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Highlights 

Ultrasound stimulation exerts regionally specific neural effects in primates 

It can be used to alter activity even in subcortical and deep cortical areas 

After stimulation activity in a brain area is less related to the rest of its network 

The observed offline effects were not mediated by auditory artefact.  

 

In Brief 

Ultrasound can be used transcranially to modulate activity in deep brain areas.  The effects are 

specific to the sonicated brain region, last for more than one hour and are not due to an auditory 

artefact. 
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Summary 

The causal role of an area within a neural network can be determined by interfering with its 

activity and measuring the impact. Many current reversible manipulation techniques have 

limitations preventing their focal application particularly in deep areas of the primate brain. Here 

we demonstrate a transcranial focused ultrasound stimulation (TUS) protocol that manipulates 

activity even in deep brain areas: a subcortical brain structure, the amygdala (experiment 1), and a 

deep cortical region, anterior cingulate cortex (ACC, experiment 2), in macaques. TUS 

neuromodulatory effects were measured by examining relationships between activity in each area 

and the rest of the brain using functional magnetic resonance imaging (fMRI). In control conditions 

without sonication, activity in a given area is related to activity in interconnected regions but such 

relationships are reduced after sonication, specifically for the targeted areas. Dissociable and focal 

effects on neural activity could not be explained by auditory confounds. 
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INTRODUCTION 

To establish the functional role of a brain area it is necessary to examine the impact of disrupting or 

altering its activity. It has recently been proposed that this might be accomplished with low-intensity 

transcranial focused ultrasound stimulation (TUS) (Tufail et al., 2011; King et al., 2013; Yoo et al., 

2011).  When used over the frontal eye field in macaques, TUS leads to latency change during 

voluntary saccades (Deffieux et al., 2013). Comparatively little, however, is known about TUS’s 

impact on neural activity and if its effects persist after the stimulation has terminated. We show 

here that in the macaque (Macaca mulatta) TUS modulates neural activity and does so even in 

subcortical nuclei such as the amygdala and deep cortical regions such as anterior cingulate cortex 

(ACC).   Moreover, we demonstrate a protocol that exerts an “offline” effect that lasts for an 

extended period of tens of minutes after an initial stimulation period of 40 s.  This extended period 

of action is important because it means that its neural effect substantially outlasts any potential 

direct acoustic or somatosensory effects that might occur during the stimulation period itself (Guo 

et al., 2018; Sato et al., 2018). We also confirm this by showing that the stimulation protocol was not 

associated with any similarly sustained impact on the activity of the auditory system.  

In addition we demonstrate that a considerable degree of focality is possible with TUS.  The 

peak and extent of the TUS neuromodulatory effect closely matched those of the ultrasonic intensity 

as estimated by simulations of the acoustic wave propagation. When TUS is applied to amygdala its 

impact is most apparent in amygdala rather than in more distal regions or those between the 

stimulation cone and the target area.  The same is true of ACC TUS; its impact is most apparent in 

ACC where the acoustic intensity is highest. The focal impact of offline TUS in deep brain structures 

may underlie the specific patterns of behavioral impairment recently reported when the same 

protocol was used in awake behaving animals (Fouragnan et al. BioRXiv). 

 

RESULTS 

Stimulation of deep brain structure and resting-state fMRI recording 

On each session of TUS application, a 40 s train of pulsed ultrasound (250 kHz) comprising 30 ms 

bursts of ultrasound every 100 ms was directed to the target brain region using a single-element 

transducer in conjunction with a region-specific coupling cone filled with degassed water. To control 

for any confounds resulting from concomitant ultrasound stimulation and neural signal recording 

(Guo et al., 2018; Sato et al., 2018), recordings of neural activity only begun approximately 30 

minutes after the end of TUS application when any potential auditory or somatosensory effects of 

stimulation were dissipated.  We therefore refer to this stimulation protocol as an “offline” protocol. 
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 Frameless stereotaxic neuronavigation was used to position the transducer over the target 

brain area taking into consideration the focal depth of the sonication (fig.1; experiment 1: amygdala 

n=4; experiment 2: ACC n=3; relatively deep brain regions known to be interconnected and co-active 

during similar cognitive processes such as social cognition (Munuera et al., 2018; Noonan et al., 

2014).  A single train was applied sequentially to each of the more laterally situated amygdalae, in 

experiment 1 and to the midline structure, ACC, in experiment 2.  

The impact of TUS was determined by examining brain activity over an 80 minute period 

starting approximately 30 minutes after the 40 s stimulation train began (Supplementary Material). 

Activity was recorded not just from the stimulated site but from across the entire brain using 

functional MRI (fMRI).  FMRI data from the stimulated animals was compared with data from an 

additional group of control individuals (n=9) that had received no TUS. Note that depth of 

anaesthesia and the delay between sedation induction and data acquisition were similar between 

the TUS and the control groups (0.7-0.8% and 0.7-1% range of expired isoflurane concentration, 1.53 

and 2.38 hours, respectively; Supplementary Material).  FMRI data were acquired at 3T under 

isoflurane anesthesia and preprocessed using established tools and protocols (Verhagen et al., 

BioRXiv; Supplementary Material). The anesthesia protocol has previously been shown to preserve 

regional functional connectivity measurable with fMRI (Sallet et al., 2013; Neubert et al., 2015). 

Although the blood oxygen level dependent (BOLD) signal recorded with fMRI does not 

provide an absolute measure of activity it does provide a relative measure of activity change in 

relation to external events or activity recorded from other brain areas.  This means that we cannot 

easily use BOLD to capture a measure such as activity in a brain area averaged over time.  However, 

what we can do is to examine how BOLD responses in one area, such as the one that we are 

sonicating, relate to BOLD in another area using approaches similar to those employed previously 

(Sallet et al., 2013; Neubert et al., 2015; Vincent et al., 2007; Margulies et al., 2016; Margulies et al., 

2009; Ghahremani et al., 2017; Mars et al., 2013; Shen, 2015; Shen et al., 2015; Hutchison et al., 

2012). 

Even at rest in the control state, BOLD activity in one area is correlated with BOLD activity in 

other areas and such relationships are most prominent when the areas are monosynaptically 

connected, although some residual connectivity is mediated by indirect connections (O’Reilly et al., 

2013).  The pattern of activity coupling for any given area reflects its unique constellation of 

projections and interactions, sometimes called its “connectivity fingerprint” (Passingham et al., 

2002). 

 

Focal effects of TUS on subcortical neural activity in the amygdala 
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To examine the spatial specificity of TUS effects and to investigate the capacity of TUS to stimulate 

subcortical structures we investigated its effects on the coupling of amygdala activity with activity in 

other brain areas.  

