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ABSTRACT 

 

With increasing levels of atmospheric pCO2 the oceans are becoming progressively 

more acidic, with the impact of a lowered pH beginning to affect the calcification of 

numerous invertebrate groups, including foraminifers, pteropods, heteropods and 

calcareous nannoplankton. Research on the ecology of foraminifera in the 

Mediterranean Sea, Gulf of California, Caribbean Sea and elsewhere has shown 

how modern assemblages are responding to acidification. Experimental work in 

mesocosms and laboratory cultures are also adding to our knowledge of the 

response to pH changes. Near Ischia (Italy), natural CO2 vents amongst sea grass 

meadows are creating low pH environments in which it is possible to observe the 

response of benthic foraminifera.  At a pH of 7.8 the foraminiferal assemblages are 

already becoming less diverse and below pH 7.6 there are often no calcite-secreting 

benthic foraminifera. In the Gulf of California, in a deeper-water setting, natural CO2 

(and methane) vents are also lowering sea floor pH. The foraminifera show the 

impact of this change, although the relatively high carbonate saturation ensures that 

calcite-secreting foraminifers are able to live and reproduce in these relatively low pH 

environments, only becoming impacted by dissolution effects once dead. Using data 

from the Cretaceous–Paleogene boundary in Texas, Alabama and north-west Europe 

it is clear that the plankton was severely impacted by surface water acidification 
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while the relatively shallow water benthic foraminifera show little change and no 

visible signs of post-mortem dissolution due to ocean acidification.    

 

1. Introduction 

In recent years there have been major advances in the understanding of the 

cause(s) of major extinction events in Earth history. Despite this massive literature 

base (e.g., Bond and Grasby, 2017, and references therein) there remains little 

consensus over some of the mechanisms involved, timing (see Schulte et al., 2010; 

Deenen et al., 2010) and the intensity or duration of such events (Koeberl, 2017). 

Almost every scientific meeting shows that these events are still controversial, 

especially as the extinctions at the Cretaceous/Paleogene (K/Pg) boundary cover 

such a range of organisms (e.g., non-avian dinosaurs, ammonites, planktic 

foraminifera and calcareous nannofossils). Bond and Grasby (2017, p. 3) list the 

usual extinction-causing ‘suspects’, including anoxia, global warming, changes in 

atmospheric pCO2 and, more recently, ocean acidification. Many of the Phanerozoic 

extinction events are now being related to either the eruption or weathering of large 

igneous provinces (LIPs), but – again – this links back to the problems of timing both 

of the eruptions and the ensuing bioevents. Adjacent to, and at, the K/Pg boundary 

the eruption of the Deccan volcanics certainly had an environmental effect but the 

impact at Chixculub is precisiely coincident with the main extinction events as can be 

seen in the Gulf Coast region of the USA (and elsewhere). Here we attempt to 

assess the role of ocean acidification in the K/Pg boundary successions in Texas, 

Alabama and elsewhere. 

 

2. Global bioevents 

The Phanerozoic contains a number of significant bioevents, many of which have 

been described as mass extinctions (Bond and Grasby, 2017). As recognized by 

Sepkoski’s (2002) and earlier (Sepkoski et al., 1981; Raup and Sepkoski, 1982, 

1984) compilations the ‘big five’ extinction events can be identified (Alroy, 2008; Alroy 

et al., 2008) as well as a number of other significant bioevents (Bambach, 2006). The 

data associated with these extinction events are being constantly revised and 

updated (e.g., Aberhan and Kiessling, 2012; Brett, 2012; Bond and Grasby, 2017; 

Erlykin et al., 2017; Melott and Bambach, 2017) by those interested in global 

patterns of evolution and diversification. In many cases so-called single events (e.g., 
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end-Permian and end-Triassic) are, in fact, multiple events that are often separated 

by several million years. This does not appear to be the case for the K/Pg boundary 

where there appears to be a single event as will be demonstrated later. Between the 

‘big five’ are a number of lesser, though still significant, biotic turnovers (e.g., 

Pliensbachian-early Toarcian, end-Cenomanian) caused by a variety of global, or 

local, phenomena. 

The end-Permian and end-Triassic events have been attributed to major 

volcanic episodes: the eruption of the Siberian Flood Basalts (Campi, 2012, and 

references therein) and the Central Atlantic Magmatic Province (CAMP) (Wignall, 

2001; Hesselbo et al., 2002; Corso et al., 2014) respectively. There are other 

extinction events where significant volcanic activity is known to have played a part, if 

not the sole cause of the extinctions. Amongst the most discussed are the eruptions 

of the Caribbean Large Igneous Province near the Cenomanian/Turonian boundary 

(Sinton and Duncan, 1997; Kerr, 1998; Wignall, 2001; Turgeon and Creaser, 2008; 

Jenkyns et al., 2017) and the eruptions of the Deccan Plateau around the end of the 

Cretaceous (Courtillot et al., 1986, 1988; Keller, 2012, and references therein). The 

latter are, of course, partly coincident with the major bolide impact on the Yucatan 

Peninsula (Mexico) at Chixculub. Two of these major events (end-Triassic and end-

Cretaceous) have been suggested as periods influenced by ocean acidification 

(Hautmann et al., 2008; Martindale et al., 2012; Alegret et al., 2012). While such 

bioevents may be attributed to a range of causes, the impact of any variables (e.g., 

increasing atmospheric pCO2) will have changed through geological time as both the 

oceanic and terrestrial biota has evolved. 

