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Modelling of fatigue crack closure via the concept of plastic inclusions

Ebtesam Alousta

Abstract

The phenomenon of closure is one of the most important phenomena that have been
linked to the deeper understanding of fatigue cracks. Various methods have been
employed to model the plastic zone around the crack tip which appears to give rise to

the closure phenomena.

In this thesis, our goal is to model the plastic region near the crack tip by using a
suitable adaptation of an Eshelby inclusion. To do this, the first task is to translate
Eshelby’s solution in terms of Muskhelishvili’'s complex potential functions for 2D
elasticity and then solve these equations for a suitable shape of plastic inclusion. In
this thesis, we have concentrated only on the case where the inclusion is a disc in front

of the crack just touching the crack tip.
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Nomenclature

a: Crack length
i - Square root of -1

z: Complex coordinate of the points around the crack tip, z=x+iy

E: Young’s modulus
A,B,C,D,F: Coefficients
0,,,0,,,0,, : Components of the crack tip stress field

67,0 5,0, Components of the eigenstress in the inclusion

A, W are independent elastic constants, called the Lamé constants

v : Poisson’s ratio
K,: Mode | stress intensity factor

K, : Mode Il stress intensity factor

¢0(2), y(2) : Muskhelishvili complex potentials

0"(2), v"(2) : Muskhelishvili complex potentials arising from eigenstress in inclusion
r,0 : Notation for polar coordinates

c,,0,,0,: Components of stress tensor in polar coordinates

u,, u,: Horizontal and vertical displacements

Z : Westergaard function for Mode | problems

T, -c,, : T-stress

P,Q: Forces

t : The distance from point force to crack tip

A, ,B,,C,: Coefficients of the displacement inside the inclusion

w : Complex representation of the displacement relative to a point force
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Chapter 1 Introduction

Chapter 1 Introduction

Fracture mechanics is the branch of applied mechanics that deals with the mechanics
of cracked bodies under load and provides tools to predict crack extension and
fracture, and hence to assess residual life. Fracture mechanics allows engineers to
design fracture-safe and fatigue-reliable structures with defined fatigue life. Some of
the mechanisms associated with plastic deformation and crack growth and that
influence the magnitude of the range of stress intensity factor at a crack tip are still
incompletely understood, among of these are the plasticity-induced crack closure (or

crack tip shielding) effect [1, 59].

The term crack closure describes the phenomena of a decrease in fatigue crack growth
rate by an apparent decrease in the effective stress intensity factor range, AK, due
to the contact between the crack faces. The lack of understanding comes from the
difficulties of measuring this phenomenon and evaluating its impact on the crack

driving force [2].

The material inside a plastically transformed region in an isotropic elastic solid can be
considered as an “inclusion” in the elastic material with the surrounding material called
the “matrix” as shown in Fig 1.1. The solution of the problem of finding the elastic field
both in the inclusion and in the surrounding matrix has been given by Eshelby (1957).
He solved this problem by imagining cutting around the area which has been deformed

and removing it from the matrix [3]. Eshelby showed that the mathematical solution of

13



Chapter 1 Introduction

this problem can be based on the superposition principle of linear elasticity via a

Green’s function [4].

TN |
o (B)
s

|
\

S

Figure 1.1: A homogeneous linear elastic solid with volume V and surface S. A
subvolume V, with surface S, undergoes a permanent deformation. An inclusion is

the material inside V, and the surrounding material is called the matrix [4].

1.1 Motivations and aims of the research

The main motivation for this research topic is contribute to a better understanding of
the fatigue crack closure phenomenon and thus help to clarify the nature of the plastic
region surrounding the crack tip. This should result in giving better predictions of crack
behaviour, for example growth rates. The aim of this thesis is to model the plastic
region near the crack tip by using a suitable adaptation of Eshelby’s approach. To do
this, we translate Eshelby’s solution in terms of Muskhelishvili's complex potential
functions for 2D elasticity. Using an adaptation of Eshelby’s analysis, we find the
solution for the stress, strain and displacement fields both inside and outside the

inclusion, for the case where the inclusion is a circular disc just in front of the crack tip.

14



Chapter 1 Introduction

1.2 Description of the contents

The current research is intended to contribute to the understanding of how we can use
theoretical methods to find stress and displacement around the crack via a modified
Eshelby's inclusion in 2D. This work has been organized into seven chapters as

follows:

Chapter 2 gives some background into the most commonly used mathematical models
characterising the stress field or the displacement field around the crack tip. After to

this, the phenomenon of fatigue crack closure is described.

Chapter 3 is a literature review of work related to this thesis.

Chapter 4 presents the complex potential function method and how it can be used to

analyse the stresses and displacements around a crack tip.

Chapter 5 Eshelby’s approach to modelling an inclusion is reviewed.

Chapter 6 the model of the plastic region near the crack tip is analysed and solved to
calculate the stress and the displacement around crack tip using Eshelby’s approach.
Chapter 7 provides a summary of this thesis, and gives some recommendations for

future work.

15



Chapter 2 Background

Chapter 2 Background

2.1 Introduction

The purpose of this chapter is to describe briefly some of the fundamental concepts of
continuum mechanics and fracture mechanics, and classic approaches to modelling

cracks and plastic zones that will be employed later in this thesis.

2.2 Fundamental theory of continuum mechanics

2.2.1 Stress and equilibrium

Consider a body at equilibrium with a volume, V , enclosed by a surface, S .There
are two types of forces acting on this body: traction and body forces. The traction, T,
acts over the surface area with normal vector, n=n ¢ , and i=1,2,3,and is related to
the stresses by [4]

sn=T, ij=1,2,3 (2.1)

U ]

where it is understood that the summation convention applies and the stress tensor,

denoted by o, gives the force per unit area on the i- face in the j- direction [4].

ij?

16



Chapter 2 Background

Figure 2.1: An elastic body V under applied loads [4]

The body force per unit volume, b;, as shown in Fig 2.1 represents the external force

field. The equilibrium of the forces in the j-direction can be written as

[b, dv+[ T, ds=0. (2.2)
\% S

Substituting from (2.1), we get
[bydv+[s, n ds=0. (2.3)
\% S

Using Gauss’s theorem we have,
[ (b +s,,)dv=0,
\%

17



Chapter 2 Background

which, since V is arbitrary, gives the equation for equilibrium as

b, +o,, =O. (2.4)

2.2.2 Strain and compatibility

Let X be the coordinate of a point in the undeformed body and x be the point after

deformation as shown in Fig.2.2. The displacement of the point X , denoted u(X), is

u(X)=x-X.

We can write

X=u+X.

Current Configuration
(deformed)

Reference Configuration

(undeformed)

Figure 2.2: illustrating the configuration of a undeformed and deformed body [4]

18



Chapter 2 Background

Now, if dS=/dX dX is the length of a small vector dX in the undeformed body and
ds=/dx dx is the length of a small vector dx after deformation, then the strain

tensor, g; , which is a measure of the body’s stretching, can be defined by

(ds} -(dS§ =(ds+dS)(ds-dS) epix dx .

Writing ds and dS in terms of the displacements, u, , we get,

(dF -(dS§ = x d -dX dX = ch -§ o) G -2 )c

du, ou du, ou,
I - - +6. )=(u,, +u, . -u. dx d
ox; Ox, 0x; Ox j )= (U U -y, g )dxdx

k
=g;dx dx +O(X),

=dx, dx;3; -(

which, assuming the strain tensor is symmetric, i.e. g;=¢
as

i gives the strain tensor, €

&= % (u; +y, ), (2.9)

where we have ignored the terms in O(U*). Now, from the definition of the strain

tensor, (2.5), we obtain the following equations

_ _ _ 1 1 1
€yx _ux,x ’ Syy_uy,y’ Szz_uz,z’ €y E (U x,y+l’I y,x)' €y~ E (ux,z +uz,x)’8 yz_z (U y,z+u z,y)’

19



Chapter 2 Background

hence, we obtain

1
8><x,yy_u><,><yy ’ 8yy,xx_uy,yxx ’ gxy,xy_ E (ux,xyy+uy,yxx )’
andthus ¢, ¢, and g, mustsatisfy
Erxyy T Eyyixx ~2E xymy =0-

Similarly, we have

Sxx,yz:ux,xyz € xy,xz: E (U x,xyz-'-u y,xxz)’ sz,xy: E (ux,xyz +uz,xxy)’ € yz,xx: E (U y,xxz+l’I z,xxy)’

which gives

e ., te 2¢ 0.

XX,yy Yy, xx ~ECxyxy T

In the same way we can get two more equations. All six equations can be expressed

in index notation by

e =0, (2.6)

8pmk € qnj jk,nm:

where

1 foreven permutatations of ij
g =41-1 forodd permutatations of ijk
0 forrepeatedindices

20



Chapter 2 Background

Conversely, if equation (2.6) holds, one can prove that there exist u, such that

& :%(ui,j U, )-

2.2.3 The equilibrium equation written in terms of displacements

The constitutive equation for the strain as a function of the stress is

0=Ce < 0;=Cy &, (2.7)

where C is a fourth order tensor called the elastic stiffness tensor (or elastic constant

tensor). This relation is known as the generalized Hooke’s law.

It is will become that all isotropic fourth order tensors can be written in the form

Ciw =M8; 0y +r(4 & +q § ), (2.8)

where A and p are independent elastic constants, called the Lamé constants, and

d; Is the Kronecker delta defined as

1if ig
8=4 .. ..
bl0if i #].

21



Chapter 2 Background

The parameter  is called the shear modulus, and X is related to Poisson’s ratio, v,

by :@. Substituting (2.8) into (2.7), we obtain

1-2v

G =MD &y +2us; . (2.9)

In matrix form, Hooke’s law for isotropic materials can be written in terms of the Lamé

constants as

on | [2u+h A A 0 0 0 ey
Gy A 2u+h A 0 0 0 [e&y
o | | A Aoo2uth 0 0 0 | eg
26,,| | O 0 0 w0 0 |2,
20, 0 0 0 0 U 0 || 2
2, | | O 0 0 0 0 no|| 2,

The equation (2.9) can be rewritten alternatively in terms of E and v as

G, = E g + vE S O
Tl (L) (1-20) N
and in matrix form as

[, | v v v O 0 0 ey |
G, v Iv v 0 0 0 €5y
Oz |_ E v v 1o O 0 0 €33
26,| (1+)(1220)j0 0 0 1» 0 0 || 2s,
26, O 0 0 012 0 |2
26,, 0o 0 0 0 0 12 |2,

22



Chapter 2 Background

We can invert (2.7) to get a constitutive equation for the stress as function of the

strain:

e=So = £;=§, o, (2.10)

where S is a fourth order tensor called the compliance tensor. We can determine the

compliance tensor, S, as the inverse of C,, , i.e.,

Ci Qimn =% (Sim 0, 8,0, )

Now, seeking a solution in the form

Sklmn q"Sklsmn-i-B(S 8 +8 8 )'

km™ In kn™" Im

we need

Cy S ;30 @3 +3 8 ) J[0@ B +B(8n & *+30 80 )]
= (3h0+2u0+2B1.) 8,3, +2B11 (8,8, +5,,, )

in™jm

1
=§(5. 5 +5 5 )

im™ jn in™jm

and therefore,

23



Chapter 2

B 1

A

=—,0=
4

It follows that the compliance tensor, S, is

S =

-A

One can write equation (2.10) as

In matrix form, a constitutive equation for the stress as a function of the strain can be

written as

1

A

2u(3n+2u)

& =—06.-—— G, 0. .
ij ZH GIJ 2“(37V+2H) Gkk 1j

At -A -A
EM20)  2u(Br+2p)  2u(3+2p)
A Atu A
2u(3+2n)  p(r+2n)  2u(3r+2u)
A A Atu
_| 20Cr+2p)  2u(Br+2p)  u(3ht2y)
0 0 0
0 0 0
0 0 0

24
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Chapter 2 Background

The components of strain as a function of the components of stress alternatively in

terms of E and v are
1
g :E[(lﬂ))cu 00, §; ] ,

and in matrix form as

1 L 0 0 0
E E E
-V 1 =)

- 1 | = = — 0 0 0 r T
€11 E E E Oy
82 | |0 1 0 0 o ||°=
€33 |_ E E E (O
2¢,, 0 0 0 (1+U) 0 0 20, |
2¢,, E 26,
2,/ o0 o o o0 (1—;”) 0 |20

(1+v)
0 0 0 0 0 T

in which E and v are given in terms of the Lamé constants by

e H@A2)

Mo 200

Now, substituting (2.7) in (2.4) we get,

Ciu&a; th =0. (2.11)

From (2.11), and the definition of the strain tensor, we obtain
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1
ECijkl (uk,li Yy )+l? =0

Since C, =G, =G, then

%(Cijkl Ui tGi W )+P =0

Now, we can combined the equation above into

Ciia Ui +t? =0 (2.12)

The following relations hold among Young’s modulus E, Poisson’s ratiov, the bulk

modulus K , and the shear modulus .:

21 E=2(14)y, v= A :(BK-Zu)

"= 20+ 23K+

(1)

2.3 Linear elastic in 2D

2.3.1 Review of plane stress and plane strain field equations

As in [48], plane strain and plane stress are defined as follows.

Plane strain is defined to be a state where
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u,=u, (X, X,), u;=0,0=1,2.

Plane strain is a good choice when the material is thick.

In a state of plane strain the scalar components of strain ¢, :%(ui’j +u; ) must be in

the forme,;=¢,,=¢ ;70,8 ,=¢,,(X,,X ), and ¢ = % (U +, )0, B=1,2.

The scalar components of stress o, =2ug; +\g, 6, , must correspondingly have the
form 6,,=6,,=0,6,,=0,,(X,,X,) and o ,=)e  , Whereg,, =¢,,+¢,,=¢. . Then stresses in

plane strain are

O, =2HE  TAE, B (2.13)

Yy ap?
alternatively, putting this in terms of E and v, we get

Cup= = Ep T L= €04
1+ (1+v)(1-20) ™

(2.14)

or
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E(l-l)) vE
o)) (w)a2)
le - vE E(1v) zll
2(2;’12 (1+v)(1-20) (1+v) (1-20) - 222
where
E(l-U) vE |
(w)a2) (1))
) oE E(1v)
Ciwa = (14‘0)(1'20) (1+1))(1-20)
; o _E_
_ (1+0)

Noting thats,,=5,,+5,,=2, it follows from (2.13) and c,,=he,, that

c,,=2W+\)e = @%f 1(533'
v

Sinceoc,, =, +65,=(1+v)c, , One can obtain the strains in plane strain from the

expression
1
&= E[(l-ﬂ)) G ~V0 §; } :

Therefore, the strains in plane strain are
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This means that ¢, =5, o, ,

or
142 -0 (1+)
. E E
H ) (1+U) 102
€n |7 E E
2¢,,
0 0
where
1402 -0 (1+v)
E E
R -V (1+u) 102
Sju = E E
0 0

By calculations, [é]'1 =c.

Background

(2.15)

Let C,, be the elastic stiffness tensor of a homogeneous solid and S, be the

compliance tensor (S, is the inverse of C,, ). Let ¢, be the 2D elastic stiffness tensor.

29



Chapter 2 Background
Therefore,

;=G & » Where 1i,j,k,=1,2. (plain strain)

Where C,, =g, for i,jk|=1,2.

Plane stress is defined as a state where

Cu3 =0 (X, X,),06,3=6 ,:=6 5570, 0,p=1,2.

Plane stress is a good choice when the material is thin. Sinceoc,, =c,+5,,=c.,, one

can get the scalar components of strain in plane stress from the expression

1
g :E[(lﬂ))cu -0, &, ]
-V
where ¢,,=¢,,=0,¢,,=¢,(X},X,), and 833:E6W by

1
suﬁ=E[(l+‘u)cuﬁ 06,3, |, (2.16)

the strain in plane stress is given by
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&;=§ Sl I K 11,2,

Or
_1 - ; _
€11 i 1E Oy
€ |7 T = 0 O |
E E
2¢,, 26,
where
1 =~
E E
- -V 1
Sik = E E 0
0 0 1_+U
L E |
Obviously,
[ E vE i
0
1v° 12
1 . | VE E
[S] =CH 1_,02 1_1)2 0
0 0o _E
L 1+v |
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Since sw=é[(l+1))cw-l)cy 0 ]:1—2)0%:- 1%833 , then the component of strain ¢, in

v oo

termsof A and u is

2u

Now, from o, =2ug; +Ag, §; and by noting thate,, =¢ +833:7w+—2u

€,,, the components of

stress in plane stress are given by

_ 2uA
GaB—2u8u3+x+—2M8W8aﬁ, (2.17)

or, alternatively in terms of E and v,

:ig +DE86

Oup ™ Ly S ¥ 7 O (218)

af?

the stress in plane stress is therefore related to the strain by

6; =C & » 1, ), K 1=1,2.

or
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[ E vE i
2 ; O
1o 1
Oyq €11
_| vE E
(2522 BERE 102 0 Zzz ;
P €15
0 o _E
L 1+v |
where
[ E vE i
0
17 1v°
. _| vE E
Ciw = 102 102 0
0 o _E
L 1+v |

By comparing the equations of plane strain and plane stress elasticity (2.14), (2.15),
(2.16) and (2.17), one can see that each of plane strain equations can be transformed
into its corresponding plane stress equation, and vice versa, by for example, to go from

_Z’U_)L’ )\'* Hﬂandu_)u_

plane stress to plane strain, E -
1o 1o 2u-\

2.4 The linear elastic field by using the Green’s function

2.4.1 Equilibrium equation for an infinite body

Let F=F 5(x-x')g, be a constant point force acting at x’ in an infinite body. Suppose

that V is an arbitrary volume bounded by a surface S with an outward normal n as

shown in Fig.1.3. Then, the displacement field generated by this applied force is

given by
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U, (0=G; (xX)F,

for some Green’s function G; (x,x')=G; (x-X) which only depends on the displacement

between the points. Now,

ui,m (X):G (X_)()F] ’

ij,m
and, by using Hooke’s law, the stress field can be written as

ka (X):CkpimGij,m (X_)()F] ' (2 1 9)

Since V s the volume surrounding the point x,, then the force F must be balanced

by the tractions acting over the surface S. This means that

R+ 04, ()0, (X)dS(X)=0,

rewriting this equation using (2.19), we get

Fo#] Gigm Gy (XD, () AS(X)=0

Now, by using Gauss’s theorem on the surface integral, we have

Fe [ Gim Gjmp (XX) F dV(X)=0 (2.20)

Since the three dimensional Dirac delta function is defined as
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1 if xX'0V

Jstex)avio= {o if x'0V

then we can write (2.20) in the form

[IC1pimG i mp (XX 43,4 8(x-X") IF, dV(X)=0.
\%
Consequently, since V is arbitrary,

Cpim Gijmp (XX )43, 8(x-x")=0.

kpim ~ij,mp

This is equilibrium equation for an infinite body.