Independently of the nature of the mechanisms underlying TUS (see Dallapiazza et al., 2018; 

Fomenko et al., 2018; Kubanek, 2018; Tyler et al., 2018), if amygdala TUS affects activity in amygdala 

in a specific manner then what we should see is that the normal relationship seen at rest between 

the activity in amygdala and activity elsewhere will change. This does not mean that activity induced 

by TUS is diffused across the brain or that it is induced in one area and then “spreads” to others. It 

means simply that the relationship between activity in one area and another is changing. 

Measurements of activity throughout any area of tissue that is similarly affected by the TUS may 

become more highly correlated with one another.  However, if the stimulated tissue in the amygdala 

becomes less responsive to other inputs from elsewhere in the brain then the relationship between 

amygdala activity and elsewhere will decrease. 

In the control state, the relationship between activity in amygdala and elsewhere suggests 

the amygdala is influenced by activity in other nodes of the network it is part of and vice versa. In 

controls, amygdala activity is coupled with activity in cingulate, ventral, and orbitofrontal cortex, 

striatum, and the anterior temporal lobe (figs. 2a,2g).  In order to make a statistical comparison of 

the functional coupling of the amygdala in the control and amygdala TUS conditions it is problematic 

to compare coupling at each and every other point in the brain because there is a risk of false 

positive effects if multiple comparisons are made.  Given the limited sample sizes possible with non-

human primate experiments, however, there is a risk of false negative results if stringent correction 

for multiple comparisons is undertaken at the whole-brain level.  Indeed, here we avoid these 

pitfalls and reproduce whole-brain functional connectivity maps unthresholded to report on the full 

extent of the effects. Importantly, statistical inference was drawn on a limited set of regions beyond 

the amygdala known to be interconnected with macaque amygdala from anatomical tracing studies 

(Amaral and Price, 1984) and to exhibit, again in macaques, activity coupling with the amygdala 

under anesthesia (Neubert et al., 2015).  An additional consideration was that some of the areas 

were connected to (Van Hoesen et al., 1993) and exhibited activity coupling with (Neubert et al., 

2015) ACC (the focus of the next experiment).  Finally some areas, such as primary motor cortex 

(M1) and posterior intraparietal sulcus (pIPS) were chosen because, by contrast, they have limited 

connections and coupling with amygdala or ACC.  The specific ROI locations were based on previous 

studies of resting state activity coupling in the macaque (Neubert et al., 2015; Neubert et al., 2014; 

Sallet et al., 2013).  Rather than examining activity coupling between amygdala and each of these 

ROIs in turn (and risking potential false positive results), we compared the overall pattern or 
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“fingerprint” of coupling using the method devised by Mars and colleagues (Mars et al., 2016; 

Verhagen et al., BioRxiv); non-parametric permutation tests were performed on cosine similarity 

metrics summarizing pairs of fingerprints (amygdala TUS versus control). 

The amygdala’s activity coupling was significantly changed after amygdala TUS (non-

parametric permutation test, p = 0.0020; figs. 2b,2g). A whole-brain quantitative analysis revealed 

that this effect of amygdala TUS was most apparent in the amygdala, and not anywhere else in the 

brain (fig.3a). 

A second way to establish the specificity of TUS effects within the network is to examine 

whether the amygdala connectivity effects seen after amygdala TUS are found after ACC TUS.  This 

was not the case; ACC TUS left most of amygdala’s coupling pattern unaffected (non-parametric 

permutation test, p = 0.1346; figs.2c,2g) although not surprisingly ACC TUS led to alteration in 

amygdala’s coupling with ACC.  

Decrements in functional connectivity can reflect either a decrement in the coupling 

between otherwise stable neural signals, or a decrement in amplitude of the coupled neural signals 

(in the context of other signals and noise), or an increment in unstructured noise levels (Duff et al., 

2018).  When we examined the variance of the BOLD signal - a proxy for both the signal amplitude 

and the noise level - it was clear that there was little difference in the control state and after either 

amygdala or ACC TUS. This might suggest that TUS did not induce gross changes in signal amplitude 

or noise level, but rather more specific changes in signal coupling. 

Finally, to further establish the nature of amygdala TUS effects within the network we 

investigated the activity coupling patterns of five further control areas.  We investigated three 

regions adjacent to the amygdala and found their functional connectivity was unaltered (fig.3b). We 

also examined an area with a very distinct constellation of projections – ventral premotor area F5c – 

and again found no change (fig. S1).  Similarly, below, we explain additional control analyses that 

confirmed that the TUS effect could not have been mediated via auditory cortex.  

 

Focal effects of TUS on deep cortical neural activity in anterior cingulate cortex (ACC) 

To examine the specificity of TUS effects further and to investigate the capacity of TUS to stimulate 

deep cortical structures we investigated the effects of ACC TUS on ACC activity. In control animals at 

rest ACC activity was coupled with activity in strongly connected areas: dorsal, lateral, and orbital 

prefrontal cortex (PFC), frontal pole, mid and posterior cingulate (figs. 2d,2h). After ACC TUS the ACC 

coupling pattern was altered (non-parametric permutation test, p = 0.0210; fig.2f,2h).  A 

parsimonious interpretation is that normally the activity that arises in ACC is a function of the 

activity in the areas that project to it, but this is no longer the case when ACC’s activity is artificially 



8 

driven or diminished by TUS.  Because these interactions with other areas determine the 

information ACC receives from elsewhere in the brain and the influence it exerts over other areas, 

ACC TUS should alter ACC’s computation and induce specific changes in behavior (Fouragnan et al., 

BioRXiv). 

Similar to the analyses of spatial extent of amygdala TUS effects, we quantified the change in 

coupling induced by ACC TUS not only in ACC itself, but for every point in the brain. This analysis 

revealed that ACC TUS affected primarily the ACC. 

The specificity and selectivity of the effects are further underscored by the results observed 

when mapping the coupling pattern of areas interconnected with the stimulated ACC region.  First, 

we examined the activity coupling pattern of the amygdala – an area with which ACC is 

monosynaptically interconnected (Amaral and Price, 1984; Van Hoesen et al., 1993) and functionally 

coupled  (Neubert et al., 2015).  Not surprisingly, there was some evidence that amygdala-ACC 

coupling had changed as a function of ACC TUS, as had coupling with a third area – caudal 

orbitofrontal cortex – with which both ACC and amygdala are strongly interconnected.  However, 

other aspects of the amygdala’s coupling pattern were relatively unaltered by ACC TUS; although 

there was a trend in the non-parametric permutation test for amygdala connectivity to change after 

ACC TUS (p = 0.0744; figs. 2c,2h) it was clear that there was a significant difference between ACC and 

amygdala TUS effects (non-parametric permutation test, p = 0.0428). 

