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Abstract We present the Wrst study of the eVects of ocean
acidiWcation on settlement of benthic invertebrates and
microfauna. ArtiWcial collectors were placed for 1 month
along pH gradients at CO2 vents oV Ischia (Tyrrhenian Sea,
Italy). Seventy-nine taxa were identiWed from six main
taxonomic groups (foraminiferans, nematodes, polychaetes,
molluscs, crustaceans and chaetognaths). Calcareous forami-
niferans, serpulid polychaetes, gastropods and bivalves
showed highly signiWcant reductions in recruitment to the
collectors as pCO2 rose from normal (336–341 ppm, pH
8.09–8.15) to high levels (886–5,148 ppm) causing acidi-
Wed conditions near the vents (pH 7.08–7.79). Only the syl-
lid polychaete Syllis prolifera had higher abundances at the
most acidiWed station, although a wide range of polychaetes
and small crustaceans was able to settle and survive under
these conditions. A few taxa (Amphiglena mediterranea,
Leptochelia dubia, Caprella acanthifera) were particularly
abundant at stations acidiWed by intermediate amounts of
CO2 (pH 7.41–7.99). These results show that increased

levels of CO2 can profoundly aVect the settlement of a wide
range of benthic organisms.

Introduction

Increasing atmospheric CO2 concentrations are causing a
rise in pCO2 concentrations at the ocean surface (Houghton
et al. 1992; Keeling and Whorf 1994) due to atmospheric
CO2 ocean exchange on time scales of several months
(Zeebe and Wolf-Gladrow 2001). By 2100, the concentra-
tion of CO2 in the ocean is expected to rise to 750 ppm,
which is about twice the present 385–390 ppm (Feely et al.
2004; Raven et al. 2005). As CO2 dissolves in the surface
ocean, it reacts with water to form carbonic acid (H2CO3),
which dissociates to bicarbonate (HCO3

¡), carbonate ions
(CO3

2¡) and protons (H+). With increasing atmospheric
pCO2, the equilibrium of the carbonate system will shift to
higher CO2 and HCO3

¡ levels, while CO3
2¡ concentration

and pH will decrease.
These changes in carbonate chemistry, often referred to

as ‘ocean acidiWcation’, are already occurring and are
expected to intensify in the future. Models predict that the
pH of surface seawater will drop by 0.4 units by the year
2100 (Caldeira and Wickett 2003). Consequently, the rise
of CO2 in ocean waters leads to more corrosive conditions
for calcifying organisms, making it more diYcult for them
to build and maintain their carbonate skeletons (Raven
et al. 2005). CalciWcation rates of several species, including
coralline algae, coccolithophores, corals, bivalves and echi-
noderms, decreases with increasing pCO2 (e.g. Kleypas
et al. 2006; Fabry et al. 2008), although the response is spe-
cies speciWc with the up-regulation of calciWcation in some
species (Wood et al. 2008; Ries et al. 2009; Jury et al.
2009; Rodolfo-Metalpa et al. 2010a). The recruitment rate
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and the growth of crustose coralline algae is severely inhib-
ited under elevated pCO2, suggesting that changes in ben-
thic community structure may occur owing to the impact
of ocean acidiWcation on recruitment and competition
for space (KuVner et al. 2007; Hall-Spencer et al. 2008;
Jokiel et al. 2008). Initial results by Porzio et al. (2008)
demonstrate signiWcant loss of algal diversity and changes
in macroalgal community structure in a naturally acidiWed
environment.

However, eVects of ocean acidiWcation on larval pelagic
stages of invertebrates are still poorly understood (Vézina
and Hoegh-Guldberg 2008). Many laboratory studies have
shown that the early life history stages of several organisms
are negatively impacted by acidiWed seawater, including
work on echinoderms, crustaceans and molluscs (Kurihara
and Shirayama 2004; Kurihara et al. 2004, 2007; Dupont
et al. 2008; Kurihara and Ishimatsu 2008; Ellis et al. 2009;
Findlay et al. 2009). However, potential shifts in benthic
recruitment that may result from these eVects on early life
history changes are unknown due to the diYculties of main-
taining mixed populations of delicate larval stages in labo-
ratory conditions.