In the Palaeozoic, the oceanic plankton was dominated by organic-walled 

(e.g., acritarchs, chitinozoa, etc.) and siliceous (e.g., radiolaria) groups, with 

ammonoids and nautiloids representing the only calcifiers inhabiting the water 

column (Fig. 1). The ‘carbonate factories’ of the Palaeozoic were, as a result, 

restricted to shallow-water environments where benthic calcifiers thrived (e.g., the 

Silurian and Middle Devonian limestones of the Welsh Borders and of New York 

State, Devonshire and other parts of north-west Europe). As all of these were formed 

in neritic environments, this situation has been described as the ‘Neritan Ocean’ by 

Zeebe and Westbroek (2003) and Ridgwell (2005). 

In the Mesozoic and Cenozoic, neritic carbonate factories continued (e.g., the 

Urgonian Limestones of the French Alps, the Lower to mid-Cretaceous limestones of 
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the Oman Mountains (Wohlwend et al., 2016) and the Asmari Limestone of Iran) but 

were gradually overtaken in importance by the pelagic environment as the 

carbonate-producing plankton (e.g., calcareous nannofossils, planktic foraminifera, 

calpionellids, calcareous dinocysts and pteropods/heteropods) gradually evolved. 

Ridgwell (2005, his fig. 1) appears to indicate that this ‘Neritan’–‘Cretan’ transition 

was close to the Permo-Triassic boundary, even though the various taxa comprising 

the calcareous plankton do not appear until the latest Triassic, or even later. While 

the calcareous nannofossils appeared in the Triassic, they did not colonise the open 

ocean in large numbers until the post-Toarcian (Bown et al., 2004; Bown, 2005). This 

is almost the same time that the planktic foraminifers appeared in the Tethys Ocean 

(Wernli, 1995; Wernli and Görög, 1999; Hart et al., 2003, 2012a; Hudson et al., 

2009). The planktic foraminifers did not, however, become diverse and abundant 

until the Early Cretaceous (Premoli Silva and Sliter, 1999; Hart, 1999; Hart et al., 

2002). All of the Jurassic planktic foraminifers appear to have been relatively simple 

‘globigerine’ forms with aragonitic tests (Hart et al., 2012a). The earliest planktic 

ooze, with a ~99:1 planktic:benthic ratio has been reported from the mid–Upper 

Jurassic of Southern Poland (Wierzbowski et al., 1999; Hudson et al., 2005) where 

these sediments were deposited above the Aragonite Compensation Depth (ACD). 

The switch from a ‘Neritan Ocean’ to the ‘Cretan Ocean’ of the present day was, 

therefore, a gradual process encompassing the mid-Jurassic to earliest Cretaceous. 

Other important calcifying plankton, including the calpionellids, calcareous dinocysts 

and pteropods/heteropods, appeared in the latest Jurassic, mid-Cretaceous and 

latest Cretaceous respectively. 

In the mid–Late Jurassic, the diversity of planktic foraminifera remained low 

with only 2–3 genera and relatively few species (Gradstein et al., 2017a, b). In the 

earliest Cretaceous there were, effectively, only one or two genera (i.e., 

Conoglobigerina and Favusella) and it is almost impossible to determine a plausible 

evolutionary link to the newly-appearing Cretaceous assemblage (Banner and Desai, 

1988; BouDagher-Fadel et al., 1997), with taxa characterized by calcitic, rather than 

aragonitic, tests. Segev and Erez (2006) have suggested that the planktic 

foraminifers were probably incapable of switching between aragonite and calcite (or 

between high- and low-Mg calcite) and that the appearance of the calcite-secreting 

planktic foraminifers in the earliest Cretaceous (in the Calcite II Ocean of Stanley 

(2006), Stanley et al. (2005a, b), Stanley and Hardie (1998) and van Dijk et al., 2016) 
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reflected a different ocean chemistry as well as an unrelated phylogeny. This 

hypothesis suggests that the aragonitic Jurassic planktic foraminifers (which 

appeared in the Aragonite II Ocean) did not evolve directly into the in-coming 

Cretaceous–Cenozoic lineages, probably evolved from another benthic ancestor. 

This may explain why the later forms developed a much wider range of morphologies 

than their Jurassic precursors (Leckie, 2009). It is important to note that the Jurassic 

genus Favusella continues into the Cretaceous but does not give rise to any further 

lineages, becoming rare in the mid-Albian (Hart and Harris, 2012) and, eventually, 

extinct in the mid-Cenomanian (Carter and Hart, 1977). In terms of the development 

of the ‘Cretan Ocean’ the timing is not that suggested by Zeebe and Westbroek 

(2003) and taken forward in their analysis by Hönisch et al. (2012). The responses to 

the end-Triassic and end-Cretaceous bioevents took place, therefore, in two very 

different oceans. Also in the bioevents debate are the ‘Strangelove Ocean’ where 

(almost) everything was killed (Kump, 1991; Adams and Mann, 2004; Zeebe and 

Westbroek, 2003; Alegret et al., 2012) and the ‘Living Ocean’ where this was not the 

case (D’Hondt et al., 1998; D’Hondt, 2005; Alegret and Thomas, 2007; Sepúlveda et 

al., 2009; Alegret et al., 2012).  