Just as amygdala TUS did not affect the connectional profile of F5c, a region outside the 

interconnected network of the stimulated areas, ACC TUS also did not affect F5c’s coupling (fig.S1). 

Again, below, we explain additional control analyses that confirmed that the TUS effect could not 

have been mediated via the auditory cortex.  

The spatial and connectional specificity of the observed effects make it unlikely that the TUS 

induced modulations were mediated by general physiological effects, such as those related to 

anesthesia level and duration.  Nonetheless, while the anesthesia levels as indexed by expired 

isoflurane concentrations were well matched between conditions (see Supplementary Materials), 

the delay between sedation and data collection was on average slightly longer in the control 

sessions (2.38h) than the amygdala TUS (2.00h; versus control: F(1,34)=2.7654, p=0.10552) and ACC 

TUS (1.44h; versus control: F(1,31)=9.5537, p=0.0041946).  However, despite differences in the 

effects of ACC and amygdala TUS on functional connectivity, amygdala and ACC TUS sessions were 

very similar in duration (F(1,19)=2.6863, p=0.11767).  Furthermore, there were no differences in any 

measurements of physiological parameters indexing the depth of anesthesia including expired 

isoflurane (F(1.41)=0.37451, p=0.68995), heart rate (F(1,41)=1.8382, p=0.17198), and respiration 

rate (F(1,41)=0.032232, p=0.96831) in control, amygdala, and ACC sessions. A final empirical 
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argument against the possibility that TUS effects were confounded with differences in duration 

under anesthesia at the time of scanning is that even though scanning occurred slightly later after 

the onset of anesthesia in the control sessions, the TUS effects on functional connectivity did not 

increase with time but, if anything slightly diminished with time; this was apparent when the resting 

state data were divided into three time bins (Supplementary Fig.S3).  

 

Focality of TUS 

Our major focus in the current investigation is primarily on the possibility of altering activity in deep 

brain structures with ultrasound and the sonication parameters adopted here have been optimized 

with this aim in mind (fig.1). In future experiments it will be possible to manipulate the ultrasound’s 

features to enhance the spatial focality of any effects that we find, for example by sonicating at 

higher frequencies (500 kHz) and concomitant shorter wave lengths, or using multiple beams on 

different trajectories that intersect at the target location. Nevertheless, it is obviously of interest to 

examine the focality that is obtained with the current sonication parameters.  Two additional sets of 

analyses were, therefore, also conducted.  The first set of analyses assessed the impact of TUS not 

only for the target areas but for every point in the brain, while the second set focused in detail on 

the areas surrounding the target areas or located between the stimulation cone and the target area 

(figs.3, S2). 

 In the first set of analyses, for each point in the brain, we indexed its activity coupling with 

the same a priori defined constellation of regions used throughout the analyses (fig.2g,h), but now 

excluding the sonicated areas. We quantify the impact of TUS by comparing for each point the 

average coupling with this set of regions in the control condition with the coupling observed 

following amygdala TUS and following ACC TUS. This approach resulted in two ‘heat-maps’ that 

show the peak location and extent of the brain activity impacted by TUS over amygdala and ACC. 

Following amygdala TUS the strongest neuromodulatory effects were observed in the amygdala 

itself, and only in the amygdala (fig.3a, top row). Following ACC TUS the extent of the 

neuromodulation was limited to the ACC and regions immediately ventral to it along the ultrasound 

beam (fig.3a, bottom row). In fact, the spatial maps of TUS impact on activity coupling are strikingly 

in correspondence with the spatial maps of estimated sonication intensity (fig.1c,f). This 

correspondence is specific and sensitive: it includes particulars of the wave propagations, such as 

how the ultrasound wave targeted at amygdala reflects on the basal bone, while in the ACC TUS 

condition considerable acoustic energy is also deposited immediately ventral to the target along the 

trajectory, partly due to sound waves reflecting on the orbital bone. 
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To further qualify and examine the extent of the ultrasonic intervention, in the second set of 

analyses we measured activity coupling in a control state and after amygdala TUS in three control 

areas located along the trajectory of the ultrasound beam (fig.3b, sub-panels ii and iii) or just ventral 

to it (fig.3b, sub-panel iv). Confirming the whole-brain analyses of TUS impact and extent (fig.3a), 

there were no major changes in the activity coupling of areas situated on the trajectory of the 

ultrasound beam such as the superior temporal gyrus (fig.3b, sub-panel iii) and fundus of the 

superior temporal sulcus (fig.3b, sub-panel ii) or of the inferior temporal gyrus which was just ventral 

to the TUS trajectory (fig.3b, sub-panel iv). Similarly, we measured changes in coupling between four 

control areas and the rest of the brain in a control state and after TUS targeted to ACC. These areas 

were located in between the transducer and the ACC target (fig.3c, sub-panel iii), on the other side 

of the target region (fig.3c, sub-panel v) as well as areas immediately rostral (fig.3c, sub-panel ii) and 

caudal (fig.3c, sub-panel iv) to the target region. ACC sonication had little effect on the region 

between the target and the transducer (fig.3ciii) and a region just anterior to the target (fig.3cii) 

suggesting, once again, a considerable degree of focality in the effect on neural activity. In line with 

the whole-brain analysis (fig.3a), and with the simulations of acoustic intensity (fig.1f), we confirmed 

that there were some changes in the connectional profile of a region along the stimulation trajectory 

just ventral to the target (fig.3c, v). 

After confirming the focality of the direct impact of TUS (fig.3a), matching the estimated 

contours of the acoustic intensity (fig.1f), we considered that areas outside the directly sonicated 

region, but strongly connected to it, might exhibit a network-derived effect of TUS. Indeed, changes 

to the connectional profile of an area just posterior (fig.3c, iv) to the target region (fig.3c, ii), could 

be suggestive of such a network-effect. Accordingly, an additional analysis was conducted to test 

whether changes in areas outside the sonicated region were due to their spatial proximity to the 

target area or the anatomical connections they shared with the target area.  When we investigated 

an area – the SMA – which is at a similar Euclidean distance from the target ACC region (fig.S2a) as 

the more caudal cingulate area 24ab, but less strongly connected to it, there were no changes 

(fig.S2b) in the way in which its activity was coupled with that in other brain areas. This was in 

contrast with changes in activity coupling of area 24ab (fig.S2c), which is more strongly connected to 

the ACC target compared to SMA (fig.S2b).  