Figure 2.3: A point force F acting at x' inside an infinite elastic. V is a finite volume
bounded by a surface S with an outward normal n [4].

2.4.2 Green’s function in Fourier space

The Fourier transform of the elastic Green’s function is defined as
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g; (0= [ exp(kX) G (x)dx
R3
Standard theory shows that we can invert this expression to obtain G; in terms of g; :

G, ()=— j exp(-kX) g (k) dk

(2n)" 2

Using the formula above we can express the three dimensional Dirac delta function

as

a(x):is j exp(-ikx)dk.
(2n) g

The equilibrium equation for the elastic Green’s function can now be solved in the

Fourier space. Substituting in the definitions of G, (x) and 3(x) (setting x'=0), we

have

1 0° .
—— | [C\, i (K)——— 45, Jexp(-ik X)dk=0.
(27'[)3 R_!;[ kplmglj( )aXmGXp k]] p( )

The vector z is defined as

Therefore,
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% J’ [-Ciom Zm Zp k?g; (k)45 ,;]exp(-ik X)dk=0.
(2a) &

It follows that,

Ckpim Zy Zp kz gij (k)%]k (221)

The tensor (zz),, is defined by

(z2), = Gokim % Zn

Using this definition by substituting in equation (2.21), we get
(22) g K =5

The inverse of the (zz); tensor is defined such that
(zz); (22), ;.

Hence the Green’s function in Fourier space is

(zz);
k>

g; (k)=
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2.4.3 The elastic stress field in 2D

The main objective of the current calculation is finding the stress, strain and
displacement fields by using the Green’s function in 2D. The calculations below may
not be new, but are included for lack of a suitable reference. We start first by calculating

the Green'’s function in 2D as following:

The displacement field caused by applied force F; is
u, (x)=G,, (xx) K. (2.22)
which gives the displacement gradients

u,, (x)=G,, ( x-x') 5. (2.23)

From Hooke's low o, (x)=C and the relation between the strain and the

deay € oy

displacement, we have

1
€y = E ( Uy, U, )

ap.y (X'X‘)FB +Gy[3,(1 (X-X )% ] (2.24)

IE[G
2

(x-x)+G,, . (x-x)]F,,

apy YB.o

ZE[G
2

the stress field can be obtained from Hook’s law as
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688 (X) = Cﬁmy gay

=C,, Gy, (XX)F; .

deay oy

(2.25)

As before, since V is the volume surrounding the pointX,, then the force F must be

balanced by the tractions acting over the surface S. This means that

F+[ 5,091, () ds(x)=0. (2.26)

Rewriting this equation using (2.25), we get

Fy #[ [Couy Gy 06X 1 () dS(x)=0 (2.27)

Now, using Gauss’s theorem on the surface integral, we have

F+ oy Guge (6X)F dV(x)=0. (2.28)
\%

Since the two dimensional Dirac delta function is defined as

1 ifx 0OV

i S(x-x ) dV(x)= {o -

then we can write (2.28) in the form
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[IC 10y Gug e 06X ) +E3(x-x )] dV(x)=0.

Factoring F; after replacing K with F3,, we obtain

J’[CSWG“MS (X-X ) +85,8(x-x )] F,dV(x)=0. (2.29)

Consequently, since V is an arbitrary,
Coray Cupye (XX )+35,8(x-x)=0, (2.30)

which is the equilibrium equation satisfied by the Green’s function in an infinite
elastic body. Now, one can solve equation (2.30) using Fourier transforms. The

Fourier transform of the elastic Green’s function is defined as

00 00

0, (K)=] [ € Gy (¥ dx. (2.31)

—00 -00

Standard theory shows that we can invert this expression to obtain G,; in terms of
gaB :
1 0

[ € g, (9dk (2.32)

(22
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Using the formula above we can express the two dimensional Dirac delta function as

3(x)= ! > Ie“k'xdk.

The equilibrium equation for the elastic Green’s function can now be solved in the
Fourier space. From (2.30) and using definition of G, (x),3(x), when x =0, we

obtain

1

ZI 1 3 O a 0,5 (K)13;, (€' dk=0. (2.33)
We define the vector z as
k
z=—. 2.34
K (2.34)
Equation (2.33) then simplifies to
1 T K.
—=[e*[-C., 27 Kg, ()8, |dk=0. (2.35)
(20)" =

It follows that

- BSU.YZ'\(ZE kzgxﬁ (k)"szs;s:o-
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Therefore,

CBsayZy ZS k2 ng (k)%ﬁﬁ (236)

We define the tensor (zz)_ by

(22),, =Cooy 2. Z - (2.37)

Using this definition, and substituting in equation (2.36), we get

(Zz)sa k2 gaB (k):éz,g (238)

The inverse of the (zz), tensor is defined by

(22), (z2), 3., (2.39)

Therefore

(ZZ); (22), K gy (K ZZ); Oap
=3, kg, (K=( zz);;
= kg, (k)=(zz); .
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It follows that the Green’s function in Fourier space is

9, (k)= (Zkzz) 2 (2.40)
Now,
Gy (9= [ & g, ()
af (27[)2 J B
(2.41)

1 7, (22,
= [e* 2 dk.
Now we can calculate G, (x),G,,(X)and G,,(X) as follows:

From (2.41) we have

21

j j e"* g, ( K dkad. (2.42)
The integral can be written as
1 % |kXCOS((p9 )]j_ dk@
Gu=, 5 ! { e . (2.43)

The definition of (zz)aB gives
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(Zz)aﬁ =2 7, Gispy
=2,2,\'8,,3,, +1(8,3,, +3,,5,,)]
=12, (2,2, 49,,2,2,)
=(V +)z,2, 418,

(2.44)

where }L*:S_-ku and
k-1

3-4v forplane strair

k=< 34 : (2.45)
—— forplanestres
1+

We define (zz),, as

(z2), q,t(zsaﬁ P zazﬁ] . (2.46)
1)
Therefore the inverse can be written as

(22)} :i(saﬁ-;:% zuzﬁ] . (2.47)
n u

Substituting (2.47) into equation (2.43) we obtain

21 © _ *+
G11 :4_12"‘J‘e-|kxcos(¢-9)% _]-(Sll_gzlzlJ dkd
0% v A +2u

44
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21 *
j [[gocote { 1Mt coé@}dkd@, (2.48)
20 A+2u

in which z,=co9 . Thus we can simplify equation (2.48) to

X+u

_ 1 |kxcos(<p9 _
Gll_%JL.m(H - dkb o]

2tR
[ gheodon) 1 co§e dkd) |. (2.49)
00

We now wish to evaluate this equations. To simplify writing, let | denote G,,.

Differentiating (2.49) shows that

2t R o )
ﬂ: 1 [Lim(J‘J‘e-ikxcos(qn—e)lkcL((Pe)dkw
00

cog0 dk d9)], (2.50)

Te‘"‘ms(‘”'e) -ikcos(¢-0)
0

which simplifies (2.50) to

o _ -
ox 4n’n

2t R
[Lim ( | j e *)cog(¢-0) dk db
00 (2.51)

2t R
s I j &%) cog 9-0) cog0 dk db).

0

o

We evaluate the terms separately. Let
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2r R -ikxcosp-0) R

|,=Lim ”e ool cogp-0) dk do= Lim Ie— do
o o (2.52)

——L|m e Reodv0) 1149
iX R-o I[ ]

Thus, letting 6 = Ol-gﬂp, do = do,, then cos(p-e):cos(% 0,)=sin0,. So that

substituting this into (2.52) gives

-1 -IRxsing,
1, —Klﬁln; j [e -1]d6,. (2.53)

It follows from a result of Legendre that

I, =L Lim[2nd, (RX)-21= 2~ (2.54)
IX Roe IX
Let
2t R y S( )
— -ikxcos| -0
l,=Lim ”Oe cog(¢-0) cos’0 dk db. (2.55)

Integrating (2.55) with respect k gives
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R

do

0

2n IkXCOS((p 9)

|,=Lim
Lim mcos(q) 0)cos®

R

co<odo
0 (2.56)

=Llim J'[e Recod99) 020 -coL0] dO.
X Roo

_1 . 2n
=—Lim|e
IX Roo o

-ikxcos((-0)

Let 6 = (61-%+(p) . Then cos(p-e):cos(% 0,)=sin0,. By substituting this into (2.56), we

have
l,= '—lLim[T[e RSO @, — +(p)-T cos 0,- = +¢)do,]. (2.57)
IX Roe o 2 0 2
Using trigonometric formula (COS@-G)ZCOS(% 0,)=sin, ) to simplify (2.57), we get

2n 2n
= £ Iﬁi im|[ J'[e ReMcos’p sin, d91+2J' g™ sirf) cospcod) Sinpdo
0 0

e e (2.58)
+ I [e™™™:c0og0, sin‘e del-j cos’ el-g +p)do .
0 0
We can use partial integration to obtain
1. T n2
ZLim ™™ coge, sin’pdo,=—— > L|m[I[e RxeMicog’e, de,]. (2.59)

R- o
IX 0
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-iRxsing,
Taking u=co®, = du=-sird,dd, and dv=co®,e™"™d, = v= . we find
-IRX
2 _ iRxsing; 2 on iRxsing,
[ e code, do,="— cos, | * [ 15— —(sing, dp,)
0 IRX ‘ y  -IRX
-1 1 2n e—iRXSinel ]
= + - sing, do 2.60
(R in)l‘ iRx 17 (2.60)
2n
=1 e sirp, do,.
IRX 5
To evaluate this expressions, let
2n . )
"= [ €™M dh=2nJ, (RX),
0
then
al* _271 -iIRxsind : H
—=|€ (-ixsirp) do,
oR ¢
and
2n r 2n
23, (Rx)=] " (-ixsir@)d9:>_2n‘]°i—(RX): [ &= sirg do. (2.61)
0 0

It follows from (2.59) that
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2n

_'—lLim e cog0 sin“p do= sirto Lim je'RXS“’swﬂde]
iX Row o iX Rw iRX

(2.62)
-sm(pL m| -1 -21J, (RX)

IX R-w |Rx( | JI=0

Now, we need to find the integral

. 2n
;lﬁim[ J‘Ze-insine Sil’ﬂCOSﬂSin(P CcOSp de]: 25':"% Iﬁim[ '[e-insire sindcod de]_ (2_63)
-0 o - 0

By a similar method we use integration by parts with u=sirf, du=co$ d6 and

-iRxsing

dv=co® e i, v= to give
-IRXx

2n

iRxsing 2n L iRxsind
I e™"™ sirfcod de—e—Slrﬂ [e—cos9 do
5 iIRx |, ¢ -IRX
2n giRxsind gRsind 2n
=|—=co9 ——[ (264)
o IRX iIRx" iRx
-1 iRxsing | 2T
:iszxz[ ) neo Zszz(ll) =0

Substituting this into equation (2.63), we obtain
i';%im[ j 26 simcod) sing cogp do]=0. (2.65)
0

Now we want to find the integral
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2n

—1IE|m e cogesin® do, (2.66)
iX R-w o

which can be simplified to

2n
—1IE|m e ™M cogpsin?d do=— o§(p Lim[ I [e ™"sin’9 db]
iX Ree o
2n
=750 i [ e (1-coge) do]
X Ree"s
2n 2n
= -c<_)§<p Lim[_[e"RXS‘”"de- j e cog0 do]
X g 0 (2.67)
_-coSQ , . 213, (RX) ,_
- ix %Lfg [27TJO (RX)"‘V ]—0
Now, we can calculate the integral
Liim j cog (9-—+(p) do, (2.68)
iX R-o
which can be simplified to
'1 - 2 T _ '1 - 2z 2 -2
—Lim jcos:2 0-—+¢)do=— L|m[j[cos ¢sin“0do
IX Roe o 2 IX Roe e
(2.69)

2n 2n
+2J' sirbcospcoDsinpdd + f [cos0sin’p do].
0 0
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Simplifying and evaluating equation (2.69) leads to

1. F T 1. .
—Lim | cos’ @-=+¢)d0=— Lim[coS?p | sin°0do
IX R~°°£ 0 2 ?) IX Rﬁw[ (pj;

2n 2n
+2$inpc03pj sinecosed9+sin2<pj cos0 do] (2.70)

—_—1 le[nco§(p+23|np003p (0)+nsin® (p] - L|m (n)

Using the results of equations (2.62), (2.65), (2.67) and (2.70) into equation (2.58),

we get

% A T 2 T 0
|.=—Lim[ [[e ®™cos’ 0-=+0)- | coF P-— +¢)do]=—. 2.71
ziXM[{[ (2@)£ 02 +9)doj=— 271

By using (2.54) and (2.71), the equation (2.51) reduces to

ol _ - {I i A+ | }_ - 275 N o, _)]

Ox Anfu| T A+2u 2| 4nPulix A+2u ix
s H s H (2.72)
1 N1

27'q,tX k +2u  dmpx

By integrating (2.72) with respect to X, one obtains

x* + 1
I=[ (= B (=) dx
Znux A +2u 4mux
-1 1

_ﬁ

4(7» +2u)fmj
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Differentiating (2.49) with respect to ¢ yields

dkdd

0| [le (T.T'e—ikxcos((p—e) -i kX(-Sin((P'O))
a(p An’p R k

k+u J'J’ |kx005(q>9 k(- SIn((P 9)) cos0 dk do)]
x+2u K

2n R

— . ikxcos(¢-0)
_4n " [Lim( ”e *xsin(o-0) dk do

(2.74)
At

-ikxcos(¢-0)
oz ] j j e xsin(¢p-6) cogd dk d9)].

We calculate the integral

2n R

|,=Lim j Ie'ikx°°s(¢'9)xsin((p-e)dkde, (2.75)
0

R-o o
by using the substitution

0= Gl-gﬂp, do = do,,

COS@-O)ZCOS(% 9,)=sing,
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and

sin((p-e):sin(g 9,)=cod,,

where

T
0,=0+— -0,
1 2 ()
i
0=0= 91=§-(p (2.76)

0=2n = 912% Q.

To simplify equation (2.75) to

5n
2nR 2R

-ikxcos(-0) . |k><sine1

l,=Lim j'([e xsin(¢-0)dk do= Lim n'[ '([ x co$),dk 0o,

2" (2.77)
-ikxsind, | 2
=Lim [ £ dk=0
Roeod -k

In a similar way we can find

2n R

|,=Lim ”e'ikx‘m(“"e) xsin(¢-0) cos dk o. (2.78)
0

R
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Let’s first find the integral

2n
j "4 xsin(¢-0) cog do,

0

which after using (2.76) and the substitution

(2.79)

becomes

Since,

then

0= 91-%+(p, do = do,
cos@-e):cos(% 0,)=sing,

sin(q)-e):sin(% 9,)=cod,,

5n
-0

2
J. e"*" co9,cos @1-%+(|)) de, .

2‘0

cos @f% +¢p)=[cos @1-52 +¢)]*=[sind cosp+sinpcod ]

=sin’0,coS'p+2sirh,cospsinpcod), +sin“pcoss
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T
J' g™ co®,cos @rgﬂp) do,

T
2

b

¢

= I g™ o9, (sin’0,coSp+2sir cospsinpcod +sin‘pcosd ) do ,

Zy
5n 5n
20 20
=cog¢ f e co®),sin’0, o, +2cospsing J' e sirp,cos0,d0,
2" 2" (2.80)
S

+sinQ I e cosp, do.,.

