1+υ






  .           (2.45) 

We define αβ(zz)  as  

 

*

αβ αβ α β

λ +µ
(zz) =µ δ + z z .

µ

 
 
 

                 (2.46) 

 

Therefore the inverse can be written as  

 

*
-1
αβ αβ α β*

1 λ +µ
(zz) = δ - z z .

µ λ +2µ

 
 
 

               (2.47)

 

Substituting (2.47) into equation (2.43) we obtain  

 

( )
2π *

-ikxcos φ-θ
11 11 1 12 *

0 0

1 1 1 λ +µ
G = e δ - z z dkdθ

4π k µ λ +2µ

∞   
  
  

∫ ∫
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( )
2π *

-ikxcos φ-θ 2
2 *

0 0

1 1 λ +µ
= e 1- cosθ dk dθ,

4π kµ λ +2µ

∞  
 
 

∫ ∫                   (2.48)

 

 

in which  1z =cosθ . Thus we can simplify equation (2.48) to 

 

 

( ) ( )
2π R 2π R*

-ikxcos φ-θ -ikxcos φ-θ 2
11 2 *R

0 0 0 0

1 1 λ +µ 1
G = Lim( e dkdθ- e cosθdkdθ) .

4π µ k λ +2µ k→∞

 
 
 

∫ ∫ ∫ ∫             (2.49) 

 

We now wish to evaluate this equations. To simplify writing, let I  denote 11G .  

 

Differentiating (2.49) shows that  

 

( ) ( )

( ) ( )

2π R
-ikxcos φ-θ

2 R
0 0

2π*
-ikxcos φ-θ 2

*
0 0

-ikcos φ-θI 1
= [Lim( e dk dθ

x 4π µ k

-ikcos φ-θλ +µ
- e cosθdk dθ)],
λ +2µ k

R

→∞

∂
∂ ∫ ∫

∫ ∫                     (2.50) 

which simplifies (2.50) to  

 

( ) ( )

( ) ( )

2π R
-ikxcos φ-θ

2 R
0 0

2π R*
-ikxcos φ-θ 2

*
0 0

I -i
= [ Lim( e cos φ-θ dk dθ

x 4π µ

λ +µ
- e cosφ-θ cosθdk dθ).
λ +2µ

→∞

∂
∂ ∫ ∫

∫ ∫

                        (2.51) 

We evaluate the terms separately. Let  
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( ) ( )
( )

( )

R2π R 2π -ikxcos φ-θ
-ikxcos φ-θ

1 R R
0 0 0 0

2π
-iRxcos φ-θ

R
0

e
I = Lim e cos φ-θ dk dθ= Lim dθ

-ix

-1
= Lim [e -1]dθ.

ix

→∞ →∞

→∞

∫ ∫ ∫

∫

                         (2.52) 

 

Thus, letting  1 1

π
θ θ - +φ,dθ dθ ,

2
⇒ ⇒  then  1 1

π
cos(φ-θ)=cos( -θ )=sinθ .

2  
So that 

substituting this into (2.52) gives  

 

1

2π
-iRxsinθ

1 1R
0

-1
I = Lim [e -1]dθ .

ix →∞ ∫                  (2.53)  

 

It follows from a result of Legendre that   

 

1 0
R

-1 2π
I = Lim[2πJ (Rx)-2π]= .

ix ix→∞
                (2.54) 

 

Let  

 

( ) ( )
2π R

-ikxcos φ-θ 2
2 R

0 0

I = Lim e cos φ-θ cosθdk dθ.
→∞ ∫ ∫             (2.55)  

 

Integrating (2.55) with respect k  gives  

 



Chapter 2Chapter 2Chapter 2Chapter 2 BackgroundBackgroundBackgroundBackground 

 

47 

 

( )

( ) ( )
R2π -ikxcos φ-θ

2
2 R

0 0

e
I = Lim cos φ-θ cosθ dθ

-ixcos φ-θ→∞ ∫  

( )

( )

R2π
-ikxcos φ-θ 2

0 0

2π
-iRxcos φ-θ 2 2

0

-1
= Lim e cosθdθ

ix

-1
= Lim [e cosθ -cosθ]dθ.

ix

R

R

→∞

→∞

∫

∫

            (2.56) 

 

Let 1

π
θ (θ - +φ)

2
⇒ . Then 1 1

π
cos(φ-θ)=cos( -θ )=sinθ

2
. By substituting this into (2.56), we 

have 

 

1

2π 2π
-iRxsinθ 2 2

2 1 1 1

0 0

-1 π π
I = Lim[ [e cos (θ - +φ)- cos (θ - +φ)dθ ].

ix 2 2R→∞ ∫ ∫                  (2.57) 

 

Using trigonometric formula ( 1 1

π
cos(φ-θ)=cos( -θ )=sinθ

2
) to simplify (2.57), we get  

 

1 1

1

2π 2π
-iRxsinθ -iRxsinθ2 2

2 1 1 1 1 1

0 0

2π 2π
-iRxsinθ 2 2 2

1 1 1 1

0 0

-1
I = Lim[ [e cos φsin θ dθ +2 e sinθ cosφcosθ sinφdθ

ix

π
+ [e cosθ sin φdθ - cos (θ - +φ)dθ ].

2

R→∞ ∫ ∫

∫ ∫

           (2.58)

 

 

We can use partial integration to obtain  

 

1 1

2π 2π2
-iRxsinθ -iRxsinθ2 2 2

1 1 1 1

0 0

-1 -sin φ
Lim e cosθ sin φdθ = Lim[ [e cos θ dθ ].

ix ixR R→∞ →∞∫ ∫               (2.59) 

 



Chapter 2Chapter 2Chapter 2Chapter 2 BackgroundBackgroundBackgroundBackground 

 

48 

 

Taking 1u=cosθ  1 1du=-sinθ dθ⇒   and 1-iRxsinθ
1 1dv=cosθ e dθ

  

1-iRxsinθe
v=

-iRx
⇒  , we find  

 

1 1

1

1

2π2π 2π-iRxsinθ -iRxsinθ
-iRxsinθ 2 1

1 1 1 1

0 00

2π -iRxsinθ

1 1

0

2π
-iRxsinθ

1 1

0

-e cosθ e
e cosθ dθ = - [ (-sinθ dθ )

iRx -iRx

-1 1 e
=( + )- sinθ dθ

iRx iRx iRx

-1
= e sinθ dθ .

iRx

∫ ∫

∫

∫

                (2.60) 

 

To evaluate this expressions, let  

 

2π
* -iRxsinθ

0

0

I = e dθ=2πJ (Rx),∫  

 

then 

2π*
-iRxsinθ

0

I
= e (-ixsinθ)dθ,

R

∂
∂ ∫

 

 

and 

 

2π 2π
-iRxsinθ -iRxsinθ0

0

0 0

-2πJ (Rx)
2πxJ (Rx)= e (-ixsinθ)dθ = e sinθdθ.

i

′′ ⇒∫ ∫               (2.61) 

 

It follows from (2.59) that 
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2π 2π2
-iRxsinθ 2 2 -iRxsinθ

0 0

2
0

-1 -sin φ -1
Lim e cosθsin φdθ= Lim[ e sinθdθ]

ix ix iRx

-2πJ (Rx)-sin φ -1
= Lim[ ( )]=0.

ix iRx i

R R

R

→∞ →∞

→∞

′

∫ ∫
                   (2.62) 

 

Now, we need to find the integral   

 

2π 2π
-iRxsinθ -iRxsinθ

0 0

-1 -2sinφcosφ
Lim[ 2e sinθcosθsinφcosφdθ]= Lim[ e sinθcosθdθ].

ix ixR R→∞ →∞∫ ∫        (2.63) 

 

By a similar method we use integration by parts with u=sinθ,du=cosθdθ and 

-iRxsinθ
-iRxsinθ e

dv=cosθe dθ, v=
-iRx

 to give 

 

2π2π 2π-iRxsinθ -iRxsinθ
-iRxsinθ

0 00

2π2π -iRxsinθ -iRxsinθ

0 0

2π-iRxsinθ
2 2 2 2 2 20

-e sinθ e
e sinθcosθdθ= - [ cosθdθ

iRx -iRx

e 1 -e
= cosθdθ= [

iRx iRx iRx

-1 -1
= [e = (1-1)=0.

i R x i R x

∫ ∫

∫                       (2.64) 

 

Substituting this into equation (2.63), we obtain 

 

2π
-iRxsinθ

R
0

-1
Lim[ 2e sinθcosθsinφcosφdθ]=0.

ix →∞ ∫                (2.65) 

 

Now we want to find the integral  
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2π
-iRxsinθ 2 2

0

-1
Lim e cosφsin θdθ,

ix R→∞ ∫                    (2.66) 

 

which can be simplified to  

 

2π 2π2
-iRxsinθ 2 2 -iRxsinθ 2

0 0

-1 -cosφ
Lim e cosφsin θdθ= Lim[ [e sin θ dθ]

ix ixR R→∞ →∞∫ ∫
 

2π2
-iRxsinθ 2

0

-cosφ
= Lim[ [e (1-cosθ) dθ]

ix R→∞ ∫
 

2π 2π2
-iRxsinθ -iRxsinθ 2

0 0

2
0

0 2

-cosφ
= Lim[ e dθ- e cosθdθ]

ix

2πJ (Rx)-cosφ
= Lim[2πJ (Rx)+ ]=0.

ix Rx

R

R

→∞

→∞

′

∫ ∫
                            (2.67) 

Now, we can calculate the integral  

 

2π
2

0

-1 π
Lim cos (θ- +φ)dθ,

ix 2R→∞ ∫                                   (2.68)

 

 

which can be simplified to 

 

2π 2π
2 2 2

0 0

2π 2π
2 2

0 0

-1 π -1
Lim cos (θ- +φ)dθ= Lim[ [cos φsin θdθ

ix 2 ix

+2 sinθcosφcosθsinφdθ+ [cos θsin φdθ].

R R→∞ →∞∫ ∫

∫ ∫

                  (2.69) 
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Simplifying and evaluating equation (2.69) leads to  

 

2π 2π
2 2 2

0 0

2π 2π
2 2

0 0

2 2

-1 π -1
Lim cos (θ- +φ)dθ= Lim[cos φ sin θdθ

ix 2 ix

+2sinφcosφ sinθcosθdθ+sin φ cosθdθ]

-1 -1 -π
= Lim[πcosφ+2sinφcosφ (0)+πsin φ]= Lim(π)= .

ix ix ix

R R

R R

→∞ →∞

→∞ →∞

∫ ∫

∫ ∫        (2.70) 

 

Using the results of equations (2.62), (2.65), (2.67) and (2.70) into equation (2.58), 

we get 

 

2π 2π
-iRxsinθ 2 2

2

0 0

-1 π π π
I = Lim[ [e cos (θ- +φ)- cos (θ- +φ)dθ]= .

ix 2 2 ixR→∞ ∫ ∫                  (2.71)

 

 

By using (2.54) and (2.71), the equation (2.51) reduces to  

 

* *

1 22 * 2 *

*

*

I -i λ +µ -i 2π λ +µ π
= I - I = [ - ( )]

x 4π µ λ +2µ 4π µ ix λ +2µ ix

-1 λ +µ 1
= + ( ).

2πµx λ +2µ 4πµx

 ∂
 ∂  

          (2.72) 

 

By integrating (2.72) with respect to x , one obtains   

 

*

*

*

*

-1 λ +µ 1
I= ( + ( ))dx

2πµx λ +2µ 4πµx

-1 1 λ +µ 1
= dx+ dx

2πµ x 4(λ +2µ)πµ x

∫

∫ ∫
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* *

* *

-1 λ +µ -1 λ +µ
= lnx+ lnx=( + )lnx

2πµ 4(λ +2µ)πµ 2πµ 4(λ +2µ)πµ

*

*

-λ -3µ
=( )lnx.

4(λ +2µ)πµ
                      (2.73) 

 

Differentiating (2.49) with respect to φ  yields 

 

( ) ( )

( ) ( )

2π R
-ikxcos φ-θ

2
0 0

2π ¥
-ikxcos φ-θ 2

0 0

-i k x(-sin φ-θ )I 1
= [Lim( e dk dθ

φ 4π µ k

-i k x(-sin φ-θ )λ+µ
- e cosθdk dθ)]
λ+2µ k

R→∞

∂
∂ ∫ ∫

∫ ∫

 

( ) ( )

( ) ( )

2π R
-ikxcos φ-θ

2
0 0

2π R
-ikxcos φ-θ 2

0 0

i
= [ Lim( e xsin φ-θ dk dθ

4π µ

λ+µ
- e xsin φ-θ cosθdk dθ)].
λ+2µ

R→∞ ∫ ∫

∫ ∫

                               (2.74) 

We calculate the integral  

 

( ) ( )
2π R

-ikxcos φ-θ
1

0 0

I = Lim e x sin φ-θ dk dθ,
R→∞ ∫ ∫                   (2.75)

 

 

by using the substitution   

 

1 1

π
θ θ - +φ,dθ dθ ,

2
⇒ ⇒

 

 

1 1

π
cos(φ-θ)=cos( -θ )=sinθ ,

2  
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and  

 

1 1

π
sin(φ-θ)=sin( -θ )=cosθ

2
, 

 

where 

 

1

1

1

π
θ =θ+ -φ,

2
π

θ=0 θ = -φ
2
5π

θ=2π θ = -φ.
2

⇒

⇒

                      (2.76) 

 

To simplify equation (2.75) to  

 

( ) ( ) 1

1

5π
-φ

2π R R2
-ikxcos φ-θ -ikxsinθ

1 1 1
π0 0 0-φ
2

5π
-φR -ikxsinθ 2

π0 -φ
2

I = Lim e xsin φ-θ dk dθ= Lim e x cosθ dk dθ

e
= Lim dk=0.

-ik

R R

R

→∞ →∞

→∞

∫ ∫ ∫ ∫

∫

             (2.77) 

 

In a similar way we can find  

 

( ) ( )
2π R

-ikxcos φ-θ 2
2

0 0

I = Lim e xsin φ-θ cosθdk dθ.
R→∞ ∫ ∫                    (2.78) 
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Let’s first find the integral  

 

( ) ( )
2π

-ikxcos φ-θ 2

0

e xsin φ-θ cosθ dθ,∫                               (2.79) 

 

which after using (2.76) and the substitution  

 

1 1

1 1

1 1

π
θ θ - +φ,dθ dθ

2
π

cos(φ-θ)=cos( -θ )=sinθ
2
π

sin(φ-θ)=sin( -θ )=cosθ ,
2

⇒ ⇒

 

 

becomes 

 

1

5π
-φ

2
-ikxsinθ 2

1 1 1
π

-φ
2

π
e cosθ cos (θ - +φ)dθ

2∫ . 

 

Since, 

  

2 2 2
1 1 1 1

2 2 2 2
1 1 1 1

π π
cos (θ - +φ)=[cos (θ - +φ)] =[sinθ cosφ+sinφcosθ ]

2 2
=sin θ cosφ+2sinθ cosφsinφcosθ +sin φcosθ ,

 

 

then 
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1

1

5π
-φ

2
-ikxsinθ 2

1 1 1
π

-φ
2

5π
-φ

2
-ikxsinθ 2 2 2 2

1 1 1 1 1 1
π

-φ
2

π
e cosθ cos (θ - +φ)dθ

2

= e cosθ (sin θ cosφ+2sinθ cosφsinφcosθ +sin φcosθ )dθ

∫

∫

 

1 1

1

5π 5π
-φ -φ

2 2
-ikxsinθ -ikxsinθ2 2 2

1 1 1 1 1 1
π π

-φ -φ
2 2

5π
-φ

2
-ikxsinθ2 3

1 1
π

-φ
2

=cosφ e cosθ sin θ dθ +2cosφsinφ e sinθ cosθ dθ

+sin φ e cosθ dθ .

∫ ∫

∫

   (2.80) 

 

To calculate (2.80), we need to find the integral  

 

1

5π
-φ

2
-ikxsinθ 2

1 1 1
π

-φ
2

e cosθ sin θ dθ .∫           (2.81) 

 

Using integration by parts with 2
1 1 1 1u=sin θ du=2sinθ cosθ dθ⇒  and   

 

1

1

-ikxsinθ
-ikxsinθ

1 1

e
dv=cosθ e dθ v=

-ikx
⇒ , 

 

we find that  

 



Chapter 2Chapter 2Chapter 2Chapter 2 BackgroundBackgroundBackgroundBackground 

 

56 

 

1

1 1

1

5π 5π5π-φ -φ-φ-ikxsinθ 22 22
-ikxsinθ -ikxsinθ2 1

1 1 1 1 1 1
ππ π-φ-φ -φ22 2

5π
-φ

2
-ikxsinθ

1 1 1
π

-φ
2

e sin θ 2
e cosθ sin θ dθ = + e cosθ sinθ dθ

-ikx ikx

2
= e cosθ sinθ dθ .

ikx

∫ ∫

∫

    (2.82) 

 

Again, we use integration by parts with 1 1 1u=sinθ du=cosθ dθ ,⇒
 
and   

 

1

1

-ikxsinθ
-ikxsinθ

1 1

e
dv=cosθ e dθ v=

-ikx
⇒  

 

to find  

 

1 1

1

1 1

5π 5π5π-φ -φ-φ-ikxsinθ -ikxsinθ2 22
-ikxsinθ 1

1 1 1 1 1
ππ π-φ-φ -φ22 2

5π 5π-φ -φ-ikxsinθ -ikxsinθ2 2

1 1
ππ -φ-φ 22

e sinθ e
e cosθ sinθ dθ = - cosθ dθ

-ikx -ikx

e 1 e
= cosθ dθ = =0.

ikx ikx -ikx

∫ ∫

∫

    (2.83)

 

 

It follows from (2.82) and (2.83) that 

 

1

5π
-φ

2
-ikxsinθ 2

1 1 1
π

-φ
2

e cosθ sin θ dθ =0.∫                (2.84) 
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In the same way, the integral  

      

1

5π
-φ

2
-ikxsinθ 3

1 1
π

-φ
2

e cosθ dθ ,∫        (2.85) 

 

can be found by using integration by part with 2
1 1 1 1u=cosθ du=-2sinθ cosθ dθ⇒  and 

1

1

-ikxsinθ
-ikxsinθ

1 1

e
dv=cosθ e dθ v=

-ikx
⇒ , so that  

 

1

1 1

1

5π 5π5π-φ -φ-φ-ikxsinθ 22 22
-ikxsinθ -ikxsinθ3 1

1 1 1 1 1
ππ π-φ-φ -φ22 2

5π
-φ

2
-ikxsinθ

1 1 1
π

-φ
2

e cosθ 2
e cosθ dθ = - e cosθ sinθ dθ

-ikx ikx

-2
= e cosθ sinθ dθ =0.

ikx

∫ ∫

∫

      (2.86) 

 

Finally, we need to calculate the integral   

 

1

5π
-φ

2
-ikxsinθ 2

1 1 1
π

-φ
2

e sinθ cosθ dθ ,∫                            (2.87)

 

 

by using integration by parts with 1 1u=sinθ cosθ  and 1-ikxsinθ
1 1dv=cosθ e dθ , to give

2 2
1 1 1du= (cosθ -sin θ )dθ ,

1-ikxsinθe
v=

-ikx
, and therefore,  
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1 1

1

1

5π 5π5π-φ -φ-φ-ikxsinθ -ikxsinθ2 22
-ikxsinθ 2 2 21 1

1 1 1 1 1 1
ππ π-φ-φ -φ22 2

5π
-φ

-ikxsinθ2
2 2

1 1 1
π

-φ
2

sinθ cosθ e e
e sinθ cosθ dθ = - (cosθ -sin θ )dθ

-ikx -ikx

e
= (cosθ -sin θ )dθ .

ikx

∫ ∫

∫

   (2.88) 

 

Now, 

 

1

1 1

5π 5π 5π
-φ -φ -φ

-ikxsinθ2 2 2
-ikxsinθ -ikxsinθ2 2 2 2

1 1 1 1 1 1 1
π π π

-φ -φ -φ
2 2 2

e 1 1
(cosθ -sin θ )dθ = e cosθ dθ - e sin θ dθ ,

ikx ikx ikx∫ ∫ ∫      (2.89) 

for which we can again use integration by parts with 1 1 1u=cosθ du=-sinθ dθ⇒  and 

1

1

-ikxsinθ
-ikxsinθ

1 1

e
dv=cosθ e dθ v=

-ikx
⇒ , to obtain 

 

1 1

1

1

1

2π2π 2π-ikxsinθ -ikxsinθ
-ikxsinθ 2 1

1 1 1 1

0 00

2π -ikxsinθ

1 1

0

2π
-ikxsinθ

1 1

0

-e cosθ e
e cosθ dθ = - [ (-sinθ dθ )

ikx -ikx

e
=- sinθ dθ

ikx

-1
= e sinθ dθ .

ikx

∫ ∫

∫

∫

              (2.90) 

 

Let 1

2π
-ikxsinθ*

1 0

0

I = e dθ =2πJ (kx)∫ . Then  

 

1

2π*
-ikxsinθ

1 1

0

I
= e (-ixsinθ )dθ

k

∂
∂ ∫  
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1

1

2π
-ikxsinθ

0 1 1

0

2π
-ikxsinθ0

1 1

0

2πxJ (kx)= e (-ixsinθ )dθ ,

-2πJ (kx)
= e sinθ dθ ,

i

′⇒

′
⇒

∫

∫

             (2.91) 

 

which can be substituted into equation (2.90) to give  

  

1

2π
-ikxsinθ 2 0 0

1 1

0

-2πJ (kx) -2πJ (kx)-1
e cosθ dθ = ( )= .

ikx i kx

′ ′
∫                    (2.92)

 

 

Evaluating the following integral yields  

 

1 1

1 1

2π 2π
-ikxsinθ -ikxsinθ2 2

1 1 1 1

0 0

2π 2π
-ikxsinθ -ikxsinθ 2

1 1 1

0 0

e sin θ dθ = e (1-cosθ ) dθ

= e dθ - e cosθ dθ ],

∫ ∫

∫ ∫

                     (2.93)

 

 

in which 2 2sin θ=1-cosθ . By substituting the definition of the Bessel function and 

equation (2.92) into equation (2.93), one obtains 

 

1

2π
-ikxsinθ 2 0

1 1 0

0

2πJ (kx)
e sin θ dθ = 2πJ (kx)+ .

kx

′
∫                    (2.94)

 
 

 Substituting (2.92) and (2.94) into (2.89) gives   
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1

5π
-φ

-ikxsinθ2
2 2 0 0

1 1 1 0
π

-φ
2

0 0
02 2 2 2

0 0
2 2

-2πJ (kx) 2πJ (kx)e 1 1
(cosθ -sin θ )dθ = ( )- (2πJ (kx)+ )

ikx ikx kx ikx kx

-2πJ (kx) 2πJ (kx)1
= - 2πJ (kx)-

i k x ikx ik x

-4πJ (kx) 2πJ (kx)
= - ,

ik x ikx

′ ′

′ ′

′

∫

       (2.95) 

 

which after substituting (2.95) into (2.88) we get  

 

1

5π
-φ

2
-ikxsinθ 2 0 0

1 1 1 2 2
π

-φ
2

-4πJ (kx) 2πJ (kx)
e sinθ cosθ dθ = - .

ik x ikx

′
∫               (2.96)

 

 

Then the integral (2.80) becomes  

 

( ) ( ) 1

5π
-φ

2π 2
-ikxcos φ-θ -ikxsinθ2 2

1 1 1
π0 -φ
2

0 0
2 2

e xsin φ-θ cosθ dθ=2cosφsinφ e sinθ cosθ dθ

-4πJ (kx) 2πJ (kx)
=2cosφsinφ[ - ].

ik x ikx

′

∫ ∫
             (2.97) 

 

Rewriting (2.78) as  

 

( ) ( )
2π R

-ikxcos φ-θ 2
2

0 0

I = Lim e xsin φ-θ cosθdk dθ
R→∞ ∫ ∫
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R
0 0

2 2 2
0

-4πJ (k) 2πJ (k)
I = Lim 2 xcosφsinφ[ - ]dk,

ik x ikxR→∞

′
∫            (2.98)

 

 

the equation (2.98) can be solved by letting K=kx dK=xdk⇒ . This gives   

 

R
0 0

2 2
0

-4πJ (K) 2πJ (K) dK
I =2xcosφsinφLim [ - ]

iK iK x

1
=4cosφsinφ( )

2
=2cosφsinφ.