 Using information from modern work on acidification (changes in pH) and an 

understanding of changes resulting from hypoxia/anoxia (see Hart, 2018 for 

discussion) it is possible to re-visit the Cretaceous/Paleogene boundary succession 

in Texas and Alabama and their correlation elsewhere. 

 

3. Cretaceous/Paleogene boundary 

 

The Cretaceous/Paleogene (K/Pg) boundary and the possible causes of the 

associated extinctions is one of the most contentious issues in the geosciences (e.g., 

Archibald et al., 2010; Courtillot and Fluteau, 2010; Keller et al., 2010; Schulte et al., 

2010). Our recent work in Texas and Alabama (Hart et al., 2012b, 2013) has yet 

again confirmed that the extinctions are coincident with the formally accepted K/Pg 

boundary (Molina et al., 2006), although it must be recognized that with the GSSP 

definition tied to the “moment of the meteorite impact, which implies that all the 

sediments generated by the impact belong to the Danian” (Molina et al., 2006, p. 

263), there is a degree of circularity in the argument. The alternative view is 

summarized by Adatte et al. (2011), Keller and Adatte (2011) and Keller (2012). Their 
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interpretations, however, were partly, based on an incorrect interpretation of a ‘yellow 

clay’ which is seen in Cottonmouth Creek, Brazos River area (Fig. 2), 30–40 cm 

below the K/Pg boundary: for a full discussion see Hart et al. (2012b). 

The K/Pg extinctions in the Gulf Coast and elsewhere have been attributed to 

a range of causes, including global darkness (caused by dust), ozone destruction, 

cooling/warming and – more recently – ocean acidification (Alegret et al., 2012). The 

interval between the timing of the impact and recovery – which is here taken as the 

onset of the planktic foraminiferal zone P1a – is approximately 80–100 kyrs based 

on the interpretation of precession cycles (Leighton et al., 2017). In Denmark (Stevns 

Klint), Hart et al. (2005) have documented the δ13C record in a much- expanded 

thickness of the Fiskeler Member (= Fish Clay of authors) in which there were 

approximately four isotopic excursions, with the lowest excursion, characterized by 

the largest negative δ13C excursion, being the most commonly reported elsewhere 

(e.g., Alegret et al., 2012, their fig. 2). In the River Bank South (RBS) section (Figs 2, 

3) on the Brazos River (Hart et al., 2012b; Leighton et al., 2017) a comparable 

number of δ13C excursions are recorded in the lowest part of the Littig Member 

(Kincaid Formation). The large, negative excursion of the Stevns Klint succession is 

not recorded in Texas, probably because of the effects of the tsunami and ‘Event 

Bed’ deposition which is not recorded in Denmark and other distal K/Pg sites. The 

Danish succession (Hart et al., 2005, their fig. 10) appears to be reasonably 

complete, preserving the δ13C excursions, the iridium layer (Damholt and Surlyk, 

2012 and references therein), a sharp ‘spike’ in Mo and Mo/Al ratios (Vellekoop et 

al., 2018, their figs 3, 4) and the short-lived presence of disaster taxa (mainly 

calcareous dinocysts): see Leighton et al. (2011). 

 If foraminiferal zones P0 and Pα represent approximately 80–100 kyrs 

(Leighton et al., 2017), then any extinction-causing events must be over within this 

time interval. In their chronology of the K/Pg boundary on Demerara Rise (North 

Atlantic Ocean, ODP Leg 207, Site 1259), MacLeod et al. (2007) indicate that P0 

was ~30,000 years and this agrees with Leighton et al. (2017) who recorded slightly 

more than one precession cycle in that zone. This gives an outline indication of the 

time-scale across the boundary interval in which to identify the various near-

instantaneous events (hours/days/months) which may have left little or no geological 

record; e.g., the 30 years cited by Brugger et al. (2017) or the short-term cooling 

postulated by Vellekoop et al. (2014). 
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 The micropalaeontological investigations of the Brazos River area extend 

back to Plummer (1926, 1931), who described the ‘Event Bed’ exposed at River 

Bank South on the Falls/Milam county boundary as a ‘pair of anticlines’. She also 

noted the presence of large (mainly nodosariid) benthic foraminifera that were visible 

in the field; an occurrence confirmed by more recent fieldwork (Hart et al., 2012b). 

The history of the investigation of the area (Brazos River, Cottonmouth and Darting 

Minnow creeks, Mullinax boreholes, etc.) has been documented by a number of 

workers as indicated in Hart et al. (2012b). Many of these investigations (e.g., Gale, 

2006) used the exposures on the bed of the Brazos River downstream of the Rt. 413 

bridge (Fig. 4a). It should be noted that access to these locations is governed by the 

release of water from an upstream dam, rather than local rainfall and that visiting the 

outcrops at a ‘dry time’ does not guarantee access to the succession. In these 

outcrops the eroded top of the Maastrichtian mudstones can be seen, overlain by a 

conglomerate of calcareous nodules (Fig. 4b, c) derived from the underlying 

mudstones. 