Hall-Spencer et al. (2008) have shown that natural CO2

venting sites may be useful for assessing the long-term
eVects of ocean acidiWcation on benthic biota and sea-Xoor
ecosystems. They indicate that, although natural CO2 vent-
ing sites are not precise analogues of global-scale ocean
acidiWcation, they can provide essential information about
high-CO2 eVects on spatial and temporal scales which are
otherwise diYcult to address. Here, we provide Wrst data on
the eVects of acidiWcation on invertebrates and microfauna
settled on artiWcial collectors placed at various distances
from CO2 vents, creating a gradient of diVerent pH condi-
tions.

Study site

Castello Aragonese, located at the north-eastern side of
Ischia island (Fig. 1, 40° 43.84� N, 13° 57.08� E) is part of a
132,000 years old volcano (Rittmann and Gottini 1981)
where gas vents occur in shallow water (Tedesco 1996).
The gas comprises 90–95% CO2, 3–6% N2, 0.6–0.8% O2,
0.2–0.8% CH4 and 0.08–0.1% air and bubbles at about
1.4 £ 106 l d¡1 at ambient temperature. The site is micro-
tidal (0.30–0.50 m range) and the CO2 vents lack sulphur
(Tedesco 1996); they acidify normal salinity and alkalinity
of seawater along a pH gradient from 8.17 down to 6.57 for
300 m running parallel to the rocky shore on the north and
south sides of the Castello (Hall-Spencer et al. 2008). The
south side is more sheltered from wave action and has a
shallow (0.5 m depth) Posidonia oceanica meadow form-
ing a reef-like structure (sensu Augier and Boudouresque

1970), where leaves Xoat on the water surface at low tide
with the highest mean shoot density recorded around Ischia
(up to 900 shoots/m2, Buia et al. 2003). Previous studies at
the Castello report rich algal (Bourdouresque and Cinelli
1971, 1976) and sponge communities (Sarà 1959; Pulitzer
Finali 1970; Pulitzer Finali and Pronzato 1976), as well as
diverse invertebrate and Wsh faunas associated with the
Posidonia oceanica meadows (Russo et al. 1984a; Guidetti
and Bussotti 1998; Scipione 1999; Gambi and CaWero
2001) in the areas nearby and partially inXuenced by the
vents. Hall-Spencer et al. (2008) reported a total of 64
megabenthic taxa along the gradient at the vents areas,
where reductions in the diversity of adult populations are
caused partly by the dissolution of calciWed species due to
lowered pH (Martin et al. 2008; Rodolfo-Metalpa et al.
2010b). Loss of macroalgal diversity was also shown by
Porzio et al. (2008). Although CO2 vents are localised and
highly variable in pH, they provide information about the
ecological eVects of long-term exposures to high CO2 lev-
els encompassing the life cycles of interacting macroben-
thic organisms as well as the feedbacks and indirect eVects
that occur within natural marine systems (Hall-Spencer
et al. 2008; Riebesell 2008). The aim of this study was to
use artiWcial collectors to determine whether invertebrates
and microfauna varied along gradients in pH where acidiW-
cation of water by CO2 aVects natural marine communities.
We focus on early-settled stages of invertebrates and
foraminiferans, a fauna component which was not consid-
ered at the vents initial survey by Hall-Spencer et al.
(2008). Our null hypothesis was that there would be no sig-
niWcant diVerences in species composition and community
structure in the collectors placed along the pH gradients
studied.

Materials and methods

ArtiWcial collectors (scouring pads) were placed in situ
along 300 m transects on the north and south sides of Cas-
tello Aragonese at six stations (N1, N2, N3, S1, S2, S3)
where Hall-Spencer et al. (2008) had recorded signiWcant
diVerences in pH due to CO2 vents (Fig. 1). N1 and S1 are
monitoring stations located under normal pH conditions,
N2 and S2 are intermediate stations, characterized by high
pH Xuctuations and mean intermediate values, while N3
and S3 are characterized by low pH, acidiWed conditions.
Water samples (n = 3–5) were taken at buoyed stations by
SCUBA divers using glass bottles (250 cc volume) during
the month of collector deployment, and the pHT (total
scale) was measured immediately using a meter accurate to
0.01 pH units (Metrohm 826 pH mobile) calibrated using
TRIS/HCl and 2-aminopyridine/HCl buVer solutions (DOE
1994). Seawater samples were then passed through 0.45-�m
123
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pore size Wlters (GF/F Whatman) and poisoned with
0.05 ml of 50% HgCl2 (Merck, Analar) to avoid biological
alteration and stored in the dark at 4°C. Total alkalinity
(TA) was measured using a titration system composed of a
pH meter with an ORION pH electrode and a 1 ml auto-
matic burette (METHROM). TA was calculated from the
Gran function applied to pH variations from 4.2 to 3.0 as
mEq l¡1 from the slope of the curve HCl volume vs. pH.
Parameters of the carbonate system [pCO2, CO3