R→∞

′
∫

      (2.99)

 

 

Substituting (2.77) and (2.99) into (2.74), we have   

 

( ) ( )

( )
( )

* 2π R
-ikxcos φ-θ 2

2 *
0 0

*

2 *

*

*

I -i λ +µ
= Lim e xsin φ-θ cosθdk dθ)

φ 4π µ λ +2µ

-i λ +µ
= ( ) (2πicosφsinφ)

4π µ λ +2µ

λ +µ
= cosφsinφ.

2πµ λ +2µ

R→∞

 ∂
∫ ∫ ∂  

                   (2.100)

 

 

Integrating (2.100) with respect to φ  gives  

 

( )
( )

( )
( )

*

*

* 2

*

λ +µ
I= cosφsinφdφ

2πµ λ +2µ

λ +µ cosφ
=

22πµ λ +2µ

 
 
 

∫
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( )
( )

( )
( )

*

2

*

* 2
1
2*

λ +µ
= cosφ

4πµ λ +2µ

λ +µ x
= ,

x4πµ λ +2µ

            (2.101)

 

 

in which  

 

2
2 2 21

1 1 22

x
x =xcosφ =cosφ, x= x +x .

x
⇒  

 

 

Now, from (2.49) it follows that  

( )
( )

( )

* 2*
1

11 * 2*

2* *
1

* 2*

λ +µ x-λ -3µ
G =( )lnx+

4(λ +2µ)πµ x4πµ λ +2µ

xλ +3µ 1 λ +µ
= ln + .

4(λ +2µ)πµ x x4πµ λ +2µ

                   (2.102) 

 

Thus the Green’s function for two-dimensional plane strain is  

 

( )
( )
**

α β

αβ αβ* 2*

λ +µ x x-λ -3µ
G =( )δ lnx+ ,

4(λ +2µ)πµ x4πµ λ +2µ
                          (2.103) 

 

which can write (2.103) as  

 

( )
* *

α β

αβ αβ* 2*

x xλ +3µ 1 λ +µ
G = δ ln + ,

4(λ +2µ)πµ x x4πµ λ +2µ
                       (2.104) 
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or equivalently, 

 

( )
α β

αβ αβ 2

x x(3-4υ) 1 1
G = δ ln + .

8(1-υ)πµ x 8πµ 1-υ x
          (2.105) 

 

Notice that Green’s function for two-dimensional plane stress can be obtained from 

those for plain strain by replacing E  by 
2

E(1+2υ)

(1+υ)
and v  by 

υ

(1+υ)
. 

 

It follows from (2.1)  

( ) ( )

( )

'
α αγ γ

* *
α γ

αγ γ γ* 2*

u x =G x-x F

x xλ +3µ 1 λ +µ
= δ F ln + F .

4(λ +2µ)πµ x x4πµ λ +2µ

              (2.106) 

 

Or equivalently, 

 

( ) ( )
α γ

α αγ γ γ2

x x(3-4υ) 1 1
u x = δ F ln + F .

8(1-υ)πµ x 8πµ 1-υ x
                  (2.107) 

 

Now, one can calculate the strain field by using the relation between the strain and 

the displacement as: 

 

Differentiating (2.106) with respect to βx
 
gives  
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( )
( )

* *
β β-3

α,β αγ γ γ αβ γ γβ α α γ* 2 2*

- λ +3µ x xλ +µ 1
u = δ F + F [ (δ x +δ x )+x x (-2x )].

4(λ +2µ)πµx x x4πµ λ +2µ
      (2.108) 

 

Since  

 

( ) ( )

( )

'
β βγ γ

* *
β γ

βγ γ γ* 2*

u x =G x-x F

x xλ +3µ 1 λ +µ
= δ F ln + F ,

4(λ +2µ)πµ x x4πµ λ +2µ

              (2.109)

 

 

then differentiating (2.109) with respect to αx  gives  

( )
( )

* *
α -3 α

β,α βγ γ γ αβ γ γα β β γ* 2 2*

- λ +3µ x xλ +µ 1
u = δ F + F [ (δ x +δ x )+x x (-2x )].

4(λ +2µ)πµx x x4πµ λ +2µ
    (2.110) 

 

Adding (2.108) and (2.110) yields  

 

( )
( )

( )
( )

* *
β α

α,β β,α αγ γ βγ γ γ αβ γ γβ α αβ γ γα β* 2 2 2*

*
α β γ

γ 4*

- λ +3µ x x λ +µ 1
u +u = [ δ F + δ F ]+ F [δ x +δ x +δ x +δ x ]

4(λ +2µ)πµ x x x4πµ λ +2µ

(-4) λ +µ x x x
+ F

x4πµ λ +2µ

 

( )
( )

( )
( )

( )
( )
( )

* ** *
α

γ β αγ βγ γ2 * 2 ** *

**
α β γ

γ αβ γ γ2 4* *

- λ +3µ - λ +3µx1 λ +µ λ +µ
=F x δ [ + ]+ δ F [ + ]

x 4πµ(λ +2µ) x 4πµ(λ +2µ)4πµ λ +2µ 4πµ λ +2µ

(-4) λ +µ x x x2(λ +µ) 1
+ F δ x + F . (2.111)

x x4πµ λ +2µ 4πµ λ +2µ
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This leads to  

 

( )
( )
( )

αβ α,β β,α

*

γ β αγ βγ γ α γ αβ γ* 2 * 2 2*

*
α β γ

γ 4*

1
ε = (u +u )

2

-2µ -2µ 2(λ +µ) 1
= F x δ + δ F x + F δ x

8πµ(λ +2µ)x 8πµ(λ +2µ)x x8πµ λ +2µ

(-4) λ +µ x x x
+ F

x8πµ λ +2µ  

( )
( )
( )

*

α β β α γ αβ γ* 2 * 2 * 2

*
α β γ

γ 4*

-2µ -2µ 2(λ +µ)
= F x + F x + F δ x

8πµ(λ +2µ)x 8πµ(λ +2µ)x 8πµ λ +2µ x

(-4) λ +µ x x x
+ F

x8πµ λ +2µ

 

( ) ( )
*

α β γ*
α β β α γ αβ γ γ* 2 2

λ +µ x x x-µ
= [F x +F x - Fδ x +2 λ +µ F ]. (2.112)

4πµ(λ +2µ)x µ 2µx  

 

The stress field can be found by Hooke’s law as  

 

αβ αβδγ δγ

*
αβ γγ αβ

σ =C ε

=λ δ ε +2µε
 

( )

( )

**
αβ

δ δ α β β α γ αβ γ* 2 * 2

α β γ*
γ 2

λ +µ-2µλ δ -µ
= x F +2µ( [F x +F x - Fδ x

4(λ +2µ)πµx 4πµ(λ +2µ)x µ

x x x
+2 λ +µ F ]).

2µx

                  (2.113) 

 

After simplification, equation (2.113) becomes as follows 
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( )

( )

**
αβ

αβ δ δ α β β α γ αβ γ* 2 * 2

α β γ*
γ 2

λ +µ-λ δ -µ
σ = x F + [F x +F x - Fδ x

2(λ +2µ)πx 2π(λ +2µ)x µ

x x x
+2 λ +µ F ].

µx
                         ( 2.114) 

 

Or equivalently, 

 

α β β α αβ γ γ γ γ α β

αβ 2 2 2 4

-(1-2υ)F x (1-2υ)F x δ (1-2υ)F x F x x x
σ = - + -

4π(1-υ)x 4π(1-υ)x 4π(1-υ)x 2π(1-υ)x
, 

 

where  

 

γγ γ,γ γ,γ γ,γ

1
ε = (u +u )=u

2
, 

 

and 

 

( )
( )

* *
γ γ-3

γ,γ γδ δ δ γγ δ δγ γ δ γ* 2 2*

- λ +3µ x xλ +µ 1
u = δ F + F [ (δ x +δ x )+x x (-2x )]

4(λ +2µ)πµx x x4πµ λ +2µ  

( )
( )

* *
δ

δ δ δ δ δ δ δ* 2 * 2

- λ +3µ x λ +µ
= F + (2 x F +x F -2x F )]

4(λ +2µ)πµx 4πµ λ +2µ x  

( )
( )

* *
δ δ δ

δ* 2 2*

- λ +3µ x x Fλ +µ
= F +

4(λ +2µ)πµx x4πµ λ +2µ
 

δ δ γγ* 2

-2µ
= x F =ε . (2.115)

4(λ +2µ)πµx
 

Then γ,γ γγu =ε . 
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2.5 Principles of fracture mechanics and their implications for f2.5 Principles of fracture mechanics and their implications for f2.5 Principles of fracture mechanics and their implications for f2.5 Principles of fracture mechanics and their implications for fatigue atigue atigue atigue     

    

2.5.12.5.12.5.12.5.1    IntroductionIntroductionIntroductionIntroduction    

 

The section starts with a brief description of the theoretical fundamentals of the most 

commonly used mathematical models characterising the stress fields or the 

displacement field ahead of the crack tip. After this, the phenomenon of fatigue crack 

closure is described. 

 

2.5.2 Linear elastic fracture m2.5.2 Linear elastic fracture m2.5.2 Linear elastic fracture m2.5.2 Linear elastic fracture mechanicsechanicsechanicsechanics    

 

Linear elastic fracture mechanics uses the theory of elasticity to calculate the stress 

field near to the tip of a crack, assuming that the material is isotropic and linearly 

elastic. There are three basic modes of crack deformation which can be defined as the 

state of stress of material around part of a crack tip [2]. A classification corresponding 

to the three situations represented in figure 2.1 is offered by Irwin [5].  
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         (a) Mode I (opening)                 (b) Mode II (sliding)            (c) Mode III (tearing) 

Figure 2.4 Crack opening modes [54]  

 

In mode I, or opening mode, the body is loaded by a tensile stress normal to the plane 

of the crack, so that the crack surfaces are pulled apart in the ydirection.   

In mode II, or sliding mode, the body is loaded by a shear stress which acting parallel 

to the plane of the crack and perpendicular to the crack front. 

In mode III, or tearing mode, the body is loaded by a shear stress which acting parallel 

to the plane of the crack surfaces and parallel to the crack front. 

 

It should be noted that linear elastic fracture mechanics is only valid when the 

conditions for small scale yielding are satisfied and non-linear elastic plastic fracture 

mechanics are more suitable in case when large plastic deformation zones develop. 
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2.5.32.5.32.5.32.5.3    Crack Crack Crack Crack ttttip ip ip ip sssstress tress tress tress aaaanalysisnalysisnalysisnalysis    

 

Irwin [5] in the 1950’s developed the stress intensity approach to analysing cracks. 

The three basic modes of crack deformation can be expressed as [54]: 

 

I
22 1 12 23

1

K
σ = +O( x ),σ =σ =0

2πx
 

II
12 1 22 23

1

K
σ = +O( x ),σ =σ =0

2πx
 

III
23 1 22 12

1

K
σ = +O( x ),σ =σ =0

2πx
. 

 

where IK  is the Mode I  stress intensity factor, IIK  is the Mode II stress intensity 

factor and IIIK  is the Mode III  stress intensity factor. 

 

From these equations, it can see that the stresses have an inverse square root 

singularity at the crack tip, i.e. the region near to the crack tip is dominated by the 

singularity and the stress is proportional to 11 x . 

 

The stresses near to the crack tip where there is no summation over x  in the second 

term on the right hand side have the form [1]: 
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ij
II

ij ix jx

K
σ (r,θ)= σ (θ)+Tδ δ +(terms which vanish at cracktip),

2πr
ɶ  

 

Where (r,θ) are the cylindrical polar coordinates of a point with respect to the crack 

tip. IK is called the stress intensity factor for mode I, which gives the magnitude of the 

elastic stress field and ij

Iσ (θ)ɶ is a dimensionless quantity that depends on load and 

geometry.  The quantity T corresponds to the so-called T-stress which is the second 

order term in the expansion. 

 

The stress fields ahead of a crack tip for mode I and mode II are given by  

 

11

I II
22

12

θ 3θ θ θ 3θ
1-sin sin -sin( )(2+cos( )cos( ))

2 2 2 2 2σ
K Kθ θ 3θ θ θ 3θ

σ = cos 1+sin sin + sin( )cos( )sin( ) .
2 2 2 2 2 22πr 2πr

σ
θ 3θ θ θ 3θ

sin cos cos( )(1-sin( )sin( ))
2 2 2 2 2

   
   

     
     
     
     
     

   
   

             (2.116) 

 

The corresponding crack tip displacement fields [1] are described by  

 

2 2

1 I II

2 22

θ θ θ θ
cos (k-1+2sin ) sin (k+1+2cos )u K Kr r2 2 2 2= + ,

u θ θ θ θ2µ 2π 2µ 2π
sin (k+1-2cos ) cos (k-1-2sin )

2 2 2 2

   
        

     
     

      

       (2.117) 
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where 
E

µ=
2(1+υ)

 is the shear modulus, E is the Young’s modulus, υ  is Poisson’s 

ratio and k  has been defined by Eq. (2.45), that is  

 

3-4υ for planestrain
k= 3-υ

for planestress.
1+υ






   

 

From the equations (2.116), the stress near of a crack tip for mode I and mode II 

when θ=0 has the following form: 

 

I
11 22

II
12

K
σ =σ = ,

2πr
K

σ =
2πr

                           (2.118) 

 

The stress intensity factor for mode I and mode II can therefore be defined as: 

 

I 22
r 0 θ=0

II 12
r 0 θ=0

K = lim{ 2 πr σ }

K = lim{ 2 πr σ }.

→

→

                     (2.119)  
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2.62.62.62.6    Fundamentals ofFundamentals ofFundamentals ofFundamentals of    ffffatigue crack atigue crack atigue crack atigue crack closure phenomenonclosure phenomenonclosure phenomenonclosure phenomenon    

    

The fatigue crack closure phenomenon is the subject of many experimental and 

analytical studies. This phenomenon was first studied and reported experimentally by 

Elber in 1970 [7]. He observed that a fraction of the crack tip is closed during the lower 

portion of the applied load cycle, i.e. the surfaces are apparently in contact (see, for 

instance, [5], [8] and [11]). Many research works have been published for the 

measurement and analysis of this phenomenon using different techniques and 

methods such as direct observation methods, indirect observation methods and 

methods based on compliance [5,37, 55, 60, 61 and 63]. Experimental observations 

published in the late 1970s established that Elber’s mechanism was not the only cause 

of closure, and other types of closure phenomena may also influence the rate of fatigue 

crack advance. Other researchers considered the many forms of fatigue crack closure 

that can be caused by a change of mechanical, microstructural and environmental 

factors [1, 64 and 65]. These types of closure include plasticity induced crack closure, 

phase transformation induced crack closure, roughness induced crack closure, oxide 

induced crack closure and viscous fluid-induced crack closure, as shown in Figure 2. 

5. This range of mechanisms, along with controversy over whether plasticity-induced 

closure could exist in plane strain conditions or whether it was solely a plane stress 

phenomenon, led to a more appropriate term being used to describe the concept: crack 

tip shielding, i.e. a shielding of the crack tip from experiencing the full range of applied 

load and hence a reduction in crack growth rate [2, 58]. The mechanism of crack 

closure and shielding effects is complex and not fully understood and many of the 

results remain inaccurate and controversial [2]. This is due to the difficulty involved in 

quantifying the phenomenon and measuring its effect on the crack [6]. 
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Figure 2.5  A schematic illustration of the different fatigue crack closure mechanisms. 

(a) Plasticity-induced crack closure, (b) oxide-induced crack closure, (c) roughness-

induced crack closure, (d) viscous fluid-induced crack closure and (e) phase 

transformation-induced crack closure [8]. 

 

 

2.7  2.7  2.7  2.7  Description of the Description of the Description of the Description of the mmmmodels foodels foodels foodels for defining crack tip r defining crack tip r defining crack tip r defining crack tip stress and stress and stress and stress and 

displacement fdisplacement fdisplacement fdisplacement fieldsieldsieldsields    

    

There are several crack tip field models to describe stress or displacement and hence 

to predict plastic zone size and shape. The models consider in this work are the 



Chapter 2Chapter 2Chapter 2Chapter 2 BackgroundBackgroundBackgroundBackground 

 

74 

 

Westergaard crack tip stress equations, and the recently developed CJP Mode for 

crack tip displacement. 

 

Westergaard equations Westergaard equations Westergaard equations Westergaard equations     

 

The stress field around the crack tip [9] based on the Westergaard equations is 

defined using the stress intensity factors (SIFs), IK  and IIK , the T - stress (-
10xσ ) 

more detailed information can be found in the Chapter 4. Crack tip stress fields are 

given by  

 

10x11

I II
22

12

θ 3θ θ θ 3θ
1-sin sin -sin( )(2+cos( )cos( ))

2 2 2 2 2 -σσ
K Kθ θ 3θ θ θ 3θ

σ = cos 1+sin sin + sin( )cos( )sin( ) + 0
2 2 2 2 2 22πr 2πr

0σ
θ 3θ θ θ 3θ

sin cos cos( )(1-sin( )sin( ))
2 2 2 2 2

   
   

      
     

       
      
     

   
   

. (2.120)





    

 

Crack tip displacement fields [1] are described by  

 

1

2 2

1 I II

2 22

0x

θ θ θ θ
cos (k-1+2sin ) sin (k+1+2cos )u K Kr r2 2 2 2= +

u θ θ θ θ2µ 2π 2µ 2π
sin (k+1-2cos ) cos (k-1-2sin )

2 2 2 2
σ (k+1)cosθ

+ r ,
(k-3)sinθ8µ

   
        

     
     

      

 
 
 

            (2.121) 
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where 
E

µ=
2(1+υ)

 is the shear modulus, E is the Young’s modulus, υ  is Poisson’s 

ratio and k  has been defined by Eq. (2.45), that is  

 

3-4υ for planestrain
k= 3-υ

for planestress.
1+υ






   

 

2.82.82.82.8    Concluding comments Concluding comments Concluding comments Concluding comments     

 

In this chapter, we have calculated the Green’s function of the displacement field 

generated by  point force acting at  x ′  in an infinite body in two dimensions, which we 

will apply to Eshelby’s method in Chapter 4 after we have re-expressed it in terms of 

Muskhelishvili’s complex potential functions for 2D elasticity. In the last part of this 

chapter, we briefly addressed the phenomenon of fatigue crack closure. 
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Chapter 3 Literature reviewChapter 3 Literature reviewChapter 3 Literature reviewChapter 3 Literature review    

 

3.1 Introduction3.1 Introduction3.1 Introduction3.1 Introduction    

 

Crack closure is a phenomenon associated with the mechanism of crack growth and 

which can be shown to affect fatigue crack growth rates.    Elber [7] first introduced crack 

closure into fatigue crack growth analysis. After is, much research has been done 

concerning the crack closure effect using experimental studies, numerical analysis, 

and theoretical investigations [7, 16].    