  

3.1.K/Pg boundary events in the Gulf of Mexico and Gulf Coast Region  

 

The impact of the end-Cretaceous bolide into the Yucatan Peninsula would have 

generated a seismic shock, followed closely by the tsunami. The magnitude 10–11 

earthquake (e.g., Day and Maslin, 2005) would have disturbed the Cretaceous 

mudstones and calcareous mudstones of the Gulf Coast, stirring up the 

unconsolidated sediment and, perhaps, shaking the semi-consolidated mudstones 

into blocks that would have settled back with the mud in suspension. The massive 

sub-sea slumping events in the Gulf of Mexico reported by Alvarez et al. (1992), 

Bralower et al. (1998), Grajales-Nishimura et al. (2000), Norris et al. (2000), Dohmen 

(2002), Denne and Blanchard (2013), Denne et al. (2013) and Sanford et al. (2016) 

would also be over quite quickly, although some instability may have continued for a 

longer period of time. Some of the faulting seen in the Brazos River area (Yancey, 

1996) and in Alabama (Olsson et al., 1996; Smit et al., 1996; Hart et al., 2013) may 

have originated at this time, but some of these structures can also be seen cutting 

overlying strata and are either later or were subsequently re-activated. 

This seismic activity would have been quickly overtaken by the arrival of the 

impact-induced tsunami. Using evidence derived from the Indian Ocean earthquake 
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(26th December 2004), the tsunami – and reflected waves – from the Chicxulub 

impact would have dissipated over 2–4 hours. The reflected waves would have 

gradually diminished in intensity over time, accompanied by a reduction in their 

sedimentological effects (G. Shapiro, pers. comm., 2012). The ‘Event Bed’ of the 

Brazos River area (Fig. 5) contains a series of sediment packages of comparable 

intensity and the inter-bedded, thin mudstone layers (with undamaged large benthic 

foraminifera and scaphopods) must have been deposited during periods of 

quiescence and cannot have been re-deposited by the tsunami event (Hart et al., 

2012b). The uppermost Cretaceous surface in both the Brazos River area (Hart et 

al., 2012b) and in mid-Alabama (Olsson et al., 1996; Hart et al., 2013, their figs. 5, 8-

10) consists of a generally smooth, undulating surface which has an ampli tude of ~1 

m (Hart et al., 2012b, their fig. 4). This is, perhaps, best seen in the three-

dimensional views photographed during the Miller’s Ferry construction works (Olsson 

et al., 1996). There, the E–W trend of the axes is at right angles to the direction of 

the path of the Chixculub tsunami. This surface, following the definition of the K/Pg 

boundary (Molina et al., 2006, p. 263), was created by the tsunami and, as close as 

possible, marks the time of impact. The overlying spherule-rich horizons, sandstone 

beds, etc. are, therefore, lowermost Paleocene. On the Demerara Rise (ODP Site 

1259), MacLeod et al. (2007, their fig. 2) show the presence of a thin, white, 

disturbed layer, which may also mark the passing of the tsunami: given the 

hypothesized wavelength of the tsunami wave, it would have disturbed sediments to 

a considerable depth (G. Shapiro, pers. comm., 2012). In the Gulf Coast area the 

tsunami would have, almost certainly, removed almost all of the seismically disturbed 

sediments. The amount removed, however, may not have been that great, as the 

uppermost Corsicana Mudstones in the Brazos River area still contain the very 

uppermost Cretaceous zone of P. hantkeninoides. In the Brazos River area, blocky 

mudstone ‘conglomerates’ are seen below the spherule-rich horizon at the base of 

the ‘Event Bed’. Near the RT 413 bridge spanning the Brazos River (Fig. 4a, b, c) 

these mudstone conglomerates contain calcareous nodules that are reworked from 

the Corsicana Formation, but the disturbed strata below the Cottonmouth Creek 

waterfall does not contain such nodules. It is possible, as postulated by Yancey and 

Liu (2013), that these mudstone conglomerates were either formed by the tsunami or 

its backwash (Vellekoop et al., 2018). The overlying sandstones of the ‘Event Bed’ 

contain abundant, and often quite large, Thalassinoides-like burrow systems (Fig. 6) 
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that confirm that all of these sandstones and mudstone interbeds could not have just 

been deposited by a short-lived tsunami event. The presence of intense bioturbation 

in the sandstones and abundant gastropods, bivalves, scaphopods, large delicate 

benthic foraminifera and ostracods does not indicate reduced levels of O2 (Vellekoop 

et al., 2018). Calcareous nannofossil analysis of the basal Paleocene mudstones 

shows the presence of abundant reworked material from both Maastrichtian and 

even Campanian strata, indicating that there had been considerable erosion of the 

underlying mudstones in the local area. 

Direct evidence of acidification is provided by this analysis of the calcareous 

nannofossils. In the RBS section (Figs 2, 3) the uppermost sample (A) of the 

Corsicana Formation (Maastrichtian) contains, as would be expected, an 

assemblage of latest Maastrichtian taxa (Fig. 7) with rare Braarudosphaera spp. and 

Thoracosphaera spp. The overlying ‘Event Bed’ and basal claystones (Sample F) of 

the Kincaid Formation (Zone P0) contain only rare microfossils, with some 

foraminifera and calcareous nannofossils, almost all of which are reworked 

Maastrichtian taxa. Only in the lower levels of Zone Pα are the first calcareous 

nannofossils of the Paleocene (F. petalosa and C. intermedia) recorded. Just above 

this level there is a distinct reduction in the percentage of reworked Cretaceous 

material. If the in-situ Maastrichtian calcareous nannofossils (Fig. 7) are compared to 

the reworked Maastrichtian specimens from P0 and the lower levels of Pα, there is a 

significant difference in the quality of preservation. The reworked Maastrichtian 

individuals from the Paleocene claystones are clearly etched, the majority of 

specimens showing signs of dissolution and fragmentation. It is postulated that these 

reworked Maastrichtian taxa were lifted into suspension by the tsunami (and its 

backwash) and, prior to re-deposition in the lowermost Paleocene claystones, etched 

and dissolved by the reduced pH in the surface waters. The same dissolution 

features are not visible in the in-situ, and reworked, foraminifera which presumably 

were only moved close to the sediment/water interface. 

