Novel Application of Laboratory Instrumentation Characterizes Mass Settling Dynamics of Oil-Mineral Aggregates (OMAs) and Oil-Mineral-Microbial Interactions

Ye, L

http://hdl.handle.net/10026.1/13406

10.4031/mtsj.52.6.14
Marine Technology Society Journal
Marine Technology Society

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
TECHNOLOGY CENTER OVERVIEW

Novel Application of Laboratory Instrumentation Characterizes Mass Settling Dynamics of Oil-Mineral Aggregates (OMAs) and Oil-Mineral-Microbial Interactions

AUTHORS
Leiping Ye
University of Delaware
Andrew J. Manning
University of Delaware
HR Wallingford Ltd., Coasts and Oceans Group, Wallingford, UK
University of Hull
University of Plymouth
Tian-Jian Hsu
University of Delaware
Steve Morey
Florida A&M University
Florida State University
Eric P. Chassignet
Tracy A. Ippolito
Florida State University

ABSTRACT

It is reasonable to assume that microbes played an important role in determining the eventual fate of oil spilled during the 2010 Deepwater Horizon disaster, given that microbial activities in the Gulf of Mexico are significant and diverse. However, critical gaps exist in our knowledge of how microbes influence the biodegradation and accumulation of petroleum in the water column and in marine sediments of the deep ocean and the shelf. Ultimately, this limited understanding impedes the ability to forecast the fate of future oil spills, specifically the capacity of numerical models to simulate the transport and fate of petroleum under a variety of conditions and regimes.

By synthesizing recent model developments and results from field- and laboratory-based microbial studies, the Consortium for Simulation of Oil-Microbial Interactions in the Ocean (CSOMIO) investigates (a) how microbial biodegradation influences accumulation of petroleum in the water column and in marine sediments and (b) how biodegradation can be influenced by environmental conditions and impact forecasts of potential future oil spills.

Keywords:

Laboratory Flocculation Experiments

Critical to oil-mineral-microbial interactions is a process whereby cohesive sediment particles do not behave as individual, dispersed particles but instead tend to stick together. This process is known as flocculation, and the resultant floc sizes and settling velocity are much greater than those of the individual constituent particles, but their overall floc effective density is less (e.g., Dyer & Manning, 1999; Manning & Dyer, 1999). When oil droplets are contained by flocs of cohesive sediment and/or marine snows, oil sedimentation can occur and provide an unexpected pathway in the oil budget calculation (Daly et al., 2016; Muschenheim & Lee, 2002; Passow & Ziervogel, 2016). A novel high-resolution floc video instrument originally designed to determine the spectral characteristics of flocculating cohesive sediments has, for the first time, been applied to study floc size distribution and settling dynamics of oil-mineral aggregates (OMAs). The results of this study inform the development of efficient and accurate algorithms for simulating the formation and settling of these flocs.

As part of the Consortium for Simulation of Oil-Microbial Interactions in the Ocean (CSOMIO), a series of laboratory flocculation experiments with seawater, crude oil, and cohesive sediment mixtures (mineral clay and artificial extracellular polymeric substances) have been conducted at the Center for Applied Coastal Research, University of Delaware, using the LabSFLOC-2 (the second generation of the LabSFLOC [Laboratory Spectral Flocculation Characteristics instrument; Manning, 2015], developed by Manning, 2006). In these experiments, the LabSFLOC-2 instrument, a digital video microscope and
processing package, makes it possible to obtain high-quality floc population data (e.g., individual floc size, settling velocity, density, mass), as well as supplementary individual floc information including floc porosity, floc mass, fractal dimension, floc shape, and mass settling flux. Manning et al. (2010) and Manning et al. (2017) provide further details of the floc acquisition procedures and postprocessing computations, respectively. LabSFLOC-2 provides data for many important aspects of flocculation. These floc data are necessary to comprehensively assess and characterize oil-mineral-microbial settling dynamics and to improve the parameterization (Manning & Dyer, 2007; Soulsby et al., 2013) and calibration (Baugh & Manning, 2007) of numerical models. Additionally, the digital microscope images help us better understand the visible floc structure of OMAs.