 

Eshelby [3] proposed the concept of a plastic ‘inclusion’ as a useful mathematical 

approach to dealing with part of a material that has undergone an ‘instantaneous’ 

change in properties, such as happens in a phase transformed zone or a region of 

plasticity. 

    

This chapter has two main sections. It begins with a short historical overview of the 

fatigue crack closure phenomenon and a brief description of the different ways of 

measuring and estimating the crack closure effect. The second part of this chapter 

presents Eshelby’s idea and its use to find the solution for the stress, strain and 

displacement fields both inside and outside of a material inclusion assuming a 

permeant linear deformation of the material in the matrix.  
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3.2.1 Mechanisms3.2.1 Mechanisms3.2.1 Mechanisms3.2.1 Mechanisms    and and and and ttttheoreticalheoreticalheoreticalheoretical    evaluation evaluation evaluation evaluation of crack cof crack cof crack cof crack closurelosurelosurelosure        

        

Elber [7, 16] was the first to discuss experimentally the phenomenon of fatigue crack 

closure in the early 1970s. After this, it used widely for the explanation of the influence 

of the load ratio, R, on fatigue crack growth behaviour in the near-threshold regime 

[22]. Recall that the load ratio (or stress ratio), R, is defined as the ratio of minimum to 

maximum load [22]. The degree of crack closure was higher at lower R [21] while it 

could be negligible at higher R [22]. 

 

The closure of the crack faces, even when the external load is tensile, has been called 

plasticity induced crack closure [6]. Plasticity induced crack closure is dependent on 

the external load, crack length, and material yielding properties [6]. 

 

Plasticity induced crack closure has also been used to explain the crack growth 

retardation subsequent to an overload (Suresh 1982), the mean stress effect (R ratio 

effect), short crack behaviour, and the existence of non-propagating cracks at notches 

[6]. 

 

Roughness induced crack closure mechanism has been considered by Walker and 

Beever [18]. This is caused by the contact of asperities on crack faces undergoing 

Mode II displacements.  

 

The thin layer of fillings produced by the corrosion products and oxides residing on 

crack faces cause oxide induced crack closure found by Steward [19] and Ritchie et 

al. [20]. The increase of threshold stress intensity factor due to oxide induced crack 

closure was estimated by Suresh et al. [23].  
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Other areas in which the closure concept has been successfully applied in explaining 

observed crack growth behaviour are physically short fatigue cracks (where the limited 

crack wake reduces closure levels relative to long cracks, e.g. James and Smith in 

1983 [66]. 

 

Based on the postulated crack closure mechanisms, many models have been 

suggested to estimate crack closure effects. Budiansky and Hutchinson [24] 

established a theoretical approach by using Muskhelishvili's complex potentials on a 

Dugdale strip-yield model in 1978, which assumes that plastic yielding would occur in 

a narrow strip lying along the extension of the crack line under plane stress conditions 

[25].  

 

For the analysis and assessment of fatigue crack closure phenomena, Mirzaei and 

Provan [26, 27] in 1992 proposed a rigid-insert crack closure model. This model was 

designed to account for the nonlinear elastic behaviour of a fatigue crack and 

estimated the combined effect of residual plastic stretches and corrosion debris on the 

closure behaviour of a fatigue crack by a hypothetical rigid insertion located in an ideal 

crack wake [2]. In the current work, we consider an elastic inclusion which gives more 

realistic with of the behaviour. 

 

Plenty of numerical techniques to estimate crack closure have been developed. One 

of the numerical methods which deal with plasticity induced crack closure is an elastic 

plastic finite element analysis to estimate the crack opening and closing stresses first 

developed by Newman [28]. In the wake of Newman’s work, many researchers have 

used and explained his technique to identify the sources of residual plastic deformation 
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producing the plastic wake and the existence of plasticity induced crack closure under 

plane strain conditions [29, 30]. Despite of the fact that finite element analysis for 

plasticity induced crack closure can be used for any crack geometry and loading 

condition, applying this technique to short cracks propagating under plane strain 

conditions is still difficult in practice because the element size has to be small enough 

to catch the small crack tip plastic zone [6]. 

 

Many researchers consider finite element analyses simulating plasticity induced 

fatigue crack closure in different two-dimensional configurations under plane strain or 

plane stress conditions [6], while there are a fewer efforts directed toward three-

dimensional problems [29, 30]. 

 

Newman [31, 32] developed another numerical method which is a modification of the 

Dugdale strip-yield model for crack closure [25]. The model was based on the theory 

of Dugdale type cracks, to estimate the crack face contact stress by calculating the 

magnitude of the plastic wake left behind the crack tip. 

 

3.2.2 3.2.2 3.2.2 3.2.2 Techniques for experimental measurement of fatigue crack closureTechniques for experimental measurement of fatigue crack closureTechniques for experimental measurement of fatigue crack closureTechniques for experimental measurement of fatigue crack closure    

    

The first reported experimental results that residual crack tip plastic deformations are 

left behind the crack tip was by Elber [16]. 
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To determine when the crack is open and therefore experiencing a stress intensity at 

the tip, a wide range of experimental techniques have been applied to accurately 

capture displacements in the neighbourhood of the crack tip [15]. 

 

An indirect technique which can be employed to observe crack closure was developed 

by Elber [16]. This technique was based on Elber's measurements of the 

displacements at a number of positions in the neighbourhood of a crack. He noted that 

the variation of displacement with load, for loads below a certain level, was non-linear 

and inferred that the boundary conditions on the crack must be changing with load. 

This is means that the crack must be partially closed for part of the load cycle [15]. 

 

A clip gauge, sometimes referred to as an ‘Elber Gauge’, is used to measure the 

variation of crack opening with load. The remote measurements of this sort show a 

very gradual change from non-linear to linear behaviour [15]. A typical curve is given 

in Figure 3.1 and shows the variation of displacement in the neighbourhood of a fatigue 

crack with load [15]. It can be seen that the crack is partially closed in the beginning, 

but it becomes fully open at a normalised load of approximately 0.4 and there is a 

corresponding gradual change in specimen stiffness [10, 15, 47]. 
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Figure 3.1 Typical ‘compliance’ curve of displacement in the neighbourhood of a 

fatigue crack with load [15] 

 

The measuring of electrical resistance across a crack is another similar approach, 

which faces similar difficulties in identifying the precise point value of the crack tip 

opening load [47, 15, 17].  

 

Other authors have suggested more direct measurements of crack closure such as the 

examination of the stress, strain, or displacement field in the neighbourhood of the 

crack tip in order to establish whether the crack is open [15]. 

 

The effect of specimen thickness on crack closure behaviour has been studied by 

Matos and Nowell [33]. They used three methods to assess crack closure, digital 

image correlation, back-face strain gauges, and crack-mouth clip gauges. In their 

study, a back-face strain gauge was suggested as the most suitable technique for 

determining effective crack closure for predicting crack growth rate [2]. 

Wei and James [34] used transmission photoelasticity methods to examine crack tip 

stress fields for polycarbonate specimens. 
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Pacey et al. [35] developed a mathematical model based on Muskhelishvili's complex 

potential functions [13] to evaluate the wake contact forces which were thought to 

affect the effective stress intensity factor range and also to describe the stress fields 

around the tip of a fatigue crack experiencing crack closure. They used photoelasticity 

combined with finite element methods and compliance measurements. Figure 3.2 

shows the measuring of mode I stress intensity factor as closed circle, the mode II 

stress intensity factor as open circle and the theoretical mode I stress intensity factor 

neglecting closure as the dashed line [35]. 

 

 

Figure 3.2 The variation measuring of the stress intensity factors during the two load 

cycles, (reproduced from [35]) 

 

James [36] in 1997 reviewed the potential sources of ambiguity arising from the use of 

different experimental techniques including differences between compliance methods 

and other systems. He also discussed the measurements obtained from the surface 
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and through-thickness measurements and positioning of the technique and 

disagreement on the importance and magnitude of plasticity-induced crack closure 

and in addition to sensitivity of the closure behaviour to materials, geometry, 

environment and test methodology [2, 12, 42]. 

 

As an important issue in developing techniques for engineering fatigue life prediction 

is that of finding how a growing crack influences plastic zone size and shape. Many 

analytical attempts have been proposed to estimate the role of the plastic zone such 

as Irwin (1960). He took some fraction of plastic zone size added to the true crack 

length to obtain an “effective” crack length. This is leads to increasing the near tip 

stress field, which is inconsistent with the shielding effect of the plastic zone on the 

crack-tip field [38]. 

 

More recently several works (Chen, 2000, Fett and Munz, 2003, Ayatollahi and Zakeri, 

2007, Christopher et al., 2007, Aliha et al., 2009), have shown broad agreement with 

Irwin (1957), and have confirmed that the T-stress is important for describing the state 

of stress and strain near to  the crack tip [39].  The T-stress corresponds to the second 

order terms in the Williams and corresponds to a constant stress acting parallel to the 

crack [2].  

 

The work [40] argues that the CJP model as a novel experimental methodology for the 

quantitative evaluation of the crack tip plastic zone size during fatigue crack growth. 

The CJP model seems to provide the best prediction of the crack tip plastic zone shape 

and size compared with either the Westergaard or Williams models. 
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The work [41] shows that the CJP model could be extended to deal with the case of 

mixed Mode I and Mode II loading, by include an addition of a new force parameter, 

TF in Figure 3.3, to the model. 

 

 

Figure 3.3. Schematic idealization of the forces acting at the interface of the plastic 

enclave and the surrounding elastic material in the CJP model [35]. 

 

Figure 3.4  shows the comparison of  the experimental and CJP model predictions of 

plastic zone area for the high R = 0.6 (CT1) and low R = 0.1 (CT2) specimens and the 

plastic zone area obtained for the specimen tested at low R-ratio was smaller than the 

estimated value for the specimen tested at high R-ratio [40]. 
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Figure 3.4   Comparison between the experimental and CJP predictions of plastic zone 

area, using the von Mises yield criterion [40]. 

 

3.3 3.3 3.3 3.3 Eshelby’s inclusion and cEshelby’s inclusion and cEshelby’s inclusion and cEshelby’s inclusion and cracks racks racks racks     

 

Inclusion problems tackle a variety of related questions including: non elastic 

constitutive equations; average elastic moduli and average thermal properties; 

transformation toughening; composites; dynamic effects sliding [43]. 

 

The so-called Eshelby’s inclusion problem is to solve the stress, strain and 

displacement fields both in a subdomain which undergoes a permanent (inelastic) 

deformation (called the ‘‘inclusion’’) and its complement (called the ‘‘matrix’’) [50]. The 

strain under stress-free is called the eigenstrain. Eshelby was the first to introduce the 

notion of inclusion in (Eshelby, 1957) and then generalised by Mura in (Mura, 1982). 
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The solution of Eshelby (1957, 1961) has contributed significantly to the study of the 

effects of inhomogeneity in materials (e.g., Mura, 1987). Eshelby (1957) summarized 

his idea in the following steps: consider a region of an elastic body, the inclusion, which 

undergoes a change of size and shape that could be described by homogeneous strain 

in the absence of the constraint of the surrounding material and he found the resulting 

state of stress and strain in the inclusion and the surrounding matrix. 

 

 Eshelby solved this problem by series of conceptual steps involving cutting, 

transforming and re inserting the inclusion [44]. Eshelby’s method was developed for 

a single ellipsoidal inclusion in an infinite elastic body (matrix). The resulting stress 

and strain in the inclusion are uniform when the inclusion undergoes a uniform stress-

free transformation strain [see 38, 44 and 45]. 

 

Rudnicki (2011) described the approach of Eshelby for determining the stress and 

strain in regions in an infinite elastic body that undergoes a change of size or shape 

and the approach is extended to determine the stress and strain and displacement in 

regions of different elastic properties. He also discussed the relation of Eshelby’s 

approach to singular solutions in elasticity and different integral forms for the solutions 

[44, 46]. To cite only a few examples the interaction of two ellipsoidal inclusions 

(Moschobidis and Mura 1975), the behaviour of hybrid composites (Taya and Chou 

1981) and short fiber reinforced composites (Withers et al. 1989), the calculation of the 

stress fields inside a non-ellipsoidal inclusion which are not uniform (Johoson et al. 

1980) [51]. 
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In a part of the material which has undergone an ‘instantaneous’ change in properties, 

such as in a phase transformed zone or a region of plasticity, Eshelby's approach 

(Slaughter [48]) was proposed as a convenient mathematical approach to 

understanding the influences on the applied elastic stress field of the plastic enclave 

that is generated around a growing fatigue crack . 

 

The paper [49] dealt with the relation between the inclusion ahead of a mode I crack 

tip and the crack tip stress intensity factor for various inclusion shapes and moduli, 

which assumed that the crack-inclusion separation, and the size of the inclusion are 

small compared with the length of the crack. In this study, we will talk about the effects 

elastic and plastic the crack with the inclusion next to the tip of crack in 2 dimensional 

plane stress case. 

 

The Eshelby equivalent inclusion approach (Withers et al., 1989; Eshelby, 1957) is 

used to give a theoretical basis for numerical analysis (see [49, 56, 57, 62]). 

 

Based on Eshelby equivalent inclusion approach, Li and Duan (2002) established 

similarity between a plastically deformed inclusion ahead of a crack tip and a 

transformed inclusion. They demonstrated that the plastic zone around crack tip can 

be identified with a transformed inclusion by means of Eshelby equivalent inclusion 

which was evaluated by using the theory of transformation toughening [38]. Figure 3.4 

illustrates the simulants between the transformation toughening (a) and the plastic 

zone toughening (b) (see [38]). It considers on the crack tip and it does not seem to 

fully tack account of the behaviour along the crack flanks.  
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Figure 3.5 illustrating the similitude between the transformations toughening (a) and 

the plastic zone toughening (b) (reproduced from [38]). 

    

3.4 3.4 3.4 3.4 Concluding commentsConcluding commentsConcluding commentsConcluding comments        

    

This chapter has described the importance of the crack closure concept for the 

prediction of fatigue crack growth. Numerical simulations have been used to 

complement as analytical and experimental approaches for the study of fatigue crack 

closure such as finite element methods and boundary element methods. There are 

many issues which make finite element methods very difficult to apply, such as mesh 

refinement, crack face contact, required computational effort, etc. [35]. 
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Plasticity induced crack closure is the only crack closure mechanism which can be 

analytically modelled without involving the uncertainty of microstructural effects. Finite 

element techniques and Newman’s modified Dugdale strip yield model are two 

approaches to estimate plasticity induced crack closure [6]. 

 

There are several experimental methods for measuring crack closure that have been 

proposed to evaluate crack closure effects in the past forty years such as direct 

observation of the crack closure at the crack tip, which include  for example scanning 

electron microscopy, replica techniques, photography, and optical microscopy [52]. 

There are indirect methods, which are based on fatigue crack growth. The 

Compliance-based methods include strain gauges, clip gauges, and laser 

extensometer. Then the more commonly used methods because of their simplicity and 

relatively low cost [2, 52]. 

 

A new four-parameter photoelastic model has been proposed by Christopher et al [14]. 

This model was designed to more appropriately describe the shielding effect of the 

plastic zones ahead of the crack tip and along the crack wake. The model was 

employed in some studies to calculate from experimental data both the stress intensity 

factors and T-stress. [2]. 

 

In spite of the widely used and the important role which the plastic zone plays in the 

fracture process, still there is considerable disagreement and a well-recognized 

mechanical model for quantitative assessment of the amount of closure of the fracture 

has not yet been established [53]. 
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Several experimental and theoretical works on cracks deal with the 2D (plane strain or 

plane stress) problem which can be solved using Eshelby’s approach. 

 

In this thesis, the approach of Eshelby is used as a basis for representing the 

deformation due to crack closure. The approach is described in more detail in the next 

chapters. 
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Chapter 4 Chapter 4 Chapter 4 Chapter 4 Complex potential representation of problemComplex potential representation of problemComplex potential representation of problemComplex potential representation of problem    

 

4.1 Introduction4.1 Introduction4.1 Introduction4.1 Introduction    

 

The stress field around the crack tip is one of the main factors determining the growth 

of cracks in a solid. There are many methods that are employed to obtain stresses and 

displacements in cracked bodies. Some of these methods are analytic ones, such as 

the complex potential function method and the integral transform method and others 

are numerical ones, such as the finite element method [54]. This chapter will present 

the complex potential function method and will use it to analyse the stresses and 

displacements around crack tips.  

 

4.2 Method of complex potential for plane e4.2 Method of complex potential for plane e4.2 Method of complex potential for plane e4.2 Method of complex potential for plane elasticitlasticitlasticitlasticity (The Kolosovy (The Kolosovy (The Kolosovy (The Kolosov----    

MuskhelishMuskhelishMuskhelishMuskhelishvili fvili fvili fvili formulas)ormulas)ormulas)ormulas)    

    

The complex potential function method by Kolosov-Muskhelishvili [13] is one of the 

most useful mathematical methods for plane elasticity, and is used frequently for 

finding the solution to two-dimensional crack problems. We will give in this section a 

brief overview of the general formulation of the Kolosov-Muskhelishvili complex 

potentials. 

 

4.2.1 4.2.1 4.2.1 4.2.1 Complex potential representation of the Airy stress fComplex potential representation of the Airy stress fComplex potential representation of the Airy stress fComplex potential representation of the Airy stress function unction unction unction     

 

According to plane stress/ strain problems, the Airy stress function 1 2Φ(X ,X ) defined 

as [48] 
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11 ,22 22 ,11σ =Φ , σ =Φ  and 12 ,12σ =-Φ .            (4.1) 

    

The Airy stress function Φ  is biharmonic ( 4Φ=0∇ ) in a region S  when the body 

forces are zero. Such a Φ  can be expressed as 

  

Φ=Re{zφ(z)+Ψ(z)},               (4.2) 

 

where φ(z)  and Ψ(z)  are analytic functions in the region S and 1 2z=X +iX  is a 

complex variable with conjugate 1 2z=X -iX , see [54].  

 

Substituting (4.2) in (4.1), we get,  

 

11

22

12

σ =Re{-zφ (z)+2φ (z)-Ψ (z)},

σ =Re{zφ (z)+2φ (z)+Ψ (z)},

σ =Im{zφ (z)+Ψ (z)}.

′′ ′ ′′
′′ ′ ′′
′′ ′′

               (4.3) 

 

One can combine the equations (4.3) to obtain the relations 

 

11 22T=σ +σ =4Re{φ },′                       (4.4) 

 

and 

 

22 11 12=σ -σ +2iσ =2(zφ +ψ ),′′ ′∑                 (4.5)          

 

where ψ(z)=Ψ (z)′ . These analytic functions give representations of the stresses 

which satisfy the plane stress and plane strain equations. 
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We now address the complex potential representation of displacements. The relation 

between stresses and strains in equation (2.13) can be rewritten as 

 

αβ αβ γγ αβ

3-k
σ = 2µ [ε + ε δ ],

2(k-1)
                  (4.6) 

 

where, 

 

3-4υ for planestrain
k= 3-υ

for planestress
1+υ






 .              (4.7) 

 

Using the formula above, and equation (2.5), we get  

 

11 22 1,1 2,2

4µ
σ +σ = (u +u )

k-1
.              (4.8) 

 

Therefore, from (4.4), we have 

 

( )1,1 2,2µ(u +u )= k-1 Re{φ }.′             (4.9) 

 

By using (4.6), we obtain 

  

( )22 11 12 2,2 1,1 1,2 2,1σ -σ +2iσ =2µ[u -u +i u +u ],           (4.10) 
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and from (4.5), it follows that  

 

( )2,2 1,1 1,2 2,1µ[u -u +i u +u ]=zφ +ψ′′ ′ .              (4.11)    

 

From (4.9) and (4.11) we obtain  

 

( )1,12µu =Re{ k-1 φ -zφ -ψ },′ ′′ ′                  (4.12)    

 

and 

 

( )2,22µu =Re{ k-1 φ +zφ +ψ }.′ ′′ ′               (4.13) 

 

Equating the imaginary parts of both sides of (4.11), we have  

 

( )1,2 2,1µ u +u ]=Im{z φ +ψ }.′′ ′                (4.14) 

 

By integrating (4.12) and (4.13) with respect to 1X and 2X  respectively, we obtain 

 

( )1 1 2 1 22µu =Re{ k-1 φ-zφ +φ-ψ}+ζ (X )=Re{kφ-zφ -ψ}+ζ (X ),′ ′     (4.15) 

 

( )2 2 1 2 12µu =Re{-i k-1 φ-i zφ -iφ-i ψ}+ζ (X )=Im{k φ+zφ +ψ}+ζ (X ),′ ′     (4.16) 

 

Where 1ζ  and 2ζ  are an arbitrary real-valued function of 2X  and 1X  respectively. 

Differentiating equation (4.15) with respect to 2X  we get, 
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1,2 1 2
2 2 2 2

1 2

1 2

1 2

dz dz dz dz
2µ u =Re{kφ -zφ -φ -ψ }+ ζ (X )

dX dX dX dX

=Re{kφ (i)-φ (-i)-zφ (i)-ψ (i)}+ ζ (X )

=Re{(k+1)φ (i)-zφ (i)-ψ (i)}+ ζ (X )

=Im{-(k+1)φ +zφ +ψ (i)}+ ζ (X ),

′′ ′′ ′ ′

′′ ′ ′′ ′

′′ ′′ ′

′′ ′′ ′

                (4.17) 

 

and differentiating equation (4.16) with respect to 1X  we get, 

 

2,1 2 1
1 1 1 1

2 1

2 1

dz dz dz dz
2µ u =Im{kφ +zφ +φ +ψ }+ ζ (X )

dX dX dX dX

=Im{kφ +zφ +φ +ψ }+ ζ (X )

=Im{(k+1)φ +zφ +ψ }+ ζ (X ).

