Modern seawater acidification: the response of foraminifera to high-CO2 conditions in the Mediterranean Sea

B.B. Dias, M.B. Hart, C.W. Smart and J.M. Hall-Spencer

doi:10.1144/0016-76492010-050
Modern seawater acidification: the response of foraminifera to high-CO₂ conditions in the Mediterranean Sea

B. B. DIAS¹, M. B. HART²*, C. W. SMART² & J. M. HALL-SPENCER³

¹Laboratório de Oceanografia Costeira, Departamento de Geociências, CFH Universidade Federal de Santa Catarina, Florianópolis-SC, Brazil 88040-900
²School of Geography, Earth & Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
³School of Marine Science & Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK

*Corresponding author (e-mail: mhart@plymouth.ac.uk)

The seas around the island of Ischia (Italy) have a lowered pH as a result of volcanic gas vents that emit carbon dioxide from the sea floor at ambient seawater temperatures. These areas of acidified seawater provide natural laboratories in which to study the long-term biological response to rising CO₂ levels. Benthic foraminifera (single-celled protists) are particularly interesting as they have short life histories, are environmentally sensitive and have an excellent fossil record. Here, we examine changes in foraminiferal assemblages along pH gradients at CO₂ vents on the coast of Ischia and show that the foraminiferal distribution, diversity and nature of the fauna change markedly in the living assemblages as pH decreases.

Samples and methods. We have studied the assemblages of foraminifera from samples collected in the shallow waters around Ischia. We used a trowel to collect 1 cm deep 200 ml surface sediment samples at 2 m depth from areas with mean ambient pH levels of 8.14, 7.87, 7.83, 7.09 and 6.57. The sediment samples were collected by diving, and they were stored in buffered formalin, washed on a 63 μm sieve, stained with Rose Bengal (to distinguish live from dead individuals), re-washed and dried at 40°C. Normal micropalaeontological dry sieving and counting techniques were employed. The foraminifera were identified (in the first instance using Cimerman & Langer 1991) and imaged using a JEOL 5600 scanning electron microscope with a digital capture system.

The living assemblages from the sea-floor areas with a ‘normal’ pH of c. 8.14 contain a range of taxa dominated by miliolids, as would be expected in a shallow-water Mediterranean environment with a salinity of 38‰ (Murray 2006). The dominant taxa are Elphidium sp. cf. E. advenum, Triloculina tricarinata, Pyrgo sp., Milionella elongata and Peneroplis planatus (Fig. 2). Samples (S2 and N2 in Fig. 1) with lowered pH (7.87–7.83) contain Millammina fusca, Trochammina inflata, Ammonia tepida and Reophax sp. Samples (S3 and N3 in Fig. 1) comprising 90.1–95.3% CO₂, 3.2–6.6% N₂, 0.6–0.8% O₂, 0.08–0.1% Ar and 0.2–0.8% CH₄ (no sulphur). The salinity of the water (38‰) and total alkalinity (2.5 mequiv. kg⁻¹) are uniform between all the sampling stations and the annual temperature range is 13–25°C (Hall-Spencer et al. 2008).

Fig. 1. Location of Ischia and sampling locations on the Castello Aragonese. Samples were collected from sites on traverses undertaken both north and south of the bridge and the foraminiferal assemblages were compared.
from areas with the highest CO₂ levels (mean pH 7.09–6.57) contain (at a pH of 7.6) an impoverished assemblage of agglutinated foraminifera that includes *Trochammina inflata*, *Miliammina fusca*, *Textularia* sp. cf. *T. bocki* and *Ammoglobigerina globigeriniformis*.

Impact of acidification. The reduction of the foraminiferal diversity (and abundance) mirrors that recorded for macrobenthic calcifying organisms (Hall-Spencer *et al.* 2008; Martin *et al.* 2008). Figure 3 shows that diversity falls from 24 species to four species from the normal marine samples towards the areas with high CO₂ levels. The foraminiferal assemblage also shifts from one dominated by calcareous forms to one dominated by agglutinated taxa within a distance of <200 m as a result of the acidification of the water by CO₂ with no other measurable gradients; depth, salinity, temperature, granulometry and light levels were similar across all sites (Hall-Spencer *et al.* 2008). The change in the assemblages is illustrated by use of the triangular diagram developed by Murray for the investigation of foraminiferal ecology (Murray 1991a, pp. 232–244; Murray 1991b). The samples from Ischia with normal pH are seen to plot in the hypersaline field (dominated by miliolids), but with reducing pH the data points migrate towards the sector with 100% agglutinated (textulariid) taxa (Fig. 4).