¢

N A

To calculate (2.80), we need to find the integral

-9
[ e"™ co®,sin’e, o, (2.81)

¢

n g

NS

Using integration by parts with u=sin"0, = du=2sir9, co®,do, and

-ikxsing,

dv=co®, """ ), = v= -
-ikx

we find that
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5n 5t 5t
P _kXSiN0; : o 2 °
-ikxsin; Hv — € 1S”.Fel 2 2 ;1kxsinf; H
J e co%;sin Oldel—T% +W HJ' € co$,sing, do,
57¢ ¢
2 . 2 (2.82)
=— | €™ co9,sind, do..
ikx e
50

Again, we use integration by parts with u=sirf, = du=co$,dd,, and

o e-ikxsinel
dv=co®), "™ b, = v=—"-
-ikx
to find
5n 51 5n
2 o -ikxsind; 2579 27 _ikxsing,
f e""xs'""lcoﬁlsineldelze_—SIrBl  co®,ds,
; -ikx T, oa -ikx
-9 57¢
2 . 2 . (2.83)
27 _ikxsing, ikxsing, |5
= © " co®,do=—E =0.
2 ikx ikx -ikx =
2" 2"
It follows from (2.82) and (2.83) that
5n
?'(P
[ "™ cod,sin’0, do,=0. (2.84)
=
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In the same way, the integral

N“;{'

¢
I e cose, d,, (2.85)

¢

N3

can be found by using integration by part with u=cos$0, = du=-2sir9, cos),dd, and

-ikxsing,
dv=co$), " b, = v= 'k , so that
-ikx
5n 51 5n
2 _ikxsin®. ¢ 2
s eMicode, (2 2 o .
j e"™ codp, do,=——— L - J. €™ co®,sing, do,
. -ikx ., ikx
50 =P
2 . ’ 2 (2.86)
-0
-2 Zf e s c08.sind, do,=0
|kX 1 1 1 .
Z

Finally, we need to calculate the integral

N“;{'

¢
[ e*e™sird,cos6,do,, (2.87)

¢

NS

by using integration by parts with u=sirf,co®), and dv=co9, e"*™ d,, to give

-ikxsin6,

du=(co0,-sin’0,) do,, v="1

_ , and therefore,
-ikx
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i"l’ Sn @'(P
2 o ; Akxsing, [27% 2 7 Sikxsing,
[ & sird,cogo,do,= =" C‘_’ifxle - | = (cos,sin®) db,
T n—(p T B
2! . 202 (2.88)
—?P g (cos0,-sin%,)do
- ikx 1" 1 1
2o
Now,
5n 5n 5n
2 g hosing, 2 , 1 ZJ‘-(D s, g 1 ZJ:(p o i
_ (cos,-sin9,)do,=— | €™ cos0,do-— | €“™sinh,do, (2.89)
ikx ikx ikx
g*P g'(l) E'<P

2

for which we can again use integration by parts with u=co$, = du=-sirf, d6, and

-ikxsing,
dv=co®, e b, = v= ® | to obtain
-ikx
2n -ikxsing, 2 2n_ikxsing,
J‘e—ikXSinel CO§91 delze—mgl _ [ e : (-S|n01 del)
5 ikx o o ikx
2n _-ikxsind,
=-| —sino, do 2.90
! ikx L (2.90)

-1 T -ikxsing; :
:_—Ie Lsirp, do, .
ikx ¢
2n o
Let I'=[e™™ db,=2nJ, (kx). Then
0
alr

2n
. [ e (ixsirp,) do,
0
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2n
= 2nxJ, (kx)= j el (ixsird,) do,,
0 (2.91)

/ 2n
— 27[\]0 (kx) :J' e—ikxsinel S|r91 del,
I 0

which can be substituted into equation (2.90) to give

2n ' !
I e—ikxsinel C0§61 del:-—l ( 27[\]0 (kx) ): 21:\]0 (kX) . (2.92)
) ikx i kx
Evaluating the following integral yields
2n o 2n S
J'e»lkxsme1 Sif'FOl delzj' e»lkxsmel (1-C0§01) del
0 0 (2.93)

2n 2n
— J' e—lkxsme1 CBI_J' e—lkxsme1 C0§91 del],
0 0

in which sin’0=1-co<0 . By substituting the definition of the Bessel function and

equation (2.92) into equation (2.93), one obtains

2n ’
j e"*" sirfo, do,= 2nJ0(kx)+—2n‘]l‘<))§kX).

0

(2.94)

Substituting (2.92) and (2.94) into (2.89) gives
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E'(P
2 -ikxsind;
€ (coo,-sin,)do,=— (2 (k). —1(sz (oy+- 20 9
2o ikx kx kx
E"P
_2nJ (k) 1 2nJ; (kx)
=—2 =21, (kx 9 2.95
ik?x?*  ikx (kox)- ik % 2 (2.95)
_ -4nd, (KX) 21, (Kx)
ik 2 ikx
which after substituting (2.95) into (2.88) we get
i‘q)
20 xsing. - -4rd, (kx)  2td, (kx)
ikxsind, — _
j &M sirp. co50,d0 = 27 v (2.96)
E_(P
Then the integral (2.80) becomes
5n
o <P
_[ &™) xsin(¢-0) cogh do=2cogpsing j e sirp,cos0,do,
0 20 (2.97)
—2co8sing 47rJ (kx) 2nd, (kx)]

k?x? ikx

Rewriting (2.78) as

2n R

|,=Lim j _[e'"‘xc“(“"") xsin(-0) cos0 dk o
0

R- 0
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8 - -Andy (k) 2nd, (K)
l,= Iﬁlm £2xcoap5|rxp[ C 2 o 1dk, (2.98)
the equation (2.98) can be solved by letting K=kx = dK=xdk . This gives
I —2xc03p5|rka|mj[ -4n‘] (K) 2, (K), dK
IK X
=4CO$pSin(p(E) (2.99)
=2C0o%pSing.
Substituting (2.77) and (2.99) into (2.74), we have
ol - )\,*"'Ll R -ikxcos(¢-0)
—= Li %) xsin(¢-0) cos0 dk do
0¢ 47:%[7» +2u R-o o{) ((P ) )
2ricospsi 2.100
47{“(% 13, ) (2ricosysing) (2.100)
_MCOSPS“’KP
27t},t(7»*+2},t) '

Integrating (2.100) with respect to ¢ gives

SNCEOR

27tu( +2u

(~"+n) [005@]

) 2 (X* +2u) 2

)COSpSinq) do
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4 (x(;i)z )Cog(P
i * " (2.101)
(~+n) x2

in which

2

— X1 — — 2 2
X,=XCO%p =3 =COSQ, X=y X +X2.

Now, from (2.49) it follows that

_, M3 (v+) 2
11_(4(x*+2u)nu nx+4np(7f+2g)?
) ) (2.102)
< T Y U LS.
A0 +2u)mpn X 4nu(k* +2},L) x?'
Thus the Green'’s function for two-dimensional plane strain is
A A+ X, X
Gy =5, Ik ( *“) i (2.103)
A\ +2p)mp Amp (2 +2u) X
which can write (2.103) as
: ; X X
PSS M O (2.104)
40\ +2u)mu X 47tp(k +2u) X
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or equivalently,

(3-4v) 1 1 XX
=3 In-—"+—7F"—— . 2.105
" 8(lvyn P x 8au(lw) X2 ( )

Notice that Green’s function for two-dimensional plane stress can be obtained from

those for plain strain by replacing E by E(l—ﬂ;)and v by v
(1+v) (1+v)
It follows from (2.1)
u, (x)=G,, ( x-x') F
) ) 2.106
= M 5 pple AR XX p (2106)
A0 +20mn T X dmp (W +2u) X
Or equivalently,
- X X
U, (x)=-0R) 5 ppl, 1 XX (2.107)
8(lv)tn " x  8ap(lw) x* 7

Now, one can calculate the strain field by using the relation between the strain and

the displacement as:

Differentiating (2.106) with respect to x; gives
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4 o= '({“*+3“)Xa R
AN +2u) 4nu(?»*+2u)

ap

! 2% 2108
':7[7(8 X, 3,5 X, )X, X, (-2X 7)]. (2.108)

Since

uﬂ (X) :Gﬁ“/ ( X-X') E/

T+
:—% 31 g N
A0 +20)mp T

1, AL XX, F (2.109)
X 4nu(k* +2u) x> "
then differentiating (2.109) with respect to X, gives

y =-(7»*+3u)xa e e M
e a0 +2u)mux® Y 4nu(?»*+2u)

1 3 X
':7[7(8 x+8wxﬁ)+xﬁxy(-2x37“)]. (2.110)

op Ny

Adding (2.108) and (2.110) yields

_()\’*+3“) X X }\l*+ 1
— B o n
u.+td, =———"—[—8 F+—25 F|l+———F——F —[6 X +5.X +3 . X +5_ X
o.p B.a 403_*_2”)71:u [Xz oy y X2 By Y] 475“()‘**'2”) YXZ[ of Ty B Ta Ve Ty Ve B]
LA HH) xxx,

4nu(7f+2u) roxt

:Fixﬁ -(X*+3}/l) N X*+u
v x2 B~ ay 47T]yl(7u*+2p) 47'[]1(7»*"'2]1)

pXas )
X2 Br v 47[”’(7\‘*-'-2”) 4n],t(7»*+2],t)
20+ o 1 (-4)(K*+u) X, XX
+—4nu(k*+2u) F 2 O, X, + 4nu(7»*+2u) F " v

(2.111)
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This leads to

1
fp=> (Uyp +5,)
-2u =21 N 200 +p) F 1

SURC N -V U Y : X
Bru(A +2u)x? TP Bru(\ +2u)xe P 8nu(?» +2u) vx? R

L A0 ) xxgx,
8nu(?»*+2u) roxt

-2 -2 200 +
:*—HZFaXB-'- *H 7 %t (* 2 2 Fd,X,
(L +2u)x (L +2u)x 8np(x +2u)X

N (-4)(};+u) E XaXBXv
87'[“(7»*+2},l) roxt

) A+ . X XX
= ___[Fx+Fx, (—“) F8,, %, +2(X ) F, —-101 ], (2.112)
Arp(h +2u)X H 2ux

The stress field can be found by Hooke’s law as

Oup =Copoy €5y
=\ B4 €, T2uE 4
22Ul i A+
= * . = 2 X5F5+2u( *M 2 [F(xXB+F|3XU.-( u) FSOLBX
4(\ +2u)mux dap(h +2u)X (TR !

(2.113)
\ X XX

After simplification, equation (2.113) becomes as follows
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Or equivalently,

-(I-20)F X, (1-2)Fx, N 8,5 (L-20)F X, E X X, X
G 4= - - :
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_1 _
= E(uw +uv,v )_uv,v ’
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_~(x+3n)x X+
e = 40 +2u)nu)12 who 4mp (X* +2p)

_ -(x+3u)x, Fa Mtu

= 4 _ 2x. FE +x FE-2x F)
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Then u,, =€, .
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2.5 Principles of fracture mechanics and their implications for fatigue

2.5.1 Introduction

The section starts with a brief description of the theoretical fundamentals of the most
commonly used mathematical models characterising the stress fields or the
displacement field ahead of the crack tip. After this, the phenomenon of fatigue crack

closure is described.

2.5.2 Linear elastic fracture mechanics

Linear elastic fracture mechanics uses the theory of elasticity to calculate the stress
field near to the tip of a crack, assuming that the material is isotropic and linearly
elastic. There are three basic modes of crack deformation which can be defined as the
state of stress of material around part of a crack tip [2]. A classification corresponding

to the three situations represented in figure 2.1 is offered by Irwin [5].
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N
T y y y
% X X X
l z z z
] (a) (b) (c)
(a) Mode | (opening) (b) Mode Il (sliding) (c) Mode Il (tearing)

Figure 2.4 Crack opening modes [54]

In mode |, or opening mode, the body is loaded by a tensile stress normal to the plane

of the crack, so that the crack surfaces are pulled apart in the Yy direction.

In mode I, or sliding mode, the body is loaded by a shear stress which acting parallel

to the plane of the crack and perpendicular to the crack front.

In mode lll, or tearing mode, the body is loaded by a shear stress which acting parallel

to the plane of the crack surfaces and parallel to the crack front.

It should be noted that linear elastic fracture mechanics is only valid when the
conditions for small scale yielding are satisfied and non-linear elastic plastic fracture

mechanics are more suitable in case when large plastic deformation zones develop.
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2.5.3 Crack tip stress analysis

Irwin [5] in the 1950’s developed the stress intensity approach to analysing cracks.

The three basic modes of crack deformation can be expressed as [54]:

K,

G,o= +0O(/ X, ),0,,=0 ,=0
" o (/X1):01570 »3

K I
21X,

+O(\/;1 ):6 =0 ,=0

0=

v

1

K
023:?";( +O(\/;1):0 20170,

where K, is the Mode | stress intensity factor, K, is the Mode |l stress intensity

factor and K, is the Mode Il stress intensity factor.
From these equations, it can see that the stresses have an inverse square root

singularity at the crack tip, i.e. the region near to the crack tip is dominated by the

singularity and the stress is proportional to ]/\/71

The stresses near to the crack tip where there is no summation over X in the second

term on the right hand side have the form [1]:
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K,

c; (r.6)= NE

G, (0)+T 3, 9, +(terms which vanish at cratip),

Where (r,0) are the cylindrical polar coordinates of a point with respect to the crack
tip. K, is called the stress intensity factor for mode I, which gives the magnitude of the
elastic stress field and &) (0) is a dimensionless quantity that depends on load and

geometry. The quantity T corresponds to the so-called T-stress which is the second

order term in the expansion.

The stress fields ahead of a crack tip for mode | and mode Il are given by

1-sin% sin%e -sin% )(2+cos% )cogg )
O1p
K, 8 0 30| K . r% 0 g,%
= COS—< 1+sin- siA—}! +——! sj co Si 2.116
:22 \/ﬁ 5 > > \/ﬁ ) Sé ) ) ( )
12
sin% cos:% cos% )(1-sin% )sisg )

The corresponding crack tip displacement fields [1] are described by

coss (k-1+25iRS sit (k+142c88 |)
{ul}:ﬁ\/L 2 218 0y 2 2 (2.117)
Uz)  2uV2n sin% (k+1-200§92 2u\ 2 cog2 (k-l-Zs%r%
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where p= 5 1E+U is the shear modulus, E is the Young’s modulus, v is Poisson’s

ratio and k has been defined by Eq. (2.45), that is

3-4v forplanestrain

k=132
—— forplanestres:
1+v

From the equations (2.116), the stress near of a crack tip for mode | and mode |l

when 0=0 has the following form:

K
0,,=0,,= ﬁ ,

(2.118)
G..= Ky
12 N 2nr

The stress intensity factor for mode | and mode |l can therefore be defined as:

K,= Iil’r(l){ NT G,y
K,= Iil’r(l){ 2 ar Oy,

920}
}

(2.119)

0=0
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2.6 Fundamentals of fatigue crack closure phenomenon

The fatigue crack closure phenomenon is the subject of many experimental and
analytical studies. This phenomenon was first studied and reported experimentally by
Elber in 1970 [7]. He observed that a fraction of the crack tip is closed during the lower
portion of the applied load cycle, i.e. the surfaces are apparently in contact (see, for
instance, [5], [8] and [11]). Many research works have been published for the
measurement and analysis of this phenomenon using different techniques and
methods such as direct observation methods, indirect observation methods and
methods based on compliance [5,37, 55, 60, 61 and 63]. Experimental observations
published in the late 1970s established that Elber's mechanism was not the only cause
of closure, and other types of closure phenomena may also influence the rate of fatigue
crack advance. Other researchers considered the many forms of fatigue crack closure
that can be caused by a change of mechanical, microstructural and environmental
factors [1, 64 and 65]. These types of closure include plasticity induced crack closure,
phase transformation induced crack closure, roughness induced crack closure, oxide
induced crack closure and viscous fluid-induced crack closure, as shown in Figure 2.
5. This range of mechanisms, along with controversy over whether plasticity-induced
closure could exist in plane strain conditions or whether it was solely a plane stress
phenomenon, led to a more appropriate term being used to describe the concept: crack
tip shielding, i.e. a shielding of the crack tip from experiencing the full range of applied
load and hence a reduction in crack growth rate [2, 58]. The mechanism of crack
closure and shielding effects is complex and not fully understood and many of the
results remain inaccurate and controversial [2]. This is due to the difficulty involved in

quantifying the phenomenon and measuring its effect on the crack [6].
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Figure 2.5 A schematic illustration of the different fatigue crack closure mechanisms.
(a) Plasticity-induced crack closure, (b) oxide-induced crack closure, (c) roughness-
induced crack closure, (d) viscous fluid-induced crack closure and (e) phase

transformation-induced crack closure [8].

2.7 Description of the models for defining crack tip stress and

displacement fields

There are several crack tip field models to describe stress or displacement and hence

to predict plastic zone size and shape. The models consider in this work are the
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Westergaard crack tip stress equations, and the recently developed CJP Mode for

crack tip displacement.