  

 

Effect of amygdala and ACC TUS on the auditory system 

It has recently been suggested that TUS’s impact on neural activity is mediated by its auditory 

impact (Guo et al., 2018; Sato et al., 2018).  Several considerations suggest that it might not be 
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possible to explain away the current findings as the result of an auditory artefact.  First, the auditory 

impact of TUS is likely a function of specific features of its frequency and pulse type, and especially 

of the frequency used to modulate the ultrasonic carrier wave.  Second, the auditory stimulation 

associated with the TUS application ceased after the 40 s sonication period but the neural activity 

measurements were initiated tens of minutes later. Third, TUS of each area, ACC and amygdala, had 

specific effects that were distinct to one another. The only amygdala activity relationship affected by 

ACC TUS was that between amygdala and ACC and the only ACC activity relationship affected by 

amygdala TUS was that between ACC and amygdala. 

Nevertheless, we also carried out a fourth line of inquiry and examined whether it is 

plausible that an auditory effect could have mediated the TUS effects on amygdala and ACC. To 

quantify this probability, we correlated any TUS effects on primary auditory cortex (A1) connectivity 

with TUS effects on the targeted regions (fig.4a). TUS effects on the auditory cortex after both 

amygdala (r=0.1084, p=0.7007) and ACC (r=0.1474, p=0.6000) sonication are unrelated to the TUS 

effects at each target site and are therefore unlikely to have mediated effects seen at the 

stimulation sites. However, it is possible that TUS over amygdala or ACC had an impact on A1 

connectivity separately from its impact on the stimulated sites themselves (fig.4b). While A1 

connectivity is not impacted by ACC TUS (fig.4b, non-parametric permutation test, p=0.6871), 

amygdala TUS did have a significant impact on A1 connectivity (fig.4b, non-parametric permutation 

test, p = 0.0002). Closer inspection revealed that this was due to a diminution solely in A1’s 

interactions with the amygdala itself and two areas with which the amygdala is itself strongly 

connected with: ACC and orbitofrontal cortex. Differential effects of ACC and amygdala TUS on A1 

connectivity might be driven by some direct, albeit weak, connections of amygdala with A1 (Yukie, 

2002). Similarly, given amygdala’s strong connections to ACC and orbitofrontal cortex, it is perhaps 

not surprising that amygdala sonication might affect A1’s interactions with them. Importantly, these 

circumscribed effects on A1 connectivity are not predictive of the effects elsewhere. In summary, 

the alteration seen in the A1 fingerprint is a poor match to the alteration seen in the amygdala 

fingerprint after amygdala TUS or in the ACC fingerprint after ACC TUS. 

 

DISCUSSION 

In these investigations we combined TUS with resting-state fMRI to examine the impact of 

modulating activity in subcortical and deep cortical areas of the primate brain. Experiments 1 and 2 

revealed dissociable effects of amygdala and ACC TUS.  The dissociable nature of the effects and the 

fact that they were observed more than an hour after the 40 s stimulation period suggests they are 

not mediated by the stimulation’s auditory impact (Guo et al., 2018; Sato et al., 2018). In each case 
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effects were apparent as reductions in activity coupling between the stimulated area and other 

regions with which it is normally interconnected; after TUS, a brain area’s activity appears to be 

driven less by activity in the areas with which it is connected and more so by the artificial 

modulation induced by TUS. 

 Any impact that TUS exerts on the auditory system is likely to depend on the precise details 

of the sonication frequency, pulse/modulation frequency,  and pulse shape and might be specific to 

other features of the preparation such as anesthesia level (Airan and Pauly, 2018). Here we 

employed an ultrasound frequency of 250kHz that we pulse modulated at 10Hz: as such we ensured 

that both the ultrasound carrier wave and the wave envelope frequency are well outside of the 

macaque hearing range. This can be contrasted against more conventional protocols where the 

ultrasound is pulse modulated at ~1kHz, within the audible range of both rodents and primates. 

Moreover, the “offline” stimulation protocol we employed also made it less likely that the auditory 

system was stimulated at the time that neural activity was recorded; neural activity was only 

measured many minutes after the cessation of a 40 s period of TUS.     

Our aim in the current study was to examine whether TUS can modulate neural activity.  The 

results obtained demonstrate that TUS can exert a relatively focal and circumscribed impact on 

neural activity.  However, as a consequence of using a recording technique that is sensitive to a 

number of neurophyiological processes, it was not possible to establish the precise nature of the 

neurophysiological process that mediated the fMRI signal effects that we observed.  It is possible 

that TUS may act not simply by immediately inducing or reducing activity in neurons but by 

modulating their responsiveness to other neural inputs; thus its effect may have been more easily 

detected by an analysis strategy such as the current one that focused on measuring the relationship 

between activity in the stimulated area and elsewhere. As with other repetitive neurostimulation 

protocols it is also possible that TUS’s offline effects are partly driven by the induction of plastic 

changes, with long-term-potentiation/depression-like characteristics, and again this might have 

implications for how its effects are best detected. 

Several molecular mechanisms describing how low-intensity ultrasound stimulation 

modulates neuronal activity have been suggested. However, recent investigations on the 

interactions between sound pressure waves and brain tissue suggest that ultrasound primarily 

exerts its modulatory effects through a mechanical action on cell membranes, notably affecting ion 

channel gating  (Kubanek et al., 2016; Prieto et al., 2013; Tyler et al., 2008). While the precise 

mechanisms are being determined (Kubanek, 2018; Kubanek et al., 2018; Tyler et al., 2018) the 

current results suggest TUS may be suitable as a tool for focal manipulation of activity in many brain 
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areas in primates. Specifically, they show that TUS may even be used to manipulate activity in 

subcortical structures in monkeys. 

TUS’s capacity to stimulate subcortical and deep cortical areas in primates, therefore, opens 

the prospect of advanced non-invasive causal brain mapping.  To date, non-invasive manipulation of 

brain activity in humans can be done reversibly only using neuromodulation methods such as 

transcranial magnetic stimulation and transcranial current stimulation. However, the spatial 

resolution of some of these techniques is limited (Walsh and Cowey, 2000; Dayan et al., 2013). Even 

more critically, application of these techniques is constrained to the surface of the brain as their 

efficacy falls off rapidly with depth. 