It has recently been suggested (Gibbs et al., 2016) that ocean warming and 

not acidification controlled coccolithophore responses during past greenhouse 

climates. While this may be the case, the features we describe here would not be 

caused by warm temperatures alone and the damage to the nannofossils requires 

quite significant dissolution (but see Tyrrell et al., 2015). 

Following the impact, there were two other events that must have occurred 
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very rapidly: the thermal pulse (Vellekoop et al., 2014; Brugger et al., 2017) and the 

fallout of the spherules. There have been many suggestions that the thermal 

radiation from the impact would have been sufficient to ignite wildfires (Melosh et al., 

1990; Kring and Durda, 2002; Belcher, 2009). There would also be the heat 

generated by the ejecta particles (spherules) as they fell back to Earth. There are 

various estimates of the thermal pulse, and the affects that it may have generated 

(Wolbach et al., 1990; Hildebrand, 1993; Shuvalov and Artemieva, 2002), including 

the view that the majority of trees may have been killed before being, subsequently, 

ignited. The field evidence from the Gulf Coast is minimal, and the only location in 

which it is possible to observe in-situ charcoal is in the Clayton Basal Sands of the 

Mussell Creek locality (Fig. 8). In a series of multi-method and multi-proxy analyses 

Belcher et al. (2003, 2005, 2009) concluded that extensive K/Pg wildfires were 

unlikely, and that the K/Pg-derived soot and PAHs have a signature derived from 

combustion at the impact site (see also Harvey et al., 2008). 

The spherules provide the first direct evidence of the impact, likely arriving in 

many areas surrounding the Gulf Coast and the Atlantic Ocean (e.g., Demerara 

Rise) within about one hour of the impact (Alvarez et al., 1995; MacLeod et al., 

2007). In almost all shallower-water successions where spherules are recorded (e.g., 

New Jersey (Olsson et al., 1997), Colombia (Bermúdez et al., 2016) and Brazil 

(Gertsch et al., 2013)) they are reworked and mixed with sediment clasts, fossils and 

other debris. The succession (MacLeod et al., 2007, their fig. 2) on the Demerara 

Rise records an in-situ, graded bed that may have taken approximately one month to 

accumulate (allowing for the time to settle through the water column). Belcher (2009) 

indicates that the heat provided by the spherules to the surface was <325°C, lasting 

only for a very short period of time. As indicated by Hart et al. (2012b, 2013) the 

spherule-rich horizons in the Brazos River area and in Alabama are clearly re-

worked, the spherules being associated with sediment grains, ichthyoliths (fish teeth 

and bone fragments), re-worked foraminifers and other clasts (Hart, 2016, his fig. 4). 

The impact, following the definition of the K/Pg boundary by Molina et al. 

(2006), is also associated with the mass extinction (including calcareous 

nannofossils, planktic foraminifers, ostracods, ammonites, etc.). The limitations for 

our understanding of the order, and timing, of events in the very earliest Paleocene is 

what is actually preserved in the rock record. In the Stevns Klint succession (Hart et 

al., 2005, figs. 7, 10) the relatively flat end-Cretaceous surface is overlain by a thin, 
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mineral rich, Fe-stained layer that contains the iridium anomaly (Damholt and Surlyk, 

2012). This is almost coincident with the large negative δ13C stable isotope anomaly, 

which is itself coincident with a flood of calcareous dinoflagellates (Leighton et al., 

2011), a disaster taxon. In many locations (e.g., RBS, Brazos River area), this stable 

isotope anomaly is missing, probably indicating that the sedimentary record did not 

preserve this earliest Paleocene event or that it is obscured by re-worked sediment. 

The data from Miller’s Ferry are equivocal, and one is uncertain if this large negative 

δ13C stable isotope anomaly is preserved (Hart et al., 2014, fig. 7), even though 

some excursions are recorded in the Clayton Basal Sands (Olsson et al., 1996). 

In the Brazos River area, and in the Stevns Klint succession there is no 

evidence of a total productivity collapse (= Strangelove Ocean model), unless it was 

of such short duration as to be undetected. Dinocyst productivity appears to continue 

across the K/Pg boundary in a number of locations (Molina et al., 2006; Prauss, 

2009; Hull and Norris, 2011; Hull et al., 2011; FitzPatrick et al., 2013, 2018; Tuba 

Aydin, pers. comm., 2013). In Denmark, the P. grallator/D. californicum zonal 

boundary coincides with the K/Pg boundary, with a flood of calcareous dinocysts 

(e.g., Pithonella spp. and Orthopithonella colaris) being located only a centimeter 

above the base of the Fiskeler Member and within the interval of iridium enrichment 

(Leighton et al., 2011). The iridium ‘marker’ is missing in the Brazos River area and 

there is no recorded flood of calcareous dinocysts comparable to those recorded at 

Stevns Klint.   