2¡, HCO3
¡

and saturation state of calcite (�calcite)] were calculated
from pHT, TA, temperature and salinity (38) using the CO2

Systat package.
ArtiWcial collectors were 8 cm diameter rounded scour-

ing pads formed by an enrolled coarse nylon net. These col-
lectors were chosen as they have been widely used to
collect both larval and adult stages of benthic invertebrates
(e.g. Menge 1992; Kendall et al. 1996; Porri et al. 2006;
Gobin and Warwick 2006). At each station (N1, N2, N3,
S1, S2, S3), three scouring pad collectors (labelled as, a, b, c)
were Wxed to buoyed moorings 1 m from the bottom
adjacent to the rocky shore at 1.5–2.0 m depth from the sur-
face for a total of 18 samples. The artiWcial collectors were
placed in situ on the 18th April 2008 and removed after
1 month (19th May). After removal, scouring pads were
immediately Wxed in 4% formalin in sea water. They were
later unrolled and the nylon net was rinsed with sea water
on a 100-�m sieve and the retained material transferred to
70% alcohol for sorting under a £40 stereomicroscope. All
organisms were sorted by high taxonomic groups (Phylum,

Class and Order) and counted, the foraminiferans, poly-
chaetes, molluscs, isopods and amphipods were classiWed
to genus and, where possible, to species.

Data analyses

Number of species, abundance, Shannon diversity (H’) and
Pielou’s evenness (J) were calculated for each collector and
plotted as means § SD (n = 3 at each station). DiVerences
among stations along the pH gradient and between sides
(North vs. South) were tested using 2-way ANOVA for pH
and carbonate parameter values, for the faunal structural
parameters, as well as for most common taxonomic groups
and the four most abundant species. Homogeneity of vari-
ances was veriWed using Cochran test (P < 0.05) and for
those variables that were not homogeneous, an appropriate
data transformation was applied. ANOVA pair-wise com-
parisons among stations were also performed. All statistical
analyses were performed using the STATISTICA 8 free
package.

Structural analysis at community level was performed
using the cluster analysis (Bray-Curtis similarity, group
average on square-root-transformed abundance data to
smooth and down-weight the importance of highly abundant
taxa) and the non-parametric multi-dimensional scaling
(nMDS) (Bray-Curtis similarity on square-root transformed
abundance data; PRIMER v6). In the nMDS graph, sample
points were circled according to clusters obtained with the
Bray-Curtis cluster analysis and that were signiWcant using
the SIMPROF test (P < 0.05). For the multivariate analysis,
each sample (scouring pad) was separately considered
(labelled as a, b, c in the nMDS graph). The SIMPER analy-
sis was performed on the species matrix to highlight the
species that most contribute to distribution pattern of the
stations. ANOSIM was applied to test the signiWcance level
of the station factor (pH gradient), of the side factor (North
vs. South) and of the side/station interaction.

Results

Monitoring stations N1 and S1 (Fig. 1) had normal pH
(range 8.06–8.15); N2 and S2 had low pH (range 7.27–7.99
and 7.49–7.89, respectively); N3 and S3 had very low pH
(range 7.26–7.60 and 7.08–7.79, respectively), but among
stations, there were no diVerences in temperature (range
15.9–22.4°C), total alkalinity (range 2.5–2.6) or salinity
(always 38) throughout the experimental period (Table 1).
Table 1 shows measured and calculated diVerences in car-
bonate chemistry of the stations with pCO2 peaks of
>3,000 ppm and periods of aragonite under-saturation
recorded at stations N3, S2 and S3 and periods of calcite

Fig. 1 Map of the study area at the Castello Aragonese (Ischia island,
Italy) with location of the sampling stations on the north and south
sides along a pH gradient from normal (N1, S1) to acidiWed (N3, S3)
conditions. The graph inside the map represents the mean and SD of
the pH values measured during the sampling period in April–May 2008
(see also Table 1)
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under-saturation only recorded at station S3. Although pH
and carbonate chemistry values were quite variable at the
vents stations (especially in the intermediate, N2 and S2,
and very low pH stations N3 and S3) compared to the con-
trol stations (N1, S1), 2-way ANOVA showed that pH val-
ues (F = 9.551, P < 0.001), pCO2 (F = 5.303, P = 0.004),
�aragonite (F = 6.550; P < 0.001) and �calcite (F = 8.540;
P < 0.001) were signiWcantly diVerent between stations.
Such diVerences were mainly due to stations S3 and N3
which showed the lowest values. In contrast, the DIC val-
ues did not change signiWcantly among stations (F = 0.336;
n.s.).