Before it becomes possible to use repetitive TUS to study the human brain in a routine 

manner, a number of considerations must be borne in mind.  It will be important to establish the 

safety of the technique.  In another recent study we have shown that TUS of the type used here 

causes no permanent damage to tissue on histological analysis (Verhagen et al., bioRxiv).  Structural 

MRI scans collected shortly after TUS in the present study showed no evidence of transient edema 

(Fig.S4).  While such results are encouraging, further studies may be needed to establish if this 

remains true even after a greater number of TUS sessions, after TUS sessions of longer duration, or 

after TUS at a greater intensity.  Care may need to be taken with the assessment of each new 

protocol that is devised.  Before the technique is used routinely in human cognitive neuroscience 

experiments, it should be noted that its neural effects may be sustained over a period of time that is 

substantially longer than in many laboratory experiments (Verhagen et al., bioRxiv); care will 

therefore need to be taken in deciding when a human participant might leave the laboratory and 

travel home. In addition, sonication appears to impact on the meninges (Verhagen et al., bioRxiv) 

and the full nature of this impact may need to be established.  Not only does this have safety 

implications but it also suggests that the impact of TUS to a brain area is best assessed by 

comparison to the impact of TUS to an appropriate control site. 

In summary, based on the results reported here, TUS can be used to transiently and 

reversibly alter neural activity in subcortical and deep cortical areas with high spatial specificity. To 

date, it is the most promising neuromodulatory technique to reach areas deep below the 

dorsolateral surface of the brain in a minimally invasive and focal manner, thereby providing it with 

the potential for causally mapping brain functions within and across species.   While it may currently 

lack the capacity to target specific neurons, as do some optogenetic and chemogenetic techniques 

(Khatoun et al., 2017; Sternson and Roth, 2014; Tang et al., 2018; Yizhar et al., 2011), it may provide 

a method for investigating brain areas that may make it suitable for use with primate species, which 

are rarely investigated with such techniques even though many brain areas are particularly well 
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developed or only present in primates (Passingham and Wise, 2012).  With care it may even be 

possible to employ offline TUS protocols in investigations of human brain function. 
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1. Stimulation targets.  Stimulation target position is shown for each individual animal (colored dots) 
on sagittal and coronal views for TUS targeted at amygdala (a-b) and ACC (d-e). Acoustic intensity 
field (Watts/cm2) generated by the ultrasound beam in the brain is shown for one example animal 
per TUS target, amygdala (coronal plane c; maximum spatial peak pulse average intensity (Isppa) in 
focal region= 64.9 W/cm²; spatial peak temporal average intensity (Ispta)= 19.5 W/cm²; max 
pressure=1.44 MPa) and ACC (sagittal plane f; maximum Isppa in focal region=18.8 W/cm²; Ispta = 5.63 
W/cm²; max pressure=0.78 MPa). The target position can be delineated with accuracy in all animals 
in panels a, b, d, and e by using each individual’s own MRI scan. As a result, the activity and 
functional connectivity of the target areas can be examined accurately in each animal (see 
subsequent figures and supplementary materials).  However, some slight imprecision in the 
estimation in the acoustic intensity maps in panels c and f may occur; this is because group average 
targets are used in conjunction with the computed tomography X-ray scan of a single individual 
during the modelling. 
 



22 

 

 

2. Amygdala and ACC functional coupling changes after stimulation.  Panels a, b, and c on the left 

side of the figure show activity coupling between amygdala (seed masked in yellow) and the rest of 

the brain in no stimulation/control condition (a), after amygdala TUS (b), and after ACC TUS (c).  

Panels d, e, f show activity coupling between ACC (circled in red) and the rest of the brain in no 

stimulation/control condition (d), after amygdala TUS (e), and after ACC TUS (f). Hot colors indicate 
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positive coupling (Fisher’s z). Functional connectivity from TUS-targeted regions are highlighted by 

black boxes. Each type of TUS had a selective effect on the stimulated area: amygdala coupling was 

strongly changed by amygdala TUS only (b) and ACC coupling was strongly changed by ACC TUS only 

(f). Areas showing changes in coupling with TUS-targeted regions after TUS are circled in black and 

compared with the other 2 control conditions.  The 4mm spherical ROIs used in the statistical tests 

are highlighted in figure i on a lateral, medial, orbital and dorsal view. The lines in the left panel 

indicates the strength of activity coupling between amygdala (g) and other brain areas labelled on 

the circumference in control animals (blue), after amygdala TUS (yellow), and after ACC TUS (red). 

The lines in the right panel show activity coupling between ACC (h) and the rest of the brain in 

control animals (blue), after ACC TUS (red), and after amygdala TUS (yellow).  Each type of TUS had a 

selective effect on the stimulated area: amygdala coupling was strongly affected by amygdala TUS 

(the yellow line is closer to the center of the panel than the blue line) and ACC coupling was strongly 

disrupted by ACC TUS (the red line is closer to the center of the panel than the blue line). Standard 

error of the mean is indicated by shading around each line. 
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3. Spatial extent of the TUS neuromodulatory effect and its impact on areas neighboring the 

stimulated region. Panel a; amplitude and spatial extent of the impact of amygdala TUS (top row) 

and ACC TUS (bottom row) on the coupling of each point in the brain with the same set of a priori 

defined areas used in figure 2g,h. Hot colors indicate a strong decrement in coupling after TUS 

compared to the control state (delta Fisher’s z). The effect of TUS on activity coupling was restricted 

to the amygdala after amygdala TUS and to the ACC and regions immediately ventral along the 

ultrasound trajectory following ACC TUS (bottom row). Panel b; as also shown in figure 2, the whole 

brain coupling of the amygdala target region (sub-panel i; the outline in black in all cases indicates 

the regions for which the whole-brain connectivity is shown) is significantly different in the control 

condition and when TUS is applied to amygdala. Hot colors indicate positive coupling (Fisher’s z). 

Sub-panels ii, iii, iv show the activity coupling of regions along (ii,iii) or immediately surrounding the 

trajectory of the ultrasound stimulation beam (iv), in the control condition and after amygdala TUS. 