′′ ′′ ′ ′

′′ ′′ ′ ′

′′ ′′ ′

                    (4.18) 

 

It follows from (4.17) and (4.18) that 

 

1,2 2,1 1 2 2 12µ(u +u )=2Im{zφ +ψ }+ ζ (X )+ζ (X ).′ ′′′ ′                              (4.19) 

 

By comparing (4.19) with (4.14) one can see that  

 

1 2 2 1 1 2 2 2 1 1ζ (X )=-ζ (X )=γ ζ (X )=α+γX , ζ (X )=β-γX ,′ ′ ⇒  

 

where γ,α  and β  are real constants. Since Re{φ}=Re{φ}, Im{ φ}=-Im{ φ}  and 

φ=φ(z)=φ(z) , then equations (4.15) and (4.16) can be written as  
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12µu =Re{kφ-zφ -ψ},′  

                                                                                                                     (4.20) 

22µu =Im{-kφ+zφ +ψ}.′  

 

Writing (4.20) in complex form, we have 

 

1 22µ(u -iu )=-zφ +kφ-ψ,′                    (4.21) 

 

where k  is defined by (4.7). Equations (4.4), (4.5), and (4.21) are the Kolosov-

Muskhelishvili formulas.  

 

4.24.24.24.2.2.2.2.2    The complex The complex The complex The complex potential representation of the potential representation of the potential representation of the potential representation of the components of scomponents of scomponents of scomponents of stretretretress and ss and ss and ss and 

displacements idisplacements idisplacements idisplacements induced by nduced by nduced by nduced by point fpoint fpoint fpoint forcesorcesorcesorces    

    

4.2.2.1 4.2.2.1 4.2.2.1 4.2.2.1 The compThe compThe compThe complex potential representation of lex potential representation of lex potential representation of lex potential representation of thethethethe    components of stresscomponents of stresscomponents of stresscomponents of stress    induced by induced by induced by induced by 

point forcespoint forcespoint forcespoint forces 

 

We want to know the most general expressions for the complex stress functions φ

and ψ  in terms of the components of the stress ijσ  from a point force found in section 

2.4.3. 

 

Now, from (2.114) we have   

  

*
α β β α αβ γ γ γ γ α β

αβ * 2 * 2 * 2 * 4

-µF x µF x µδ F x 2µ(λ +µ)F x x x
σ = - + - ,

2π(λ +2µ)x 2π(λ +2µ)x 2π(λ +2µ)x 2πµ(λ +2µ)x
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or equivalently, 

 

α β β α αβ γ γ γ γ α β

αβ 2 2 2 4

-(1-2υ)F x (1-2υ)F x δ (1-2υ)F x F x x x
σ = - + -

4π(1-υ)x 4π(1-υ)x 4π(1-υ)x 2π(1-υ)x
. 

 

Therefore, 

 

* 3 * 2
1 1 2 2 1 1 2 2 1

11 * 2 * 4 * 4

-µFx +µF x 2(µ+λ )Fx 2(µ+λ )F x x
σ = - - ,

2π(λ +2µ)x 2π(λ +2µ)x 2π(λ +2µ)x
             (4.22) 

 

and 

 

* 3 * 2
2 2 1 1 2 2 1 1 2

22 * 2 * 4 * 4

-µF x +µFx 2(µ+λ )F x 2(µ+λ )F x x
σ = - - .

2π(λ +2µ)x 2π(λ +2µ)x 2π(λ +2µ)x
            (4.23) 

 

We can combine (4.22) and (4.23) to give 

 

* 3 * 3 * 2 * 2
1 1 2 2 2 2 1 1 1 2

11 22 * 4 * 4

-2(µ+λ )Fx -2(µ+λ )F x -2(µ+λ )F x x -2(µ+λ )F x x
Τ=σ +σ = + .

2π(λ +2µ) x 2π(λ +2µ)x
       (4.24) 

 

Simplifying and evaluating (4.24), we get 
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* 3 3 * 2 2
1 1 2 2 2 2 1 1 1 2

11 22 * 4 * 4

* 3 3 2 2
1 1 2 2 2 2 1 1 1 2

* 4

* 2 2
1 1 1 2 2 2 2 2 1 1

* 4

*
1 1 2 2 1

-2(µ+λ )[F x +F x ] -2(µ+λ )[F x x +F x x ]
Τ=σ +σ = +

2π(λ +2µ) x 2π(λ +2µ)x

-2(µ+λ )[Fx +F x +F x x +F x x ]
=

2π(λ +2µ) x

-(µ+λ )[x (Fx +F x )+x (F x +F x )]
=

π(λ +2µ) x

-(µ+λ )[(Fx +F x )(x
=

2 2
2

* 4

+x )]
.

π(λ +2µ) x

(4.25) 

 

We rewrite the equation (4.25) as  

 

2* *

4 2* *

*

*

Re{F z} z-(µ+λ ) -(µ+λ ) F z
Τ= = Re{ }
π(λ +2µ) π(λ +2µ)z z

-(µ+λ ) F
= Re{ },
π(λ +2µ) z

                     (4.26) 

 

where 1 2 1 2z=x +ix , z=x -ix , and 1 2F=F +iF . By using equation (4.4), 11 22Τ=σ +σ =4Re{φ },′
 

and from equation (4.26) we have 
 

 

*

*

-(µ+λ ) F
4Re{φ }= Re{ },

π(λ +2µ) z
′                        (4.27)

 

 

which we can write as  

 

*

*

-(µ+λ ) F
Re{φ }= Re{ }.

4π(λ +2µ) z
′                    (4.28) 
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Integrating (4.28) gives  

 

*

*

-(µ+λ )
φ= Fln(z),

4π(λ +2µ)
      (4.29) 

 

or, equivalently in terms of υ,  

 

-Fln(z)
φ= .

8π(1-υ)
                    (4.30)

 

 

Subtracting (4.23) from (4.22), one obtains 

 

3 2
2 2 1 1 2 2 1 1 2 1 1 2 2

22 11 2 4 4 2

3 2
1 1 2 2 1

4 4

-µF x +µF x 2(µ+λ)F x 2(µ+λ)F x x µF x -µF x
σ -σ = - - +

2π(λ+2µ)x 2π(λ+2µ)x 2π(λ+2µ)x 2π(λ+2µ)x

2(µ+λ)F x 2(µ+λ)F x x
+ + ,

2π(λ+2µ)x 2π(λ+2µ)x

               (4.31)
 

 

or equivalently, 

 

* 3 3 * 2 2
2 2 1 1 1 1 2 2 2 2 1 1 1 2

22 11 * 2 * 4 * 4

-2µF x +2µF x 2(µ+λ )[F x -F x ] 2(µ+λ )[F x x -F x x ]
σ -σ = + +

2π(λ +2µ)x 2π(λ +2µ)x 2π(λ +2µ)x
 

* 3 3 2 2
2 2 1 1 1 1 2 2 2 2 1 1 1 2

* 2 * 4

* 2 2
2 2 1 1 1 1 1 2 2 2 2 2 1 1

* 2 * 4

-2µF x +2µFx 2(µ+λ )[Fx -F x +F x x -F x x ]
= +

2π(λ +2µ)x 2π(λ +2µ)x

-2µF x +2µFx 2(µ+λ )[x (Fx +F x )-x (F x +F x ) ]
= +

2π(λ +2µ)x 2π(λ +2µ)x
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* 2 2
2 2 1 1 1 1 2 2 1 2

* 2 * 4

-µF x +µFx (µ+λ )[(Fx +F x )(x -x )]
= + .
π(λ +2µ)x π(λ +2µ)x

          (4.32)

 

 

Notice that from equation (2.114),  12σ  
can be calculated as 

 

* 2 2
12 γ γ1 2 2 1 1 1 2 2 2 1

12 * 2 * 2 * 2 * 4

µδ F x-µFx µF x 2µ(λ +µ)[Fx x +F x x ]
σ = - + - ,

2π(λ +2µ)x 2π(λ +2µ)x 2π(λ +2µ)x 2πµ(λ +2µ)x
          (4.33) 

 

or equivalently, 

 

      
* 2 2

1 2 2 1 1 1 2 2 2 1
12 * 2 * 4

-µFx -µF x µ(λ +µ)[Fx x +F x x ]
σ = - .

2π(λ +2µ)x πµ(λ +2µ)x
                 (4.34) 

 

Thus (4.32) and (4.34) yields 

  

* 2 2
2 2 1 1 1 1 2 2 1 2

22 11 12 * 2 * 4

* 2 2
1 2 2 1 1 1 2 2 2 1

* 2 * 4

-µF x +µFx (µ+λ )[(Fx +F x )(x -x )]
Σ=σ -σ +2iσ = + +

π(λ +2µ)x π(λ +2µ)x

-µFx -µF x µ(λ +µ)[Fx x +F x x ]
2i{ - },

2π(λ +2µ)x πµ(λ +2µ)x

                 (4.35)

 

 

and equation (4.35) can be evaluated as 
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2 2 1 1 1 2 2 1
22 11 12 * 2

* 2 2 2 2
1 1 2 2 1 2 1 1 2 2 2 1

* 4

-µF x +µF x +i (-µF x -µF x )
Σ=σ -σ +2iσ = +

π(λ +2µ)x

(µ+λ ){(F x +F x )(x -x )-2i (F x x +F x x )}
.

π(λ +2µ)x

         (4.36) 

 

Simplifying equation (4.36) yields 

 

* 2 2
2 2 1 1 1 2 2 1 1 1 2 2 1 2 1 2 1 1 2 2

* 2 * 4

µ[-F x +Fx -iFx -iF x ) (µ+λ ){(Fx +F x )(x -x )-2i x x (Fx +F x )}
Σ= +

π(λ +2µ)x π(λ +2µ)x
 

* 2 2
2 2 1 1 1 2 1 1 2 2 1 2 1 2

* 2 * 4

µ[-F (x +ix )+F (x -i x )] (µ+λ ){(Fx +F x )(x -x -2i x x )}
= + .

π(λ +2µ)x π(λ +2µ)x
           (4.37) 

 

We can rewrite the equation (4.37) in terms of z as  

 

* 2
2 1

2 4* *

[-F (i z)+F (z)]µ (µ+λ ) Re{F z}(z)
Σ= + .
π(λ +2µ) π(λ +2µ)z z

                      (4.38) 

 

Factoring 
2

z =z z in (4.38), we obtain  

  

* 2
1 2

2 4* *

* 2

* * 2

*

* * 2

z(F -iF )µ (µ+λ ) Re{F z}(z)
Σ= +
π(λ +2µ) π(λ +2µ)z z

µ z F (µ+λ ) (z)
= + Re{F z}
π(λ +2µ) z z π(λ +2µ) (zz )

µ F (µ+λ ) 1
= + Re{F z} ,
π(λ +2µ) z π(λ +2µ) z

               (4.39) 
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which simplifies to  

 

*

* * 2

* *

* 2

* *

* 2

µ F (µ+λ ) F z+Fz
Σ= +
π(λ +2µ) z π(λ +2µ) 2z

2µ z F+(µ+λ )F z+(µ+λ )Fz
=

2π(λ +2µ)z

(3µ+λ )z F+(µ+λ )F z
= .

2π(λ +2µ)z

               (4.40) 

 

Since equation (4.5), 22 11 12Σ=σ -σ +2iσ =[2zφ (z)+2ψ (z)],′′ ′  then it follows from (4.40)   

 

* *

* 2 *

(µ+λ ) F (3µ+λ ) F
z + =[2zφ (z)+2ψ (z)].

2π(λ +2µ) z 2π(λ +2µ) z
′′ ′             (4.41) 

 

This leads to  

 

*

*

(3µ+λ ) F
ψ (z)= ,

4π(λ +2µ) z
′                           (4.42) 

 

and 

 

*

* 2

(µ+λ ) F
φ (z)= .

4π(λ +2µ) z
′′                        (4.43) 

 

Equation (4.43) after integrating twice gives  
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*

*

-(λ +µ)
φ(z)= Fln(z),

4π(λ +2µ)
                         (4.44) 

 

and integrates (4.42) once gives  

 

*

*

(3µ +λ )
ψ(z)= F lnz,

4π(λ +2µ)
                        (4.45) 

 

or equivalently, 

 

(3-4υ)F lnz
ψ(z)= .

8π(1-υ)
                  (4.46) 

 

4.2.2.2 4.2.2.2 4.2.2.2 4.2.2.2 The complex The complex The complex The complex potential representation of the potential representation of the potential representation of the potential representation of the components components components components of displacements of displacements of displacements of displacements 

induced by point forcesinduced by point forcesinduced by point forcesinduced by point forces 

 

One can know the most general expressions for the complex stress functions φ and 

ψ  in terms of the components of displacements induced by a point force as follows: 

    

From (2.106) we can find the displacements induced by a point force,,,, 

 

( )
* *

1 γ

1 γ γ* 2*1γ

x xλ +3µ 1 λ +µ
u = δ F ln + F

4(λ +2µ)πµ x x4πµ λ +2µ
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( )
* *

1 1 1 2
11 1 12 2 1 2* 2 2*

x x x xλ +3µ 1 1 λ +µ
= [δ Fln +δ F ln ]+ [ F + F ]

4(λ +2µ)πµ x x x x4πµ λ +2µ

 

( )
2* *

1 1 1 2 2
1* 2*

(x F +x x F )λ +3µ 1 λ +µ
= Fln +

4(λ +2µ)πµ x x4πµ λ +2µ

 

( )
* *

1 1 1 2 2
1* 2*

x (x F +x F )λ +3µ 1 λ +µ
= Fln + .

4(λ +2µ)πµ x x4πµ λ +2µ
                       (4.47) 

 

Therefore we can write (4.47) as  

 

( )
* *

1
1 1 2* *

x Re{F z}λ +3µ 1 λ +µ
u = Fln + ,

4(λ +2µ)πµ z 4πµ λ +2µ z
                    (4.48) 

 

where 1 1 2 2Re{F z}=x F +x F  and z =x . Similarly,  

 

( )
* *

2
2 2 2* *

x Re{F z}λ +3µ 1 λ +µ
u = F ln + .

4(λ +2µ)πµ z 4πµ λ +2µ z
                     (4.49) 

 

By using (4.48) and (4.49) one can calculate  

 

( )
* *

1 2
1 2 1 2 2* *

Re{F z}(x -ix )λ +3µ 1 λ +µ
2µ(u -iu )= (F -iF )ln + .

2(λ +2µ)π z 2π λ +2µ z
              (4.50)

 

 

Therefore, 
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( )
* *

1 2 2* *

λ +3µ 1 λ +µ F z
2µ(u -iu )= Fln + Re{ }z,

2(λ +2µ)π z 2π λ +2µ z
                            (4.51) 

 

where 1 2F=F -i F  and 1 2z=x -ix . Thus by using the standard properties of the logarithm, 

and noting that  
F 1 F F

Re{ }= ( + ),
z 2 z z

 we can simplify equation (4.51) to  

 

( )

( )

* *

1 2 * *

1* *
2

* *

λ +3µ λ +µ F z
2µ(u -iu )= (-Fln z )+ Re{ }z

2(λ +2µ)π (z z)2π λ +2µ

λ +3µ λ +µ F
= (-Fln(zz) )+ Re{ }z

2(λ +2µ)π z2π λ +2µ

 

( )

( )

* *

* *

* *

* *

λ +3µ 1 1 λ +µ 1 F F
= [- Flnz- Flnz]+ ( + )z

2(λ +2µ)π 2 2 2 z z2π λ +2µ

-(λ +3µ) λ +µ F
= [Flnz+Flnz]+ ( z+F).

4(λ +2µ)π z4π λ +2µ

                (4.52)

 

 

Since the equation (4.21), 1 22µ(u -iu )=-zφ +kφ-ψ′ , then it follows from (4.52)  

 

* * *

* * *

(λ +µ) F -(λ +µ) (λ +3µ)
-zφ +kφ-ψ=z +k Fln(z)- Fln(z).

4π(λ +2µ) z 4π(λ +2µ) 4π(λ +2µ)
′             (4.53) 

 

Therefore, 

  

* *

* *

-(λ +µ) F -(λ +µ)
φ (z)= , φ(z)= Fln(z),

4π(λ +2µ) z 4π(λ +2µ)
′

 

 

and 
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*

*

(λ +3µ)
ψ(z)= Fln(z)

4π(λ +2µ)
. 

 

The following section will present a classical representation of the Westergaard’s 

method for developing the stress functions near to the crack tip.   

 

4.3 Westergaard method for mode I (symmetric)4.3 Westergaard method for mode I (symmetric)4.3 Westergaard method for mode I (symmetric)4.3 Westergaard method for mode I (symmetric)    problemproblemproblemproblemssss    

    

We consider an infinite plane with a crack along the 1x -axis. We assume that the 

external loads are symmetric with respect to the 1x -axis, then 12σ =0 along 2x =0.  

 

Let 

 
ψ =-zφ .′ ′′                 (4.54) 

 
 
Substituting (4.54) into (4.5) and solving the resulting equation, we get 

 

22 11

2

2

σ -σ =Re{2(zφ -zφ )} = Re{2φ (z-z)}

(z-z) (z-z)
= Re{2φ (2i) }=Re{-4iφ }

2i 2i
=Re{-4iφ Im(z)}=Re{-4iφ x }

=4 x Im{φ },

′′ ′′ ′′

′′ ′′

′′ ′′
′′

 

 

where 

 

2 2 1 2 2 1 2 2 2 2 2Re{iφ (z)x }=Re{ix [φ (z)+iφ (z)]}=Re{ix φ (z)-x φ (z)]}=-x φ (z)=-x Im{φ (z)}′′ ′′ ′′ ′′ ′′′′ ′′ . 
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The 22σ  stress can therefore be written as 

 

22

2

2σ =4Re{φ }+Re{2(zφ +ψ )}

=4Re{φ }+4x Im{ φ },

′ ′′ ′′
′ ′′

 

 

and thus, 

 

22 2σ =2{Re{φ }+x Im{ φ }}.′ ′′  

 

From (4.4) we have 

 

11 22 2

2

σ =4Re{φ }-σ =4Re{φ }-2{Re{ φ }+x Im{ φ }}

=2{Re{φ }-x Im{ φ }}.

′ ′ ′ ′′
′ ′′

 

 

From (4.5) we have  

 

12 2σ =Im{zφ +ψ }=-2x Re{φ }.′′ ′′ ′′  

 

Thus the stresses can be written as 

 
 

11 2σ =2{Re{φ }-x Im{ φ }}′ ′′ , 

22 2σ =2{Re{φ }+x Im{ φ }},′ ′′                            (4.55) 

12 2σ =-2x Re{φ }′′ . 
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The displacements are 

 

1 2

2 2

k-1
2µu = Reφ-x Imφ ,

2
k+1

2µu = Imφ-x Reφ .
2

′

′
                    (4.56) 

 
We define Z  as a Westergaard function for Mode I problems by  

 

1
φ = Z.

2
′                 (4.57) 

 

Therefore, 

 

1 1ˆφ= Z, φ = Z .
2 2

′′ ′             (4.58) 

 

Using these equations in (4.55) and (4.56) we get the stresses that were proposed by 

Westergaard as the stress singularity field at the crack tip as   

 

11 2

22 2

12 2

σ =ReZ-x ImZ ,

σ =ReZ+x ImZ ,

σ =-x ReZ .

′
′

′
                (4.59) 
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4.4 4.4 4.4 4.4 Westergaard Westergaard Westergaard Westergaard methodmethodmethodmethod    for Mode for Mode for Mode for Mode IIIIIIII    ((((sliding modesliding modesliding modesliding mode) problem) problem) problem) problemssss    

 

Consider an infinite plane with cracks along the 1x -axis and the external loads are 

anti- symmetric with respect to the 1x -axis, then 22σ =0 along 2x =0. Let 

 
ψ =-2φ -zφ .′ ′ ′′                      (4.60) 

 

Then the method outlined in section 4.2.1 can be used to calculate the stresses and 

the displacements. The stresses are 

 

11 2

12 2

22 2

σ =2{Re{φ }-x Im{ φ }},

σ =2{-Im{ φ }-x Re{φ }},

σ =2x Re{φ }.

′ ′′
′ ′′
′′

                    (4.61) 

 

 
The displacements are 

 

1 2

2 2

k+1
2µu = Reφ-x Imφ ,

2
k-1

2µu = Imφ-x Reφ .
2

′

′
                         (4.62) 

 

We define Z  as a Westergaard function for Mode II problems by  

 

IIZ =2iψ (z).′                         (4.63) 

 

By using (4.59) one can get, 
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11 2

12 2

22 2

σ =2ReZ-x ImZ ,

σ =-ImZ-x ReZ ,

σ =x ImZ .

′
′

′
                           (4.64) 

 
 
4.54.54.54.5    The The The The eeeelasticity slasticity slasticity slasticity solutions olutions olutions olutions by uby uby uby using tsing tsing tsing the Westergaard function mhe Westergaard function mhe Westergaard function mhe Westergaard function methodethodethodethod        

    

 

Consider a crack of length 2a in an infinite plate subjected to compressive forces P  

and Q  at  x=b  and assumed Q  to be absent in this case. 