 In the RBS succession, the calcareous nannofossil data show a significant 

disturbance, with the base of Zone NP1 being located at the base of the Littig 

Member. Associated with this is evidence of major re-working of Maastrichtian (and 

even Campanian) nannofossils, together with ‘disaster taxa’ such as 

Braarudosphaera spp. and Thoracosphaera spp. The benthic foraminifers (Hart et 

al., 2011; Leighton, 2014) are only marginally affected, with some evidence of 

possible re-working. This reworking of some benthic foraminifera has also been 

reported by Alegret and Thomas (2001) in northeast Mexico. In the mudstone 

horizons within the ‘Event Bed’ in Texas (Fig. 5) and in the Clayton Basal Sands of 

mid-Alabama (Fig. 8), there are large, beautifully-preserved lenticulinids and very 

long, uniserial nodosariids (Hart et al., 2012b; Leighton et al., 2017, fig. 3). These 

show very little evidence of systematic breakage, reduced calcification or post-

mortem dissolution. In the Wagner Basin (Canet et al., 2010), Pettit et al. (2013) 
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have showed that living benthic foraminifers can exist in quite low pH environments 

(7.88 – 7.55), but often suffer some post-mortem dissolution (expansion of pores, 

loss of smooth test surfaces, etc.) prior to final burial. This taphonomic effect is not 

recorded in the Brazos River material, even though the water depth (50–100 m) may 

have been within the potential range of surface water acidification. In the lower levels 

of the Fiskeler Member in Denmark (Hart et al., 2005, figs. 10, 11) some benthic 

foraminifers (e.g., Stensioeina pommerana and Cibicidoides succedens) have lost 

their chamber walls (apparently by dissolution), being reduced to ‘skeletons’ formed 

by the keels and sutures. As this is recorded in a relatively deeper-water setting it is 

thought to have been the result of taphonomic processes (or even modern 

weathering), rather than problems associated with calcification in acidified waters. 

 In the studies of modern environments in which pH is reduced by sub-sea 

CO2 vents, both Dias et al. (2010) and Pettit et al. (2015) have shown that below pH 

7.8 the assemblage becomes progressively dominated by agglutinated foraminifers 

as the calcareous component of the assemblage finds it more difficult calcify new 

chambers, as indicated by the experimental work of de Nooijer et al. (2009a, b). The 

benthic assemblages of the lowermost Paleocene in Texas and Alabama are 

dominated by calcareous taxa, with no evidence of any pH-limiting control. In the 

K/Pg boundary interval Ridgwell (2005) and Hönisch et al., 2012) have predicted a 

pH of ~7.8 (Fig. 2), which is comparable to that reported by Pettit et al. (2013) in the 

modern Wagner Basin.  

 The ‘background’ level of pH 7.8 was abruptly altered by the Chicxulub 

impact, which is thought to have vaporized gypsum and carbonates at the impact 

site, creating acid rain and the rapid acidification of the ocean surface waters 

(Sigurdsson et al., 1991; D’Hondt et al., 1994; Schulte et al., 2010; Hönisch et al., 

2012; Alegret et al., 2012). Whereas Hönisch et al. (2012, p. 1060) indicate that a 

single driver (e.g., ocean acidification) may not have been the sole cause of the end-

Cretaceous plankton extinctions, Alegret et al. (2012) suggest that a brief, rapid, but 

severe, acidification event may have been the primary cause. Lasting only months to 

years, Alegret et al. (2012) suggest that this may have caused the extinctions in the 

calcareous nannofossils and planktic foraminifers. Using the Caldeira and Wickett 

(2003, 2005) models a very brief pulse of increased CO2 would only reduce the pH 

of the surface waters. This may have been enough to damage the calcareous 

nannofossil assemblages significantly, although modern experimental work has 
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shown a very mixed response by the nannoflora to reduced pH (Langer et al., 2006; 

Stoll, 2009; Beaufort et al., 2011; Smith et al., 2012). In some cases the impact is 

species-specific and even limited to a single taxon, where some heavily-calcified 

morphotypes dominate the most acidic waters. In the case of the planktic 

foraminifers it is the more massive, deeper-dwelling morphotypes that became 

extinct, perhaps indicating that it was the surface-dwelling juveniles that were 

affected the most, leaving only tiny Hedbergella spp. and Guembelitria spp. to re-

colonize the Paleocene. The calcareous dinocysts presumably survived along with 

the organic-walled dinoflagellates, returning in floods (Leighton et al., 2011) within 

the first (20 ka) precession cycle of the Paleocene. 

 The ammonites could also have suffered in this surface-water acidification 

‘event’. Their small, floating eggs and aragonitic protoconchs may have been more 

prone to calcification problems than the larger, more-protected, eggs of the deeper 

living nautiloids (Landman et al., 1996) although recent work on the feeding habits 

and jaw structures of ammonites (Kruta et al., 2011; Tanabe, 2011) have suggested 

that it was the disappearance of the plankton that had the greatest effect. Loss of the 

ammonites would have had implications for the higher levels in the oceanic food 

web, including the marine reptiles. There are, of course, continuing records of 

surviving, Paleocene, ammonites (Landman et al., 2012; Stilwell and Håkansson, 

2012), but whether these occurrences are the result of reworking or taphonomic 

biases is yet to be resolved. 