A total of 4,463 individuals of benthic invertebrates and
microfauna were sampled in the collectors and separated
into 79 taxa (Table 2). Half the individuals collected were

Crustacea (Copepoda 1136, Amphipoda 398, Tanaidacea
408, Isopoda 148, Ostracoda 148, Cumacea 11 and Deca-
poda 2), they were followed in abundance by Mollusca
(770 Bivalvia and 216 Gastropoda), by Polychaeta (876
individuals), while Foraminifera (239 individuals), Nema-
toda (82 individuals) and Chaetognatha (29 individuals)
made up <10% of the individuals sampled. Foraminifera,
Polychaeta, Amphipoda, Tanaidacea, Isopoda and Gastero-
poda were identiWed to species level giving a total of 64
species. Although similar numbers of organisms settled in
the collectors across the stations with no clear trend in
Evenness (J), there were signiWcant diVerences (P < 0.01)
between the numbers of taxa which were higher from col-
lectors placed in normal pH stations than in intermediate
and low pH stations on both transects, such that the normal

Table 1 Seawater carbonate chemistry measured (pHT, temperature
and total alkalinity TA) and calculated using CO2 Systat software
(salinity = 38) during the deployment of settlement collectors on the

north (N1, N2, N3) and south (S1, S2, S3) side of the Castello Àrago-
nese (Ischia, Italy) in April–May 2008

Station Temperature 
(°C)

TA 
(mmol kg¡1)

pCO2 
(�atm)

pHT 
(total scale)

CO2 
(mmol kg¡1)

HCO3
¡ 

(mmol kg¡1)
CO3

2¡

(mmol kg¡1)
DIC 
(mmol kg¡1)

�aragonite �calcite

N1

18-April 16 2.568 336 8.15 0.012 1.97 0.25 2.229 3.70 5.73

08-May 20.3 2.576 431 8.06 0.014 1.99 0.24 2.253 3.67 5.62

10-May 19.9 2.571 430 8.06 0.014 1.99 0.37 2.250 3.61 5.53

N2

18-April 16.0 2.609 1,908 7.49 0.680 2.45 0.07 2.583 1.00 1.55

08-May 19.9 2.596 955 7.77 0.030 2.27 0.14 2.445 2.11 3.23

10-May 20.2 2.614 697 7.89 0.022 2.19 0.18 2.387 2.70 4.14

N3

18-April 16.0 2.581 2,838 7.32 0.062 2.41 0.07 2.544 1.06 1.64

08-May 20.0 2.596 1,461 7.60 0.014 1.99 0.24 2.253 3.67 5.62

10-May 19.9 2.563 3,316 7.26 0.106 2.45 0.05 2.604 0.70 1.08

S1

17-April 15.9 2.568 345 8.14 0.012 1.98 0.24 2.237 3.62 5.61

06-May 19.9 2.580 333 8.15 0.011 2.00 0.28 2.186 4.24 6.50

08-May 20.0 2.571 395 8.09 0.012 1.97 0.25 2.229 3.82 5.85

10-May 20.6 2.581 384 8.10 0.012 1.95 0.26 2.225 3.98 6.1

18-May 18.7 2.614 370 8.12 0.012 1.99 0.26 2.261 3.92 6.04

S2

17-April 15.9 2.570 524 7.99 0.019 2.13 0.18 2.329 2.75 4.26

06-May 20.0 2.580 618 7.93 0.019 2.13 0.19 2.336 2.86 4.38

08-May 20.0 2.585 3,278 7.27 0.104 2.47 0.05 2.622 0.73 1.11

10-May 20.3 2.561 2,316 7.41 0.073 2.41 0.07 2.543 0.99 1.51

12-May 22.4 2.561 1,775 7.52 0.073 2.40 0.06 2.542 0.99 1.55

S3

17-April 16.0 2.567 2,226 7.42 0.079 2.43 0.06 2.566 0.85 1.31

06-May 20.0 2.585 3,786 7.21 0.120 2.48 0.04 2.647 0.64 0.98

08-May 20.8 2.570 5,148 7.08 0.160 2.49 0.03 2.685 0.49 0.75

10-May 20.7 2.556 4,543 7.13 0.140 2.47 0.04 2.648 0.54 0.83

18-May 19.7 2.552 886 7.79 0.028 2.22 0.14 2.38 2.13 3.27
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pH collectors were signiWcantly (P < 0.001) more diverse,
as also shown by the Shannon H’ (Fig. 2, Table 3). A sig-
niWcant interaction between station and side was also
observed (Table 3).