Westergaard equations

The stress field around the crack tip [9] based on the Westergaard equations is

defined using the stress intensity factors (SIFs), K, and K, , the T- stress (-, )

more detailed information can be found in the Chapter 4. Crack tip stress fields are

given by
1-sin9 sins—9 -sin% )(2+co% )cog’g )
Gq 2 2 _00x1
K, 0 .0 .30 K . r% 0 g%
C,, = COS—< 1+sin- siA—; +—==< Si co Si + : 2.120
2 ("o 02| 2 S| Yar | ST V0% SR )7 f ()
o singcos@ cos% )(1-si i )sisg )
2 2 né
Crack tip displacement fields [1] are described by
cos9 (k-1+25iﬁ9 SiF?— (k+1+206£
(o)t 212 2 |k, [7] 5% 2
Uz} 2n\2n sinE (k+1-2co§9 2u\ 2n cog (k-l-ZS?mQ (2.122)
2 2 2 2
+G°X1r (k+1)co9®
8u (k-3)sirg |’
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where p= 5 1E+U is the shear modulus, E is the Young’s modulus, v is Poisson’s

ratio and k has been defined by Eq. (2.45), that is

3-4 forplanestrain

k=1 3«
—— forplanestres:
1+v

2.8 Concluding comments

In this chapter, we have calculated the Green’s function of the displacement field
generated by point force acting at x' in an infinite body in two dimensions, which we
will apply to Eshelby’s method in Chapter 4 after we have re-expressed it in terms of
Muskhelishvili’'s complex potential functions for 2D elasticity. In the last part of this

chapter, we briefly addressed the phenomenon of fatigue crack closure.
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Chapter 3 Literature review

3.1 Introduction

Crack closure is a phenomenon associated with the mechanism of crack growth and
which can be shown to affect fatigue crack growth rates. Elber [7] first introduced crack
closure into fatigue crack growth analysis. After is, much research has been done
concerning the crack closure effect using experimental studies, numerical analysis,

and theoretical investigations [7, 16].

Eshelby [3] proposed the concept of a plastic ‘inclusion’ as a useful mathematical
approach to dealing with part of a material that has undergone an ‘instantaneous’
change in properties, such as happens in a phase transformed zone or a region of

plasticity.

This chapter has two main sections. It begins with a short historical overview of the
fatigue crack closure phenomenon and a brief description of the different ways of
measuring and estimating the crack closure effect. The second part of this chapter
presents Eshelby’s idea and its use to find the solution for the stress, strain and
displacement fields both inside and outside of a material inclusion assuming a

permeant linear deformation of the material in the matrix.
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3.2.1 Mechanisms and theoretical evaluation of crack closure

Elber [7, 16] was the first to discuss experimentally the phenomenon of fatigue crack
closure in the early 1970s. After this, it used widely for the explanation of the influence
of the load ratio, R, on fatigue crack growth behaviour in the near-threshold regime
[22]. Recall that the load ratio (or stress ratio), R, is defined as the ratio of minimum to
maximum load [22]. The degree of crack closure was higher at lower R [21] while it

could be negligible at higher R [22].

The closure of the crack faces, even when the external load is tensile, has been called
plasticity induced crack closure [6]. Plasticity induced crack closure is dependent on

the external load, crack length, and material yielding properties [6].

Plasticity induced crack closure has also been used to explain the crack growth
retardation subsequent to an overload (Suresh 1982), the mean stress effect (R ratio

effect), short crack behaviour, and the existence of non-propagating cracks at notches

[6].

Roughness induced crack closure mechanism has been considered by Walker and
Beever [18]. This is caused by the contact of asperities on crack faces undergoing

Mode Il displacements.

The thin layer of fillings produced by the corrosion products and oxides residing on
crack faces cause oxide induced crack closure found by Steward [19] and Ritchie et
al. [20]. The increase of threshold stress intensity factor due to oxide induced crack
closure was estimated by Suresh et al. [23].
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Other areas in which the closure concept has been successfully applied in explaining
observed crack growth behaviour are physically short fatigue cracks (where the limited
crack wake reduces closure levels relative to long cracks, e.g. James and Smith in

1983 [66].

Based on the postulated crack closure mechanisms, many models have been
suggested to estimate crack closure effects. Budiansky and Hutchinson [24]
established a theoretical approach by using Muskhelishvili's complex potentials on a
Dugdale strip-yield model in 1978, which assumes that plastic yielding would occur in
a narrow strip lying along the extension of the crack line under plane stress conditions

[25].

For the analysis and assessment of fatigue crack closure phenomena, Mirzaei and
Provan [26, 27] in 1992 proposed a rigid-insert crack closure model. This model was
designed to account for the nonlinear elastic behaviour of a fatigue crack and
estimated the combined effect of residual plastic stretches and corrosion debris on the
closure behaviour of a fatigue crack by a hypothetical rigid insertion located in an ideal
crack wake [2]. In the current work, we consider an elastic inclusion which gives more

realistic with of the behaviour.

Plenty of numerical techniques to estimate crack closure have been developed. One
of the numerical methods which deal with plasticity induced crack closure is an elastic
plastic finite element analysis to estimate the crack opening and closing stresses first
developed by Newman [28]. In the wake of Newman’s work, many researchers have

used and explained his technique to identify the sources of residual plastic deformation
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producing the plastic wake and the existence of plasticity induced crack closure under
plane strain conditions [29, 30]. Despite of the fact that finite element analysis for
plasticity induced crack closure can be used for any crack geometry and loading
condition, applying this technique to short cracks propagating under plane strain
conditions is still difficult in practice because the element size has to be small enough

to catch the small crack tip plastic zone [6].

Many researchers consider finite element analyses simulating plasticity induced
fatigue crack closure in different two-dimensional configurations under plane strain or
plane stress conditions [6], while there are a fewer efforts directed toward three-

dimensional problems [29, 30].

Newman [31, 32] developed another humerical method which is a modification of the
Dugdale strip-yield model for crack closure [25]. The model was based on the theory
of Dugdale type cracks, to estimate the crack face contact stress by calculating the

magnitude of the plastic wake left behind the crack tip.

3.2.2 Techniques for experimental measurement of fatigue crack closure

The first reported experimental results that residual crack tip plastic deformations are

left behind the crack tip was by Elber [16].
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To determine when the crack is open and therefore experiencing a stress intensity at
the tip, a wide range of experimental techniques have been applied to accurately

capture displacements in the neighbourhood of the crack tip [15].

An indirect technique which can be employed to observe crack closure was developed
by Elber [16]. This technique was based on Elber's measurements of the
displacements at a number of positions in the neighbourhood of a crack. He noted that
the variation of displacement with load, for loads below a certain level, was non-linear
and inferred that the boundary conditions on the crack must be changing with load.

This is means that the crack must be partially closed for part of the load cycle [15].

A clip gauge, sometimes referred to as an ‘Elber Gauge’, is used to measure the
variation of crack opening with load. The remote measurements of this sort show a
very gradual change from non-linear to linear behaviour [15]. A typical curve is given
in Figure 3.1 and shows the variation of displacement in the neighbourhood of a fatigue
crack with load [15]. It can be seen that the crack is partially closed in the beginning,
but it becomes fully open at a normalised load of approximately 0.4 and there is a

corresponding gradual change in specimen stiffness [10, 15, 47].
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Figure 3.1 Typical ‘compliance’ curve of displacement in the neighbourhood of a

fatigue crack with load [15]

The measuring of electrical resistance across a crack is another similar approach,
which faces similar difficulties in identifying the precise point value of the crack tip

opening load [47, 15, 17].

Other authors have suggested more direct measurements of crack closure such as the
examination of the stress, strain, or displacement field in the neighbourhood of the

crack tip in order to establish whether the crack is open [15].

The effect of specimen thickness on crack closure behaviour has been studied by
Matos and Nowell [33]. They used three methods to assess crack closure, digital
image correlation, back-face strain gauges, and crack-mouth clip gauges. In their
study, a back-face strain gauge was suggested as the most suitable technique for

determining effective crack closure for predicting crack growth rate [2].

Wei and James [34] used transmission photoelasticity methods to examine crack tip

stress fields for polycarbonate specimens.
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Pacey et al. [35] developed a mathematical model based on Muskhelishvili's complex
potential functions [13] to evaluate the wake contact forces which were thought to
affect the effective stress intensity factor range and also to describe the stress fields
around the tip of a fatigue crack experiencing crack closure. They used photoelasticity
combined with finite element methods and compliance measurements. Figure 3.2
shows the measuring of mode | stress intensity factor as closed circle, the mode |l
stress intensity factor as open circle and the theoretical mode | stress intensity factor

neglecting closure as the dashed line [35].
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Figure 3.2 The variation measuring of the stress intensity factors during the two load

cycles, (reproduced from [35])

James [36] in 1997 reviewed the potential sources of ambiguity arising from the use of
different experimental techniques including differences between compliance methods

and other systems. He also discussed the measurements obtained from the surface
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and through-thickness measurements and positioning of the technique and
disagreement on the importance and magnitude of plasticity-induced crack closure
and in addition to sensitivity of the closure behaviour to materials, geometry,

environment and test methodology [2, 12, 42].

As an important issue in developing techniques for engineering fatigue life prediction
is that of finding how a growing crack influences plastic zone size and shape. Many
analytical attempts have been proposed to estimate the role of the plastic zone such
as Irwin (1960). He took some fraction of plastic zone size added to the true crack
length to obtain an “effective” crack length. This is leads to increasing the near tip
stress field, which is inconsistent with the shielding effect of the plastic zone on the

crack-tip field [38].

More recently several works (Chen, 2000, Fett and Munz, 2003, Ayatollahi and Zakeri,
2007, Christopher et al., 2007, Aliha et al., 2009), have shown broad agreement with
Irwin (1957), and have confirmed that the T-stress is important for describing the state
of stress and strain near to the crack tip [39]. The T-stress corresponds to the second
order terms in the Williams and corresponds to a constant stress acting parallel to the

crack [2].

The work [40] argues that the CJP model as a novel experimental methodology for the
quantitative evaluation of the crack tip plastic zone size during fatigue crack growth.
The CJP model seems to provide the best prediction of the crack tip plastic zone shape

and size compared with either the Westergaard or Williams models.
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The work [41] shows that the CJP model could be extended to deal with the case of

mixed Mode | and Mode Il loading, by include an addition of a new force parameter,

F in Figure 3.3, to the model.
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Figure 3.3. Schematic idealization of the forces acting at the interface of the plastic

enclave and the surrounding elastic material in the CJP model [35].

Figure 3.4 shows the comparison of the experimental and CJP model predictions of

plastic zone area for the high R =0.6 (CT1) and low R = 0.1 (CT2) specimens and the

plastic zone area obtained for the specimen tested at low R-ratio was smaller than the

estimated value for the specimen tested at high R-ratio [40].
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Figure 3.4 Comparison between the experimental and CJP predictions of plastic zone

area, using the von Mises yield criterion [40].

3.3 Eshelby’s inclusion and cracks

Inclusion problems tackle a variety of related questions including: non elastic
constitutive equations; average elastic moduli and average thermal properties;

transformation toughening; composites; dynamic effects sliding [43].

The so-called Eshelby’s inclusion problem is to solve the stress, strain and
displacement fields both in a subdomain which undergoes a permanent (inelastic)
deformation (called the “inclusion”) and its complement (called the “matrix”) [50]. The
strain under stress-free is called the eigenstrain. Eshelby was the first to introduce the

notion of inclusion in (Eshelby, 1957) and then generalised by Mura in (Mura, 1982).
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The solution of Eshelby (1957, 1961) has contributed significantly to the study of the
effects of inhomogeneity in materials (e.g., Mura, 1987). Eshelby (1957) summarized
his idea in the following steps: consider a region of an elastic body, the inclusion, which
undergoes a change of size and shape that could be described by homogeneous strain
in the absence of the constraint of the surrounding material and he found the resulting

state of stress and strain in the inclusion and the surrounding matrix.

Eshelby solved this problem by series of conceptual steps involving cutting,
transforming and re inserting the inclusion [44]. Eshelby’s method was developed for
a single ellipsoidal inclusion in an infinite elastic body (matrix). The resulting stress
and strain in the inclusion are uniform when the inclusion undergoes a uniform stress-

free transformation strain [see 38, 44 and 45].

Rudnicki (2011) described the approach of Eshelby for determining the stress and
strain in regions in an infinite elastic body that undergoes a change of size or shape
and the approach is extended to determine the stress and strain and displacement in
regions of different elastic properties. He also discussed the relation of Eshelby’s
approach to singular solutions in elasticity and different integral forms for the solutions
[44, 46]. To cite only a few examples the interaction of two ellipsoidal inclusions
(Moschobidis and Mura 1975), the behaviour of hybrid composites (Taya and Chou
1981) and short fiber reinforced composites (Withers et al. 1989), the calculation of the
stress fields inside a non-ellipsoidal inclusion which are not uniform (Johoson et al.

1980) [51].
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In a part of the material which has undergone an ‘instantaneous’ change in properties,
such as in a phase transformed zone or a region of plasticity, Eshelby's approach
(Slaughter [48]) was proposed as a convenient mathematical approach to
understanding the influences on the applied elastic stress field of the plastic enclave

that is generated around a growing fatigue crack .

The paper [49] dealt with the relation between the inclusion ahead of a mode | crack
tip and the crack tip stress intensity factor for various inclusion shapes and moduli,
which assumed that the crack-inclusion separation, and the size of the inclusion are
small compared with the length of the crack. In this study, we will talk about the effects
elastic and plastic the crack with the inclusion next to the tip of crack in 2 dimensional

pIane stress case.

The Eshelby equivalent inclusion approach (Withers et al., 1989; Eshelby, 1957) is

used to give a theoretical basis for numerical analysis (see [49, 56, 57, 62]).

Based on Eshelby equivalent inclusion approach, Li and Duan (2002) established
similarity between a plastically deformed inclusion ahead of a crack tip and a
transformed inclusion. They demonstrated that the plastic zone around crack tip can
be identified with a transformed inclusion by means of Eshelby equivalent inclusion
which was evaluated by using the theory of transformation toughening [38]. Figure 3.4
illustrates the simulants between the transformation toughening (a) and the plastic
zone toughening (b) (see [38]). It considers on the crack tip and it does not seem to

fully tack account of the behaviour along the crack flanks.
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Figure 3.5 illustrating the similitude between the transformations toughening (a) and

the plastic zone toughening (b) (reproduced from [38]).

3.4 Concluding comments

This chapter has described the importance of the crack closure concept for the
prediction of fatigue crack growth. Numerical simulations have been used to
complement as analytical and experimental approaches for the study of fatigue crack
closure such as finite element methods and boundary element methods. There are
many issues which make finite element methods very difficult to apply, such as mesh

refinement, crack face contact, required computational effort, etc. [35].
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Plasticity induced crack closure is the only crack closure mechanism which can be
analytically modelled without involving the uncertainty of microstructural effects. Finite
element techniques and Newman’s modified Dugdale strip yield model are two

approaches to estimate plasticity induced crack closure [6].

There are several experimental methods for measuring crack closure that have been
proposed to evaluate crack closure effects in the past forty years such as direct
observation of the crack closure at the crack tip, which include for example scanning
electron microscopy, replica techniques, photography, and optical microscopy [52].
There are indirect methods, which are based on fatigue crack growth. The
Compliance-based methods include strain gauges, clip gauges, and laser
extensometer. Then the more commonly used methods because of their simplicity and

relatively low cost [2, 52].

A new four-parameter photoelastic model has been proposed by Christopher et al [14].
This model was designed to more appropriately describe the shielding effect of the
plastic zones ahead of the crack tip and along the crack wake. The model was
employed in some studies to calculate from experimental data both the stress intensity

factors and T-stress. [2].

In spite of the widely used and the important role which the plastic zone plays in the
fracture process, still there is considerable disagreement and a well-recognized
mechanical model for quantitative assessment of the amount of closure of the fracture

has not yet been established [53].
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Several experimental and theoretical works on cracks deal with the 2D (plane strain or

plane stress) problem which can be solved using Eshelby’s approach.

In this thesis, the approach of Eshelby is used as a basis for representing the
deformation due to crack closure. The approach is described in more detail in the next

chapters.
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Chapter 4 Complex potential representation of problem

4 1 Introduction

The stress field around the crack tip is one of the main factors determining the growth
of cracks in a solid. There are many methods that are employed to obtain stresses and
displacements in cracked bodies. Some of these methods are analytic ones, such as
the complex potential function method and the integral transform method and others
are numerical ones, such as the finite element method [54]. This chapter will present
the complex potential function method and will use it to analyse the stresses and

displacements around crack tips.

4.2 Method of complex potential for plane elasticity (The Kolosov-

Muskhelishvili formulas)

The complex potential function method by Kolosov-Muskhelishvili [13] is one of the
most useful mathematical methods for plane elasticity, and is used frequently for
finding the solution to two-dimensional crack problems. We will give in this section a
brief overview of the general formulation of the Kolosov-Muskhelishvili complex

potentials.

4.2.1 Complex potential representation of the Airy stress function

According to plane stress/ strain problems, the Airy stress function ®(X,, X ,) defined
as [48]
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6,,=D 5, 6,7~ ., and 0,,=-D ,,. (4.1)

The Airy stress function @ is biharmonic (0'®=0) in a region S when the body

forces are zero. Such a ® can be expressed as

d=Re{Zo(2)+¥(2)}, (4.2)

where ¢(z) and ¥(z) are analytic functions in the region S and z=X +i X, is a

complex variable with conjugate Z=X,-i X ,, see [54].

Substituting (4.2) in (4.1), we get,

o,,=Re{2¢"(2)+29' (2)¥"(2)},
6,,=Re{Z0" (2)+2p'(2)+¥"(2)}, (4.3)
6,=IM{Z¢" (@)+¥"(2)}.