 

3.2.K/Pg boundary events in the Brazos River area (Texas) 

In the latest Maastrichtian, the Brazos River area was in an open marine setting with 

near-continuous mudstone deposition. This is only interrupted by heterolithic 

horizons, often on a mm-to-cm scale. The mudstones display lamination and indicate 

that they were deposited in a quiet, low energy setting, below storm wave base in a 

mid-outer shelf environment (~ 50–100 m). Some thin sandstone horizons are 

present within the Upper Maastrichtian, one of which can be seen following the 

regional strike across the Brazos River immediately to the north of Rt. 413 bridge in 

an area we refer to as River Bank North (Fig. 2). This particular sandstone was also 

recorded in the Mullinax-1 core, which was drilled on the flood plain just west of the 

river. These horizons represent the transport of siliciclastic material off-shore, 

probably as a result of storm events. Bivalves and gastropods are present 
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throughout, although not abundant within the uppermost Maastrichtian. Towards the 

end of the Maastrichtian, Hart et al. (2012b) record the presence of a volcanic ash, 

which was dated (Hart et al., 2012b, pp. 75–77) as being 65.95 ± 0.04 Ma. This is 

exposed 30–40 cm below the Event Bed in Cottonmouth Creek. Baculites spp. and 

other ammonites are present in the Corsicana Formation and confirm that the 

sediments are latest Maastrichtian in age (Witts et al., 2017); this supports the data 

from a study of the planktic foraminifera and calcareous nannofossils (Leighton et al., 

2017).  

There is an ash-fall deposit recorded immediately north of the Rt. 413 bridge at 

River Bank North and while this looks to be identical in both appearance and 

thickness it is almost impossible to confirm if it is the same ash. Yancey (1996, fig. 4) 

has shown that the K/Pg boundary in the Brazos River at this point is both faulted 

and gently folded and, while the ash appears to be lower in the Maastrichtian 

succession than the one exposed in Cottonmouth Creek, it is probably the same 

marker bed and points to differential erosion of the end-Maastrichtian mudstones. 

The absence of the Event Bed that was recorded in the core Mullinax-3 sited 

near to Darting Minnow Creek was reported by Adatte et al. (2011) to indicate that 

the Event Bed seen in other locations had been eroded away by a period of sub-

aeriel exposure and that the presence of a palaeosol and rootlets near the top of the 

core was evidence of a mangrove environment in the earliest Danian. Our field work 

has shown that Mullinax-3 was probably drilled through a positive area of the end-

Cretaceous sea floor and, therefore, did not contain the Event Bed, which is only 

present in the sea floor lows. This was different to the Mullinax-1 core site which was 

located in the area of a trough and, as a result, cored the ‘Event Bed’. The rootlets 

within the postulated palaeosol described by Adatte et al. (2011) can clearly be 

attributed to the Pleistocene river deposits which blanket the area. The pedogenic 

features (gypsum-filled fractures and wide oxidation margins on mudstone blocks) in 

the Mullinax-3 core illustrated by Adatte et al. (2011, fig. 17) and Keller et al. (2011, 

fig. 27) directly underlie Pleistocene terrace sediments and are the products of 

Pleistocene weathering processes. Yancey and Liu (2013) also indicate that these 

are not related to K/Pg boundary environments and that there is no evidence for sub-

aeriel exposure in the end-Maastrichtian or earliest Danian. 

Figure 9 shows the ‘Event Bed’ at River Bank South, with a close up of the 

spherule bed that rests on the eroded Maastrichtian mudstones. The ‘Event Bed’ 
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sandstones and underlying spherule bed are present within the troughs and absent 

on the ‘highs’ which in one case (at River Bank South) preserves a shell pavement 

(Hart et al., 2012b, fig. 4A, 4B). The various successions of the Brazos River area 

can be interpreted and used to construct a sequence of events (Fig. 10) that 

includes Maastrichtian mudstone deposition, arrival of a volcanic ash, the erosion 

caused by the tsunami, and the subsequent deposition of the ‘Event Bed’ and 

overlying Paleocene mudstones. The large, earliest Paleocene, δ13C excursion and 

the iridium layer are not recorded as the area was affected by too many other 

sedimentological events at that time.  How this interpretation of the geological history 

of the Brazos River area compares to other important K/Pg boundary successions 

(Demerara Rise, Stevns Klint and El Kef) is shown in Figure 11. If the time-scale 

proposed by Leighton et al. (2017) is approximately correct, the time from surface-

water acidification and extinction to the onset of recovery was very short, being in the 

order of 30,000 years, with significant biotic recovery in around 80,000–100,000 

years. The well-preserved benthic foraminifera point to only a surface water effect, 

before water column mixing allowed the onset of recovery.  

 

4. Summary 

The current stratigraphy of the Cretaceous/Paleogene boundary provides a robust 

framework for international correlation and the documentation of the events 

associated with both the Deccan volcanism and the Chicxulub impact. Certain 

features, such as disturbed strata, erosion surfaces, presence of spherules (in-situ or 

reworked), the iridium anomaly, presence/absence of charcoal and the biotic 

extinctions and/or turnover, all point to a series of events that can be located in 

relative time. It is clear, however, that within one precession cycle of ~20,000 years 

there are a number of events (e.g., ocean acidification, possible fires, etc.) that were 

over very quickly and remain beyond our present resolution in the geologic record. 