There were no changes in the coupling of these regions and the rest of the brain. This is true for the 

regions through which the stimulation trajectory passed in the fundus of the superior temporal 

sulcus (ii) and the superior temporal gyrus (iii) or in the immediately adjacent inferior temporal gyrus 

(iv). Panel c; the whole brain coupling of the ACC target region (i) is significantly different in the 

control condition and when TUS is applied to ACC. Sub-panels ii, iii, iv and v show the activity 
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coupling of regions near the ACC target in both the ACC TUS and control conditions. This includes 

areas located along the trajectory of the ultrasound stimulation beam such as (iii) the area in 

between the transducer and the target region in ACC and the area on the other side of the target 

region (v) as well as areas immediately rostral (ii) and caudal (iv) to the target region. Some changes 

in coupling can be seen along the stimulation trajectory in the area just ventral to the target (v) and 

also in an area which is unlikely to have been hit directly by the ultrasound beam (iv). These areas 

are strongly anatomically connected with the targeted area.  
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4. Effect of amygdala and ACC TUS on the functional coupling of primary auditory cortex.  Panel a; 

ACC TUS (red line) had no effects on the functional coupling of A1.  Amygdala TUS (yellow line) 

affected the relationship between A1’s activity and activity in several areas that are linked to the A1 

via the amygdala including the amygdala itself, lateral orbitofrontal cortex area 47/12o and ACC. 

Panel b; TUS effects on the auditory cortex after neither amygdala (yellow) nor ACC (red) cannot 

explain the TUS effect on the respective stimulation sites. 

 

 

 

 

 

 

  



27 

STAR *METHODS 

KEY RESOURCE TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Chemicals, Peptides, and Recombinant Proteins 

Isoflurane – ISOFLO 250ml Centaur 30135687 
Ketamine – Narketan 10% 10ml INJ CD(SCH4)1 1-MCD Centaur 03120257 
Midazolam – Hypnoval amps 10mg/2ml  Centaur 23191407 
Atropine – Atrocare INJ 25ml Centaur 01300236 

Meloxicam – Metacam INJ 10ml 5mg/ml DOGS/CATS Centaur 02500456 
Ranitidine 50mg/2ml x5 INJ Centaur 30294115 
Saline DPAG, University of 

Oxford 
N/A 

Formalin DPAG, University of 
Oxford  

N/A 

SignaGel Electrode Gel Parker Laboratories #15-25 

Experimental Models: Organisms/Strains 

Macaca mulatta, 9 males, 2 females, between 4-11 
years old, between 7-15 kg, socially housed 

MRC, Centre for 
Macaques 

NCBITaxon:9544 

Software and Algorithms 

MATLAB 2017a 

 

Mathworks RRID: SCR_001622 

FMRIB Software Library v5.0 FMRIB, WIN, Oxford, 
UK 

RRID:SCR_002823 

Connectome Workbench 

 

The Human 
Connectome Project 
and Connectome 
Coordination Facility 

RRID:SCR_008750 

Magnetic Resonance Comparative Anatomy Toolbox Neuroecology Lab https://github.com/neuro
ecology/MrCat 

Other 

Transducer H-115MR 250kHz SN:018 Sonic Concepts www.sonicconcepts.com 
Transducer H-115MR 250kHz SN:017 Sonic Concepts www.sonicconcepts.com 

Amplifier Model 75A250A – 75Watts – 10khz 250MHz Amplifier Research  www.arworld.us 
Tie Pie Handyscope HS5 SN: 32239 Tie Pie https://www.tiepie.com 
Brainsight frameless stereotaxic neuronavigation 
system 

Rogue Research RRID:SCR_009539 

MRI compatible frame Crist Instruments http://www.cristinstrume
nt.com/products/stereota
x/stereotax-primate 

four-channel phased-array coil Windmiller Kolster 
Scientific 

https://www.wkscientific.
com/#mri-coils 

 

 

 



28 

METHODS DETAILS 

Ultrasound stimulation 

A single-element ultrasound transducer (H115-MR, diameter 64 mm, Sonic Concept, Bothell, WA, 

USA) with a 51.74 mm focal depth was used with region-specific coupling cones filled with degassed 

water and sealed with a latex membrane (Durex) to assess TUS of ACC (experiment 1; n=3) and 

amygdala (experiment 2; n=4) (fig.1). The ultrasound wave frequency was set to the 250 kHz 

resonance frequency and 30 ms bursts of ultrasound were generated every 100 ms (duty cycle 30%) 

with a digital function generator (Handyscope HS5, TiePie engineering, Sneek, the Netherlands). 

Overall, the stimulation lasted for 40 s. A 75-Watt amplifier (75A250A, Amplifier Research, 

Souderton, PA) was used to deliver the required power to the transducer. A TiePie probe 

(Handyscope HS5, TiePie engineering, Sneek, The Netherlands) connected to an oscilloscope was 

used to monitor the voltage delivered. The recorded peak-to-peak voltage was constantly 

maintained throughout the stimulation. Voltage values per session ranged from 128 to 134V. It 

corresponded to a peak negative pressure ranging  from 1.15 to 1.27MPa respectively  as measured 

in water with an in house heterodyne interferometer (Constans et al., 2017). The acoustic wave 

propagation of our focused ultrasound protocol was simulated at 130 V peak-to-peak voltage using 

finite element models of an entire monkey head to obtain estimates for the pressure amplitude, 

peak intensity, and spatial distribution (Constans et al., 2017). 3D maps of the skull were extracted 

from a monkey CT scan (0.36 mm isotropic resolution). Based on these numerical simulations, the 

maximum spatial peak pulse average intensity (Isppa) in focal region was estimated to be 64.9 W/cm² 

(spatial peak temporal average intensity (Ispta) = 19.5 W/cm²) in the amygdala and 18.8 W/cm² (Ispta = 

5.63 W/cm²) in ACC with a maximum pressure of 1.44 MPa in amygdala and 0.78 MPa in ACC. One 

train was applied to each of the more laterally situated amygdalae but a single train was applied to 

the midline structure (ACC) in experiments 1 and 2 respectively. 

Each individual animal's structural magnetic resonance (MRI) image was registered to its 

head with a frameless stereotaxic neuronavigation system (Rogue Research, Montreal, CA).  By 

recording the positions of both the ultrasound transducer and the head with an infrared tracker it 

was then possible to co-register the ultrasound transducer with respect to the MRI scan of the brain 

to position the transducer over the targeted brain region, either ACC (Procyk et al., 2016) (MNI 

coordinates x = 0, y = 15, z = 6) or amygdala (MNI coordinates x = -10, y = 1, z = -11; x = 9, y = 1, z = -

11). The ultrasound transducer / coupling cone montage was placed directly onto previously shaved 

skin on which conductive gel (SignaGel Electrode; Parker Laboratories Inc.) had been applied to 

ensure ultrasonic coupling between the transducer and the animal's head. In the non-stimulation 
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condition (control), all procedures (anaesthesia, pre-scan preparation, fMRI scan acquisition and 

timing), with the exception of actual TUS, mirrored the TUS sessions. 

 

Macaque rs-fMRI Data Acquisition. 