One can combine the equations (4.3) to obtain the relations

T=0,,%c,,=4Re{o’}, (4.4)

and

2.=6,,-0,,+2i6 ,=2(Zp"+y"), (4.5)

where y(z)=%'(z) . These analytic functions give representations of the stresses

which satisfy the plane stress and plane strain equations.
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We now address the complex potential representation of displacements. The relation

between stresses and strains in equation (2.13) can be rewritten as

3-k

mgwéaﬁ], (46)

o= 21[e 5+

where,

3-4 forplanestrain

k=< 34 : (4.7)
——  forplanestres

Using the formula above, and equation (2.5), we get
4
61,10 = k_i(ul’l-i-u 2,2)- (4.8)

Therefore, from (4.4), we have

H(uy 1 +U,,)=( k-1 Refp’}. (4.9)

By using (4.6), we obtain

G,,70,,+216 ,=2p[u 27U 1,1+i(u 15U 2,)]: (4.10)
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and from (4.5), it follows that

ufu,,-u, iU, tu, ) =2y (4.11)

From (4.9) and (4.11) we obtain

2u uLl:Re{( k-]) 0'-Z9"-y'}, (4.12)

and

2 u,,=Re{( k-1) ¢'+Zg"+y'. (4.13)

Equating the imaginary parts of both sides of (4.11), we have

1 (U4, ) EIM{Z o +y) (4.14)

By integrating (4.12) and (4.13) with respect to X,and X, respectively, we obtain

2uu, =Re{( k-1 -z¢"+o-y}+, (X )=Ref{kp-Zg-y}+ (X ),  (4.15)

2uu, =Ref-i(k-1) - Z¢'i @-i y}+ G, (X )=Im{k 9+Zo'+y}+(,(X ),  (4.16)

Where (; and (, are an arbitrary real-valued function of X, and X, respectively.

Differentiating equation (4.15) with respect to X, we get,
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dz dz dz dz '
2uu, ,=Re{ko’ -Zo" -0’ -y’ +{ (X
nu {ke dx, ¢ dx, ¢ dx, \4 dXZ} ¢, (X))

=Refke'(i)-¢'(-)-Z¢" (I)-y'()}+ &, (X ) (4.17)
=Re{(k+1)p'(i)-Zo"(i)-v'()}+ &, (X))
=Im{-(k+1)@'+Zo"+y' ()}+ &, (X,),

and differentiating equation (4.16) with respect to X, we get,

_ ,dz _ ,dz , dz
2uu, ,=Ilm{ke X +Z¢ ™ +Q o~
1 1 1

=Im{k ¢'+29"+¢'+y' M, (X)) (4.18)
=Im{(k+1) ¢'+Z¢"+y' M, (X)).

dz '
+y' +C, (X
\del} Cz( 1)

It follows from (4.17) and (4.18) that
2u(uy , U, ,)=2IM{Ze" +y'}+ {1 (X )+E (X ). (4.19)
By comparing (4.19) with (4.14) one can see that
Gy (X)=-C, (X)=y = Lo(X J=a+yX 5 § X )=B-vX

where y,a and  are real constants. Since Re{p}=Re{o}, Im{ ¢}=-Im{ ¢} and

9=0(2)=¢(2), then equations (4.15) and (4.16) can be written as
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2p u, =Re{kp-z¢'-y},
(4.20)

2 u, =Im{-ko+29'+y}.

Writing (4.20) in complex form, we have

2n(u;-iu,)=-20"+ko-y, (4.21)

where k is defined by (4.7). Equations (4.4), (4.5), and (4.21) are the Kolosov-

Muskhelishvili formulas.

4.2.2 The complex potential representation of the components of stress and

displacements induced by point forces

4.2.2.1 The complex potential representation of the components of stress induced by

point forces

We want to know the most general expressions for the complex stress functions ¢
and vy in terms of the components of the stress o; from a point force found in section

2.4.3.

Now, from (2.114) we have

G .= -“’Fu XB _ ““F[ﬁ Xa + “SQBFy Xy _ 2““(}\’* +““)Fyxy X(x X[ﬁ
Pon( 202 2n(N 2 2n(N 2 2mp(X +2u)X
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or equivalently,

-1-20)F X, (1-2)Fx, N 0,5 (L-20)F X, E X X, X
G 4= - - :
P An(1o)x?  An(l-v)x> 4n(lo)x?  2m(lw)x*

Therefore,
_HRXHIEX, 2@V )FXT 2(Hh )FX X
011~ > >~ : - - : (4.22)
2n(N +2Wx° 2\ A2t 2n() +2u)X
and
— -uEX, tuEX, . 2(1L+7¥*)F2X23 _ 2(“"'%*)':1)( X 22 _ (4.23)

02 or 00 2@ 200k A2 2m(0 +2u

We can combine (4.22) and (4.23) to give

o v o 2GRN Qe JEXS | 2 JF X X5 2 X X
e 2n(\ +2u) x* 2n (X +2u)x* '

(4.24)

Simplifying and evaluating (4.24), we get
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2 YEXSHEXS] 200 )[F,X X 2 +F X X 2]

T=0c,,tc.,.= - -
nere 2n(\" +2u) x* 2n(\" +2u)x*
— '2(H+7‘*)[F1X13+F2X23 +F2 X2 Xf +Fl )(1)(22 ]
- 2n(\ +2) X
. ok *2) i (4.25)
— (A )X (Fx X)X, (F X, +F X))
(. +2u) x*
— '(H'l'}“*)[(F1X1+F2X2)(X12+X22)] '
a(\ +2u) x*
We rewrite the equation (4.25) as
* — 2 *
- Re{FZz}|z - i
T= ({tﬂz) { 4}|| = (;sz) Re{F—f}
s [ a2 4 (4.26)

— '(H+7‘*) Re{E}
(M +2u) z"

where z=x, +ix,,Z=x,-ix,, and F=F +iF,. By using equation (4.4), T=c,,+5,,=4Re{p'},

and from equation (4.26) we have

ne ) o F

which we can write as

ne  u+) o o F.
Re{p'}= 4n(x*+2p)Re{ 1 (4.28)
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Integrating (4.28) gives

Q—M Fin(z), (4.29)

() +2p)
or, equivalently in terms of v,
-FIn(z)
=_ = 4.30
i 8n(1-v) ( )

Subtracting (4.23) from (4.22), one obtains

- -uEX, +“F1X1_ 2(+A)F X 23 _ 2+A)F XX 22 + pEX suF X,
H 2n(M+2u)x>  2n(A+2u)x* 2n(v2u)xt 2n(A+2u)x
N 2+ )E xS N 2R, x, x [
2n(M+2u)x*  2n(+2u)x*

G,,-0

(4.31)

or equivalently,

GG = -2uF, X, +2uF X, + 2(“"'7‘*)[':1)(?":2)( 3] + 2(H+7¥*)[F X X 21": X X 22]
27 o\ +2u)x? 2 () +2u)x* 2 () +2u)x*

— -2uF, X, +2uF X, + 2(“'*'7”*)[':1)(?":2)( §+F2X 2Xi'F1X X 22]

2n(\ +2u)X° 2n(A +2u)x*
_2uR X, +2uFx; | 240 )X 2 (FX X )X 5 (Fx #F X )]
2n (N +2u)%° 2n(X +2u)x*
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- “UF X, HFX, + (u+ JI(FX +F,X 2)(X21 X g )] '

. . 4.32
(A +2u)x (. +2u)x* ( )
Notice that from equation (2.114), o,, can be calculated as
_ -uREXx, uFkx,; o,k X, 2u(\ +H)[F1X12X 2t 22 Xy
G~ * 7 8 >t : . , (4.33)
2n(\ +2u)x° 2n(L +2u)x°  2n() +2u)X 2np(x +2u)x'
or equivalently,
_ uEX,-pEX, } MO‘* +u)[FX fX ;HFX SX ]
G2 = x > : 7 . (4.34)
2n(A +2u)X Tu(h +2u)X
Thus (4.32) and (4.34) yields
* 2 2
$=6,,-0,,+2i0 = 'HF23(2+HF12(1 + (2 )I(FX }+F2X 2)4(X 17X 2)] +
(A +2w)x (L +2u)X (4.35)
i -uE X, -ukX, ey +u)[FX fX X §X 1]}
2n(\ +2u)x° au(h +2u)x* ’

and equation (4.35) can be evaluated as
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- + +i (- -
S=6,,-6,+2ic,, = HEX, “le*l i( lvlelxz HFX ) +
(A +2u)X

(PH'}“* H(FX +F,X 2)(X12'X 22)'2i (Fx 12X FFEX SX )}
(" +2u)x* '

(4.36)

Simplifying equation (4.36) yields

Y= H-FX, tRX-TFX 2'”:2XJ)+ (H"')V*){(F¥ HF X J(x 21')( 22)'2i XX Fx tFX )

(L +2u)x? (L +2u)x*
— H['Fz (X2+iX1)+F1(X1_i X 2)] +(“+7“* ){(FZ( il-F X )(X 21_)( 22_2I XX 2} (4 37)
(L +2u)x (. +2u)x* ' '

We can rewrite the equation (4.37) in terms of z as

oo W [RIDFHE], () Re(FZHY

o ) (4.38)
Factoring |z|° =z in (4.38), we obtain
s=_ b ZR-R), (u+)) Re{Fz}(zyf
n 2w | w20 |7
_w ZF_ @x) _, (@
(M +2u) 22 * (A +2p) RetFz) (zz¥ (4.39)
- b P, ) Re{Fz} =
o\ +2u) z (N +2u) zZ'
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which simplifies to

__ ok F_ () Fz#Fz
aM +2u) z (X +2u) 27

_2uzF+Q+\ ) FZ+u+) )Fz

- 2n(\ +2u) Z

_ (Bu+\)zF+u+\ )Fz

W20

(4.40)

Since equation (4.5), ¥=c,,-6,,+2i6,,=[2Z¢"(z)+2y'(z)], then it follows from (4.40)

(n+X) _F  (@u+x) F___., ,
Mz ?+ME =[2zp"(2)+2y'(2)]. (4.41)

This leads to

w’(2)=%§ : (4.42)
and

o= F (4.43)

da(M +2n) 2

Equation (4.43) after integrating twice gives
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_ -(W+p)
0(2)= ymroe Fin(2), (4.44)

and integrates (4.42) once gives

_ (Bu+)

W(Z)—M F InZ, (445)
or equivalently,
_(3-4)FInz
W(Z)_—&r(l-l)) : (4.46)

4.2.2.2 The complex potential representation of the components of displacements

induced by point forces

One can know the most general expressions for the complex stress functions ¢ and

vy in terms of the components of displacements induced by a point force as follows:

From (2.106) we can find the displacements induced by a point force,

A +3u E Ini N A XX

U=—"—"" y * 2
4 +2u)mp W X 47[14(% +2],t) X

y

103



Chapter 4
"+ T+
= IR s Rt Fan e Mg g
A0\ +2u)mp X X amp (1 +20)" X X
A +3u N+ (X12F1+X1X2F2)

1
Fln;+ >

- AN +2u)mp 4nu(k* +2u) X
- 7: +3H lml + A tu Xl(xlFlz-XZFz)_ (447)
A +2)mp X Amp (A +2u) X

Therefore we can write (4.47) as

A +3u 1, ¥+ xRefFz (4.48)

a0 a2

where Re{FZz}=x,F +x,F, and |z| =x. Similarly,

A +3 1 A+ x,Re{Fz
u,=—>—H Fin— h__X,Re{Fz} (4.49)
40 +2u)mp

|Z| 47'[]1(7»*"‘2}1) |Z|2

By using (4.48) and (4.49) one can calculate

. . e
Zu(ul'iuz):i (|:1'i|:2)|l‘]i + A - n_ RefF Z}(2X1 iX ) _
20" +2u)m 2| 2n (1 +2p) 2

Therefore,

104

Complex potential representation of problem

(4.50)



Chapter 4 Complex potential representation of problem

. k*+3u =1 A +u Fz
- " Fn=—+——""" Re 4 51
2u(u, -iu,) ( : ) In|Z| ( " ) {|Z|2 }z, (4.51)

where F=F-iF, and Z=x,-ix,. Thus by using the standard properties of the logarithm,

F._1F F
and noting that Re{;}: —2( ;+ ?Z), we can simplify equation (4.51) to

*+3u

= A+ Fz _
2020 (-FIn[Z)+——~—~ Re{ =}z

ZH(U IUQ)_ 27t(7u +2LL) (Z Z)

A +3u A+ —
—Z(X 20 (-FI n(zz)2 )+—n(k +2u) Re{; }z

S TR R S T .
200 +2ur - 2 2 2n (A" +2u)
i s (4.52)
__0+3) [FInz+FInz]+—“ € 2+F),
A0\ +2u)n an (1 +2u) 'z

Since the equation (4.21), 2u(u,-iu,)=-2p'+ko-y, then it follows from (4.52)

O Foy (4 o Fine)-, C*30 g @5

-Z¢'+ko-y=Z -
N 20 2 an(x +2u) An(x +20)

Therefore,

-+ F )= ) (W)

Y@ a2 2 An(} +2u)

Fin(2),

and
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Chapter 4 Complex potential representation of problem

(A +3u)

m FIn(Z)

v(2)=
The following section will present a classical representation of the Westergaard’s
method for developing the stress functions near to the crack tip.

4.3 Westergaard method for mode | (symmetric) problems

We consider an infinite plane with a crack along the X, -axis. We assume that the

external loads are symmetric with respect to the X, -axis, then ¢,,=0 along x,=0.

Let

y'=-20". (4.54)
Substituting (4.54) into (4.5) and solving the resulting equation, we get

6,,-0,,=Re{2(zp"-2¢")} = Re{2¢"(z-2)}
- Re{2(p"(2i)%}:Re{-4i (p"(zz—'i_z)}
=Re{-4ip"Im(z)}=Re{-4ip"x,}
=4 x,Im{¢"},

where

Refio"(2)x,}=Re{ix [ ¢, (2)+ip, (2)}=Re{ix £, (@)% ,(@T=X p ,(2)=x JIm{e"(2)}.
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Chapter 4 Complex potential representation of problem

The o,, stress can therefore be written as

26,, =4Refp'}+Re{2(Z¢"+y")}
=4Re{o'}+4x Im{ ¢},

and thus,

6, =2{Re{o’}+x Jm{ ¢'}}.

From (4.4) we have

o, =4Re{p'}-6 ,=4Re{p'}-2{Re{ ¢'Hx Im{ 0"}
=2{Re{p}x Jm{ ¢"}}.

From (4.5) we have

o,=IM{Zo"+y"}=-2x Re{¢"}.

Thus the stresses can be written as

o, =2{Re{o}x Jm{ ¢}} ,
6, =2{Re{p’}+x Jm{ ¢"}}, (4.55)

6,,=-2X,Re{o"} .
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Chapter 4 Complex potential representation of problem

The displacements are

Zuulzké1 Rep-x,Imo’,
2 (4.56)
k+1 .

ZHUZZT Ime-x,Rep'.

We define Z as a Westergaard function for Mode | problems by

z. (4.57)

Therefore,

(4.58)

S
11
N
N>
S
I
N
N

Using these equations in (4.55) and (4.56) we get the stresses that were proposed by

Westergaard as the stress singularity field at the crack tip as

c,,=ReZ-x,ImZ,
6,,=ReZ+x,ImZ, (4.59)
c,,=-X,ReZ.
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Chapter 4 Complex potential representation of problem

4.4 Westergaard method for Mode Il (sliding mode) problems

Consider an infinite plane with cracks along the X, -axis and the external loads are

anti- symmetric with respect to the X, -axis, then ¢,,=0 alongx,=0. Let

y'=-20"-z¢". (4.60)

Then the method outlined in section 4.2.1 can be used to calculate the stresses and

the displacements. The stresses are

oy, =2{Re{p'}-x Jm{ ¢},
o, =2{-Im{ 9’}-x Re{o"}}, (4.61)
6,,=2X,Re{p"}.

The displacements are

k+1 ,
2uu, =—— Rep-x,Img’,
2 (4.62)

k-1 .

2uu, :7 Ime-X,Rep'.

We define Z as a Westergaard function for Mode |l problems by
Z,=2iy'(z). (4.63)

By using (4.59) one can get,
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Chapter 4 Complex potential representation of problem

6,,=2ReZ-x,ImZ,
c,,=-ImzZ-x ,ReZ, (4.64)
G,,=X,ImZ".

4.5 The elasticity solutions by using the Westergaard function method

Consider a crack of length 2a in an infinite plate subjected to compressive forces P

and Q at x=b and assumed Q to be absent in this case.

Figure 4.1 A crack in an infinite plate subjected to compressive forces [54]

Let Z be a Westergaard function defined as

_ P /a2-12
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Chapter 4 Complex potential representation of problem

Then

- P & -t
a((t+w)-t) \ (t+w)*-a’

_P & -t

T\ (t+w)?-a2

Where z:t+w,|w| <« 1. Since w is too small, then can be considered zero. Therefore,

\/az £ _ \/ (C2)_ 7y,
2 P -

t’-a t?

It follows that

_-iP
W

Define
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Complex potential representation of problem

1
r:_Z
?=3

_1,-iP
=5’

N
2 n(z-Y)

).

Now, we would like to show that the Westergaard function gives the stresses that

satisfy the following boundary conditions.

Define analytic function y" as

Then

We can write y" as

Let w=z-t. Then

(P"(Z):E [T'

V'(2)=-2p"(2). (4.66)
1.-Pi -1 = iP
(z4)"" 2n(zty
NN |
Ve @y
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Chapter 4
Zzﬁ _ 7 P(x-;y) _ I32x-P2y ’

W afwf (< +y?)

and
-Py -Pe
Re{Z}= = )
2} n(x*+y?) w(x*+e?)
Now,

1) S S
j Pe . dx:_PSJ' dx _-eP (—1tan'1 & } =P tart é )E tafi é
) 3 (X € €ls T E T €

L (X +e T 24¢)) &

opo& ;tan'l (0 )—: tan’ (e )

P =n
=255
=P.