Foraminifera (11 taxa) were represented exclusively by
benthic forms and were dominated by Elphidium aculeatum;
they showed signiWcantly fewer individuals (P < 0.01) and
number of taxa (P < 0.001) in the low pH conditions
(Fig. 3, Table 3). Nematoda and Chaetognatha occurred
in low numbers throughout the pH range and were not iden-
tiWed further, precluding any investigations into species-
speciWc responses. Polychaeta (12 taxa) were signiWcantly
more diverse (P < 0.01) at normal pH conditions with the
calcareous tube-dwelling spirorbids Spirorbis marioni and
Neodexiospira pseudocorrugata only occurring at normal
pH stations. Polychaetes showed mixed responses to the pH
gradient, with Syllis prolifera most abundant at the lowest
pH sites (Fig. 4) and Amphiglena mediterranea signiW-
cantly more abundant at intermediate pH station S2
(Table 3, Fig. 4). Mollusca (18 taxa) were mostly juvenile
stages and had signiWcantly fewer individuals (P < 0.01)
and species (P < 0.01) at acidiWed sites. The bivalves were
diYcult to identify, as they were small and with damaged
shells, but the most common genera were tentatively identi-

Wed as Tellina and Macoma. Gastropod species were sig-
niWcantly more diverse at normal pH conditions (P < 0.01)
although adults of the most abundant species, Rissoa varia-
bilis, were also found at the lowest pH stations. Crustacea
(34 taxa) also had signiWcantly fewer individuals (P < 0.01)
at the most acidiWed stations, but the total number of taxa
did not diVer signiWcantly as there were a variety of ostrac-
ods, copepods, amphipods, tanaids and isopods that were
tolerant of high CO2 conditions (Fig. 3). When the
responses of crustacean taxa are examined individually,
they exhibit mixed responses with some responding posi-
tively and others negatively along the pH gradient, and with
some showing peak abundance at intermediate pH. For
example, copepods (the numerically dominant crustacean
group represented by both pelagic and benthic forms) had
signiWcantly fewer individuals at low pH (Table 3),
whereas Leptochelia dubia (the most abundant of the three
species of tanaids present) and Caprella acanthifera (the
most abundant of the 20 species of amphipods present)
were signiWcantly more abundant at intermediate pH station
S2 (Table 3, Fig. 4), whereas Dynamene cf biWda (the most
abundant isopod) was common at the most acidiWed site.

The ANOVA pair-wise analysis (Table 4) showed that
for most taxa and species considered, the diVerences were
mainly between station S1 and S2–S3, and with a lower fre-
quency between N1 and N2–N3. In general, stations S2 and
S3, and N2 and N3 showed less pronounced diVerences.

Cluster analysis of the taxa/station matrix, based on
Bray-Curtis similarity (not shown), separated three princi-
pal groups of samples at 57% similarity level and which are
signiWcant at the SIMPROF test (P < 0.05): the group
including normal pH samples, N1b–c, S1a–c, the group
with only samples N1a and N2a which are however closer
to the Wrst group, and the group including all the other
intermediate and low pH samples, except the outliers S3a
and N3a.

The nMDS ordination (based on Bray-Curtis similarity)
grouped samples in a way very consistent with the cluster
analysis (circled samples correspond to signiWcant clusters
at the SIMPROF test) with samples from normal pH condi-
tions well separated from the others (Fig. 5). According to
station (pH gradient), this ordination was signiWcant
(ANOSIM for station factor: Global R = 0.424, P < 0.1%).
The side factor North vs. South was not signiWcant, while
the interaction between side and station was signiWcant
(ANOSIM for side/station factor: Global R = 0.649,
P < 0.1%). SIMPER analysis showed that the species/taxa
that most contribute to the dissimilarity between normal
pH stations (S1, N1) and the low pH stations (S3, N3) were
Bivalvia, Copepoda, Neodexiospira pseudocorrugata and
Elphidium aculeatum (all calciWers, except Copepoda).
Those taxa which diVerentiate the normal pH from the
intermediate stations (S2, N2) were Leptochelia dubia,