 

    

Figure 4.1 A crack in an infinite plate subjected to compressive forces    [54]    

 

Let Z  be a Westergaard function defined as   

 

2 2

2 2

P a -t
Z= .
π(z-t) z -a

                (4.65) 
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Then  

 

2 2

2 2

2 2

2 2

P a -t
Z=
π((t+w)-t) (t+w) -a

P a -t
=
πw (t+w) -a

 

 

Where z=t+w, w 1≪ . Since w  is too small, then can be considered zero. Therefore, 

 

2 2 2 2

2 2 2 2

a -t -(t -a )
= = -1=±i

t -a t -a
 

 

It follows that 

 

-i P
Z=
πw  

 

Define 
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1
φ = Z

2
1 -i P

= ( )
2 πw
1 -iP

= ( ).
2 π(z-t)

′

 

 

Now, we would like to show that the Westergaard function gives the stresses that 

satisfy the following boundary conditions. 

 

Define analytic function ψ′′  as  

 

ψ (z)=-zφ (z).′′ ′′               (4.66) 

Then  

 

( )2 2

1 -Pi -1 i P
φ (z)= [ . ]= .

2 π 2π(z-t)z-t
′′

 

We can write ψ′′  as  

 

2

-iPz
ψ (z)=-zφ (z)= .

2π(z-t)
′′ ′′  

 

Let w=z-t . Then  
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2 2 2

-i P -i P(x-iy) -i Px-Py
Z= Z= = ,
πw π(x +y )π w

⇒  

 

and 

 

2 2 2 2

-Py -Pε
Re{Z}= = .

π(x +y ) π(x +ε )
 

 

Now,  

 

δδ δ

-1 -1 -1
2 2 2 2

-δ-δ -δ

-1 -1
0

-Pε -Pε dx -εP 1 x -P δ P -δ
dx= = ( tan ( ) = tan ( )- tan ( )

π(x +ε ) π (x +ε ) π ε ε π ε π ε

P P
tan ( )- tan (- )
π π

P π π
= [ -(- )]
π 2 2

=P.

ε →→ ∞ ∞

∫ ∫

 

 

 Since  

 

11

22

12

σ =ReZ-yImZ ,

σ =ReZ+yImZ ,

σ =-yReZ ,

′
′

′
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and  

2

-ip ip
Z= Z = ,
πz πz

′⇒  

 

2 2 2 2 2

-ip z -ipz -ip(x-iy) -ipx-py
Z= . = = =
πz z π(x +y ) π(x +y )π z

, 

 

then 

 

2 2 2 2

-py -px
Re{Z}= , Im{Z}= .

π(x +y ) π(x +y )
 

 

2 2 2

42 2 2 2 2 2

2 2

2 2 2

2 2

2 2 2

ip ip z ipz -ip(x-iy)
Z = = . = =

πz πz z π(x +y )π z

ip[x -2ixy-y ]
=

π(x +y )

ipx +2xyp-ipy
= .

π(x +y )

′

 

 

Therefore, 

 

2 2

2 2 2 2 2 2

2xyP x P-Py
Re{Z }= , Im{Z }= .

π(x +y ) π(x +y )
′ ′  
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Since  

 

12 2 2 2

2

2 2 2

2xyP
σ =-yRe{Z }=-y( )

π(x +y )

-2xy P
= ,
π(x +y )

′
 

 

then 

 

δ δ δ2 2

12 2 2 2 2 2 2
-δ -δ -δ

-2xy P -2Py x
σ dx= dx= dx.

π(x +y ) π (x +y )∫ ∫ ∫  

 

Let  

 

2 2 2 2 2

1 1
2 22 2

1
2

u=(x +y ) du=2(x +y )(2x)dx

du
u =(x +y ) du=2u (2x)dx =x dx.

4u

⇒

⇒ ⇒
 

 

Then  
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-1δ δ δ δ δ2 -3
2

1 32 2 2
1+

-δ -δ -δ -δ -δ2 2

δ δ-1
2 2 -12

2 2 2 2
-δ-δ

x dx 1 u du 1 du 1 du 1
= = = = u du

(x +y ) 4 u 4 4 4
u u

1 -1 -1 1
= (-2) u = (x +y ) = + =0.

4 2 2(δ +y ) 2(δ +y )

∫ ∫ ∫ ∫ ∫
 

 

Therefore,  

 

δ δ δ2 2

12 2 2 2 2 2 2
-δ -δ -δ

-2xy P -2Py x
σ dx= dx= dx=0.

π(x +y ) π (x +y )∫ ∫ ∫  

 

Since  

22

2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

3

2 2 2

σ =ReZ+yImZ

-Py x P-Py
= +y[ ]
π(x +y ) π(x +y )

-Py(x +y ) yP(x -y )
= +
π(x +y ) π(x +y )

-2Py
= ,
π(x +y )

′

 

 

then 

 

δ δ δ3 3

22 2 2 2 2 2 2
-δ -δ -δ

-2Py -2Py dx
σ dx= dx= .

π(x +y ) π (x +y )∫ ∫ ∫  
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This integral 
δ

2 2 2
-δ

dx

(x +y )∫  can be done by substitution  

 

2

2 2 2 2 2 2 2 2 2

-1

x=y tanθ dx=ysecθdθ

x +y =y tan θ+y =y (tan θ+1)=y secθ

x x
= tanθ θ=tan ( ).

y y

⇒

⇒

 

 

Now, 

 

δ 2

2 2 2 2 2 2 3 2
-δ

3 2 3

2

2
3 3 3

dx ysecθdθ dθ
= =

(x +y ) (y secθ) y secθ

1 dθ 1 dθ
= =

1y secθ y
cosθ

1 1 (1+cos2θ) 1
= cosθdθ= dθ (1+cos2θ)dθ.

y y 2 2y
=

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

 

 

Let 

 

du
u=2θ du=2dθ dθ=

2
⇒ ⇒ . 

 

Then  
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1 1 1
cos2θdθ= cosu du= sinu= sin2θ

2 2 2∫ ∫ , 

 

and 

 

3 3

1 1 1
(1+cos2θ)dθ= [θ+ sin2θ]

2y 2y 2∫ . 

Therefore, 

 

-1

-1

δ
tan ( )δ y

2 2 2 3
-δ-δ tan ( )
y

-1 -1 -1 -1
3

3

3

dx 1 1
= [θ+ sin2θ]

(x +y ) 2y 2

1 δ -δ 1 δ 1 -δ
= {[tan ( )-tan ( )]+ sin2(tan ( ))- sin2(tan ( ))}

2y y y 2 y 2 y

1 π (-π) 1 π 1 -π
= {[ - )]+ sin2( )- sin2( )}

2y 2 2 2 2 2 2

π
= .

2y

∫

 

 

δ δ3 3

22 2 2 2 3
-δ -δ

-2Py dx -2Py π
σ dx= =( )( )=-P.

π (x +y ) π 2y∫ ∫  

 

Now,  
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11

2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2 2

2

2 2 2

σ =ReZ-yImZ

-Py x P-Py
= -y[ ]
π(x +y ) π(x +y )

-Py(x +y ) yP(x -y )
= -
π(x +y ) π(x +y )

-2Pyx
= .
π(x +y )

′

 

 

One can find the integral 
δ

11

-δ

σ dx∫  as  

 

δ δ δ2 2

11 2 2 2 2 2 2
-δ -δ -δ

-2Pyx -2Py x dx
σ dx= dx= .

π(x +y ) π (x +y )∫ ∫ ∫  

 

This integral 
δ 2

2 2 2
-δ

x dx

(x +y )∫  can be done by parts with  

 

2 2 2 2 2

xdx -1
u=x,dv= du=dx, v=

(x +y ) 2(x +y )
⇒ .  

 

Then 

 

δδ δ2

2 2 2 2 2 2 2
-δ -δ-δ

x dx -x dx
= +

(x +y ) 2(x +y ) 2(x +y )∫ ∫ , 
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and 

 

δ
δ

-1
2 2

-δ -δ

1 dx 1 1 x 1 π π π
= ( tan ( ) = [ -(- )]= .

2 (x +y ) 2 y y 2y 2 2 2y∫  

 

Hence, 

 

δδ δ2

2 2 2 2 2 2 2
-δ -δ-δ

2 2 2 2

x dx -x dx
= +

(x +y ) 2(x +y ) 2(x +y )

-δ -δ π
= + + .

2(δ +y ) 2(δ +y ) 2y

∫ ∫
 

δ δ δ2 2

11 2 2 2 2 2 2 2 2
-δ -δ -δ

-2Pyx -2Py x dx -2Py -2δ π
σ dx= dx= = [ + ]=-P, y=ε 0

π(x +y ) π (x +y ) π 2(δ +y ) 2y
→∫ ∫ ∫ . 

 

4.6 A4.6 A4.6 A4.6 A    newnewnewnew    Westergaard’s Westergaard’s Westergaard’s Westergaard’s functionfunctionfunctionfunction    to to to to model model model model the shear stresses the shear stresses the shear stresses the shear stresses along the along the along the along the 

crack flankscrack flankscrack flankscrack flanks    

    

We note here the following version of Westergaard’s function which could be used 

for future work. This function models the shear stresses along the crack flanks 

predicted by the CJP model.  
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Figure 4.2 A new Westergaard’s function to model the shear stresses along the crack 

flanks 

 

 

We defined a new function Z  as  

 

( )( )
( )( )

2 2

2 2

z-a t+aP a -t
Z= ln[ ].

z+a a-tπ(z-t) z -a
                  (4.67) 

 

By evaluating this function as  

 

( ) ( )
( )( )

( ) ( ) ( ) ( )

2 2

2 2

2 2

2 2

z-a t+aP a -t
Z= ln[ ]

z+a a-tπ(z-t) z -a

P a -t
= [ln z-a +ln t+a -ln z+a -ln a-t ]
π(z-t) z -a

                                       (4.68) 
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Equation (4.67) models not only the square root singularity at the crack tip but also 

the singularity associated with the point load located at y=0, x=-a,a. 

 

* *Let z=-a+w z+a=wand t-a=t t=t +a⇒ ⇒ . Then  

 

* *
* *

*

iP t (t +2a)
Z= [ln(w-2a)+ln(t +2a)-lnw-ln(-t )]
π(w-2a-t ) w(w-2a)

 

 

Now, 

 

( ) 2f (0) f (0)
f(w)=ln(w-2a)=f(0)+ w + (w )+...

1! 2!

′ ′′
 

       2
2

-1 1
=ln(-2a)+ w- w +...

2a 8a
, 

 

and 

 

( )* * * *2f (0) f (0)
f(t )=ln(t +2a)=f(0)+ t + (t )+...

1! 2!

′ ′′
 

      * *2
2

1 1
=ln(2a)+ t - t +...

2a 8a
, 

 

then  

 

* *
* *

*

iP t (t +2a)
Z= [ln(w-2a)+ln(t +2a)-lnw-ln(-t )]
π(w-2a-t ) w(w-2a)
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* *
*

*

iP t (t +2a)
[ln(-2a)+ln(2a)-lnw-ln(-t )]

π(w-2a-t ) w(w-2a)
=  

  

Now, let a coordinate transformation on the left
* *z=a+w z-a=wand t-a=t t=t +a→ → . 

Then from (4.68) we can get 

 

* *
*

*

* *
*

*

* *

* *

iP t (t +2a)
Z= [ln(w)+ln(2a)-ln(2a)-ln(-t )]
π(w-t ) w(w+2a)

iP t (t +2a)
= [ln(w)-ln(-t )]
π(w-t ) w(w+2a)

iP t (t +2a) -w
= ln( ).
π(w-t ) w(w+2a) t

 

 

* *Let z=t+w z-t=wand t-a=t t=t +a→ → . Then from (4.67) one can write  

 

* *

2 2

* *

2 2

* *

2 2

* *

2 2

t (t +2a)iP
Z= [ln(t+w-a)+ln(t+a)-ln(t+w+a)-ln(a-t)]
π(w) (w+t) -a

t (t +2a)iP
= [ln(t-a)+ln(2a)-ln(t+a)-ln(a)]
π(w) (w+t) -a

t (t +2a)iP
= [ln(-a)+ln(2a)-ln(2a)-ln(a)]
π(w) (w+t) -a

t (t +2a)iP
= [ln(
π(w) (w+t) -a

* * * * * *

2 2 2 2 2 2

-a)-ln(a)]

t (t +2a) t (t +2a) t (t +2a)iP iP -P
= ln(-1)= (iπ)= .
π(w) π(w) (w)(w+t) -a (w+t) -a (w+t) -a

 

 

 

 



Chapter 4Chapter 4Chapter 4Chapter 4 Complex potential rComplex potential rComplex potential rComplex potential representation of problem epresentation of problem epresentation of problem epresentation of problem  

124 
 

 

 

a 2 2

2 2
-a

σ a -t
φ = dt

z-tπ z -a
∞′ ∫  

Let 
2

1 -1
t= dt= du

u u
⇒  

 

Then 

2 22
a 2 2 2

2 2
-a

2 2 2 2

2 2

1
a u -1a -

a -t 1 1u udt= (- du)= (- du)
1 uz-1z-t u uz-
u u

a u -1 1 a u -1 1
= (- du)= ( du)

uz-1 u 1-uz u

∫ ∫ ∫

∫ ∫

� �

� �

 

 

Since 

 

j

m

z
j=1C

f(z)dz=2πi Res f∑∫�  

 

where 

 

0
0

n-1
n

z 0n-1z z

1 d
Res f= lim [(z-z ) f(z)]

(n-1)! dz→
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2 2 2-1 2 2
2

u=0 2 2-1 2u 0

2 2

u 0

a u -1 1 d a u -1
Res ( )= lim [(u-0) ]

u (1-uz) (2-1)! dz u (1-uz)

d a u -1
= lim ( )

dz (1-uz)

→

→

 

2 2 2

2 2

2u 0

1
(1-uz) (2a u)- a u -1(-z)

2 a u -1= lim( )
(1-uz)

=z -1=zi

→
 

 

2 2 2 2 2 2

1 2 2 21 1u= u uz z z

2 2
2 2

2 2
21 2u

z

a u -1 1 a u -1 uz-1 a u -1
Res ( )= lim[(u- ) ]= lim[( ) ]

u (1-uz) z u (1-uz) z -u (uz-1)

1
a ( ) -1

1 a u -1 1 z= lim[( ) ]=( ) =- a -z
1z -u z -( )
z

→ →

→

 

 

j

m

z
j=1C

f(z)dz=2πi Res f∑∫�  

 

a 2 2 2 2
2 2

2
-a

2 2

a -t a u -1 1
dt= ( du)=2iπ[zi- a -z ]

z-t 1-uz u

=-2πz-2iπ a -z

∫ ∫�  

 

 

a 2 2
2 2

2 2 2 2
-a

2 2

σ σa -t
φ = dt= [-2πz+2π z -a ]

z-tπ z -a π z -a
-2σ z

= +2σ
z -a

∞ ∞

∞
∞

′ ∫
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2

2 2 2

2 2

2 2

2 2 2 2

42 2 2 2 2

2 2

2 2 2

2 2

2

p
Z= lnt

w
-p

Z = lnt
w
p w (plnt)(x-iy) pxlnt-ipylnt

Z= lnt= =
w w (x +y )w

pxlnt
Re{Z}=

x +y

-pylnt
Im{Z}=

x +y

-p w (-plnt)(x-iy) -plnt[x -2ixy-y ]
Z = lnt= =

w w (x +y )w

-plnt[(x -y )-2ixy]
=

(x +y )

-p(x -y )lnt
Re{Z }=

x

′

′

′
( )

( )

22

22 2

+y

2pxylnt
Im{Z }=

x +y
′

 

I

n n+1

n+1
n=0

n n+1

I n+1
n=0

-2
I 2

-ip
Z = ln(t+w)

πw
w w

ln(t+w)=ln[t(1+ )]=lnt+ln(1+ )
t t

(-1) w
=lnt+

(n+1)t

-ip (-1) w -ip
Z = [lnt+ ]= lnt

πw (n+1)t πw

-ip iplnt
Z = (-1)w lnt= ,

π πw

∞

∞

′

∑

∑

 

 

t  is a constant. 
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12 I

2 2

2 2 2

2 3

2 2 2

δ δ 2 3

12 2 2 2 2 2
-δ -δ

σ =-yReZ

(-plnt)(x -y )
=-y[

(x +y )

(plnt)(x y-y )
=

(x +y )

x y-y -π -pπ
σ dx=plnt dx=p( )lnt= lnt

(x +y ) 2y 2y

′

∫ ∫

 

( )

( )

( )

( )

22

22 2 2 2

2 2 2

22 2

3 2 2

22 2

3 2

22 2

σ =ReZ+yImZ

pxlnt 2pxylnt
= +y

x +y x +y

px(x +y )lnt+2pxy lnt
=

x +y

px lnt+2pxy lnt+xpy lnt
=

x +y

px lnt+3pxy lnt
=

x +y

′

 

( ) ( )

( ) ( )

δ δ δ3 2 3 2

22 2 22 2 2 2
-δ -δ -δ

δ δ3 2

2 22 2 2 2
-δ -δ

px lnt+3pxy lnt x +3xy
σ dx= dx=plnt dx

x +y x +y

x 3xy
=plnt[ dx+ dx]

x +y x +y

=0

∫ ∫ ∫

∫ ∫  

 

Where 
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( )

( ) ( )

( ) ( ) ( )

( )

δ 3

22 2
-δ

2
2 2 22 2

δ
δ δ3 2

2 2 2 2 22 2
-δ -δ

-δ

δ

2 2
-δ

x
dx

x +y

xdx -1
u=x ,dv= du=2xdx, v=

2 x +yx +y

x -x 2x
dx= + dx

2 x +y 2 x +yx +y

x
= dx=0,

x +y

⇒

∫

∫ ∫

∫

 

( )

( )

δ

2 2
-δ

2 2

δδ δ
δ 2 2

-δ2 2
-δ-δ -δ

x
dx

x +y

u=x +y du=2xdx

x 1 du 1 1
dx= = [lnu = ln(x +y ) =0

2 u 2 2x +y

⇒

∫

∫ ∫

 

 

( )

( )

( )

( )

11

22 2 2 2

2 2 2

22 2

3 2 2

22 2

3 2

22 2

σ =ReZ-yImZ

pxlnt 2pxylnt
= -y

x +y x +y

px(x +y )lnt-2pxy lnt
=

x +y

px lnt+pxy lnt-2xpy lnt
=

x +y

px lnt-pxy lnt
= .

x +y

′

 

 

( ) ( )

( ) ( )

δ δ δ3 2 3 2

11 2 22 2 2 2
-δ -δ -δ

δ δ3 2

2 22 2 2 2
-δ -δ

px lnt-pxy lnt x -xy
σ dx= dx=plnt dx

x +y x +y

x xy
=plnt[ dx- dx]

x +y x +y

=0

∫ ∫ ∫

∫ ∫  
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Finally, we need to verify that the stresses are consistent with a point force acting at 

the origin.  To do this, we can evaluate the resultant force exerted by tractions acting 

on a circle enclosing the point force.  Since the solid is in static equilibrium, the total 

force acting on this circular region must sum to zero.  Recall that the resultant force 

exerted by stresses on an internal surface can be calculated as follows: 

 

Since the traction- stress relation for plane strain/ stress is α βα β
ˆt =σ n , where 

2 1
1 2

dX dX
ˆ ˆ ˆn= e - e

ds ds
  is unit outward normal and s  is the arc length. Therefore,  

2 1
1 11 21

dX dX
t =σ -σ ,

ds ds
 

2 1
2 12 22

dX dX
t =σ -σ

ds ds
, 

 

We can combine as  

 

( ) 2 1
1 2 11 12 12 22

dX dX
t -it = σ -iσ +(-σ +iσ )

ds ds
 

 

Since  

 

( ) ( )1 2

1 1
X = z+z ,X =- i z-z

2 2
, then  

( )

( )

1 2 11 12 22 12

22 11 12 11 22

1 dz dz 1 dz dz
t -it =- i σ -iσ ( - )+ (iσ -σ )( + )

2 ds ds 2 ds ds
1 dz 1 dz

= i σ -σ +2iσ + i(σ +σ )
2 ds 2 ds
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By noting that from (4.4) and (4.5) ( 11 22 22 11 12σ +σ =4Re{φ }, σ -σ +2iσ =2(zφ +ψ )′ ′′ ′ ), we get  

 

1 2

dz dz
t -it =i(zφ +ψ ) +i(φ +φ )

ds ds
′′ ′ ′ ′  

 

By observing that  

 

d dz dz
(zφ +φ+ψ)=(zφ +ψ ) +(φ +φ ) ,

ds ds ds
′ ′′ ′ ′ ′  

 

Thus, 

 

1 2

d
t -it =i (zφ +φ+ψ)

ds
′  

 

Which is a relation for components of the traction in terms of the complex stress 

functions. 

 

Now, by sitting 

 

1 2

F=i[zφ +φ+ψ]

F= (t -it )ds

d
= i(zφ +φ+ψ)ds

ds

=[i(zφ +φ+ψ)]

′

′

′

∫

∫
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1 2 2

-iplnz -iplnz
φ= , ψ=

2π 2π

plnz plnz plnz
F=[z + - ]

2π 2π 2π
2πipk p2πi p2πi

F=[ + + ]=2pi,k 0
2π 2π 2π

F= (t -it )ds=pi t =-p

→

⇒∫

 

 

4.74.74.74.7    Concluding comments Concluding comments Concluding comments Concluding comments     

 

We have presented a brief overview of the general formulation of the Kolosov-

Muskhelishvili complex potentials. After this the complex potential representation of 

the components of stress and displacements induced by point forces was reviewed. 