Since

o,,=ReZ-yimZ ,
c,,=ReZ+ylmZ ,
c,,=-YReZ,
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Chapter 4 Complex potential representation of problem

and
:£:> ':I_pz’
nZz nz
_-dp Z_-ipZ _ -ip(xy) _ -ipx-py
Z__.:_ 2~ 2 2\ 2 PN
nZ Z TC|Z| TC(X +y ) TC(X +y )
then

__ Py -px
Re(z=—2__ im{z}= — X
e{Z} O+ m{Z}= Y

2 252

Z':i_p—i_p 2_2_ Ip72 —_ 'ip(X-iy)2
nz® mz° Z

7 Al Ay
_IplX”-2ixyy’]

n(x?+y?)?
_ipx®+2xyp-ipy’

n(x*+y%)*

Therefore,

, 2xyP XPPy
REEI eyt ML gy
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Since

then

Let

Then

)

jclz dx=

-0

Complex potential representation of problem

_ o 2xyP
oy,=-YRe{Z}=-y( m)
-2xy*P

= T[(X2+y2)2 !

_j’l -2xy2P -ZPf J- X
5 n(x2+y2) s (X+y )

u=(x*+y*)* = du=2(X +y* )(2x)dx

1

1 1
2 =(+y2) = du=2# (2x)dx> 9% =xd

au’
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Chapter 4 Complex potential representation of problem

j- X dx zlj- u%du:_l8 du:_ﬁ___j: 3 du
s (C+Hy)? 45 U 4z u“% 45 ug 4;
14 1 1
=(-2>u? (X2 )’2) =
4 |, s 206°+y%) 2(8 W)

Therefore,
5 ¢ 2xy’P . _-2P
_"012 dX:I 2 Y 2 f_[ dx=0
5 5 X +y ) n o (x*y )
Since
c,,=ReZ+ylmZ
P X’ P-P
PV XPPY
n(X“+y?) T om(X+y©)
_-PY(C+y’), YP(X-y')
T[(X2+y2)2 T[(X 2+y2) 2
_ 2Py’
T[(X2 +y2)2 !
then
P 2P 2Py & dx
j%dx—j Y a2V [ OX
5 (X2 +y ) 5 (X°+y9)
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Chapter 4 Complex potential representation of problem

4
This integral I% can be done by substitution
X
3

x=y tanfd = dx=ysec0 do
x?+y?=y? tan+y *=y *(tanD+1)=y sech

X = tanp = o=tan’ (i ).
y

Now,

j dx :jyseéedG:J- do
L (XP+y%)? Y (ysedh)? Yy sech
_lp 1, &
_y3jse89 y3I1
coso
=i3 [coso de:i3 | (1*cosB) 4 _
y y 2

21,3 j (1+cos®) do.

Let

u=20 = du=2d) = de:d—zu.

Then
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Chapter 4 Complex potential representation of problem

jcosZB dezljcosu du=1 sinu=% sin®,
2 2 2

and
% [(a+cos2) d@z%{@%sinzﬂ] |
Therefore,
5 tan® (&)
I dez 5 13[6+ sin2]
5 (x“+y?) 2 tan‘l(_yﬁ)
:i{[tan'l(ﬁ)-tan-1 (f )]+1 sinz(tanlé DL sin2ah 2 )
2y° 2 y
y3{[— (“))] + Z5in2( 2)-—smz(— )
-
2y°
p 2Py ¢ dx 2Py m
J;Gzzdx_ . J-(X 24y?)? =( . )(Zyg)—'P-
Now,
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Chapter 4 Complex potential representation of problem

o,,=ReZ-yimZ
__ Py o X’ P-Py ]
n(x*+y®) T m(x*+y?)?

_Py(¢+y*) yP(X -y)

n(x*+y?)? m(x*+y?)?
_ 2PyX

n(x2+y?)?

5
One can find the integral J'cslldx as
-3

p _t 2Py |, -2Py;  Xdx
Jonde ] e Ly

. ¢ x%dx :
This integral IZ—Z)Z can be done by parts with
X

u:x,dvzzxi: du=dx, v=—2.
(x*+y?)? 2(x2+y?)

Then

j’- x%dx X |5 +j’- dx
Ly 2(x3+yR)|, L 2(xP+y?)’
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Chapter 4 Complex potential representation of problem

and
3
1¢ dx 1,1 X 1n n &
) Preierar GG o) BESCRCEY) Soi
2;£(x2+y2) 2'y yl, 2y 2 2" 2%
Hence,
j xdx _ x |5 +i dx
L+ 20 +yR)|, 4 206 +y?)
_ -0 -0 T
S oIty omzaan T oo
206°+y") 20°+y°) 2y

S ) )
I 11dX:J. -22PyX22 2 OX= -2PyJ. 2)g dzx 2~ 2P 2-8 +i I=-P,y= - 0.
6 n(x*+y?) o L(x**yH?  m 20y) 2y

-8

4.6 A new Westergaard’s function to model the shear stresses along the

crack flanks

We note here the following version of Westergaard’s function which could be used
for future work. This function models the shear stresses along the crack flanks

predicted by the CJP model.
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Chapter 4 Complex potential representation of problem

Hal

Figure 4.2 A new Westergaard’s function to model the shear stresses along the crack

flanks

We defined a new function Z as

SEERCEIE

) 4.67
ez () (e (4.67)

By evaluating this function as

/=

NER - (z-a)( t+a)]
n(ztW7-@  (z+a)(ad

:FP-t) %[In (2-0) +n( t+a) In{ z+3 I a) |

(4.68)
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Chapter 4 Complex potential representation of problem

Equation (4.67) models not only the square root singularity at the crack tip but also

the singularity associated with the point load located at y=0, x=-a,a

Let z=-a+tw= z+a=wandt-a=t=> t=t 4. Then

iP t (f +2a)
n(w-2a-t )\ w(w-2a)

[In(w-2a)+In(f +2a)-Inw-In(-t )

Now,

fw)=In(w-2a)= f(0)+f(0)( W) + f"(o) ) ().

=In(-2a)+_—1 W-i W +..,
2a

8&

and

f(t)=In(t +2a)= 1=(0)+f (0)( )+f'£0|) ® )+..

1. 1
=In(2a)+—t ~—— t* +
( )2a 8

then

iP t (f +2a)
n(w-2a-t )\ w(w-2a)

[In(w-2a)+In(f +2a)-Inw-In(-t )
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Chapter 4 Complex potential representation of problem

__ P t(f +2a) N
~ n(w-2a-t )W[In( 2a)+in(2a)-Inw-In(-t )]

Now, let a coordinate transformation on the left z=a+w - z-a=wandt-a=t-. t=t +.

Then from (4.68) we can get

iP t (f +2a)
a(w-t) | ww+2a)
_ P t (f +2a)
C(w-t) | ww+2a)

[In(w)+In(2a)-In(2a)-In(-t )

[In(w)-In(-t")]

iP t(t +2a)
a(w-t) | wiw+2a)

(—)

Let z=t+w - z-t=wandt-a=t— t=t +. Then from (4.67) one can write

7= iP U (f +2a)
~ a(w) Jw+)2-a2
= i "t(t +23) [In(t-a)+In(2a)-In(t+a)-In(a)]
(W) \/(w+t)?-a?
- P JUE423) o in(2a)in(2a)In(a)]
(W) |/ (w+t)*-a?
_ iP (Ut 2a)[I n(-a)-In(a)]
(W) \/(w+t)’-a’
P Yt 2a) In(-1)= iP it 2a)( )= P ./tlt +2a)
" a(w) J(w+t)2-a? (W) [ (w+t)? -a (W) NI

[In(t+w-a)+|n(t+a)-|n(t+w+a)-|n(a-t)]
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dt

5., jﬂ

n\/ z?-a?y zt

Let t= 2 = dt=""du
u u

Then

uzl

[¥2 a -t dtgﬁ (—du):gﬁ }/ (— Ly

\/é& 101
_Sﬁ uz-1 :SB (_d)

Since
?:Sf(z) dz:zcigRegj f
where
Res, f= ||mi U
% (n-1)! dZ"
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Naw-l, o1 Jau -1
ReSo (2 1) o - 1)|d£1[( O g )
d \/a s J)
u 0dz (1-uz)
(1-uz) (2& uw 4 @ -1(-2)
=lim( 2Va )
u-0 (1 -uzy
=zJ-1=7i
vaiu'-1 gd-1 uz-1v at
Re% (e 2 J @) " (uz- 1t

= lim [(1)”a“2]](3)“a( T

ust
z

$tz) dz=2riy Res, f
C =1

2 42

D C——
N |
—

dt= i‘“z 1(—1du) =2in[zi-\/a?-7 |

=-2nz-2in\ &’ -7

o 2 yal -t
o= dt= [2nZ+2n\/22 -]
Wz -az.J; z-t n\/Z -a?
-26 7
= 2 +26,,
7*-a°
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Complex potential representation of problem

(plnt)(x y) _ _ pxInt-ipylnt

Z=£Int
w
» > Int
w?
7=P Wt
w W |W|
Re{Z)= pxlnt
X% +y?
Im{Z)= pylnt
X2 +y?

z=P W w’ W = (PINDG Iy)°

(x*+y?)

_ -pInt[x*-2ixy-y*]

W’
_ -pInt[(x*-y*)-2ixy]
(X2 +y2)2

Re(Z}= -p(x*-y?)Int

ey
2pxyint
ey

Im{Z}=

Z,= 2 in(t+w)
T™w

(x*+y*)?

In(t+w):ln[t(1+ﬂ )]:Int+ln(1+¥ )

(1)n n+l
Z n+1)t"t

1 n+l

|p [|nt Z((n-l)-l\;\:””
|plnt

( Dw

t is a constant.

I|fJI
w
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o,,=-yReZ
[(plnt)(x )
(x*+y?)?
_ (pInt)(x*y-y*)
(x2+y2)2

Jclzdx pIntj 2)2 dx= p( )Int—p; Int

c,,=ReZ+ylmZ
_ pxint N 2pxylint
- x2+y2 Y
(x*+y?)
_ PX(X*+y?)Int+2pxy? Int
- 2..,2\?
(x +y )
_ pxX3Int+2pxy? Int+xpy’ Int
- 2,.,2\?
(x +y )
_ pX’Int+3pxy” Int
()

j’l dx jpx Int+3px¥2Int —pin tj X +3xy?
-3 -3 (X +y ) (X +y )

2

_ x° ¢ 3xy
pInt[_[(X ey ) dx+:[(x2+y

; 5 dx]

=0

Where

Complex potential representation of problem

dx
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u=x2+y* = du=2xdx
d

dx ——j%——l[lnu| == In(x +y?) =0

gy 5

o,,=~ReZ-ylmZ
_ pxint  2pxyint
X2+y2 (X2+y2)2
_ pX(x® +y?)Int-2pxy? Int
- 2
(x*+y?)
_ pXCInt+pxy’ Int-2xpy’ Int
- 2,.,2\?
(x*+y?)
_ pxX’int- pxyzlnt
(x+y?)

5
J-Glldx J~px *Int- pxyzlntd pIntJ. x3-xy? dx

L )
—pint[[ X 2dx-6 xy* _dx]
o (o
=0
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Finally, we need to verify that the stresses are consistent with a point force acting at
the origin. To do this, we can evaluate the resultant force exerted by tractions acting
on a circle enclosing the point force. Since the solid is in static equilibrium, the total
force acting on this circular region must sum to zero. Recall that the resultant force

exerted by stresses on an internal surface can be calculated as follows:

Since the traction- stress relation for plane strain/ stress is t,=c,,n,, where

ﬁ—d(;(Z ) ax, ‘e, is unit outward normal and s is the arc length. Therefore,
S S

dx,  dX,

t=0c,,—= I
M ds ds

_dX, dX,
t,=0,,——= ds O ds’

We can combine as

) ) dX . dX

t-1t,= (Gll_IGIZ)d_SZ+( G ;tlo 29751

Since

X,= 1(z+7) X, =1 i(z-z), then

2 2

1 dz dz dz d

t,-it,= E ((511IG )(_'_) (02201)( dS
1 dz 1. d’z
2'(022 611+2|012)d_8+ 2'(0 1o ZQFS
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By noting that from (4.4) and (4.5) (o,,+c,,=4Re{p'}, 6,70 ,+2ic ,72(Zp"+y') ), we get
L. dz . _, dz
t,-it,=i(Zo"+y') —+i(@'+9") —
1IG=I(Z0 )+ 0) -
By observing that

az

d _, _ —w, w4z .,
—(Z¢'+0+y)=(Zo"+y') —+(0'+9") —,
ds ds ds

Thus,
t.-it =i i(Z "+p+y)
1727 s O TOoTY

Which is a relation for components of the traction in terms of the complex stress

functions.

Now, by sitting

F=i[Zo'+o+y]

F=[ (t,-it,)ds

=[Li(zg'+y) ds
ds

=[i(Ze'+p+y)]
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-ipInz -iplnz
(p: p ,\l]: p

2n 2n

pinz N pinz plnz]
2 2n 2n

2nipk 4 p2ni +p2n|
2n 2n 2n

F=[z

I_::[ ]:Zpl, k-0

F=[ (t,-it,) ds =pi= t,=-p

4.7 Concluding comments

We have presented a brief overview of the general formulation of the Kolosov-
Muskhelishvili complex potentials. After this the complex potential representation of
the components of stress and displacements induced by point forces was reviewed.

In the end of this chapter, we have proposed a new Westergaard’s function to model

the shear stresses along the crack flanks as in Figure 4.2 predicted by the CJP model

which could be used for future work.

131



Chapter 5 Classic Eshelby’s inclusion

Chapter 5 Classic Eshelby’s inclusion

5.1 Introduction

This chapter is focused on Eshelby's technique for determining the stress,
displacement and strain in regions in an infinite elastic body that undergo a change of

size or shape.

5.2 Translation of Eshelby’s solution in terms of Muskhelishvili’'s complex
function approach to 2D elasticity

5.2.1 Eshelby’s inclusion: Stress and strain

Using Eshelby’s analysis we have found the solution for the stress, strain and
displacement fields both inside and outside the inclusion assuming the matrix is a

continuum and the inclusion is a disc (circular).

Figure 5.1 shows steps of operations used by Eshelby (1957) to solve the problem of

finding solution for stress and displacement fields.

132



Chapter 5 Classic Eshelby’s inclusion

|' / | / \ | =~

| ‘\‘“’> ’n' I)\“K?' ) |

\ /S \

\ d / \V —

o (a) Step 1 (c) Step 3
T y N
f Yy 3 ‘ = /
| ) | ?(?\I*T | F ‘,I
t

(b) Step 2 (d) Step 4

Figure 5.1: The sequence of steps of Eshelby's inclusion problem [53]

Step 1:

Remove the inclusion from the matrix (Figure 5.1 a). The inclusion is then permanently

deformed with an eigenstrain sj . No external forces are applied to either the matrix or

the inclusion since the inclusion is outside the matrix. The strain, stress and

displacement fields in the matrix and the inclusion are given by:

matrix Inclusion
& =0 g :8;

S; =0 c; =

u =0 U =€ X;
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Since the strain field €; in the inclusion is given by g; :8; , then one can give the

corresponding displacement field in the inclusion in terms of Muskhelishvili’'s complex

potential function in the following steps:
Since u, :a;xj , then we can write U; and U, as
U= X;=e X;+e X,, U,=e X Ze X +e X, (5.1)

1

which can be combined as

U-lu,=e X;te Xle Xile X, (5.2)

Noting that 8; is symmetric, and that x1=%(2+_z) and xzz-%i(z-z), gives

-l
12

: Z+Z . . : « ., Z7Z, &
ul-luzz[Tan (x #ix ,)e (?)s N
_ - (5.3)
:[Eg* _i Zg* _(Z_-Z)S* ]
2 u 12 2 22"

We can simplify the above equation to
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_(z+2k (-2 -2ize

u,-iu, =
1 2 2
— (8:.1 -8*22 -2I 8*12)Z+(£ 11+8* 22)2
2
g -¢ -2ie £ +¢
= ( 11 22 12) Z+( 11 22) _Z. (5-4)
Therefore,
1 —_ (8:1 -8*22 -2| 8*12) (8* 11+8* 22) =2
2p(uy-iu, ) =2y 5 zt 5 Z] (5.5)
=0z+pZ,
where
a:p(eil -8*22-2i e ) B=(e 11+§ pu (5.6)

Now, we calculate (p*and \|I for the displacement.

since 2u(u,-iu,)=Z(¢") +k¢ - , from (5.5) and (5.6), we obtain

Z(¢) +kg -y =oz+pz (5.7)
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To find (p* and \|/ we assume they are of the form

¢ =A+Cz, v =B+Dz+FZ (5.8)

then

(¢ Y=C,{y )=D+2Fz (5.9)

Substituting (5.8) into (5.7) gives

-CZ+k(A+CZ2)-B-D z-FZ z+pZ

= . (5.10)
= (kC-C)Z+KA-B-D z-F7Z =z+pZ.
Equating coefficients of Z gives
(kC-C)=p
Re{kC-C}:(k-l)Re{C}:B:p,(s’;1 +a*22) (5.11)
e
= Re{C}: M’
(k-1)

Since Im{KC_Z-C}=-(K+1)Im{C}=O, then

- l’I/(gll +8 22 )

= (5.12)
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By equating coefficients of Z we get

-D=0=D =—u(s; -8*22 -2ie Wl (5.13)
and
KA-B=0 = KA=B, (5.14)
F=0 (5.15)

Substituting (5.12) into the equation (5.8) leads to

¢ =A+Cz

5.16
ar (e e )z (5.16)
k 1 11 22

also by the substituting (5.13), (5.14) and (5.15) into the equation (5.8) gives

y =B+D z+F7

. (5.17)
=kA-u(sll-822-2lslz)Z.
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Step 2:

A traction T=o,n=oc n (where o =Cyg, and N is the outward normal of the

inclusion) is applied to S, (the inclusion boundary) to take the inclusion back to its

original shape and size (Figure 5.1 b). Therefore, the strain, stress and displacement

fields in the matrix and the inclusion are,

matrix inclusion

&=0 &;=6; +§ =0

0;=0 0,=Gus =G & =¢
u =0 u =0

where ¢¥ means the elastic strain of the inclusion. The stress in the inclusion can be

written as

Cuk| ?1<| , (5.18)

where

Cin = 9, (g, q 4 & )-
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Step 3:

The inclusion is inserted back to the matrix (Figure 5.1 c). There is no change in the

deformation fields in either the inclusion or the matrix from Step 2.