Implications for the fossil record. Samples with c. 100% agglutinated assemblages of foraminifera are well known from the geological record (Scott *et al.* 1983; Jones 1988; Charnock & Jones 1990; Czarniecki 1993) and there has been much debate as to whether these are primary (a response to the environment) or secondary (the result of dissolution during taphonomy or diagenesis) (see Hart 1983, pp. 251–263, fig. 3). In the 1990s Alve and Murray conducted a series of acidification experiments to test the fate of a ‘normal’ foraminiferal assemblage when subjected to treatment with weak acid (Murray 1989, 2006; Alve & Murray 1994, 1995; Murray & Alve 1994, 1999a,b, 2000). The assem-
blages generated (acid-treated assemblages or ATAs) by Alve & Murray (1995) were, not surprisingly, composed of 100% agglutinated taxa lacking calcareous cement. In the case of the samples from Ischia, the change from a calcareous-dominated assemblage (75%) to one with no calcareous taxa appears to be entirely due to changing pH and not post-death acidification during burial and diagenesis. In another example of the dominance of agglutinated taxa in an assemblage (Murray et al. 2003) there was a restriction caused by depleted levels of dissolved oxygen in the water column (though not anoxia) and pH was not recorded.

The Palaeocene–Eocene Thermal Maximum (PETM) is one of the most significant events in the Cenozoic and there is a body of evidence to suggest that there was a period of ocean acidification, which, in turn, affected the marine isotope record that is based on benthic foraminifera (Spero et al. 1997; Zachos et al. 2005; Pagani et al. 2006). The data from Ischia certainly confirm that a change in pH could cause a marked change in the benthic assemblage and even 'extinction' from a geological succession (Speijer et al. 1996; Zachos et al. 2005; Kaiho et al. 2006; Giusberti et al. 2009). Nguyen et al. (2009) have recently reported on dissolution experiments (using water with a pH value as low as 6.6) aimed at understanding the events during the PETM. The data from Ischia, however, provide information on the pH conditions under which the living assemblage is affected, rather than providing information on post-mortem dissolution. Presence or absence of foraminifera at the PETM must be a combination of both a biological restriction and a diagenetic impact.

Summary. The living (and dead) foraminiferal assemblages showed significant changes resulting from CO₂ acidification of the shallow waters around Ischia. The assemblages in normal conditions (pH 8.2–8.14) were dominated by calcareous forms including abundant miliolids (Triloculina, Pyrgo, Miliolinella, Quinqueloculina and Peneroplis). The most impoverished assemblages (pH 7.6) were all agglutinated species of Trochammina, Miliammina, Textularia and Ammolobigerina. This work confirms that, in open-water marine conditions, foraminifera are sensitive to the effects of ocean acidification, thereby indicating that rising levels of atmospheric pCO₂ may cause significant changes in these assemblages. It also confirms that changes in pH could have caused the extinctions recorded at events such as the PETM.

Appendix. Foraminifera recorded in the samples from Ischia. The original author names and dates are given (for references, see Cimerman & Langer 1991).

Normal pH 8.2–8.14

- Ammonia inflata (Seguenza 1862); Brizalina sp.; Cibicides advenum (d’Orbigny 1839); Cibicides refugens Montfort 1808; Cycloforina tenuicollis (Wiesner 1923); Elphidium aculeatum (d’Orbigny 1846); Elphidium sp. cf. E. advenum (Cushman 1922); Lepidodeuteramina sp.; Massilina gualtieriana (d’Orbigny 1839); Miliolinella elongata Kruit 1955; Miliolinella labiosa (d’Orbigny 1839); Parrina bradyi (Millett 1898); Peneroplis pertusus (Forskål 1775); Peneroplis planatus (Fichtel & Moll 1798); Planorbulina mediterranensis d’Orbigny 1826; Pyrgo sp.; Quinqueloculina berhelotiana d’Orbigny 1839; Quinqueloculina jugosa Cushman 1944; Quinqueloculina seminula (Linné 1758); Rosalina vilardeboana d’Orbigny 1839; Triloculina tricarinata d’Orbigny 1826; Triloculina sp.