 

In the end of this chapter, we have proposed a new Westergaard’s function to model   

the shear stresses along the crack flanks as in Figure 4.2 predicted by the CJP model 

which could be used for future work.    
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Chapter 5Chapter 5Chapter 5Chapter 5        Classic Eshelby’s inclusion Classic Eshelby’s inclusion Classic Eshelby’s inclusion Classic Eshelby’s inclusion     

    

5.1 5.1 5.1 5.1 IntroductionIntroductionIntroductionIntroduction    

    

This chapter is focused on Eshelby's technique for determining the stress, 

displacement and strain in regions in an infinite elastic body that undergo a change of 

size or shape.   

 

5.2 5.2 5.2 5.2 TTTTranslation of ranslation of ranslation of ranslation of EsEsEsEshelby’s solution in terms of helby’s solution in terms of helby’s solution in terms of helby’s solution in terms of Muskhelishvili’s complex Muskhelishvili’s complex Muskhelishvili’s complex Muskhelishvili’s complex 

function approach to 2D elasticityfunction approach to 2D elasticityfunction approach to 2D elasticityfunction approach to 2D elasticity    

 

5.2.1 5.2.1 5.2.1 5.2.1 Eshelby’s iEshelby’s iEshelby’s iEshelby’s inclusion: Stress and strainnclusion: Stress and strainnclusion: Stress and strainnclusion: Stress and strain    

        

Using Eshelby’s analysis we have found the solution for the stress, strain and 

displacement fields both inside and outside the inclusion assuming the matrix is a 

continuum and the inclusion is a disc (circular). 

Figure 5.1 shows steps of operations used by Eshelby (1957) to solve the problem of 

finding solution for stress and displacement fields.  
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Figure 5.1: The sequence of steps of Eshelby's inclusion problem [53]   

 

StepStepStepStep    1:1:1:1:    

 

Remove the inclusion from the matrix (Figure 5.1 a). The inclusion is then permanently 

deformed with an eigenstrain 
ij

*ε .  No external forces are applied to either the matrix or 

the inclusion since the inclusion is outside the matrix. The strain, stress and 

displacement fields in the matrix and the inclusion are given by: 

matrix Inclusion 

ijε =0 

ijσ =0 

iu =0 

ij

*
ijε =ε  

ijσ =0 

ij

*
i ju =ε x  
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Since the strain field ijε  in the inclusion is given by 
ij

*
ijε =ε , then one can give the 

corresponding displacement field in the inclusion in terms of Muskhelishvili’s complex 

potential function in the following steps: 

 

Since 
ij

*
i ju =ε x , then we can write 1u  and 2u   as  

 

1j 11 12 2j 21 22

* * * * * *
1 j 1 2 2 j 1 2u =ε x =ε x +ε x , u =ε x =ε x +ε x ,              (5.1)

 

 

which can be combined as  

 

11 12 21 22

* * * *
1 2 1 2 1 2u -iu =ε x +ε x -i ε x -i ε x .                    (5.2)

 

 

Noting that 
12

*ε  is symmetric, and that 
1

1
x = (z+z)

2
 and 

2

1
x =- i(z-z),

2
 gives 

 

( )
11 12 22

11 12 22

* * *
1 2 1 2

* * *

z+z z-z
u -iu =[ ε -i x +ix ε -i ( )ε ]

2 2i
z+z z-z

=[ ε -i zε -( )ε ].
2 2

             (5.3) 

 

We can simplify the above equation to  
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11 22 12

* * *

1 2

(z+z)ε -(z-z)ε -2i zε
u -iu =

2

 

11 22 12 11 22

* * * * *(ε -ε -2i ε )z+(ε +ε )z
=

2

 

11 22 12 11 22

* * * * *(ε -ε -2iε ) (ε +ε )
= z+ z.

2 2
                              (5.4) 

 

Therefore, 

 

11 22 12 11 22

* * * * *

1 2

(ε -ε -2i ε ) (ε +ε )
2µ(u -iu )=2µ[ z+ z]

2 2
=αz+βz,

                      (5.5) 

 

where  

 

11 22 12 11 22

* * * * *α=µ(ε -ε -2iε ),β=(ε +ε )µ                   (5.6) 

 

Now, we calculate 
*φ and 

*ψ  for the displacement. 

Since ( )* * *
1 22µ(u -iu )=-z φ +kφ -ψ ,′

 from (5.5) and (5.6), we obtain   

 

( )* * *-z φ +kφ -ψ =αz+β z.′
                  (5.7) 
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To find 
*φ  and 

*ψ , we assume they are of the form  

 

*φ =A+Cz,  
* 2ψ =B+Dz+Fz ,                 (5.8) 

 

then  

 

* *(φ )=C,(ψ )=D+2Fz.′ ′                     (5.9) 

 

Substituting (5.8) into (5.7) gives 

 

2

2

-C z+k(A+C z)-B-D z-Fz =αz+βz

(kC-C) z+kA-B-D z-Fz =αz+βz.⇒
                (5.10) 

 

Equating coefficients of z  gives  

 

 
11 22

11 22

* *

* *

(kC-C)=β

Re{kC-C}=(k-1)Re{C}=β=µ(ε +ε )

µ(ε +ε )
Re{C}= ,

(k-1)
⇒

               (5.11)  

 

Since Im{KC-C}=-(K+1)Im{C}=0,
 then  

11 22

* *µ(ε +ε )
C=

(k-1)
.                          (5.12) 
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By equating coefficients of z  we get 

 

11 22 12

* * *-D=α D=-µ(ε -ε -2iε ),⇒               (5.13)
 

 

and  

 

KA-B=0 KA=B,⇒                              (5.14)  

 

          F=0.                                      (5.15) 

 

Substituting (5.12) into the equation (5.8) leads to  

 

11 22

*

* *

φ =A+C z

µ
=A+ (ε +ε )z,

k-1

                     (5.16) 

 

also by the substituting (5.13), (5.14) and (5.15) into the equation (5.8) gives   

 

* 2

* * *

11 22 12

ψ =B+D z+Fz

=kA -µ(ε -ε -2i ε ) z.
                  (5.17)
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StepStepStepStep    2:2:2:2:    

    

A traction 
ij

*
j ij i iT =σ n =-σ n

 
(where 

ij

* *
ijkl klσ =C ε

 
and in  is the outward normal of the 

inclusion) is applied to 0S  (the inclusion boundary) to take the inclusion back to its 

original shape and size (Figure 5.1 b). Therefore, the strain, stress and displacement 

fields in the matrix and the inclusion are, 

 

matrix inclusion 

ijε =0 

ijσ =0 

iu =0 

el *
ij ij ijε =ε +ε =0 

el * *
ij ijkl ij ijkl kl ijσ =C ε =-C ε =-σ  

iu =0 

 

 

where elε   means the elastic strain of the inclusion. The stress in the inclusion can be 

written as 

 

* *
ij ijkl kl ijσ =-C ε =-σ ,              (5.18)

 

 
where  

 
*

ijkl ij ik jl il jkC =λ δ +µ(δ δ +δ δ ).  
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StepStepStepStep    3:3:3:3:    

    

The inclusion is inserted back to the matrix (Figure 5.1 c). There is no change in the 

deformation fields in either the inclusion or the matrix from Step 2. 

 

Step Step Step Step 4:4:4:4:    

 

Remove the traction T  on 0S  (Figure 5.1 d). The change from Step 3 to Step 4 is 

equivalent to applying a canceling body force F=-T to the internal surface 0S  of the 

elastic body. The strain, stress and displacement fields of the constrained field in the 

matrix and the inclusion are, 

 

matrix Inclusion 

ij

c
ijε =ε  

ij

c
ijσ =σ  

i

c
iu =u  

ij

c
ijε =ε  

ij ij kl kl

c * c *
ij ijklσ =σ -σ =C (ε -ε )  

i

c
iu =u  

 

Let 
i

cu (x) be the displacement field in response to body force jF  on 0S , then 
i

cu (x) is 

called the constrained displacement field. Since 
*

j j jk kF =-T =σ n , then 
i

cu  can be 

expressed by using the Green’s function for the constrained displacement of the elastic 

body as  

 



Chapter 5Chapter 5Chapter 5Chapter 5 Classic Eshelby’s inclusion Classic Eshelby’s inclusion Classic Eshelby’s inclusion Classic Eshelby’s inclusion     
    

140 

 

0

c
i j ij

S

u (x)= F (x)G (x,x') ds(x')∫ .        (5.19)

 

 

From the definition of traction 
*

j j jk kF =-T =σ n , we can write equation (5.19) as  

 

0

c *
i jk k ij

S

u (x)= σ (x) n (x') G (x,x') ds(x')∫
 

0

* *
j1 1 j2 2 ij

S

= [σ (x) n (x')+σ (x) n (x')]G (x,x') ds(x')∫  

0

* ' * '
j1 2 j2 1 ij

S

= [σ (x) dx -σ (x) dx ]G (x,x')∫  

 

We can separate this integral and write  

 

0 0

c * *
i j1 ij 2 j2 ij 1

S S

u (x)= σ (x) G (x,x') dx - σ (x) G (x,x') dx′ ′∫ ∫ .         (5.20) 

 

Therefore, 

 

0 0

c * * ' * * '
1 11 11 21 12 2 12 11 22 12 1

S S

u (x) = [σ (x) G (x,x') +σ (x) G (x,x') ]dx - [σ (x) G (x,x') +σ (x) G (x,x')]dx , (5.21)∫ ∫  

 

and  
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0 0

c * * ' * * '
2 11 21 21 22 2 12 21 22 22 1

S S

u (x) = [σ (x) G (x,x') +σ (x) G (x,x') ]dx - [σ (x) G (x,x') +σ (x) G (x,x')]dx . (5.22)∫ ∫   

 

From (2.104) the Green’s function  ijG (x-x )′  is given by  

 

' '
i i j j

ij 1 ij 2 2

(x -x )(x -x )1
G (x-x')=C δ ln +C ,

x-x' x-x'
 

 

where  

 

*

1 *

λ +3µ
C =

4πµ(λ +2µ)
,   ( )

*

2 *

λ +µ
C =

4πµ λ +2µ
. 

 

We rewrite the Green’s function in the complex form as follows: 

 

' '
i i j j

ij 1 ij 2 2

(x -x )(x -x )1
G (z-ζ)=C δ ln +C .

z-ζ z-ζ
 

 

Therefore,  

 

' 2
1 1

11 1 2 2

(x -x )1
G (z-ζ)=C ln +C ,

z-ζ z-ζ
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' 2
2 2

22 1 2 2

(x -x )1
G (z-ζ)=C ln +C ,

z-ζ z-ζ
 

 

and 

 

' '
1 1 2 2

12 21 2 2

(x -x ) (x -x )
G (z-ζ)=G (z-ζ)=C

z-ζ
.

 

 

Now, from equations (5.21) and (5.22) we can calculate 

 

 

0

0

c c * ' * ' * ' * '
1 2 11 2 12 1 11 21 2 22 1 12

S

* ' * ' * ' * '
11 2 12 1 12 21 2 22 1 22

S

u -i u = [σ dx -σ dx ]G (x,x')+[σ dx -σ dx ]G (x,x')+

i ( [-σ dx +σ dx ]G (x,x')+[-σ dx +σ dx ]G (x,x') ])

∫

∫  

11 2 12 1 11 12

S0

* ' * '[-σ dx +σ dx ][-G (x,x') +iG (x,x')]+= ∫  

21 2 22 1 12 22
* ' * '[-σ dx +σ dx ][-G (x,x')+iG (x,x')].                     (5.23) 

 

Putting in 11 22G ,G  and 12G  into equation (5.23), we obtain  
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0

' 2
c c * ' * ' 1 1
1 2 11 2 12 1 1 2 2

S

' ' ' '
* ' * '1 1 2 2 1 1 2 2

2 21 2 22 1 22 2

' 2
2 2

1 2 2

(x -x )1
u -i u = [-σ dx +σ dx ][-C ln -C

z-ζ z-ζ

(x -x ) (x -x ) (x -x ) (x -x )
+ iC ]+[-σ dx +σ dx ][-C

z-ζ z-ζ

(x -x )1
+iC ln +iC ].

z-ζ z-ζ

∫

 

                                            

Simplifying and evaluating the above expressions gives   

 

'
c c * ' * ' ' '1 1
1 2 11 2 12 1 1 2 1 1 2 22

S0

'
* ' * ' ' '2 2
21 2 22 1 2 1 1 2 2 12

(x -x )1
u -i u = [-σ dx +σ dx ][-C ln +C [-(x -x )+i (x -x )]

z-ζ z-ζ

(x -x ) 1
+ [-σ dx +σ dx ][C [-(x -x ) +i (x -x )]+iC ln ],

z-ζz-ζ

∫

∫

             (5.24) 

 

which simplifies to  

 

0

0

'
c c * ' * ' 1 1
1 2 11 2 12 1 1 2 2

S

'
* ' * ' 2 2
21 2 22 1 2 12

S

(x -x )1
u -iu = [-σ dx +σ dx ][-C ln -C (z-ζ) +

z-ζ z-ζ

(x -x ) 1
[-σ dx +σ dx ][-C (z-ζ)+iC ln ].

z-ζz-ζ

∫

∫
               (5.25) 

 

Equation (5.25) rearranges to give  

 

0

c c * ' * ' * ' * '
1 2 1 11 2 12 1 21 2 22 1

S

' '
* ' * ' * ' * '1 1 2 2

2 11 2 12 1 21 2 22 1

1
u -i u = C ln [σ dx -σ dx -iσ dx +iσ dx ]

z-ζ

(x -x ) (x -x )
+C [- (-σ dx +σ dx )- (-σ dx +σ dx )],

(z-ζ) (z-ζ)

∫
        (5.26) 
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which reduces to  

 

c c * * * *
1 2 1 11 12 21 22

S0

'
* *1 1

2 11 12
S0

'
* *2 2
21 22

1 dζ-dζ dζ+dζ dζ-dζ dζ+dζ
u -i u =C ln [σ -σ -iσ +iσ ]

z-ζ 2i 2 2i 2

(x -x ) dζ-dζ dζ+dζ
+C [- (-σ +σ )-

(z-ζ) 2i 2

(x -x ) dζ-dζ dζ+dζ
(-σ +σ )].

(z-ζ) 2i 2

∫

∫           (5.27) 

 

Simplifying equation (5.27) we get  

 

* * * * *
c c 11 11 22 22 12
1 2 1

S0

' * * * *
1 1 11 11 12 12

2
S0

' * * * *
2 2 21 21 22 22

σ dζ-σ dζ-σ dζ-σ dζ-2iσ dζ1
u -i u =C ln [ ]

z-ζ 2i

(x -x ) σ dζ-σ dζ-i σ dζ-i σ dζ
+C [ ( )+

(z-ζ) 2i

(x -x ) σ dζ-σ dζ-i σ dζ-i σ dζ
( )],

(z-ζ) 2i

∫

∫               (5.28) 

 

and hence 

 

0

0

* * * * *
c c 22 11 12 11 22
1 2 1

S

* * * *
11 11 12 12

2

S

* * * *
21 21 22 22

(-σ +σ -2iσ )dζ+(-σ -σ )dζ1
u -i u =C ln [ ]

z-ζ 2i

σ dζ-σ dζ-i σ dζ-i σ dζ(z-ζ)+(z-ζ)
+C [ ]( )+

2(z-ζ) 2i

σ dζ-σ dζ-i σ dζ-i σ dζ(z-ζ)-(z-ζ)
[ ]( )]

2i (z-ζ) 2i

∫

∫  
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0

0

* * * * *
22 11 12 11 22

1

S

* * *
11 11 11

2

S

* * * * *
11 12 12 12 12

* *
21 21

(-σ +σ -2iσ )dζ+(-σ -σ )dζ1
=C ln [ ]

z-ζ 2i

σ (z-ζ)dζ+σ (z-ζ)dζ-σ (z-ζ)dζ
+C [ )+

4i (z-ζ)

-σ (z-ζ)dζ-i (z-ζ)σ dζ-i (z-ζ)σ dζ-i (z-ζ)σ dζ-i (z-ζ)σ dζ
+

4i (z-ζ)

-σ (z-ζ)dζ+σ (z-ζ)dζ+

∫

∫

* * * *
21 21 22 22

* *
22 22

σ (z-ζ)dζ -σ (z-ζ)dζ+iσ (z-ζ)dζ-i σ (z-ζ)dζ
+

4(z-ζ) 4(z-ζ)

i σ (z-ξ)dζ-i σ (z-ζ)dζ
+

4(z-ζ)

 

0

0

* * * * *
22 11 12 11 22

1

S

* * * * *
11 22 12 11 22

2

S

* * * * *
11 22 11 22 12

(-σ +σ -2iσ )dζ+(-σ -σ )dζ1
= C ln [ ]

z-ζ 2i

[σ -σ -2iσ ](z-ζ)dζ+[σ +σ ](z-ζ)]dζ
+C [

4i (z-ζ)

[-σ -σ ](z-ζ)dζ+[-σ +σ -2iσ ](z-ζ)dζ
+

4i (z-ζ)

∫

∫  

0 0

0 0

0 0

* *
1

S S

* *
2

S S

* *

S S

1 1 1 1
=C [ (-Σ ) ln dζ- Τ ln dζ]

2i z-ζ 2i z-ζ

1 1 (z-ζ)
+C [ (-Σ ) dζ+ Τ dζ-

4i 4i (z-ζ)

1 1 (z-ζ)
Τ dζ+ ( Σ ) dζ].

4i 4i (z-ζ)

∫ ∫

∫ ∫

∫ ∫

               (5.29) 

 

In following, we will need to calculate the integrals: 

 

 
0S

1
ln dζ

z-ζ∫ ,

0S

1
ln dζ

z-ζ∫ ,

0S

(z-ζ)
dζ

(z-ζ)∫  and  

0S

(z-ζ)
dζ

(z-ζ)∫ . 
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Using the property of the logarithm, one can find the integral 

0S

1
ln dζ

z-ζ∫  as  

 

0 0 0S S S

1
2

1
ln dζ= [ln1-ln z-ζ ]dζ=- ln z-ζdζ

z-ζ

1
=- ln[((z-ζ)(z-ζ)) ]dζ=- ln[(z-ζ)(z-ζ)]dζ

2

1
=- [ln(z-ζ)+ln(z-ζ)]dζ

2

1 1
=- ln(z-ζ)dζ- ln(z-ζ)dζ

2 2

1 1
=- ln(z-ζ)dζ- ln(z-ζ)dζ.

2 2

∫ ∫ ∫

∫ ∫

∫

∫ ∫

∫ ∫

             (5.30)

 

 

If ζ < z , then  

 

ζ ζ
ln(z-ζ)=ln[z(1- )]=lnz+ln(1- ).

z z  

 

Now the integral can be calculated using the above expression as  

 

ζ ζ
ln(z-ζ)dζ= ln[z(1- )]dζ= lnzdζ+ ln(1- )dζ.

z z∫ ∫ ∫ ∫                   (5.31) 

 

The Taylor series of 
ζ

ln(1- )
z

 is  
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n n+1

n+1
n=0

ζ (-1) (-ζ)
ln(1- )= , ζ < z ,

z (n+1)z

∞

∑
 

 

which can be substituted into this integral to give  

 

n n+1 2n+1
n+1

n+1 n+1
n=0 n=0

ζ (-1) (-ζ) (-1)
ln(1- )dζ = dζ= (ζ) dζ.

z (n+1)z (n+1)z

∞ ∞

∑ ∑∫ ∫ ∫

 
 

We work on the circle ζ =r,  so let  
iθ iθζ=re ,dζ=rie dθ  then 

n+1 (n+1) i(n+1)θζ =r e  . The 

complex integral is  

 

2π 2π
n+1 (n+1) i(n+1)θ iθ (n+2) i(n+2)θ

0 0

2πi(n+2)θ (n+2)
(n+2) 2i(n+2)π 0

0

ζ dζ= r e rie dθ= r i e dθ

e r
=r i[ = [e -e ]=0,

i(n+2) (n+2)

∫ ∫ ∫
 

 

where 

 

2i(n+2)πe =cos(2(n+2)π)+isin(2(n+2)π)=1+i(0)=1. 