Step 4:

Remove the traction T on §) (Figure 5.1 d). The change from Step 3 to Step 4 is

equivalent to applying a canceling body force F=-T to the internal surface S) of the

elastic body. The strain, stress and displacement fields of the constrained field in the

matrix and the inclusion are,

matrix Inclusion

&= &=

;=0 0;=0; -0, =Cy, (] -¢, )
u = u =

Let uf(x) be the displacement field in response to body force F on S, then uic(x) is

called the constrained displacement field. Since Fj=-'l}:c5j*kr\<, then uiC can be

expressed by using the Green’s function for the constrained displacement of the elastic

body as

139



Chapter 5 Classic Eshelby’s inclusion

ur(0)=[ F )G (xx)ds(x:  (5.19)
5

From the definition of traction F=-T = J-*k n., we can write equation (5.19) as

uf ()= [ o} () 1, (X) G, () ds(x)
So

= [[0},00) N, (x)+67,() N, (X)]G,; (x,x) ds(x)
So
= [ 67, (%) dx; -0, () dx,]G (x,x)
So
We can separate this integral and write

uf (0= [ 01, () G, (xx) dx," - o}, () G, (xx)dx' - (5:20)

SO SO
Therefore,

us (x) :J‘ [G;l(x) G 1, (X,X") +G*21(X) G 12(X’X')]dx‘ 2'_[ [G* AX) G {X,X) +o £X) G 1@(’)(‘)](:1)i . (5.21)
So So

and
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US(X) =] [0614() G (X, X) +6',(X) G o x.X)]dX 7| [6'14X) G (X X) 46 X)G xX)ldX , (5.22)
So So

From (2.104) the Green’s function G; (x-X) is given by

1 (X X )(%;-X;)

G; (x-x)=C3;In ] +C,

pex”

where

I TR o U
Cam+2n)” 7 Amu(V+2u)

We rewrite the Green’s function in the complex form as follows:

L, 0ox)0x)
T

G; (z€)=C.5;In

Therefore,

1
2|

Xl_le)z

+C2( 5
|24

G, (z€)=Cyln
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G,z 0=Ciin_L +c,XeX2)"
2t 2

and

6o (20)=6 (2)=C, L) (Xa)

2]

Now, from equations (5.21) and (5.22) we can calculate

U -iug=[ [o1.0%, 08X ]G, (xX) +[o X 16 GX |G )+
S

i (J.[- G;.ldxl2+0*12dxl l] G 12(X'X') +[-G* ZQX 2+G* ZQX ].G 2§X'X') ])
S

= [ oy, +0, 8% J[G 1{xX) G (xx)]+
S

[0, 0%, 46 50X J[-G 1 X)HG L X, X)]. (5.23)

Putting in G,,,G,, and G,, into equation (5.23), we obtain
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us-iug=] [ordx, +o'x J-C In 1 o X))’
S

e " 2y
ric, KX | g v ik .o, K 00D
|Z'C| E245
+iC,In—+IiC, (x%,)" 1.
IZ*SI 2<f

Simplifying and evaluating the above expressions gives

Ui = ol dé,+o g J1C Lo D o pricx 1Y)
“ [ CI G

(XoX5) [-(x $X ) +i(x 5x )]+iC Ip i],

g i 2|

(5.24)

+| ['6*21dxlz+6*22dx' JIC,

which simplifies to

1 (X, X)) ==
C 2 (20 +
24 Lz |

0 & o
ad 2"

u; -l ug :I ['Gzldxlz -I-Glgx 1]['C 1”
K (5.25)

J.['G;1d)<24'0*22(j)('1]['c
S
Equation (5.25) rearranges to give

U; IC In| |[c511dx ,0 AX ric @X #ic Gx ]
(5.26)

CZ[-% 2 o, 0,05 )- U g 6 )
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which reduces to

g =G, I oy, 08 GO e derdl o dvly
s |z<| 2i 2 2 2
(X)) . dG-dT . dgHdC 5.27
+Czs.[0[ (Z'C) (611 2i +0,, 2 ) ( )
(XZ_X'2) (-(5*21 dC'dz +(5*22 dC"'dZ )]
(z-0) 2i 2

Simplifying equation (5.27) we get

ut-ius=C,J In 1 [GZldC'G*ndE'G*zﬂC'G* 296‘2i G 4 ]
! 2 lso |Z-C| 2i
(Xl-X;I_) G*lld(:'c*lldz'i G*lg(:-i c 192 528
e L X )+ (528)
(X2-X‘2) ( 0*210'@-0*2924 o G o 295 )]
(z0) 2i '

and hence

1 [('G;2+G*11'2i 0*12)dc+('6* 11'(; 2)dz 1
z<| 2i
(Z‘Q"'@ I( GildC'G*lle'i 0*12dC'i o 1?2 )+
2(z<) 2i
[ (Z'Q'(Z_'Q]( G*21dC'G*21dZ'i G*zﬂC'i c 296)]
2i(z<) 2i

uj -i u‘;:CIJ‘ In|
S

+C, [
S
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_ (- 022+011 2I012)d(:+( o 110 2)d€;
=C -[ |z{| [ 2i ]

+C I [ Gll(Z'C)dz;"'Gll(Z'C)dQ 011(2{)dz; )+

3 4i(z)
-03,(20)dGH (2-0)0 AL (2-0)0 -1 (200, HLH (20 6 ,0IC
4i(z4)
05 (20 +0,,(2-0)dC 03, (20)dL | 020G+ 6 20 & {2z
4z 4(z9)
+ i 0*22 (Z'a)dz'i 5*22(2'@)‘:‘2
4(z4)

-C J‘ [( 622+611 2'012)0'C+( 0116 29dc 1
|z 2i
[611 622'2i0*12](Z'C)dC+[6* 11+(; zJ@]dC
4i(z)
+ [‘611'6*22] (Z-C)dz+[-0*11+<; 252 c ﬂﬁdz
4iz9)

+C, [
S

S| T|
2oy T [In el

(ZQ 5.29
J‘ (z 'C) (5.29)

1. @,
T[] g

+C [—(z)jdg .

In following, we will need to calculate the integrals:

L L ¢ (@D @0
In—d¢, | In—d d d
[npg®lrpg® ey [og®
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Using the property of the logarithm, one can find the integral jln ﬁdg as
S
[ |nidg= [ In1-in|zfld¢=-[ In|z</dg
5 74 7 g s
=| ln[((Z-C)(Z_{))Z]dC:% [ In[z-0)z0)1de
=2 [Inz0+nGOee (5.30)

:-% [ In(z-C)dC-% [In@z0)d

1 A
= j In(z-(;)d(;-z j In(z-¢)dC.

If |¢/<|Z, then

In(z)=In[z(1-5 Y]=Inz+In(1-2 ).
Z VA

Now the integral can be calculated using the above expression as

- Syge= &
j In(z{)d@-j In[z(1 Z)]clg j Inzd;+j In(1 Z)ot. (5.31)

The Taylor series of |n(1-£) is
V4
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|n(l C) Z( l) (‘C)n+1

S e

which can be substituted into this integral to give

S (D"D™ (D™ amg
jln(l )Ct.) Iz ( +1)i1+1 z ( +1)£+1I(C)

We work on the circle [¢|=r, solet ¢=ré”,d=rie”dd then "= The

complex integral is

2n 2n
[ g =] r e rig dh=rj [ '
0 0

el(n+2)9 | r(n+2)
|(n+2)‘ (n+2)

=+ e2|(n+2): -e° ] 0,

where

e?"™2* =cos(2(n+2))+isin(2(n+2))=1+i(0)=1.

Therefore,
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S (D"D™ o (D™ g
Jinas)d =[S0 =y ] O e,

By using the preceding result, equation (5.31) becomes

j In(z0) d¢= j Infz(1-% )di= j Inz d;+ j |n(1-5)dg:o, (5.32)
VA VA

in which

j In(z) d§:|n(z)j dz;:m(z)zf riéeoezrnn(z)zf ddh

:riln(z)[ei— =rin(z)[e* -€ ]=0.

0

In a similar way we can represent the integral as

[In@)dz=] In[z(1-% Y= Inz i+ |n(1-§z)dz | (5.33)

By using Taylor series of In(1-§) we can evaluate this integral as
z
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O\ fe @™ o (D™ s
[in1->)dg IZ T cz [
(n+1)Z2 ¢ (n+1)2 (5.34)

(].)J‘C C+Z (-1 J'(C)n+ldc |C| |Z|

1)i1+1

As before we can work on the circle ‘C‘ =r, so taking CZrée and CMZr(m)ei(mw, then

dc=rie’ dd = d¢=-rie"’d and substituting these into equation (5.34) gives

2nir® _ 2ni |C|2
_—

j|n(1 2)dg =

in which

ﬂ _:ﬂbt o - " :_i2n ) _ 2nil’2

Z_[ng ZJ(;re(rle d) Zj;rde .
and

( 1)2n+1 ( 1)2n+1 x n+1).i(n+1i + 0
z(n+1)z"+1j z( +1)£+1I et (et o
(1)2n+1 (n+2)-2n ing

Lt

S 1)2n+1 (n+2)- ei (1)2n+1 r(n+2) 2|nn

Z n+1)z“+1( =n in z (n+1)2+1\ € ])=0.

0

Since
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j In(2) dE:m(z)j dE:In(z)T (-rig® oB):-riIn(z)T e d

:-riln(z)[%9 =rIn(z)[e™ -€ ]=0,

then it follows from equation (5.33) and (5.34) that

j In(zC) di= j In[z(l—% ) di= j Inz di+ j |n(1-§Z Yo

_ 2nir?
—

(5.35)

By substituting from equations (5.32) and (5.35), the equation (5.30) reduces to

| Inﬁd&;z-%[ [Inz-0dc+ [ Inz9dg)
S
o (5.36)
-1, -2nir ):(%),for r<|j.

T2 2

In a similar way the equation (5.30) can be calculated when \zl <r as
[In@Qde=[In(-¢) de+| In(l-%)d’;:Zin(r-z), (5.37)

in more detail,
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In(z«;):ln[cxé-1)]:|n[(-o<1-zZ )]:ln(-c:)+|n(1-f), 4 <, (5.38)

and

[InCo dg=[" In(-re” )(ire" )= " [In(-r)+ne” I(re" o)
=[ " In(r)(ire" do)+ " Ine” (ire" o)
=ir|n(-r)2fei9c|e+ir2feie (iolne) b (5.39)

eie o ‘
=irin(-n[— -r j 0e’ d
I 0 0

2n
=1 [ 0€" dh=-r(-2ir).
0

z
Since Taylor series of |n(1-g) is

(1) (-2 |2| <r
(n+lxn+1 ! ’

In(1-%)

U | N

1
o

n

then
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) (2
jln(l Z)di= IZ e %

(D) ()™ (n+1)
=Y e @

n=0
n+1

“(2)f @ dery, T 1) . Z) LD f gy omgg

l) ( Z)n+1

=@ O ey 0
_( Z)I r ele (rlée )d) ;( l() (i;nﬂll[ (n+1)e i(n+1p (rlée )CB
l n+l 2n o
_(z)|jde Z( )(3 r|£e d
= iz i S|
Nt (5.40)

=-2inz+ rnl[ 2 =-2iz,
i

where

e”"™ =cos(-2m)-+isin(-2nt)=1+i(0)=1.
Since
[In(z-0)d¢= [ In(z)dT, (5.41)

we can find J'In(z-q)dz as follows:
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[In@0dt= In(-x) dT+| In(l-%)dz , (5.42)
where

[InCO dl=[" In(-re” )(-ire" dh)=[ " In(-r)+Ine” |(-ire™ o)

=] In(r)(-ire™ o)+ [ " Ine” (-ire” )

2n 2n
=-irin(-r) j e d-ir j e (i0lne) b
0 0
T (5.43)
=-irn(-r)[ —| +r j 0e™ d=r j 0e™ d=r(2in).
-l 0 0

0

The Taylor series of In(l-%) gives

J.In(l )d(; J‘Z(l) (z)n+1

O
=(af ey g
_( Z)JI’ ele ( r|e|e )d’ Z( 1() -(F]Z-;mlj.“ r (n+1)e i(n+1p ( rlele )CB (544)
_ -2i0 (D" 2™, o oen
Z|Je b + HZ'I (1) (-r |Je( aet)!
. a2 2n (1) (- ZT+1 gm2p
! (-_2io Zl (n+1) il -(n 2)1
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By substituting (5.43) and (5.44) into (5.42) we get

j In(z<)di= j In(-0) dE+jln(1-§)dZ

:2i7t|(‘;|

(5.45)

Now returning to the equation (5.41), we obtain
j Nz di= j IN(zQ)dC =2inr=-2inr. (5.46)

From (5.30) we have

1 . 1 I
s{ g8 N0 [InG0 d:
(5.47)

:'_21[2in(|c;| Z)+(-2mfd|)|=inz, for|4<r.

We deduce that

inz, for|z|<r

di=<;: 2 ) 5.48
- %,for|z|>r ( )

In——
I
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We now calculate the integral j—{ using Taylor series by
5 (

s{(zﬂ CI(ZJQ)

= dg= I(z{)(—dc 2| >r

<)
z (5.49)

=[(z<) (z@z ( j de=| (z- z;)z it

Consider the circle in the complex plane: (=ré’,d=rie’d then z{=7-1€"  The

complex integral is

z
| ((Zfé))dc =] DY, =] D de| 2D~k
S
o 21
== j (z-16" )(ri’ d)+> j (z- re'e)Tf(riéece) (5.50)
n=1 o
e @ HZifm g A 2
== | [zrie" -ir*]do+ — do- | —
Z'([ ;J; ™ J; z"
= 2n . -2 2n o (n+1) 2n . n+221t
:% | e'edS-% [ d9+21—z Iz'r“l [err - e je'”eda
0 0 n= 0
_E[ﬂ _ﬁ[ezn_'_i?ir(nﬂ)(el n+2(éne n
z i, z |, & ™ i(n+1)|O 4l |n|0
ir.2 Z”.(n+1) e|(n+1)2: e0 irn+2 ei2nn e0
= (2n)+ - - [ i
z(n) g{( A [l(n+1) i(n+1)] Z*'" in in])
_ 2inr?
2z
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Now we want to calculate the integral _[ E) d¢ when ‘Zl <r. To do this, we can use

similar steps to the above as

j( cj(o dcj(o

dg, |7 <r
C(l'*)

@95 Uac—j @03 e

(5.51)

Let (=ré’ = d=rid’ o, Zﬁ-re‘ie. The complex integral then can be written as

f ((ZZ?) ac=[ 20 Pacs] @Y e
S

=(1)f (7@'1-&'1)dc+(-1)2_ | Q-E)ch

o 21

_[ zrte® (rié’ d))+_[ rerte” (rid” d)+(- 1)2] (z-re” >7|e — (ri¢” @)

n=0 o ( )
j zrie® (rid’ i)+ j re” rte’ (rid @)+
(-1)22“ [j Zir"e™ - j ™l o] (5.52)

2n 2n © 2n
=iz [ do+i [ e do+Y [(-1)Z Z'ir j €™ d+ir™z" [ '™ d]
0 0 n=1 0 0

2n

+i r'“*lz”(—_i (D)),

9 2n 2n

= 2|7rz+r|(—I +Z[( 1)z 2ir" (

0 n=0

|n6 J(n+1)0

]

0
=-2inZ.

From the above we conclude the following:
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I (Z'C) -2inzZ, |Z| <r

(Zﬁ) “2imt” 2> (5:53)
z

2

Now, we calculate I (z 2)) d¢ . Let C_E:dC_C dC. Then

_(7) 2
L e
¢z, - o Lzrtrt
_I (—de)—j C(z€) « (5.54)
_ rCz
o9z C(ﬁ)
_I cZ' I C(CZ)
For ‘Z‘<r
@ (A B
Jogyleelas  ©»
where
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1 d*t
c”l[(z 1)'016;“(C )
= M )
-1
72’

and
1

B=I

ImI(C2) o1

=[Ag+[ By
cz(c-z) e

_ X Y

=[]

=Din( ¥, )+2in( ¥)=0.