Fig. 2 Trend of the number of taxa and of individuals (above graphs)
and Diversity (Shannon H’) and Evenness (Pielou J) (below graphs) in
the studied stations. In parentheses, next to station name are mean val-
ues of �aragonite
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Copepoda, Elphidium aculeatum, Neodexiospira pseudo-
corrugata and Bivalvia (again most are calciWers). While
those diVerentiating the intermediate from the low pH sta-
tions were Bivalvia, E. aculeatum, Leptochelia dubia,
Copepoda, Caprella acanthifera and Exogone naidina.
The species/taxa which most contribute in diVerentiating
south from north side samples were L. dubia, Bivalvia and
Copepoda.

Discussion

Ocean acidiWcation causes changes in seawater chemistry
that may have a large impact on marine life and biogeo-
chemical processes; however, these impacts are still poorly
understood at the ecosystem level (Vézina and Hoegh-
Guldberg 2008). Here, we provide a Wrst assessment of
which benthic faunal groups successfully settle out along a
pH gradient in natural CO2 vents. Such data are required to
advance our understanding on how marine coastal benthic
communities may adjust to ocean acidiWcation. There are
few experimental studies that explore the eVects of elevated
CO2 levels on benthic ecosystems, although mesocosm

work has shown eVects on primary production and the
export of organic material (Riebesell et al. 2007) as well as
nutrient Xux in sediments (Widdicombe and Needham
2007), bioturbation (DashWeld et al. 2008) and community
changes in tropical corals (Jokiel et al. 2008).

Although pH was variable during the study period, sig-
niWcant diVerences among stations were observed on aver-
aged values, especially in the most acidiWed stations (S3
and N3). Such variability in pH values is due to variable
local conditions at small and medium scale and in time, and
it is a problem to face when working in situ. This variability
is consistent with what has been observed in other short-
medium-term measurements performed in the area, both in
the acidiWed as well as in the intermediate stations (S2 and
N2) (Hall-Spencer et al. 2008; Rodolfo-Metalpa et al.
2010b; Lombardi et al. unpublished data). The intermediate
stations had higher Xuctuations in pH values as they were
located between areas with high venting activity and nor-
mal pH ones and show which organisms can tolerate highly
variable pH and carbonate chemistry conditions.

After 1 month, our artiWcial collectors (scouring pads)
hosted a relatively abundant and rich group of species,
particularly at stations with normal pH, as indicated by the

Table 3 ANOVA analyses of 
the main taxa and species, 
according to side (North vs. 
South) and station (along the 
pH gradient)

Taxa Variable Factors (F values) Interaction

Station Side Side/Station

Foraminifera Individuals 7.23** n.s. 3.60*

Species 7.76** n.s. 8.98**

Polychaeta Individuals n.s. n.s. n.s.

Species 7.43* n.s. 9.67***

Gasteropoda Individuals 5.91** n.s. 7.76**

Species 8.64** n.s. 7.78*

Bivalvia Individuals 3.72* n.s. 5.01**

Total Mollusca Individuals 3.77* n.s. 5.06*

Copepoda Individuals 3.55* n.s. 3.94*

Amphipoda Individuals n.s. n.s. n.s.

Species n.s. n.s. n.s.

Tanaidacea Individuals 44.23*** 22.13** n.s.

Species n.s. 5.60* n.s.

Total Crustacea Individuals 5.17** 6.15* n.s.

Species n.s. n.s. n.s.

Abundant species

Syllis prolifera Individuals n.s. n.s. n.s.

Amphiglena mediterranea Individuals n.s. n.s. n.s.

Leptochelia dubia Individuals 42.72*** 18.75** n.s.

Caprella acanthifera Individuals n.s. n.s. n.s.

Total n. taxa 8.03** n.s. 10.72***

Total n. individuals n.s. n.s. n.s.

Diversity (H’) 7.95*** n.s. 8.51***

Evenness (J’) n.s. n.s. n.s.