The evidence of where such events fit into the overall time-scale are often indirect 

and, in places, vague at best. As more work on the Gulf Coast successions is 

undertaken, this resolution will undoubtedly improve, especially with a detailed 

analysis of the cyclostratigraphy, but still will undoubtedly lack the ability to discern 

events that may have occurred over intervals of less than a few years. The 

extinctions of the calcareous nannofossils and the planktic foraminifers may have 

been caused by a brief acidification event, but the impact of this was never more 
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than in the very near-surface waters as the preservation and taxonomic composition 

of benthic foraminifera and their assemblages recovered from the Gulf Coast 

successions show no evidence of a calcification crisis or even post-mortem 

dissolution. 

 While there are other events happening as a result of the Deccan volcanism, 

the extinction events at the K/Pg boundary appear to be a single event, very closely 

aligned to the Chicxulub impact. 
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Figure Captions 

 

Figure 1. The changing nature of the plankton through time and the changes in 

ocean chemistry (modified after Ridgwell, 2005). The timing of the Neritan and 

Cretan oceans has been altered from the original proposals of Ridgwell (2005). 

The distribution of the calcitic/aragonitic oceans is based on Stanley (2006).  

Figure 2. Map of the Brazos River area, Falls County, Texas, showing the location of 

the various creeks, boreholes and other sections mentioned in the text. After 

Hart et al. (2012b)  

Figure 3. View acoss the Brazos River to the Riverbank South succession. The 

Pleistocene valley gravels, which are pink in colour, overlie the lowermost 

Paleocene succession that rests on the ‘Event Bed’ and the Corsicana 

Mudstone Formation of the Maastrichtian. The letters along the succession 

refer to the lithological markers identified by Yancey (1996).  

Figure 4. (a) View of Brazos River immediately south of the RT 413 bridge, showing 

the general nature of the exposures at a time when river flow is low. The rippled 

surface is the top of the Event Bed; (b) The spherule-rich mudstones and the 

overlying cross-bedded sandstones of the ‘Event Bed’ are seen resting on 

conglomeratic mudstones (derived from the Corsicana Mudstone Formation) 

which  (c) include small, rounded carbonate-rich concretions (also derived from 

the underlying succession).  

Figure 5. The ‘Event Bed’ at the K/Pg boundary in Darting Minnow Creek, Brazos 

River area, Texas. The irregular surface below the ‘Event Bed’ is indicated and 

the mudstone interbeds are clearly visible. These contain quite large benthic 

foraminifers (mainly Lenticulina spp. and Nodosaria spp.) as well as 

macrofossils, including scaphopods.  

Figure 6. Exceptionally long Thalassinoides-style burrow system within one of the 

sandstone units of the ‘Event Bed’.  
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Figure 7. Impact of acidification on in-situ and re-worked calcareous nannofossils at 

the K/Pg boundary. Scanning electron micrograph images A–D are from 

sample F, basal Paleocene claystones, while E–G are from sample A in the 

uppermost Maastrichtian mudstones. Sample locations are shown in Hart et al. 

(2012b their fig. x). A, Retecapsa crenulata (Bramlette and Martini), basal 

Paleocene, scale bar 1 μm; B, Kamptnerius magnificus Delandre, basal 

Paleocene, scale bar 2 μm; C, arkangelskiellid, probably Garnerago obliquum, 

basal Paleocene, scale bar 1 μm; D, Retecapsa crenulata (Bramlette and 

Martini), basal Paleocene, scale bar 2 μm; E, Micula staurophora (Gardet) 

Stradner, uppermost Maastrichtian, scale bar 1 μm; F, Prediscophaera cretacea 

(Arkangelskey) Gartner, uppermost Maastrichtian, scale bar 2 μm; G. 

Arkangelskiella cymbiformis Vekshina, uppermost Maastrichtian, scale bar 1 

μm.  

 Figure 8. The Clayton Basal Sands in the Mussell Creek section, Alabama. The 

inset images show (left) the re-worked clast of Prairie Bluff Chalk within the 

yellow, charcoal-rich, yellow sands and (right) a large charcoal fragment that is 

~5 cm in diameter. This is the section that was described in detail by Savrda 

(1993) and previously discussed by Hart et al. (2013).  

Figure 9. The ‘Event Bed’ at River Bank South with (inset) a close-up of the 

sandstones overlying the re-deposited bed of spherules, shell fragments, bone 

fragments and foraminifera.  

Figure 10. Sequence of events across the K/Pg boundary, including the deposition 

of the volcanic ash (2), arrival of the tsunami (4, 5), deposition of the spherule 

bed (6), deposition of the ‘Event Bed’ (7, 8, 9) and the subsequent deposition of 

the Litig Formation mudstones (10). A summary of these events is presented 

(11), which can also be seen in Figure 11. 

Figure 11. Schematic correlation of the Brazos River succession (from Figure 10), 

with the Demerara Rise, El Kef (Tunisia) and Stevns Klint (Denmark). 
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HIGHLIGHTS 
 
This paper discusses the K/Pg in terms of surface water acidification caused by the K/Pg impact 
event. This is coupled with a new model for, and correlation of, the events recorded in a number 
of areas both proximal to the impact and distal. In particular the model is based on fieldwork in 
Texas. 
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