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Abstract. The aim of this paper is twofold: firstly, to use ultrasonic sensors to 

detect obstacles and secondly to present a comparison of machine learning and 

deep learning algorithms for pedestrian recognition in an autonomous vehicle. A 

mobility scooter was modified to be fully autonomous using Raspberry Pi 3 as a 

controller. Pedestrians were initially simulated by card board boxes and further 

replaced by a pedestrian. A mobility scooter was disassembled and connected to 

Raspberry Pi 3 with ultrasonic sensors and a camera. Two computer vision 

algorithms of histogram of oriented gradients (HOG) descriptors and Haar-

classifiers were trained and tested for pedestrian recognition and compared to 

deep learning using the single shot detection method. The ultrasonic sensors were 

tested for time delay for obstacle avoidance and were found to be reliable at 

ranges between 100cm and 500cm at small angles from the acoustic axis, and at 

delay periods over two seconds. HOG descriptor was found to be a superior 

algorithm for detecting pedestrians compared to Haar-classifier with an accuracy 

of around 83%, whereas, deep learning outperformed both with an accuracy of 

around 88%. The work presented here will enable further tests on the autonomous 

vehicle to collect meaningful data for management of vehicular cloud.  

Keywords: Pedestrian recognition, Obstacle avoidance, Ultrasonic sensors, 

Haar classifier, HOG descriptor, deep learning 

1 Introduction 

According to a recent report from the Department of Transport, from October 2015 to 

September 2016, there were around £183,000 casualties resulting from traffic accidents 

of which 1,800 were fatal and over 25,000 were life changing [1]. The vision for the 

autonomous car revolution is to reduce this figure by at least 76%. Cars are undergoing 

a revolution just like mobile phones did twelve years ago. They are increasingly 

becoming intelligent agents that have the capability to learn from their environment and 

be driven in an autonomous manner. Therefore, to improve road safety and traffic 

congestion, fully or partially autonomous vehicles offer a very promising solution. 

Most modern vehicles are equipped with advanced driver assistance systems (ADAS) 



that assists in driving in a number of ways such as lane keeping support, automatic 

parking, etc. More recently, traffic sign recognition systems are becoming an integral 

part of ADAS.  

Most new vehicles are capable of some form of autonomy e.g. automatic parking, 

lane recognition, etc. Raspberry Pi 3 is a small low cost computer and offers opportunity 

for research towards the roadmap of autonomy. Therefore, the objective of this paper 

is to use Raspberry Pi version 3 as a microcontroller for an autonomous vehicle 

connected with ultrasonic sensors and a camera and discusses the suitability of using 

Raspberry Pi as a controller. The mobility scooter was acquired from Betterlife 

healthcare [19] and adapted such that its controller communicated with the Pi which 

was connected to ultrasonic sensors and a camera.  Ultrasonic sensors are cheap and 

has less power consumption and measures the accurate distance from the obstacle and 

transmits the measured data to the system. The ultrasonic sensor are connected to the 

Raspberry Pi in a way so that obstacles present in the front, back and side of the vehicle 

are being detected. The obstacles in the blind zone are also detected by the ultrasonic 

sensors. This emulates obstacle detection on the road. Presence of pedestrians is 

detected by computer vision using Haar-classifier and HOG descriptors and further by 

deep learning. 

 

Therefore, the contributions of the paper are two-fold: 

 

 To convert a mobility scooter to be fully autonomous with ultrasonic sensors 

and camera to detect an obstacle and find the reliable range. 

 To present comparative analysis between HOG descriptors, Haar-classifiers and 

deep learning for pedestrian recognition. 

The rest of the paper is organised as follows. Section 2 presents related work, section 

3 presents the conversion of the mobility scooter to an autonomous vehicle. In Section 

4, the computer vision and deep learning algorithm implementation on Raspberry Pi 3 

is presented. Section 5 presents the experiments, results and discussions. Section 6 

concludes the paper highlighting areas of future work.  

2 Related Work 

An important feature of autonomous driving is recognizing pedestrians and 

obstacles. Computer vision allows autonomous vehicles to process detailed information 

about images that would not be possible with only sensors and has been increasingly 

used to study facial recognition. Two methods in computer vision have been widely 

applied in image recognition as firstly, the Haar feature like classifier [2] where a set 

of positive and negative images are used and Haar-like features are applied to each set. 