 

Therefore, 
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n n+1 2n+1
n+1

n+1 n+1
n=0 n=0

ζ (-1) (-ζ) (-1)
ln(1- )dζ = dζ= (ζ) dζ=0.

z (n+1)z (n+1)z

∞ ∞

∑ ∑∫ ∫ ∫  

 

By using the preceding result, equation (5.31) becomes 

 

ζ ζ
ln(z-ζ)dζ= ln[z(1- )]dζ= lnz dζ+ ln(1- )dζ=0,

z z∫ ∫ ∫ ∫                      (5.32) 

 

in which  

 

2π 2π
iθ iθ

0 0

2πiθ
2πi 0

0

ln(z) dζ=ln(z) dζ=ln(z) rie dθ=riln(z) e dθ

e
=riln(z)[ =rln(z)[e -e ]=0.

i

∫ ∫ ∫ ∫
 

 

In a similar way we can represent the integral as  

 

ζ ζ
ln(z-ζ)dζ= ln[z(1- )]dζ= lnzdζ+ ln(1- )dζ .

z z∫ ∫ ∫ ∫               (5.33) 

 

By using Taylor series of 
ζ

ln(1- )
z

 we can evaluate this integral as  
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n n+1 2n+1
n+1

n+1 n+1
n=0 n=0

2n+1
n+1

n+1
n=1

ζ (-1) (-ζ) (-1)
ln(1- )dζ = dζ= (ζ) dζ

z (n+1)z (n+1)z

(-1) (-1)
= ζdζ+ (ζ) dζ, ζ < z .

z (n+1)z

∞ ∞

∞

∑ ∑∫ ∫ ∫

∑∫ ∫

                   (5.34) 

 

As before we can work on the circle ζ =r , so taking 
iθζ=re   and  

n+1 (n+1) i(n+1)θζ =r e , then 

iθ -iθdζ=rie dθ dζ=-rie dθ⇒  and substituting these into equation (5.34) gives  

 

22 2πi ζζ 2πir
ln(1- )dζ = = ,

z z z∫  

 

in which  

 

2π 2π 2
iθ -iθ 2

0 0

(-1) (-1) i 2πir
ζdζ= re (-rie dθ)= r dθ= ,

z z z z∫ ∫ ∫  

 

and

 

 

2π2n+1 2n+1
n+1 (n+1) i(n+1)θ -iθ

n+1 n+1
n=1 n=1 0

2π2n+1
(n+2) inθ

n+1
n=1 0

2π2n+1 inθ 2n+1 (n+2)
(n+2)

n+1 n+1
n=1 n=10

(-1) (-1)
ζ dζ = r e (-rie )dθ

(n+1)z (n+1)z

(-1)
= (-r i e dθ)

(n+1)z

(-1) e (-1) -r
= (-r i[ )= ( [

(n+1)z in (n+1)z n

∞ ∞

∞

∞ ∞

∑ ∑∫ ∫

∑ ∫

∑ ∑ 2inπ 0e -e ])=0.

 

 

Since  
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2π 2π
-iθ -iθ

0 0

2π-iθ
2πi 0

0

ln(z) dζ=ln(z) dζ=ln(z) (-rie dθ)=-riln(z) e dθ

e
=-riln(z)[ =rln(z)[e -e ]=0,

-i

∫ ∫ ∫ ∫
 

 

then it follows from equation (5.33) and (5.34) that  

 

2

ζ ζ
ln(z-ζ)dζ= ln[z(1- )]dζ= lnzdζ+ ln(1- )dζ

z z

2πir
= .

z

∫ ∫ ∫ ∫
                       (5.35) 

 

By substituting from equations (5.32) and (5.35), the equation (5.30) reduces to  

 

0S

2 2

1 1
ln dζ=- [ ln(z-ζ)dζ+ ln(z-ζ)dζ]

z-ζ 2

-1 -2πir πir
= ( )=( ), for  r< z .

2 z z

∫ ∫ ∫
                 (5.36) 

 

In a similar way the equation (5.30) can be calculated when z r<
 
as   

 

z
ln(z-ζ)dζ= ln(-ζ)dζ+ ln(1- )dζ=2iπ(r-z),

ζ∫ ∫ ∫                       (5.37) 

 

in more detail,  



Chapter 5Chapter 5Chapter 5Chapter 5 Classic Eshelby’s inclusion Classic Eshelby’s inclusion Classic Eshelby’s inclusion Classic Eshelby’s inclusion     
    

151 

 

z z z
ln(z-ζ)=ln[ζ( -1)]=ln[(-ζ)(1- )]=ln(-ζ)+ln(1- ), z <r,

ζ ζ ζ
               (5.38) 

 

and 

 

 

2π 2πiθ iθ iθ iθ

0 0

2π 2πiθ iθ iθ

0 0

2π 2π
iθ iθ

0 0

2π 2πiθ
iθ

00

2π
iθ

0

ln(-ζ)dζ= ln(-re )(ire dθ)= [ln(-r)+lne ](ire dθ)

= ln(-r)(ire dθ)+ lne (ire dθ)

=irln(-r) e dθ+ir e (iθlne)dθ

e
=irln(-r)[ -r θe dθ

i

=-r θe dθ=-r(-2iπ).

∫ ∫ ∫

∫ ∫

∫ ∫

∫

∫

          (5.39) 

 

Since Taylor series of  
z

ln(1- )
ζ

 is  

 

n n+1

n+1
n=0

z (-1) (-z)
ln(1- )= , z r

ζ (n+1)ζ

∞

<∑ , 

 

then 
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n n+1

n+1
n=0

n n+1
-(n+1)

n=0

n n+1
-1 -(n+1)

n=1

z (-1) (-z)
ln(1- )dζ= dζ

ζ (n+1)ζ

(-1) (-z)
= (ζ) dζ

(n+1)

(-1) (-z)
=(-z) (ζ) dζ+ (ζ) dζ

(n+1)

∞

∞

∞

∑∫ ∫

∑ ∫

∑∫ ∫

 

n n+1
-1 -(n+1)

n=1

2π 2πn n+1
-1 -iθ iθ -(n+1) -i(n+1)θ iθ

n=10 0

2π 2πn n+1
-n -niθ

n=10 0

(-1) (-z)
(-z) (ζ) dζ+ (ζ) dζ

(n+1)

(-1) (-z)
=(-z) r e (rie )dθ+ r e (rie )dθ

(n+1)

(-1) (-z)
=(-z)i dθ+ r i e dθ

(n+1)

∞

∞

∞

= ∑∫ ∫

∑∫ ∫

∑∫ ∫

 

2π-niθ
-n

0

-n
-2niπ 0

e
= -2iπz+(r i[

-ni

r i
=-2iπz+ [e -e ]=-2iπz,

-ni

                                 (5.40) 

 

where 

 

-2niπe =cos(-2nπ)+isin(-2nπ)=1+i(0)=1. 

 

Since 

 

ln (z-ζ)dζ= ln(z-ζ )dζ ,∫ ∫                         (5.41) 

 

we can find ln(z-ζ)dζ∫  as follows: 
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z
ln(z-ζ)dζ= ln(-ζ)dζ+ ln(1- )dζ ,

ζ∫ ∫ ∫           (5.42) 

 

where  

 

2π 2πiθ -iθ iθ -iθ

0 0

2π 2π-iθ iθ -iθ

0 0

ln(-ζ) dζ= ln(-re )(-ire dθ)= [ln(-r)+lne ](-ire dθ)

= ln(-r)(-ire dθ)+ lne (-ire dθ)

∫ ∫ ∫

∫ ∫
 

2π 2π
-iθ -iθ

0 0

2π 2π 2π-iθ
-iθ -iθ

0 00

=-irln(-r) e dθ-ir e (iθlne)dθ

e
=-irln(-r)[ +r θe dθ=r θe dθ=r(2iπ).

-i

∫ ∫

∫ ∫

      (5.43) 

 

The Taylor series of  
z

ln(1- )
ζ

 gives  

 

n n+1

n+1
n=0

n n+1
-1 -(n+1)

n=1

2πn n+1
-1 -iθ -iθ -(n+1) -i(n+1)θ -iθ

n=1 0

2π n n+1
-2iθ

n=10

z (-1) (-z)
ln(1- )dζ= dζ

ζ (n+1)ζ

(-1) (-z)
=(-z) ζ dζ+ (ζ) dζ

(n+1)

(-1) (-z)
=(-z) r e (-rie )dθ + r e (-rie )dθ

(n+1)

(-1) (-z)
=zi e dθ +

(n+1)

∞

∞

∞

∑∫ ∫

∑∫ ∫

∑∫ ∫

∫
2π

-n -(n+2)iθ

0

2π 2π-2iθ n n+1 -(n+2)iθ
-n

n=10 0

(-r i e dθ)

e (-1) (-z) e
=zi ( + ( -r i )[ =0.

-2i (n+1) -(n+2)i

∞

∞

∑ ∫

∑

        (5.44) 
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By substituting (5.43) and (5.44) into (5.42) we get  

 

z
ln(z-ζ)dζ= ln(-ζ)dζ+ ln(1- )dζ

ζ

=2iπ ζ

∫ ∫ ∫
                     (5.45) 

 

Now returning to the equation (5.41), we obtain  

 

ln(z-ζ)dζ= ln(z-ζ)dζ=2iπr=-2iπr.∫ ∫             (5.46) 

 

From (5.30) we have  

 

0S

1 1 1
ln dζ=- ln(z-ζ)dζ- ln(z-ζ)dζ

z-ζ 2 2

-1
= [2iπ( ζ -z)+(-2iπ ζ )]=iπz, for z r.

2
<

∫ ∫ ∫
              (5.47) 

 

We deduce that  

 

0

2

S

iπz, for z r
1

ln dζ= iπrz-ζ , for z r
z

 <



>


∫ .                     (5.48) 
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We  now calculate the integral 

0S

(z-ζ)
dζ

(z-ζ)∫  using Taylor series by 

 

0 0S S

n n

n+1
n=0 n=0

(z-ζ) 1 1
dζ= (z-ζ) dζ= (z-ζ) dζ, z >r

ζ(z-ζ) (z-ζ) z(1- )
z

1 ζ ζ
= (z-ζ) dζ= (z-ζ) dζ.

z z z

∞ ∞ 
 
 

∫ ∫ ∫

∑ ∑∫ ∫

            (5.49) 

 

Consider the circle in the complex plane: iθ iθζ=re ,dζ=rie dθ  then
-iθz-ζ=z-re . The 

complex integral is  

 

0

n n

n+1 n+1
n=0 n=1S

2π 2π iθ n
-iθ iθ -iθ iθ

n+1
n=10 0

2π 2π 2π(n+1) i(n+1)θ n+2 inθ
iθ 2

n+1 n+1
n=10 0 0

(z-ζ) ζ 1 ζ
dζ= (z-ζ) dζ= (z-ζ) dζ+ (z-ζ) dζ

(z-ζ) z z z

1 (re )
= (z-re )(rie dθ)+ (z-re ) (rie dθ)

z z

1 z i r e r ie
= [zrie -ir ]dθ+ dθ- d

z z z

∞ ∞

∞

∑ ∑∫ ∫ ∫ ∫

∑∫ ∫

∫ ∫ ∫ θ
∞

∑

          (5.50) 

2π 2π 2π 2π2 (n+1) n+2
iθ i(n+1)θ inθ

n+1 n+1
n=10 0 0 0

2π 2π 2π 2πiθ 2 (n+1) i(n+1)θ n+2 inθ

n+1 n+1
n=10 0 0 0

2 (n+1) i(n+1)2π 0

n+1

zri ir z i r ir
= e dθ- dθ+ e dθ- e dθ

z z z z

zri e ir z i r e ir e
= [ - [θ + ( - (

z i z z i(n+1) z in

ir z i r e e
=- (2π)+ ( [ -

z z i(n+1) i

∞

∞

∑∫ ∫ ∫ ∫

∑
n+2 i2nπ 0

n+1
n=1

2

ir e e
]- [ - ])

(n+1) z in in

2iπr
=- .

z

∞

∑
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Now we want to calculate the integral  

0S

(z-ζ)
dζ

(z-ζ)∫  when z r< . To do this, we can use 

similar steps to the above as  

 

0 0S S

n n

n+1
n=0 n=0

(z-ζ) 1 -1
dζ= (z-ζ) dζ= (z-ζ) dζ, z r

z(z-ζ) (z-ζ)
ζ(1- )

ζ

-1 z (-1)z
= (z-ζ) dζ= (z-ζ) dζ.

ζ ζ ζ

∞ ∞

<

 
 
 

∫ ∫ ∫

∑ ∑∫ ∫

               (5.51) 

 

Let 
iθ iθ -iθζ=re dζ=rie dθ, z-ζ=z-re⇒ . The complex integral then can be written as  

0

n

n+1
n=1S

n
-1 -1

n+1
n=1

(z-ζ) (-1) (-1)z
dζ= (z-ζ) dζ+ (z-ζ) dζ

(z-ζ) ζ ζ

z
=(-1) (zζ -ζζ )dζ+(-1) (z-ζ) dζ

ζ

∞

∞

∑∫ ∫ ∫

∑∫ ∫

 

2π 2π 2π n
-1 -iθ iθ -iθ -1 -iθ iθ -iθ iθ

iθ n+1
n=00 0 0

z
=- zr e (rie dθ)+ re r e (rie dθ)+(-1) (z-re ) (rie dθ)

(re )

∞

∑∫ ∫ ∫  

2π 2π
-1 -iθ iθ -iθ -1 -iθ iθ

0 0

2π 2π
n -n -inθ -n+1 -i(n+1)θ

n=1 0 0

2π 2π 2π 2π
-iθ n -n -inθ -n+1 n -i(n+1)θ

n=10 0 0 0

= - zr e (rie dθ)+ re r e (rie dθ)+

(-1) z [ z i r e dθ- r ie dθ]

=-iz dθ+ri e dθ+ [(-1)z z i r e dθ+i r z e dθ]

∞

∞

∫ ∫

∑ ∫ ∫

∑∫ ∫ ∫ ∫

              (5.52) 

2π 2π 2π-iθ -inθ -i(n+1)θ
n -n -n+1 n

n=00 0 0

e e e
=-2iπz+ri ( + [(-1)z z i r ( +i r z ( ]

-i -in -i (n+1)

=-2iπz.

∞

∑  

 

From the above we conclude the following: 
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0

2

S

-2iπz, z r
(z-ζ)

dζ= .-2iπr(z-ζ) , z r
z

 <



>


∫                 (5.53) 

 

Now, we calculate 

0S

(z-ζ)
dζ

(z-ζ)∫ . Let  
2 2

2

r -r
ζ= dζ= dζ
ζ ζ
⇒ . Then  

 

( ) ( )

( )

( )

0

2

2

2
S

2 2 2 4

2 3

2 4

3 3

2 4
2 3

r
z-( )

(z-ζ) z-ζ -rζ
dζ = dζ= ( dζ)

(z-ζ) z-ζ z-ζ ζ

ζz-r -r -ζzr +r
= ( dζ)= dζ
ζ z-ζ ζ ζ z-ζ

-r ζz r
= dζ+ dζ
ζ z-ζ ζ (z-ζ)

dζ dζ
=r z -r .

ζ ζ-z ζ (ζ-z)

∫ ∫ ∫

∫ ∫

∫ ∫

∫ ∫

                 (5.54) 

 

For z r<  

 

( )2 2

dζ A B
= dζ+ dζ,

ζ ζ-z ζ ζ-z∫ ∫ ∫               (5.55) 

 

where   
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2-1
2

2-1 2ζ 0

2
2 2ζ 0 ζ 0

2

1 d 1
A= lim[ [( ζ-0) ]

(2-1)! dζ ζ (ζ-z)

d 1 -1
= lim[ [( ζ ) ]= lim ( )

dζ ζ (ζ-z) (ζ-z)

-1
= ,

z

→

→ →
 

 

and   

 

( )
2 2

2 2

2 2ζ z

2 2

-1 1
z z
2

-1 1
z z

1 1
B= lim[(ζ-z) ]=

ζ (ζ-z) z

dζ A B
= dζ+ dζ

ζ ζ-z ζ ζ-z

= dζ+ dζ
ζ ζ-z

=2iπ( )+2iπ( )=0.

→

∫ ∫ ∫

∫ ∫

 

 

Now, we calculate 3

dζ

ζ (ζ-z)∫ as 

 

3 3

dζ A B
= dζ+ dζ,

ζ (ζ-z) ζ ζ-z∫ ∫ ∫  

 

where  
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3-1
3

3-1 3ζ 0

2

2 2ζ 0 ζ 0

2 3ζ 0 ζ 0

3 3ζ 0

1 d 1
A= lim[ [( ζ-0) ]

(3-1)! dζ ζ (ζ-z)

1 d 1 1 d -1
= lim[ ( )]= lim[ ( )]

2! dζ (ζ-z) 2! dζ (ζ-z)

1 d -1 1 2
= lim[ ( )]= lim[ ( )]

2! dζ (ζ-z) 2! (ζ-z)

1 -1
= lim = ,

(ζ-z) z

→

→ →

→ →

→

 

 

and 

 

( )

3 3

0

3 3ζ z

-1 1
z z

3 3 3 3

2 4
2 3

S

2 4

1 1
B= lim[(ζ-z) ]=

ζ (ζ-z) z

dζ -1 1
= dζ+ dζ=2iπ( )+2iπ( )=0

ζ (ζ-z) ζ ζ-z z z

(z-ζ) dζ dζ
dζ =r z -r

(z-ζ) ζ ζ-z ζ (ζ-z)

=r z(0)-r (0)=0, r> z .

→

∫ ∫ ∫

∫ ∫ ∫

 

 

If z >r,then  

 

( )
0

2 4
2 3

S

(z-ζ) dζ dζ
dζ =r z -r .

(z-ζ) ζ ζ-z ζ (ζ-z)∫ ∫ ∫  

 

Since  
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( ) 2 2
-1 -1

z z2 2

dζ A B
= dζ+ dζ=2iπ( )+0=2iπ( ),

ζ ζ-z ζ ζ-z∫ ∫ ∫  

 

and 

 

3 3 3 3

dζ A B -1 -1
= dζ+ dζ=2iπ( )+0=2iπ( ),

ζ (ζ-z) ζ ζ-z z z∫ ∫ ∫  

 

then 

 

( )
0

2 3

2 4
2 3

S

2 4-1 -1
z z

2 2

2

(z-ζ) dζ dζ
dζ =r z -r

(z-ζ) ζ ζ-z ζ (ζ-z)

=r z[2iπ( )]-r [2iπ( )]

-2iπr r
= (z- ), z >r.

z z

∫ ∫ ∫

                   (5.56) 

 

We can conclude the above as the following: 

 

0

2 2

S 2

0, z r
(z-ζ)

dζ= .-2iπr r(z-ζ) (z- ), z r
z z

 <



>


∫                   (5.57) 

 

Now  
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( )

0 0

0 0

0 0

*
c c * *
1 2 *

S S

*
* *

*
S S

* *

S S

λ +3µ 1 1 1 1
u -iu = [ Σ ln dζ+ Τ ln dζ]

4πµ(λ +2µ) 2i z-ζ 2i z-ζ

λ +µ 1 1 (z-ζ)
+ [ Σ dζ- Τ dζ+

4i 4i (z-ζ)4πµ λ +2µ

1 1 (z-ζ)
Τ dζ+ (-Σ ) dζ.

4i 4i (z-ζ)

∫ ∫

∫ ∫

∫ ∫

              (5.58)

 

 

We consider the case where z <r , then 

 

( )

c c * * *
1 2 1 1 2

* * *
* *

* * *

*
* *

* *

-1 1 1
2µ(u -iu )=C [ Σ ](iπz)+C ( )(-Τ )(-iπz)+C ( )Τ (-2iπz)

2i 2i 4i
-(λ +3µ) λ +3µ λ +µ

= (Σ )(z)+[ - ]Τ z
4(λ +2µ) 4(λ +2µ) 4 λ +2µ

-(λ +3µ) µ
= (Σ )z+[ ]Τ z.

4(λ +2µ) 2(λ +2µ)

               (5.59) 

 

To find  cφ  and  cψ  we assume they are of the form  

 

2
c cφ =A+Cz, ψ =B+Dz+Fz .                        (5.60) 

 

Since c c
1 2 c c c2µ(u -iu )=-zφ +kφ -ψ′ , then  

 

*
* *

c c c * *

-(λ +3µ) µ
-zφ +kφ -ψ = Σ (z)+( )Τ z .

4(λ +2µ) 2(λ +2µ)
′          (5.61) 
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Substituting (5.60) back into (5.61) gives 

 

*
2 * *

* *

*
2 * *

* *

-(λ +3µ) µ
-C z+k(A+C z)-B-Dz-Fz = Σ (z)+[ ]Τ z

4(λ +2µ) 2(λ +2µ)

-(λ +3µ) µ
(kC-C) z+kA-B-Dz-Fz = Σ (z)+[ ]Τ z

4(λ +2µ) 2(λ +2µ)
⇒

 

 

Equating the coefficients of z  gives  

 

*
*

*

*

*

*

µ
(kC-C)=[ ]Τ

2(λ +2µ)

µΤ
Re{kC-C}=(k-1)Re{C}=[ ]

2(λ +2µ)

µΤ
Re{C}= ,

2(λ +2µ)(k-1)
⇒

                   (5.62) 

 

and 

 

Im{kC-C}=-(k+1)Im{C}=0,           

 

and hence  

 

*

*

µΤ
C= .

2(λ +2µ)(k-1)
                            (5.63)

 

 

By equating the coefficients of  z  we get 



Chapter 5Chapter 5Chapter 5Chapter 5 Classic Eshelby’s inclusion Classic Eshelby’s inclusion Classic Eshelby’s inclusion Classic Eshelby’s inclusion     
    

163 

 

* *
* *

* *

-(λ +3µ) (λ +3µ)
-D= Σ D= Σ ,

4(λ +2µ) 4(λ +2µ)
⇒                            (5.64) 

 

and  

 

 

KA-B=0 KA=B, F=0.⇒                                                     (5.65) 

 

Thus, 

 

c

* *

c* *

φ =A+C z

µ Τ µ Τ
=A+ z, φ = ,

2(λ +2µ)(k-1) 2(λ +2µ)(k-1)
′

                 (5.66) 

 

and  

 

2
c

*
*

*

ψ =B+Dz+Fz

(λ +3µ)
=kA+ Σ z.