Medium pH 7.8

- Ammonia tepida (Cushman 1926); Miliammina fusca (Brady 1870); Reophax sp.; Trochammina inflata (Montagu 1803).
Low pH 7.6

Anomalocarcinoides globigeriformis (Parker & Jones 1865);
Miliammina fusca (Brady 1870); Textularia sp. cf. T. bocki
Höglund 1947; Trochammina inflata (Montagu 1803).

B.B.D. acknowledges the financial assistance of the British Council and
the University of Plymouth exchange agreement with the Universidade
Federal de Santa Catarina. This work is a contribution to the ‘European
Project on Ocean Acidification’ (EPOCA), which received funding from
the European Community’s Seventh Framework Programme (FP7/2007–
2013) under grant agreement 211384. The authors thank J. Murray for his
sage advice and for commenting on an early draft of this paper. This
study was facilitated by the UoP Brazilian Connections (UBC) and the
INYS grant of the British Council held by Dr Petra-Manuela M.
Schwerer.

References

ALVE, E. & MURRAY, J.W. 1995. Experiments to determine the origin and
paleoenvironmental significance of agglutinated foraminiferal assemblages.
First International Workshop on Agglutinated Foraminifera, Krakow, Po-
land, September 12–19, 1993. Grzybowski Foundation Special Publication, 3,
1–11.
changes from carbon dioxide emissions to the atmosphere and ocean.
Proceedings of the National Academy of Sciences, 102, 183–197.
changes from carbon dioxide emissions to the atmosphere and ocean.
Proceedings of the National Academy of Sciences, 102, 183–197.
CHARNOCK, M.A. & JONES, E.W. 1990. Agglutinated foraminifera from the
Palaeozone of the North Sea. In: HEMLEBEN, C., KAMINSKI, M.A., KUHNT,
W. & SCOTT, D.B. (eds) Palaeoecology, Biostratigraphy and Taxonomy of
Agglutinated Foraminifera. NATO, ASI Series, C-327, 139–244.
akademija znanosti in umetnosti, Ljubljana.
CZARNECKI, S. 1993. Grzybowski and his school: the beginnings of applied
micropaleontology in Poland at the turn of the 19th and 20th centuries. In:
Micropaleontology: the School of Jerzy Grzybowski. Grzybowski Foundation
FEELY, R.A., SABINE, C.L., LEI, K., BERELSON, W., KLEYPAS, J., FABRY, V.J.
& MILLERO, F.J. 2004. Impact of anthropogenic CO2 on the CaCO3 system in
FINDLAY, H.S., WOOD, H.L., KENDALL, M.A., SPEICHER, J.J., TWITCHETT, R.J.
& WIDESCHEIM, S. 2009. Calcification, a physiological process to be considered
in the context of the whole organism. Biogeosciences Discussions, 6, 2267–
2284.
the sea floor during the Paleocene–Eocene Thermal Maximum: evidence from
the benthic foraminifera at Contessa Road, Italy. Marine Micropaleontology, 70,
carbon dioxide vents show ecosystem effects of ocean acidification. Nature,
454, 96–99, doi:10.1038/nature07051.
HART, M.B. 1983. Some thoughts on the ecology (and palaeoecology) of the
Arenaceous Foraminifera, 7–9 September 1981. Institut für Kontinentaltsokk-
ekundlersdorfske, Trondheim, Publication, 108, 251–263.
Group I Contribution to the Fourth Assessment Report of IPCC. Cambridge
JONES, G.D. 1988. A palaeoecological model of late Palaeocene ‘Flysch-type’
agglutinated foraminifera using the paleoslope transect approach. Viking
Grabens, North Sea. Abhandlungen der Geologischen Bundesanstalt, 41,
143–153.

Received 29 March 2010; revised typescript accepted 19 May 2010.