* P < 0.05; ** P < 0.01; 
*** P < 0.001; 
n.s., Not signiWcant
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values of diversity (H’), as well as by the total number of
taxa/species recorded (79 and 64, respectively). Among the
few abundant taxa, calciWers were mainly restricted to the
normal pH stations, such as most of the Foraminifera,
Neodexiospira pseudocorrugata and Spirobis marioni
(Spirorbidae), the gastropod Osilinus turbinatus, most of
Bivalvia and the isopod Cymodoce truncata. Other species
occurred all along the pH gradient, both on the north and
south sides, such as the polychaetes Exogone naidina,
Amphiglena mediterranea and Platynereis dumerilii, the
gastropod Rissoa variabilis and the amphipod Caprella
acanthifera. Finally, only the polychaete Syllis prolifera
and the tanaid Leptochelia dubia showed higher abun-
dances in some intermediate and low pH stations. On the
whole, a clear decrease in species diversity is evident along
the pH gradient on both sides of Castello Aragonese. This
is mainly due to disappearance or strong reduction in the
low pH stations of most of the calcifying organisms, such
as the majority of Foraminifera, Bivalvia, many Gastropoda
and all Spirorbidae polychaetes. This pattern seems clearly
related to the negative eVect that low pH exert on the cal-
careous structure of such organisms, as observed in the
same area in the study of Hall-Spencer et al. (2008) with
similar and other calciWed groups. These organisms, which
rely on the production of calciWed tests or shells for
survival, e.g. corals (Seibel and Fabry 2003), molluscs

(Lindinger et al. 1984; Michaelidis et al. 2005), crustaceans
(deFur and McMahon, 1984) and calciWed algal species
(Riebesell et al. 2000), are therefore particularly vulnerable
to lowering of the pH or its Xuctuations. Recent studies
have shown that the calciWcation rate within calcifying
organisms decreases with increasing pCO2, even in seawa-
ter supersaturated with respect to CaCO3 (Gattuso et al.
1998; Riebesell et al. 1993, 2000; Thornton and Shirayama
2001; Bijma et al. 2002; Green et al. 2004; Kleypas et al.
2006; Gazeau et al. 2007; Rodolfo-Metalpa et al. 2010a).
Other studies have shown that calcareous macroalgae (Ries
et al. 2009), coccolithophores (Iglesias-Rodriguez et al. 2008),
foraminiferans, echinoderms (Wood et al. 2008), molluscs
(Ries et al. 2009), corals (Ries et al. 2009; Jury et al. 2009,
Rodolfo-Metalpa et al. 2010a), bryozoans (Rodolfo-Metalpa
et al. 2010b), and crustaceans (Ries et al. 2009) either
increased or maintained the same levels of calciWcation
under moderate elevation in pCO2 (400–1,000 ppm pCO2).
Finally, a few calcareous organisms, such as the barnacle
Chthamalus stellatus, may survive and grow at extremely
low mean pH 6.6 as shown in our study area (Hall-Spencer
et al. 2008).

At intermediate and low pH stations, the species present
were in relatively high abundances perhaps indicating a
decrease in species competition favouring the abundance of
the few survivors or that the organism’s survival is compatible

Fig. 3 Trend of the abundance (number of individuals) and number of species of the main higher taxa collected in the studied stations. In paren-
theses are mean values of �aragonite
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with elevated DIC and HCO3
¡ levels that characterize the

low pH zones.
The majority of the organisms settled on the scouring

pads were juveniles or adult stages of small mesoherbivore
species typically associated with Posidonia oceanica mead-
ows and infralittoral macroalgal assemblages. Such habitats
are very common around the study area and act as source
for larvae, as well as juvenile and small adult dispersion
stages, some of which were also bearing eggs (e.g. the
polychaete Exogone naidina). This was particularly evident
for pericarid crustaceans (amphipods, isopods, tanaids)
which are active swimmers, and for gastropods, which
together with peracarids also undergo strong daily migra-
tion in seagrasses and macroalgal habitats (Russo et al.
1984b; Lorenti and Scipione 1990; Cozzolino et al. 1992).
It is likely that peracarids migrated to the collectors from
the macroalgal and Posidonia habitats that surround the
study area on both sides of the Castello. The active behav-
iour of peracarids and the pelagic habits of copepods and
ostracods may explain why crustaceans were so evenly dis-
tributed in all stations at both sides, relative to other less
mobile organisms (e.g. polychaetes).