4(λ +2µ)

                          (5.67) 

 

Now we consider the case where z r>  
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( ) ( )

* 2 * 2
c c * *
1 2 * *

* * ** 2 * 2 2
* 11 22 12

2* *

λ +3µ -1 iπr λ +3µ -1 -iπr
2µ(u -iu )= [ Σ ]( )+ ( Τ )( )

2π(λ +2µ) 2i z 2π(λ +2µ) 2i z

(σ -σ +2iσ )λ +µ 1 -2iπr λ +µ -2iπr r
+ ( Τ )( )+ [ (z- )]

4i z 4i z z2π λ +2µ 2π λ +2µ

 

( )

( )

* 2 * * 2
* *

* * *

* 2 2
*

2*

λ +3µ r λ +3µ λ +µ r
= (-Σ )( )+[ - ]Τ -

4(λ +2µ) z 4(λ +2µ) z4 λ +2µ

λ +µ 1 r r
(Σ )[ (z- )]

4 z zλ +2µ

 

( )
* 2 2 * 2 2

* * *
* * 2*

λ +3µ r µ r -(λ +µ) r r
= (-Σ ) + Τ + Σ [ (z- )].

4(λ +2µ) z 2(λ +2µ) z z z4 λ +2µ
               (5.68) 

 

Since c c
1 2 c c c2µ(u -iu )=-zφ +kφ -ψ′ , then  

 

 ( )
* 2 2 * 2 2

* * *
c c c * 2*

-(λ +3µ) r µ r -(λ +µ) r r
-zφ +kφ -ψ = Σ + Τ + Σ [ (z- )]

4(λ+2µ) z 2(λ +2µ) z z z4 λ +2µ
′                  (5.69) 

2 3

A B z D
= + +C + ,

z z z z
 

 

where 

 

( ) ( )

*
* 2 * 2

* *

* *
* 2 * 4

* *

-(λ +3µ) µ
A= Σ r , B= Τ r ,

4(λ +2µ) 2(λ +2µ)

-(λ +µ) λ +µ
C= Σ r and D= Σ r .

4 λ +2µ 4 λ +2µ

                          (5.70) 
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By differentiating equation (5.69) with respect to z , we obtain 

 

c c c 2 3

c c 2 3 4

A B z D
(-zφ +kφ -ψ )= ( + +C + )

z z z z z z
B z D

-zφ -ψ =- +(-2)C +(-3)
z z z

∂ ∂′
∂ ∂

′′ ′⇒

 

c c c c3 2 2 4

c 3

1 1 1 B D
φ =2C φ =- C φ = C,-ψ =- +(-3)

z z z z z
B D

ψ =-( + ).
z z

′′ ′ ′⇒ ⇒ ⇒

⇒

                          (5.71) 

 

By differentiating equation (5.69) with respect to z , we get  

 

c c c 2 3

A B z D
(-zφ +kφ -ψ )= ( + +C + )

z z z z z z

∂ ∂′
∂ ∂

 

( ) ( ) ( )c c c2 2 22 2

A 1 A 1 A
-φ +kφ =- +C kφ =- -k C=- kC=A.

z zz z z
′ ′ ′⇒ ⇒ ⇒ ⇒                (5.72)  

 

5.3 5.3 5.3 5.3 Concluding comments Concluding comments Concluding comments Concluding comments     

This chapter has focused on Eshelby's technique for determining the stress, 

displacement and strain in regions in an infinite elastic body that undergo a change of 

size or shape. We then translate Eshelby’s solution in terms of Muskhelishvili’s 

complex function approach to 2D elasticity, which is more flexible in applications. We 

will use this approach in Chapter 6 to generalize Eshelby's technique to a matrix with 

a crack.     
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Chapter 6 Chapter 6 Chapter 6 Chapter 6     Eshelby’s inclusion with crackEshelby’s inclusion with crackEshelby’s inclusion with crackEshelby’s inclusion with crack    

    

6666.1 .1 .1 .1 IntroductionIntroductionIntroductionIntroduction    

    

In this chapter, we calculate the displacements and stresses for an Eshelby inclusion 

next to the crack-tip in the 2-dimensional plane stress case. The solution for crack body 

loaded by point force acting on their face can be calculate by using superposition. 

We start with computing the stress field from Eshelby’s method without a crack, as 

shown in Figure 6.1. From this we compute the stress induced along the line where 

the crack is to be placed. 

 

 

Figure 6.1 Eshelby’s inclusion without a crack. 

 

We can then calculate the stresses induced from these forces if as they were acting 

on the crack flanks, as shown in Figure 6.2.  
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Figure 6.2 the stresses induced from the forces without an Eshelby’s inclusion. 

 

Finally, Figure 6.3 shows we can subtract the two solutions to get zero stress on crack 

flanks, and hence obtain the solution to the equations. The displacement can be 

calculated from this via the complex potential functions.  

 

 

Figure 6.3 the zero stress on crack with Eshelby inclusion  

 

At the end of this chapter, we plot these solutions for some dimensionless units just to 

validate the model. To illustrate these calculation, we take * *
11 12R=2,σ =-0.3, σ =0 and

*
22σ =1.  
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6666.2 Stresses and .2 Stresses and .2 Stresses and .2 Stresses and displacements on the cdisplacements on the cdisplacements on the cdisplacements on the crack rack rack rack     

 

From the previous chapter, the stresses outside the Eshelbly inclusion can be 

calculated by using the functions: 

 

c

A
φ =

z
, 

 

and  

 

c 3

B C
ψ =-[ + ]

z z
, 

 

where  

 

*
* * * 2 * * 2
22 11 12 22 11* *

-(λ +µ) µ
A= (σ -σ -2iσ )r ,B= (σ +σ )r

4(λ +2µ) 2(λ +2µ)
 and 

*
* * * 4
22 11 12*

(λ +µ)
C= (σ -σ -2iσ )r .

4(λ +2µ)
 

 

Since 

  

11 22σ +σ =4Re{φ }=2(φ +φ ),′ ′ ′             (6.1) 

 

 
and 
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22 11 12σ -σ +2iσ =2(zφ +ψ ),′′ ′                        (6.2) 

 

 then from (6.1) and (6.2), we get 

 

22 122σ +2iσ =2(φ +φ )+2(zφ +ψ ),′ ′ ′′ ′                (6.3) 

 

This implies that  

 

22 12

2 3 2 42

σ +iσ =φ +φ +zφ +ψ

-A A 2A B C
= - +z( )+ +3 .

z z z zz

′ ′ ′′ ′
 

 

Therefore, 

 

22 2 3 2 42

11 2 3 2 42

12 2 3 2 42

-A A 2A B C
σ =Re{ - +z( )+ +3 }

z z z zz

-A A 2A B C
σ =Re{ - z( )- -3 },

z z z zz

-A A 2A B C
σ =Im{ - +z( )+ +3 }.

z z z zz

−                              (6.4) 

 

Since the inclusion is located in front of a crack tip, centred at (R,0)  in the Cartesian 

system with its origin at the crack tip, then the stress everywhere from Eshelby is  

 

22 2 3 2 42

-A A 2A B 3C
σ =Re{ - +(z-R)( )+ + }.

(z-R) (z-R) (z-R) (z-R)(z-R)
                   (6.5) 
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On the crack, if 1 2R=r +ir  and z=a+ib , then  1 2 1 1z-R=(a-r )+i(b-r )=(a-r )+i(0)=a-r . Therefore, 

the stress on the position where the crack is to be placed from the inclusion is 

 

22 12 3 2 42
1 1 1 11

-A A 2A B 3C
σ =Re{ - +(a-r )( )+ + }.

(a-r ) (a-r ) (a-r ) (a-r )(a-r )
                (6.6) 

 

The displacements outside the inclusion can be calculated from the functions given in 

Eshelby’s method as follows:  

 

1 2

2 3

2µ(u +iu )=-zφ +kφ-ψ

A A B C
=z( )+k( )+ + .

z zz z

′
                     (6.7) 

 

Therefore, 

 

1 2 3

1 A A B C
u = Re{z( )+k + + }

2µ z zz z
,                  (6.8) 

 

and  

 

2 2 3

1 A A B C
u = Im{z( )+k + + }

2µ z zz z
.              (6.9) 

 

Now, the displacements inside the inclusion can be calculated by using the functions 

given in Eshelby’s method as follows:  

 

φ=A z  and  ψ=Bz,  

 

where  
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* *
*

* *

µΤ (λ +3µ)
A= , B Σ .

2(λ +2µ)(k-1) 4(λ +2µ)
=  

 

The displacement inside the inclusion is therefore given by  

 

1 2

* * *
*

* * *

2µ(u +iu )=-zφ +kφ-ψ

µΤ µΤ (λ +3µ)
=-z( )+k( )z- Σ z.

2(λ +2µ)(k-1) 2(λ +2µ)(k-1) 4(λ +2µ)

′
 

 

This implies that  

 

* * *
*

1 2 * * *

-Τ z kΤ (λ +3µ)
u +iu = + z- Σ z,

4(λ +2µ)(k-1) 4(λ +2µ)(k-1) 8(λ +2µ)
               (6.10) 

 

and hence  

 

1 1 1 1u =Re{A z+B kz-C z} ,                         (6.11) 

 

and  

 

2 1 1 1u =Im{A z+B kz-C z} ,                        (6.12) 

 

where 
* *
11 22

1 *

- (σ +σ )
A =

4(λ +2µ)(k-1)
, 

* *
11 22

1 *

(σ +σ )
B =

4(λ +2µ)(k-1)
 and 

*
* * *

1 22 11 12*

(λ +3µ)
C = (σ -σ -2iσ )

8(λ +2µ)µ
. 
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6666....3 3 3 3 The sThe sThe sThe stresses and tresses and tresses and tresses and tttthe he he he displacements gdisplacements gdisplacements gdisplacements generated by a enerated by a enerated by a enerated by a Westergaard Westergaard Westergaard Westergaard 

ffffunction, unction, unction, unction, Z , for mode I p, for mode I p, for mode I p, for mode I problemsroblemsroblemsroblems    

 

We define a Westergaard function, IZ , for Mode I problems by  

 

I

P t
Z (t, z)=

π(z-t) z
 .                (6.13) 

 

By integrating Westergaard’s function, IZ ,  using thus expression for 22σ  above  as the 

force on the crack, one can get the stress 22σ  everywhere corresponding to 22σ  along 

the crack. Thus, we take  

 

0
22

-

t
Z= dt, t<0.

π(z-t) z

σ
∞
∫                        (6.14) 

 

Since, from (6.5), 22 2 4
1 1

B 3C
σ (t)= +

(t-r ) (t-r )
, then 

 

22 1 2 4 2 4
1 1 1 1 1 1 1 1

B 3C B 3C
σ (t )= + + ,

(-t -r ) (-t -r ) (t +r ) (t +r )
=

                    (6.15) 

 

and 

 

1
12 4

1 1 1 1 10

tB 3C 1
Z= [ + ] dt .

(t +r ) (t +r ) π(z+t ) z

∞

∫                            (6.16) 
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From (6.16) we start to find the integral  

 

11
1 12 2

1 1 1 1 1 10 0

ttB 1 B
dt dt .

(t +r ) π(z+t ) z (z+t )(t +r )π z

∞ ∞

=∫ ∫                        (6.17) 

 

 

Now,  

 

1
12

1 1 10

t
dt .

(z+t )(t +r )

∞

∫  

 

 

Using cantor integration by taking the cantor: 

 

 

e Rγ=[e,R]-C +[R,e]+C . 

 

Therefore, 

  

1 1

1 1 1

1 1

1 1 1
t =-z,-r

γ

2
1 1 1 1 1

2 2t -z t r
1 1 1 1 1 1 1

1
2 t r

1 1 1

1
2 2

1 1 1

2
1

f(t )dt =2iπ Res f(t )

t (t +z) t (t +r )d
2iπ{[ lim ]+ lim ( )}

(t +r ) (t +z) dt (t +r ) (t z)

t-z d
=2iπ{ + lim ( )}

(-z+r ) dt (z+t )

i z (z+r )
=2iπ{ + }

(r -z) 2(z-r ) -r

i z (z
2iπ{

(r -z)

→ →−

→−

=
+

= +

∫�

1 1
22 2

11 1 1 1

-2π z+r ) π(z+r )
} + ,

(r -z)2i(r -z) r (r -z) r
=

 



Chapter 6Chapter 6Chapter 6Chapter 6 Eshelby’sEshelby’sEshelby’sEshelby’s    inclusion with crackinclusion with crackinclusion with crackinclusion with crack 

 

174 

  

then 

 

1 1
12 2 2

1 1 1 10 1 1

1
2 2

1 1 1

t -2π z π(z+r )B B
dt [ + ]

(z+t )(t +r ) (r -z)π z π z (r -z) r

(z+r )-2
B[ ].

(r -z) z r (r -z)

∞

=

= +

∫
                   (6.18) 

 

Let  z=-u .Then   

 

1 1
12 2 2

1 1 1 10 1 1

1
2 2

1 1 1

t (-u+r )B -1
dt B[ + ]

(z+t )(t +r ) (u+r )π z 2 -u r (u+r )

(-u+r )-1
=B[ -i ].

(u+r ) 2 u r (u+r )

∞

=∫
                              (6.19) 

 

Since 1t =u,  then t=-u  and we can write equation (6.19) as follows  

 

1 1
12 2 2

1 1 1 10 1 1

1
2 2

1 1 1

1
2 2

1 1 1

t (-u+r )B -1
dt B[ + ]

(z+t )(t +r ) (u+r )π z 2 -u r (u+r )

(-u+r )-1
=B[ -i ]

(u+r ) 2 u r (u+r )

(t+r )-1
=B[ -i ].

(r -t) 2 -t r (-t+r )

∞

=∫

                               (6.20) 

 

Therefore, 

 

1
2 2 22

1 1 11 1

(t+r ) u1 1 1
Re{ +i }= = , t=-u.

(r -t) (-u-r ) (t-r )2u(t-r ) r
              (6.21) 
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Using a similar method to the previous integration, we can find the integral  

 

0

4
- 1

3C -t
z dt.

π z(z-t)(t-r )∞
∫                             (6.22) 

 

That is, we calculate  

 

1

1

1

t=z,r
γ

43
1

34 4t z t r
1 1

3

34 t r
1

3 2 2 3
1 1 1

54
1 2

1

f(t) dt=2iπRes f(t)

-t (t-z) -t (t-r )1 d
2iπ{[ lim ]+lim ( )}

3! dtπ(t-r ) (z-t) z π(t-r ) (z-t) z

-i z i t1 d
=2iπ{[ ] lim ( )}

3! dtπ(z-r ) z π(z-t) z

(-3)(5r +15r z-5r z +z )2 2i -i
=[ ]+ ( )

(z-r ) 6 z
8r

→ →

→

=

+

∫�

4
1

3 2 2 3
1 1 1

54
41 2

1 1

}

(r -z)

(5r +15r z-5r z +z )2
= - .

(z-r )
8 z r (r -z)

                 (6.23) 

 

Therefore,  

 

0 3 2 2 3
1 1 1

544
41- 1 2

1 1

(5r +15r z-5r z +z )3C -t 2
z dt= 3C[ - ].

(z-r )π z(z-t)(t-r )
8 z r (r -z)∞

∫                 (6.24) 

 

Let z=-u .Then   
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3 2 2 3
1 1 1

54
41γ 2

1 1

3 2 2 3
1 1 1

54
41 2

1 1

(5r +15r (-u)-5r (-u) +(-u) )2
f(t)dt= -

(-u-r )
8r (r +u) -u

(5r -15r u-5r u -u )2
= +i .

(-u-r )
8r (r +u) u

∫�

                                    (6.25) 

 

Therefore, 

 

3 2 2 3
1 1 1

54 4 4
41 1 12

1 1

(5r -15r u-5r u -u )1 1 1
Re{ +i }= = ,t=-u

(-u-r ) (-u-r ) (t-r )
16 r (r +u) u

.                (6.26) 

 

From (6.16), (6.18) and (6.24), we get  

 

3 2 2 3
1 1 1 1

52 42
41 11 1 2

1 1

(z+r ) (5r +15r z-5r z +z )-2 2
Z B[ ] 3C[ - ].

(r -z) (z-r )z r (r -z)
8 z r (r -z)

= + +         (6.27) 

 

Recall that ψ =-zφ′ ′′ , hence  ψ= -zφ dz=-zφ +φ′′ ′∫ . We now define M, N,  and L  by  

 

1
M=φ = Z

2
′ ,                            (6.28) 

   

 

1
N=φ = Z

2
′′ ′ ,                          (6.29) 

 

and 

  

L=φ= φ  dz′∫ .                              (6.30) 
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From (6.3), the stress generated by a Westergaard function, Z , for mode I problems 

is  

 

22σ =Re{φ +φ +zφ +ψ }

=Re{M+M+zN-zN}.

′ ′ ′′ ′
                   (6.31) 

 

From (6.7), the displacement generated by a Westergaard function, Z , for mode I 

problems is  

 

1 22µ(u +iu )=-zφ +kφ-ψ

=-zM+kL+z M-L.

′
                  (6.32) 

 

Therefore, 

 

1

1
u = Re{-zM+kL+z M-L},

2µ
                 (6.33) 

 

and 

 

2

1
u = Im{-zM+kL+z M-L}.

2µ
                               (6.34) 

 

We now plot the displacements for the case where   * *
11 12R=0.5mm,σ =-30 MPa, σ =0  

and *
22σ =100MPa.  

The values above were chosen to be of typical magnitudes, but the exact values 

required to accurately match the model against experimental data will require further 

investigation. We comment on this in Section 7. 
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Figure 6.4 The x-displacement of subtract Eshelby inclusion from displacements 

generated by a Westergaard function, Z , with Lame` constants for aluminum (

λ =53.5 GPa, µ=26.6 GPa∗ ) and * *
11 12R=0.5mm,σ =-30 MPa, σ =0 and *

22σ =100MPa.  

   

 

 Figure 6.5  The y-displacement of subtract Eshelby inclusion from displacements 

generated by a Westergaard function, Z , with Lame` constants for aluminium 

 ( λ =53.5 GPa, µ=26.6 GPa∗ ) and * *
11 12R=0.5mm,σ =-30 MPa, σ =0 and *

22σ =100MPa.  
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Figure 6.6 As in Figure 6.4, but with inclusion and crack highlighted 

 

 

Figure 6.7 As in Figure 6.5, but with inclusion and crack highlighted 
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6.4 6.4 6.4 6.4 Concluding comments Concluding comments Concluding comments Concluding comments     

 

We computed the stress induced along the line where the crack is to be placed by 

using the stress field from Eshelby’s method without a crack. And then calculated the 

stresses induced from the forces (stress) as if they were acting on the crack flank. After 

that, we got the solution with zero stress on crack flank by subtracting the two solutions. 

This work includes illustrations of theses calculation using the software Maple. 
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Chapter Chapter Chapter Chapter 7777    Summation of concluding comments Summation of concluding comments Summation of concluding comments Summation of concluding comments         

 

7777.1 Conclusions of thesis.1 Conclusions of thesis.1 Conclusions of thesis.1 Conclusions of thesis    

 

In this thesis, we calculated the stresses and displacement for an Eshelby inclusion 

where the matrix includes a crack. To do this we transformed Eshelby’s solution in 

terms of Muskhelishvili’s complex potential functions for 2D elasticity. We also have 

developed tools to tackle more general parallels for future investigation.   

 

We have concentrated only on one particular case where the inclusion is a disc in front 

of the crack just touching the crack tip, depend on four parameters ( R , *
11σ ,  *

22σ ,  *
12σ ).  

Here we want to discuss the limitations and validation of this model and make 

suggestions for future work. 

 

7.2 L7.2 L7.2 L7.2 Limitationsimitationsimitationsimitations    

    

We have only considered a circle inclusion. It is known that plastic regain ahead of 

crack tip has a non-circle shape, but the approximation of a circle is probably accurate 

enough for simplified model such as we consider here an initial approximate.  

We used uniform  *
ijσ  , but non uniform *

ijσ   would be more realistic.   

In this model, we have not include crack flanks, but there are research works such as 

[42] would suggest that closure/ shield effect is more clearly related to the behaviour 

at crack tip rather than flanks. 
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7.3 7.3 7.3 7.3 VVVValidationalidationalidationalidation    

 

Visually, this model looks good for typical parameter. No external forces is applied in 

the model and if we added an external forces would dominate terms from model. New 

experiment for uncracked specimen being planned to investigate this in more details.  

    

7777.4 .4 .4 .4 Suggestions for future wSuggestions for future wSuggestions for future wSuggestions for future workorkorkork    

 

According to the work done in this thesis, there are still some issues that could be 

addressed in future work such as the following: 

 

1. The inclusion near the crack-tip in the 2-dimensional plane stress may have various 

shapes and non-linear eigenstrains.  The tools for these have been developed in this 

thesis. 

 2. This work should be validated by experimental work to quantify the effectiveness of 

the model in relation to different specimen geometries and fatigue situations. 

3.  Once validated, the model could be used to estimate residual forces and plastic 

zone size due to the crack and hence provide an alternative set of parameters to 

describe fatigue crack closure. 

4. Comparison of the model of the plastic region of a crack developed here with the 

CJP approach.  It would be interesting to see what could be understood from the 

parameters of each model and how they could be related. 
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5.  Extend the work on Westergaad’s function in chapter 4, to define the relationship 

between forces on the crack flank with the full field displacement data. Such a 

relationship could then be inverted so that displacement data could be used to predict 

the equivalent forces which placed along the crack flanks of a perfect crack would best 

generate the full field data. 

6. We have plotted the solution of this model for mode I, but could be developed for 

mixed loading conditions by assuming  *
12σ 0.≠  
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