Resting state fMRI (rs-fMRI) and anatomical MRI scans were collected for 11 healthy macaques 

(Macaca mulatta) (two females; rs-fMRI from nine animals were acquired under no stimulation; rs-

fMRI from three animals were acquired post ACC TUS; rs-fMRI from four animals were acquired post 

amygdala TUS;  age: 7.3 years, weight: 10.3 kg) under inhalational isoflurane anesthesia using a 

protocol which was previously proven successful (Noonan et al., 2014; Neubert et al., 2015) in 

preserving whole-brain functional connectivity as measured with BOLD signal. In the case of the TUS 

conditions, fMRI data collection began only after completion of the TUS train (delay between 

ultrasound stimulation offset and scanning onset: 37.5 minutes; SEM: 2.21 minutes).  Anesthesia 

was induced using intramuscular injection of ketamine (10 mg/kg), xylazine (0.125– 0.25 mg/kg), and 

midazolam (0.1 mg/kg). Macaques also received injections of atropine (0.05 mg/kg, intramuscularly), 

meloxicam (0.2 mg/kg, intravenously), and ranitidine (0.05 mg/kg, intravenously). To block 

peripheral nerve stimulation, 15 minutes before placing the macaque in the stereotaxic frame local 

anaesthetic (5% lidocaine/prilocaine cream and 2.5% bupivacaine) was also administered via 

subcutaneous injection around the ears. The anesthetized animals were placed in an MRI-

compatible stereotactic frame (Crist Instruments) in a sphinx position and placed in a horizontal 3T 

MRI scanner with a full-size bore. Scanning commenced 1.53 hours (SEM: 4 minutes) and 2.38 hours 

(SEM: 4 minutes) after anesthesia induction in TUS and control sessions, respectively. In both cases 

data collection commenced when the clinical peak of ketamine had passed. Anesthesia was 

maintained, in accordance with veterinary recommendation, using the lowest possible 

concentration of isoflurane to ensure that macaques were anesthetized. The depth of anesthesia 

was assessed and monitored using physiological parameters (heart rate and blood pressure, as well 

as clinical checks before the scan for muscle relaxation). During the acquisition of the functional 

data, the inspired isoflurane concentration was in the range 0.8–1.1%, and the expired isoflurane 

concentration was in the range 0.7-1%. Isoflurane was selected for the scans as it was previously 

demonstrated to preserve rs-fMRI networks (Neubert et al., 2015; Mars et al., 2013; Vincent et al., 

2007). Macaques were maintained with intermittent positive pressure ventilation to ensure a 

constant respiration rate during the functional scan, and respiration rate, inspired and expired CO2, 

and inspired and expired isoflurane concentration were monitored and recorded using VitalMonitor 

software (Vetronic Services Ltd.). Core temperature and SpO2 were also constantly monitored 

throughout the scan. 
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A four-channel phased-array coil was used for data acquisition (Dr. H. Kolster, Windmiller 

Kolster Scientific, Fresno, CA, USA). Whole-brain BOLD fMRI data were collected from each animal 

for up to 78 minutes. All fMRI data were collected using the following parameters: 36 axial slices; in-

plane resolution, 2 x 2 mm; slice thickness, 2 mm; no slice gap; TR, 2000 ms; TE, 19 ms; 800 volumes 

per run. A minimum period of 10 days elapsed between sessions. 

A structural scan (average over up to three T1-weighted structural MRI images) was 

acquired for each macaque in the same session as the functional scans, using a T1-weighted 

magnetization-prepared rapid- acquisition gradient echo sequence (0.5 x 0.5 x 0.5 mm voxel 

resolution). 

All recording and stimulation procedures were conducted under licenses from the United 

Kingdom (UK) Home Office in accordance with The Animals (Scientific Procedures) Act 1986 and with 

the European Union guidelines (EU Directive 2010/63/EU). 

 

Macaque rs-fmri data preprocessing, and analysis. 

The preprocessing and analysis of the MRI data was designed to follow the HCP Minimal 

Processing Pipeline (Glasser et al., 2013), using tools of FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki), 

HCP Workbench (https://www.humanconnectome.org/software/connectome-workbench), and the 

Magnetic Resonance Comparative Anatomy Toolbox (MrCat; www.neuroecologylab.org). The 

processing pipeline has been validated and described in full (Verhagen et al., BioRxiv). 

The T1w images were processed in an iterative fashion cycling through brain-extraction 

(BET) (Smith, 2002), RF bias-field correction, and linear and non-linear registration (FLIRT and FNIRT) 

(Jenkinson and Smith, 2001; Jenkinson et al., 2002) to the macaca mulatta F99 atlas(Van Essen, 

2002; Van Essen and Dierker, 2007). The application of robust and macaque-optimised versions of 

BET and FAST (Zhang et al., 2001) also provided segmentation into grey matter, white matter, and 

cerebral spinal fluid compartments. Segmentation of subcortical structures was obtained by 

registration to the D99 atlas (Reveley et al., 2017). 

The first 5 volumes of the functional EPI datasets were discarded to ensure a steady RF 

excitation state. EPI timeseries were motion corrected using MCFLIRT. Given that the animals were 

anesthetized and their heads were held in a steady position, any apparent image motion, if present 

at all, is caused by changes to the B0 field, rather than by head motion. Accordingly, the parameter 

estimates from MCFLIRT can be considered to be ‘B0-confound parameters’ instead. Each timeseries 

was checked rigorously for spikes and other artefacts, both visually and using automated algorithms; 

where applicable slices with spikes were linearly interpolated based on temporally neighboring 

slices. Brain extraction, bias-correction, and registration was achieved for the functional EPI datasets 

https://fsl.fmrib.ox.ac.uk/fsl
http://www.neuroecologylab.org/
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in an iterative manner, similar to the preprocessing of the structural images with the only difference 

that the mean of each functional dataset was registered to its corresponding T1w image using rigid-

body boundary-based registration (FLIRT). EPI signal noise was reduced both in the frequency and 

temporal domain. First, the functional time series were high-pass filtered at 2000s. Temporally 

cyclical noise, for example originating from the respiratory apparatus, was removed using band-stop 

filters set dynamically to noise peaks in the frequency domain.  Remaining temporal noise was 

described by the mean time course and first two subsequent principal components of the white 

matter (WM) and cerebral spinal fluid (CSF) compartment (considering only voxels with a high 

posterior probability of belonging to the WM or CSF, obtained in the T1w image using FAST). The B0-

confound parameter estimates were expanded as a second degree Volterra series to capture both 

linear and non-linear B0 effects. Together the WM and CSF expanded B0 confound parameters were 

regressed out of the BOLD signal for each voxel. 