### Laboratory Experiments Utilizing the LabSFLOC-2 Instrument

Mass settling dynamics of oil-mineral flocs are observed using the LabSFLOC-2 system (Figure 1), which measures an entire floc population for each sample being assessed. LabSFLOC-2 utilizes a low intrusive 2.0-MP Grasshopper monochrome digital video camera to optically observe individual flocs (e.g., Manning & Dyer, 2002) as they settle in a 350 mm high × 100 mm square Perspex settling column. The video camera, positioned nominally 75 mm above the base of the column, views all particles in the center of the column that pass within a 1-mm depth of field, 45 mm from the Sill TZM 1560 high-magnification (nominal 5-μm pixel resolution) telecentric (maximum pixel distortion of 0.6%), 0.66 (1:1.5) magnification, F4, macro lens.

A suspension containing oil-mineral-microbial flocs is initially introduced to the LabSFLOC-2 column, while a suspension is extracted from the jar fluid using a specially modified Serological TD-EX 20°C 50-ml maximum-capacity sterile pipette. This process has proved to be minimally intrusive for flocs, relying only upon settling due to gravity and thus avoiding the need for additional fluid or turbulence transfer. The LabSFLOC-2 instrumentation is located close and adjacent to the stir jar system, as this minimizes the time needed to transfer floc samples to the LabSFLOC-2 settling chamber and any potential disruption during the subsequent floc settling process.

The camera views through an aperture in the settling column wall at a depth of 230 mm below the column water surface. It records all settling flocs/particles in the center of the column, which pass within a 1-mm focal depth of field, 45 mm (focal length) from the camera lens. The total image size is nominally 6 mm high and 8 mm wide. During sampling, a pipette is filled to produce a fluid head of 50 mm, which results in a video image control sample volume nominally of 400 mm³ (1-mm image depth and 6-mm nominal video image width, with a nominal 50-mm high suspension extracted with a modified pipette). This control volume permits the LabSFLOC-2 calculated total floc mass to be accurately mass-balanced with the nominal suspended particulate matter concentration utilized in the jar test under examination. The LabSFLOC-2 camera can view particles as small as 5 μm and as large as 8 mm. Settling velocities ranging from 0.01 to 45 mm·s⁻¹ can be measured by the LabSFLOC-2, and the system can operate within floc suspended particulate matter concentrations of a few milligrams per liter, with a practical upper operating limit of ~200 g·l⁻¹.

Settling flocs are viewed as silhouettes (to reduce image smearing) resulting from a 43 × 35 mm, homogeneous blue (470 nm), back-illumination LED panel located at the rear of the settling column. The digital floc images are captured as non-Codec compressed AVI files at a frame rate of 7.5 Hz (one frame is 0.04 s), at a resolution of 1,600 × 1,200 pixels, with an individual pixel nominally representing 5 μm (confirmed by independent

![FIGURE 1](image-url) The LabSFLOC-2 setup on the desk beside the stir jar system for real-time samplings (photo provided by Prof. A. J. Manning).
FIGURE 2
Sample from an oil-bentonite case. The left plot shows the floc size and settling velocity scatters of each calculated floc. The three diagonal lines present contours of Stokes settling velocity calculated with a constant effective density (i.e., floc bulk density minus water density): pink = 1,600 kg·m⁻³ (equivalent to a quartz particle), green = 160 kg·m⁻³, and red = 16 kg·m⁻³. The right image is the generated OMAs as seen by the digital microscope camera (approximately ×40).

30 and 700 μm, and settling velocities spanned 0.3–10 mm·s⁻¹. The plot (Figure 2, left) shows a significant portion of the floc population (e.g., Figure 2, right) but also reveals all other essential quantitative floc properties. The uncompressed images are then analyzed with MATLAB software routines. During postprocessing, the HR Wallingford Ltd. DigiFloc software version 1.0 (Benson & Manning, 2013) and JavaScript can be used to semiautomatically process the digital recording image stack to be used to semiautomatically process the digital recording image stack to calibrate a given modeling framework for oil-sediment-microbial interactions.

Acknowledgments
This research was made possible by a grant from the Gulf of Mexico Research Initiative to CSOMIO. Data are publicly available through the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC) at https://data.gulfresearchinitiative.org.

Corresponding Author:
Leiping Ye
Center for Applied Coastal Research, University of Delaware
259 Academy Street, Room 205
Newark, DE 19716
Email: lye@udel.edu

References