Most of the species collected have been previously
recorded on such vegetated habitats (shallow infralittoral
macroalgae and Posidonia meadows) and are common
around the island of Ischia (Gambi et al. 2003), as well as
around the Castello at normal pH (Russo et al. 1984a;
Scipione 1999). However, a few of the most abundant
polychaete species, Platynereis dumerilii, Syllis prolifera
and Amphiglena mediterranea, were previously observed

also on the intermediate and low pH zones (Gambi et al.
1997, 2000; Rouse and Gambi 1997). Their relatively high
occurrence on the collectors is a conWrmation of their abil-
ity to thrive in such variable, and low pH conditions.

There are no studies on the physiological eVects of pCO2

and pH variability on the species recorded in our study.
From an ecological view point, P. dumerilli is particularly
tolerant to organic pollution, being considered as a
“polluted waters biological detector” (Bellan 1980).

Among the species listed for the area in the study of
Hall-Spencer et al. (2008), only the gastropod Osilinus
turbinatus was present also in our samples. This is surely
due to the diVerent methods of faunal collection among the
two studies.

Reduction in the overall biodiversity of the invertebrates
along with the reduction in pH is consistent also with data
on epiphytes of P. oceanica leaves (Martin et al. 2008) and
on macroalgae (Porzio et al. 2008) observed in the same
area, building on evidence for biodiversity loss and altered
community composition in waters acidiWed by CO2 (Fabry
et al. 2008; Barry et al. 2010).

Vent systems are not perfect predictors of future ocean
ecology owing to temporal variability in pH, spatial prox-
imity of populations unaVected by acidiWcation and the
unknown eVects of other global changes in parameters such
as temperature, currents and sea level (Reibesell 2008).
However, such vents acidify sea water on suYciently large
spatial and temporal scales to integrate ecosystem processes
such as production, competition and predation (Hall-Spencer
et al. 2008). A further step in this study will be to test if the

Fig. 4 Trend of abundance of 
some of the most abundant and 
relevant species collected in the 
studied stations. In parentheses 
are mean values of �aragonite
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pattern observed in our samples is consistent also in other
periods of the year and to look at individual species
responses and adaptation to Xuctuating and low pH condi-
tions along the vents. Our understanding of the processes
that underlie observed eVects of ocean acidiWcation on eco-
systems and biogeochemistry is still rudimentary, as is our

ability to forecast its impacts. There is an urgent need there-
fore to develop tools to assess and quantify such impacts
across the entire range of biological responses, from
sub-cellular regulation to ecosystem reorganization and
from short-term physiological acclimation to evolutionary
adaptation.

Table 4 ANOVA pair-wise 
analyses among the stations of 
the main taxa and species

Taxa Variable Pairwise comparisons among stations

S1–S2 S1–S3 S2–S3 N1–N2 N1–N3 N2–N3

Foraminifera Individuals n.s. n.s. n.s. * * ***

Species **. * n.s. n.s. *** *

Polychaeta Individuals

Species ** *** n.s. * ** n.s.

Gasteropoda Individuals ** n.s. n.s. *** *** n.s.

Species *** *** n.s. * ** n.s.

Bivalvia Individuals ** *** n.s. n.s. n.s. n.s.

Total Mollusca Individuals ** ** n.s. n.s. n.s. n.s.

Copepoda Individuals * n.s. n.s. n.s. * **

Amphipoda Individuals * n.s. n.s. n.s. n.s. n.s.

Species n.s. n.s. n.s. n.s. n.s. n.s.

Tanaidacea Individuals *** n.s. *** n.s. n.s. n.s.

Total Crustacea Individuals ** n.s. n.s. n.s. n.s. n.s.

Species n.s. n.s. n.s. n.s. * n.s.

Abundant species

Syllis prolifera Individuals n.s. n.s. n.s. n.s. n.s. n.s.

Amphiglena mediterranea Individuals * n.s. * n.s. n.s. n.s.

Leptochelia dubia Individuals *** n.s. *** n.s. n.s. n.s.

Caprella acanthifera Individuals * n.s. n.s. n.s. n.s. n.s.

Total n. taxa *** *** n.s. * *** n.s.

Total n. individuals n.s. n.s. n.s. n.s. n.s. n.s.

Diversity (H’) n.s. n.s. n.s. * *** n.s.

Evenness (J’) n.s. n.s. n.s. n.s. * n.s.

* P < 0.05; ** P < 0.01; 
*** P < 0.001; 
n.s., Not signiWcant

Fig. 5 nMDS ordination model 
(based on Bray-Curtis similar-
ity) of the studied stations. The 
circles group sample points clus-
tering together at Bray-Curtis 
similarity 57% and signiWcant 
using the SIMPROF test 
(P < 0.05)
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