The cleaned time course was then low-pass filtered with a cut-off at 10 seconds. The cleaned 

and filtered signal was projected from the conventional volumetric representation (2mm voxels) to 

the F99 cortical surface (~1.4mm spaced vertices) using Workbench command “myelin-style” 

mapping, while maintaining the subcortical volumetric structures. The data was spatially smoothed 

using a 3mm FWHM gaussian kernel, while taking into account the folding of the cortex and the 

anatomical boundaries of the subcortical structures. Lastly, the data were demeaned to prepare for 

functional connectivity analyses.  

To represent subject effects, the timeseries from the three runs were concatenated to 

create a single timeseries per animal per intervention (control, ACC TUS, amygdala TUS). To 

represent group effects the run-concatenated timeseries of all animals were combined using a 

group-PCA approach (Smith et al., 2014) that was set to reduce the dimensionality of the data. 

To construct a region-of-interest (ROI) for ACC, a circle of 4mm radius was drawn on the 

cortical surface around the point closest to the average stimulation coordinate (fig.1), in both the 

left and the right hemisphere. The same procedure was used to define other bilateral cortical 

regions of interest, based on literature coordinates (Neubert et al., 2015; Sallet et al., 2013; Neubert 

et al., 2014), to serve as targets for the fingerprint and spatial extent analyses (fig.2i). The amygdala 

ROI was constructed for each animal individually through non-linear registration of their T1w image 

to the D99 template and by subsequently resampling the (subcortical) D99 macaque atlas in native 

space (Reveley et al., 2017). 

Coupling between the activity of each region of interest and the rest of the brain was 

estimated by calculating the Fisher’s z-transformed correlation coefficient between each point in the 

ROI and all other datapoints. The resulting “connectivity-maps” were averaged across all points in 
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the ROI, across both hemispheres. Accordingly, the final maps represent the average coupling of a 

bilateral ROI with the rest of the brain. The fingerprints are obtained by extracting the average 

coupling with each target ROI and averaging across the two hemispheres. Statistical inference on the 

fingerprints was performed by using non-parametric permutation tests on cosine similarity metrics 

describing how similar or dissimilar pairs of fingerprints are (Mars et al., 2016)Verhagen et al., 

BioRxiv). The cosine similarity metric takes into account the shape of the fingerprint as a whole (but 

not its mean amplitude) and performs one test per pair of fingerprints, negating the necessity for 

correcting for multiple comparisons across fingerprint targets. In contrast to conventional 

parametric tests, this approach does not rely on assumptions about the shape of the distribution but 

will acknowledge dependencies between target ROIs in the fingerprint; as such this approach will 

avoid inflation of type I error. For each test we ran 10,000 permutations across individual fMRI runs 

to accurately approximate with high accuracy the true probability of rejecting the null-hypothesis of 

permutable conditions in this sample. 

To examine the spatial extent of the neuromodulatory impact of TUS on activity coupling we 

extracted for every point in the brain, both subcortically and on the cortical surface, its average 

coupling strength with the fingerprint targets (fig.2i), excluding the amygdala and ACC. This 

approach allowed the creation of a quantified spatial map of the difference in average coupling 

between the control state and amygdala TUS, and between the control state and ACC TUS. For 

regions affected by TUS this difference will be large, while for all other regions this difference is close 

to zero. 

Statistical inferences on the anaesthesia levels and associated physiological parameters 

were drawn in the context of generalized linear mixed-effects (GLME) models. These models 

considered the intercept, the TUS condition (control, amygdala, ACC), and the resting-state fMRI run 

index (1, 2, or 3) as fixed effects and the intercept and slope grouped per animal as random effects 

with possible correlation between them (as implemented in MATLAB, Mathworks, Natick, USA). The 

models were assumed to adhere to a normal distribution of the data and were fitted using 

Maximum-Pseudo-Likelihood estimation methods where the covariance of the random effects was 

approximated using Cholesky parameterization. Statistical significance was set at  = 0.05, two-

tailed, and estimated using conventional analyses of variance (ANOVA). 
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Supplementary Information 

 

 

Supplementary figure 1. Whole-brain functional connectivity between stimulated and not 

stimulated areas with the rest of the brain. Panels a, b, and c show activity coupling between a 

control area, the caudal ventral premotor area F5c, and the rest of the brain in no 

stimulation/control condition (a), after amygdala TUS (b), and after ACC TUS (c). Hot colors indicate 

positive coupling (Fisher’s z). Compared to a no stimulation condition (a), neither amygdala TUS nor 

ACC TUS (b,c) affected the whole-brain coupling activity of F5c which has weak anatomical 

connections with ACC and amygdala. 

 
 
 



34 

 
Supplementary figure 2. Effects of TUS on regions outside the target area are mediated by the 

strength of anatomical connectivity rather than a result of spatial proximity.  Panels a, b, and c of 

the figure show whole-brain activity coupling in control and ACC TUS conditions for ACC (a) and two 

areas at an equal Euclidian distance from the ACC target region: SMA (b) and area 24ab (c). Hot 

colors indicate positive coupling (Fisher’s z). The activity coupling of SMA, an area weakly connected 

with the target area ACC, and the rest of the brain is predominantly preserved after TUS. However, 

the whole-brain coupling of an area more strongly connected with the target ACC region (Hoesen et 

al., 1993), area 24b, is more influenced by TUS to the ACC target region.   (d) Analysis of the dynamic 

range of the BOLD signal across all voxels in (i) the control state, (ii) after amygdala TUS, and (iii) 

after ACC TUS revealed similar levels of variance in activity in all three cases. 
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Supplementary figure 3. Temporal changes of TUS effects on amygdala and ACC functional 

coupling. Amygdala functional coupling (a,b,c) and ACC (d,e,f) functional coupling across 3 

consecutive runs is displayed after no stimulation (amygdala: a,b,c; ACC: g,h,i) and TUS (amygdala: 

d,e,f; ACC: j,k,l). TUS effects on the whole-brain coupling of each stimulated region persisted 

throughout the full length of scanning. Interestingly, TUS effects seems to show slightly decrease 

over the three runs with amygdala and ACC functional coupling resembling more their 

correspondent coupling in the no stimulation condition.. 
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Supplementary Figure 4. Lack of effects of TUS on brain tissue. Coronal T1-weighted images 
collected before and after TUS (in this example targeted bilaterally to the amygdala) representing 
the stimulated brain area. Neither structural changes nor evidence of transient edema were found 
following TUS targeted to the amygdala bilaterally in two exemplar animals. 
 
 
 