Now, we calculate j

d
2z ™

& (A B
JecaToxl o

where
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Rye 1)'dC31 ( 2)
d -1

1
cw[Ef(@)]_ [EE( 27

-1
cﬂo[Ed_c 27 co[? @

=lim ! —1
"y 7

2

and

1
B=| =
im[(c- Z)C © Z)] =

| C(CCZ) j <;+j —dg 2m( )+2m(—) 0

@D ooy & ap &
I | e
=r’Z(0)-r* (0)=0,r4 7 .

If |2 >r,then

(ZC) (27 d¢ 4 dc
e

Since
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@ A B . .. .. iy
Im_ I C_zdz;+ j Eolz;_zm( Y,)+0=2in( %),

and

IC(CZ)

then

(Z'C) d 2— 4
J.(z{) - I J. (C 2)
=r z[Zm(}/ )] r4[2ln()/ )]
=2, a

We can conclude the above as the following:

Now

160
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qus= A3 Loer 1o T L
o 4nu(x*+2u)[2izfln|2£| ERTE

X
+u I 4| I(ZQ

(o) @ 20 559

1 ¢ [ (29
ETé[dGE(Z)I(_OdC

We consider the case where ‘Z‘ <r, then

2u(US -iug)= C[ Z](lnz)+C (—)(T)( inz)+C, (—)r* (-2in2)

_-(\ +3p) A +3u ] X +u ‘e
A0 +2 )( @)+ [4(x +201) 4(x*+2u) Tz (5:59)

_ -(x" +3y) B -
A0 +2 )( )z [20: +2u) Tz

To find @, and VY, we assume they are of the form

0, =A+Cz,  y =B+Dz+FZ. (5.60)

Since 2u(us-ius)=-zp_ +k¢ -y , then

N

e :-(X*+3u) . u —
Zg, +koy, 207420 +2u)2 (Z)+(—2(x 22 T'Z. (5.61)
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Substituting (5.60) back into (5.61) gives

-Cz+k(A+C2Z)-B-Dz-F2 MZ*(zH[L 1Tz

A\ +2p) 2(\ +2p)
= (KC-C)z+kA-B-Dz-FZ =_O“,k;3”)2*(z)+[*L 1Tz
40\ +2p) 2(0 +2p)
Equating the coefficients of Z gives
(KC-C) =l T’
201 +2y)
_ T
Re{kC-C}=(k-1)Re{C}=[ —- 5.62
{ }(){}[2(x+2p)] (5.62)
~Re(C}=—H*
20 +2u)(k-1)
and
Im{kC-C}=-(k+1)Im{C}=0,
and hence
1) (5.63)

20 +2w)(k-1)

By equating the coefficients of z we get
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_D:MZ* = D:M *

; - Y, 5.64
40\ +2u) 400 +2u) ( )
and
KA-B=0 = KA=B, F=0. (5.65)
Thus,
0.=A+Cz
B Wt e T (5.66)
207 +20)(k-1) " P 200 +20) (k1)
and

v, =B+Dz+F7

R GRS DI (567)
AN +2p)

Now we consider the case where ‘Zl >r
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A +3u [_ ](inrz)
2(k+2)2| Z 0 2n(\N+2u) 2

H——

Ry

2 -iu3)=

A+ 1 -2imr A+ (0,-0,,+2i0,) 2|nr ___
*‘271(}L +2M)( T) . )+2n(7f+2u) 4 [ (z )]
A +3u o T P

T a0 +2 )( )(?) [40» w2n) 4y +2M)]T z

A A p 1

(x +24) 4 & )[—(_ )]

-\ MO

T — (¥ e ) [—(‘-—)] (5.68)

r
a2 7 g 2 4 +2

Since 2u(us-iuS)=-2p, +ko -y, then

T W) W) o

20, OV 4(}L+2u)Z Z 203+2H)T z 4(k +2H)2[ z)] (5.69)
A B _Z D
AR AN

where

— -(A +3p) Y12 B= 1 T 1

A0 +2un) T 200 +2u) ’ (5.70)
C= —OL D *'r* and D———k B sy
a(x" +2u) 4(n +2u)
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By differentiating equation (5.69) with respect to z, we obtain

9 _ d A B _Z D
—(-Zo.+ko -y )=—(—+—+C= +—
az( 9. +ko -y .) az(_Z SYC5 f)

-w ,_ B z D
= -Z(Pc_\llc:_? +(-2)C? +(_3)?

=, =20i3 = <P'c=-—12 C= <pc=—1 C, w’c=-—B +(-3)E
yi z v zZ Z
(5.71)
= y=(C+D)
¢tz 27

By differentiating equation (5.69) with respect to Z, we get

0 0o A B z D

— (- +ko - = (—+—+C—+—

57 (0 TRoy )= (o —+C— 4 )

= -L+ko,=- Co = ko= A L xle=A ke=a

5.3 Concluding comments

This chapter has focused on Eshelby's technique for determining the stress,
displacement and strain in regions in an infinite elastic body that undergo a change of
size or shape. We then translate Eshelby’s solution in terms of Muskhelishvili’s
complex function approach to 2D elasticity, which is more flexible in applications. We
will use this approach in Chapter 6 to generalize Eshelby's technique to a matrix with

a crack.
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Chapter 6 Eshelby’s inclusion with crack

6.1 Introduction

In this chapter, we calculate the displacements and stresses for an Eshelby inclusion
next to the crack-tip in the 2-dimensional plane stress case. The solution for crack body

loaded by point force acting on their face can be calculate by using superposition.

We start with computing the stress field from Eshelby’s method without a crack, as
shown in Figure 6.1. From this we compute the stress induced along the line where

the crack is to be placed.

i O

Figure 6.1 Eshelby’s inclusion without a crack.

We can then calculate the stresses induced from these forces if as they were acting
on the crack flanks, as shown in Figure 6.2.
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Figure 6.2 the stresses induced from the forces without an Eshelby’s inclusion.

Finally, Figure 6.3 shows we can subtract the two solutions to get zero stress on crack
flanks, and hence obtain the solution to the equations. The displacement can be

calculated from this via the complex potential functions.

L]

Figure 6.3 the zero stress on crack with Eshelby inclusion

At the end of this chapter, we plot these solutions for some dimensionless units just to

validate the model. To illustrate these calculation, we take R=2,c,,=-0.3, 5,,=0 and

c,,=1.
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6.2 Stresses and displacements on the crack

From the previous chapter, the stresses outside the Eshelbly inclusion can be

calculated by using the functions:

_A
(Pc__ y
z
and
B C
\Vc:-[_+_3]a
z z
where
-(A +p) C o g2 1 © 2 (\ +w)
—_— -2 B=—— + 2 _
4(}\’ +2 )(622 G11 IGlZ)r 1 2(}\‘* +2u) (622 Gll)r and C 4(}\‘ 2 )(022 Gll |612)r
Since
6,,+0,,=4Re{ ¢'}=2(¢'+¢"), (6.1)
and
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G501 +2i61,=2(Z¢"+V), (6.2)
then from (6.1) and (6.2), we get
26,,+2i6,,=2(¢"+¢' )+2(Z9"+y'), (6.3)

This implies that

Gy tioy, :(P'+a +Zo"+y'
A A - 2A B C
=—-=+Z —

Z 2

Therefore,

; 2 2 V4
A A -2A B _C
TR A7 ©4)
A A -2A B _C
CuIM e S

Since the inclusion is located in front of a crack tip, centred at(R,0) in the Cartesian
system with its origin at the crack tip, then the stress everywhere from Eshelby is

A A =, 2A B . 3C
2=Re{ —

R R R’ +(z-R)( ZR) )+ R’ + R }. (6.5)
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On the crack, if R=r +ir, and z=atib, then z-R=(a-r)+i(b-r,)=(ar)+i(0)=ar,. Therefore,

the stress on the position where the crack is to be placed from the inclusion is

op=Re{ Ay D Ty (6.6)

( rl) (&rl) (a'rl) (a'r1)2 (a'rl)

The displacements outside the inclusion can be calculated from the functions given in

Eshelby’s method as follows:

2u(u, H Uz)"Z$'+R(P'\T/

6.7
2 S 8.C ©7
Z z
Therefore,
= Rel (—) A8, (6.8)
Z z
and
_i|m{ (_)+ KA E+£}. (6.9)
2u z Z 2

Now, the displacements inside the inclusion can be calculated by using the functions
given in Eshelby’s method as follows:

¢=Az and y=Bz,

where
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A= MT p= (A 13w o
o2 (k1) AN +2u)

The displacement inside the inclusion is therefore given by

2u(u, +iu,)=-7¢"+ko-y

_ uT -
= 20\ +2) (k-1) Jrk(

pT
200 +2u)(k-1)

0430 o

)Z-——
40" +2y)

This implies that

-Tz N KT . (A +3u) Tz

u,Hu,=— p ; Z, (6.10)
A0 +20) (k1) A +20) (k1) 8(K +2u)

and hence
u,=Re{A,z+B kz-C,7}, (6.11)

and
u,=Im{ A z+B,kz-C,7}, (6.12)

where A, = '(*611"'622) , B,= (?11"'622) 01=M(0;z'011'2i012)-

40 +21)(k-1) 40 +21)(k-1) 8(\ +2u)
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6.3 The stresses and the displacements generated by a Westergaard
function, z, for mode | problems

We define a Westergaard function, Z,, for Mode | problems by

P i
Z,(t,2)= n(z-t)\/; . (6.13)

By integrating Westergaard’s function, Z,, using thus expression for ¢,, above as the
force on the crack, one can get the stress ¢,, everywhere corresponding to ¢,, along

the crack. Thus, we take

e o, |t
z:ji ~ dt, t<O0. (6.14)
Jn(zt)\Nz
. B 3C
Since, from (6.5), t)=——+—, then
( ) 622() (t-l’1)2 (t'r1)4
o ()= B +3C: B+3C
=2 ('t1'r1)2 ('tl'r1)4 (t1+l’1)2 ('[1+I’1)4’ (6.15)
and
r B 3C 1 t
Z= + Ldt,. 6.16
Gy (t1+r1>4]n(z+t1)\E : 619
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From (6.16) we start to find the integral

t, . \/E
o (t +r1) R(Z+t1) P Wz '([ (z+t))(t,+1,)? dt;. (6.17)

'-—;8

Now,

'—.8

0 Z’ftl)(t +,)* i

Using cantor integration by taking the cantor:

’Y:[e,R] _Ce+[R’e] +CR .

Therefore,

gﬁf(tl) dt,=2im Res f(t,)
" 172,

- aiaqim V2 D g,y & G

trl(t +1,)2(t, +z) . dt, (L, +1,)%(t, +2)

i d o

_Zm{( +r1) tlﬁ_rl dt (( +t1) )}

N2 (@)

2 (r,-2)? 2(z- rn) \/_ }

|\/_ (z+1) ) = -27'5\/_ n(z+r,)
(r -2)? 2|(r 2% (2)° (r 2%,
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then

BT Jt i - 271\/_ n(z+rl)]
mz gy (ZH)(E+)° nf 2 G 2%

(6.18)
- g -2 (z+r) 1
(-2 V2 (2
Let z=-u.Then
B ]2 \/E dt =B[ -1 (U+r1)
Wzo GG @) 2 ) (6.19)
—g[ -1 (-utr) 1 '
@) 2duds )
Since t,=u, then t=-u and we can write equation (6.19) as follows
j \/E dt :B[ -1 (U+r1)
Nz 3 (ZH) ()2 (u+r,)? 2\/_ Jn (u+n)?
_ -1 (-u+r) 6.20
oy 200 Jn (u)? 620
-B| -1 (t+r) 1
(rl't) 2\/7\/7( t+l’1)2
Therefore,
Re{ (t”l)J_ 1 1 = (6.21)

A AT A A
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Using a similar method to the previous integration, we can find the integral

¢ 3¢/t
£ Nz (z-t)(t-r,)* zat

That is, we calculate

chf(t) dt=2in Resf(t)
y i

_ Jte 1d o et
A e ez A (e vz

i N S1d it
=2 n(z-r)* Nz I+l r3' dts(n(z-t)\/_ 4

e —<[>(3)(5r 25 ey

1 8r2(r -7)*

)}

=[

2 (5r +1517 z-5rz +z )

(Z_rl) 8\/_I’ (r _2)4

Therefore,

0
_[ 3CV/-t _— 2 (5’ +15r7z-5r,2° +z )].

=3C
w Nz (@)’ [(Z'rl) 8z r? r2(r -2)*

Let z=-u.Then
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iy ct= (-ui - (517+15¢ (1)-51, (4)° (1))
v 8r2 (1, +u) \/_ 625)
_ 2 (5r 15r u-5r,u’ u3)
(-u-rl) 8r2 o
Therefore,
Re{ (_ui) (515 u By U)}_(ulr) (t::)“ = (6.26)
' 16r2(r +u)* Ju 1 |
From (6.16), (6.18) and (6.24), we get
2 (z+1,) +3 2 (5r2+15r7 z -5r,2°+2 )] 6.27)

=B
[(rl-z) Jzr, (-2 [(z-rl) 8\/_r (2)’

Recall that y'=-z¢", hence \|/=J.-Z(p"dz=-2(p'+(p. We now define M,N, and L by

M=¢'=17, (6.28)
2
n 1 I
N=¢"==2', (6.29)
2
and
L=g=¢' dz. (6.30)
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From (6.3), the stress generated by a Westergaard function, Z, for mode | problems
is

6, =Re( (P""a"'Z(P""'\If’}

_ (6.31)
=Re{ M+M+zN-zN}.

From (6.7), the displacement generated by a Westergaard function, Z, for mode |
problems is

2u(u, +i uz):'za"'R(P'\T/

- (6.32)
=-zM+kL+zM-L.
Therefore,
ulzzi Re{-zM+kL+ZM-L}, (6.33)
W
and
zzzi Im{-zM+KL+ZM-L} . (6.34)
n

We now plot the displacements for the case where R=0.5mm,c,;=-30 MPa, 6,,=0

and ¢,,=100MPa.

The values above were chosen to be of typical magnitudes, but the exact values
required to accurately match the model against experimental data will require further

investigation. We comment on this in Section 7.
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-4 -3 -2 -1 0 | 2 3 4

x x

Figure 6.4 The x-displacement of subtract Eshelby inclusion from displacements
generated by a Westergaard function, Z, with Lame’ constants for aluminum (

A"=53.5 GPa, i=26.6 GPa) and R=0.5mm,c,,=-30 MPa, 5,,=0 and o}, =100MPa.
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Figure 6.5 The y-displacement of subtract Eshelby inclusion from displacements

generated by a Westergaard function, Z, with Lame’ constants for aluminium

(1"=53.5 GPa, u=26.6 GPa) and R=0.5mm,s,,=-30 MPa, ¢,,=0 and ¢,,=100MPa.
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Figure 6.6 As in Figure 6.4, but with inclusion and crack highlighted

Figure 6.7 As in Figure 6.5, but with inclusion and crack highlighted
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6.4 Concluding comments

We computed the stress induced along the line where the crack is to be placed by
using the stress field from Eshelby’s method without a crack. And then calculated the
stresses induced from the forces (stress) as if they were acting on the crack flank. After
that, we got the solution with zero stress on crack flank by subtracting the two solutions.

This work includes illustrations of theses calculation using the software Maple.
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Chapter 7 Summation of concluding comments

7.1 Conclusions of thesis

In this thesis, we calculated the stresses and displacement for an Eshelby inclusion
where the matrix includes a crack. To do this we transformed Eshelby’s solution in
terms of Muskhelishvili’'s complex potential functions for 2D elasticity. We also have

developed tools to tackle more general parallels for future investigation.

We have concentrated only on one particular case where the inclusion is a disc in front
of the crack just touching the crack tip, depend on four parameters (R ,c;,, 6,,, 0;,).

Here we want to discuss the limitations and validation of this model and make

suggestions for future work.

7.2 Limitations

We have only considered a circle inclusion. It is known that plastic regain ahead of
crack tip has a non-circle shape, but the approximation of a circle is probably accurate

enough for simplified model such as we consider here an initial approximate.

We used uniform o

i but non uniform 0:]- would be more realistic.

In this model, we have not include crack flanks, but there are research works such as
[42] would suggest that closure/ shield effect is more clearly related to the behaviour

at crack tip rather than flanks.
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7.3 Validation

Visually, this model looks good for typical parameter. No external forces is applied in
the model and if we added an external forces would dominate terms from model. New

experiment for uncracked specimen being planned to investigate this in more details.

7.4 Suggestions for future work

According to the work done in this thesis, there are still some issues that could be

addressed in future work such as the following:

1. The inclusion near the crack-tip in the 2-dimensional plane stress may have various
shapes and non-linear eigenstrains. The tools for these have been developed in this
thesis.

2. This work should be validated by experimental work to quantify the effectiveness of

the model in relation to different specimen geometries and fatigue situations.

3. Once validated, the model could be used to estimate residual forces and plastic
zone size due to the crack and hence provide an alternative set of parameters to

describe fatigue crack closure.

4. Comparison of the model of the plastic region of a crack developed here with the
CJP approach. It would be interesting to see what could be understood from the

parameters of each model and how they could be related.
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5. Extend the work on Westergaad’s function in chapter 4, to define the relationship
between forces on the crack flank with the full field displacement data. Such a
relationship could then be inverted so that displacement data could be used to predict
the equivalent forces which placed along the crack flanks of a perfect crack would best

generate the full field data.

6. We have plotted the solution of this model for mode I, but could be developed for

mixed loading conditions by assuming o, # 0.
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