Critical analysis of the technique has shown that the background complexity plays a 

role in the quality of the classifier and can be easily corrupted by lighting [3]. This 

method was originally used for facial recognition, the same principles can be applied 

to almost any other object therefore a pedestrian cascade can be made using this method 

and has been presented here. Secondly, the Histogram of Oriented Gradients (HOG) 

descriptor and has been used in [4] for pedestrian recognition. The principles behind 

the HOG descriptor [5] is that it is a type of ‘feature descriptor’ that has been trained 



using a Support Vector Machine (SVM), a type of supervised machine learning that 

works on the classification of positive and negatives samples of data. The HOG feature 

descriptor, unlike conventional techniques applies a general feature as opposed to a 

localized one to the image area. This is sent to the SVM which would then classify it 

as a pedestrian. 

The authors in [6] present an efficient hardware architecture based on an improved 

HOG version and linear SVM classifier for pedestrian detection for full high definition 

video with a reduced hardware resource and power consumption. Image processing 

algorithms have been used in [7] to remove unwanted noise from the image based 

sensor. A vision optical flow based vehicle collision warning system is proposed in [8] 

based on computer vision techniques.  

Raspberry Pi is a credit card sized single board low cost computer and provides the 

flexibility of using it as a microcontroller and is increasingly used in academic research, 

e.g. in [7] authors present the implementation of image processing operations on 

Raspberry Pi. In [9] ultrasonic sensors are used for object detection from the moving 

vehicle. In [10] authors have combined Haar detection with laser distance to recognize 

pedestrians. The work presented in [11] concludes that codebook representation of Haar 

and HoG features outperform detection based on only HoG and Haar. The codebook is 

generated from a set of features given by the Bag of Words [12] model. More recently, 

deep learning based on deep convolutional neural networks has been used for image 

classification of road signs [13] with 97% accuracy and for pedestrian recognition [14]. 

The work presented in [15] uses detection based on Haar features and classification 

based on HOG features with support vector machine. Pedestrian recognition using 

OpenCV on Raspberry Pi was implemented in [16]. In [17] authors have used 

Raspberry Pi for detecting road traffic signs using image processing techniques, 

whereas, in [18] a combination of MATLAB with Raspberry Pi is used for face 

detection using Haar classifier. 

There has been an increasing interest from the research community in image 

classification for pedestrian recognition. Most modern vehicles now have some form 

autonomous features, confidence level in obstacle detection and pedestrian recognition 

has to increase towards the roadmap of fully autonomous vehicles. In addition, utilizing 

the computational capability of Raspberry Pi in research is still in its early stages.  The 

novelty of our work from the work presented in literature is that we are implementing 

our pedestrian recognition algorithms on Raspberry Pi 3, comparing them and testing 

its suitability from a research point of view.  

3 Autonomous vehicle using Raspberry Pi 

The vehicle used for this project is a Capricorn Electric Wheelchair from Betterlife 

Healthcare [19] as shown in Fig. 1a. It is a small, four wheeled vehicle with caster type 

front wheels, two fixed driven rear wheels and powered by two 12V batteries. It is 

driven by two separate electric motors, which are connected directly to each of the rear 

wheels. It has a maximum speed of 4mph, a maximum incline of 6° and a turning circle 

of radius 475mm. The maximum range of the wheelchair is 9.5km. The tyres are solid 

and have a larger radius than many other models of its type, helping to improve 

performance on rough or uneven surfaces. 



This section will present the conversion of the mobility scooter into an autonomous 

vehicle controlled by Raspberry Pi 3. It will further describe the connection of 

ultrasonic sensors and camera.  

 

3.1 Connecting the Raspberry Pi 3 

The autonomous vehicle was built from a mobility scooter as shown in Fig. 1a. The 

scooter had an inbuilt microcontroller shown in Fig. 1b which was used as a 

communicative tool between the Raspberry Pi version 3 and the vehicle’s motors. The 

directional actions of the joystick voltage levels for each pin is shown in Fig. 1c (shown 

in the red circle in Fig. 1b) and is presented in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

                                          
 

 

 

 

 

                   Table 1. Voltage directional values. 
Direction Voltage applied (volts) Pin colour 

Forward 3.97 Green/Grey 

Reverse 1.13 Green/Grey 

Right 3.97 Purple/Yellow 

Left 1.13 Purple/Yellow 

Static/Stop 2.5 All 

Turn ON 2.5 Black 

 

In order to make space for a platform on which the system can be installed, the chair 

was removed, as was the housing surrounding the frame of the vehicle. The central 

column between the chair and the frame was also removed, allowing the new chassis 

to be placed over the frame. The new chassis is shown in Fig. 2a, whereas, the block 

diagram is presented in Fig. 2b showing the connections of the Raspberry Pi with the 

sensors and the vehicle’s controller. The chassis shown in Fig. 2a has enough space for 

the control panel – rewired to connect the Raspberry Pi directly to the joystick input, 

the Pi itself, and two breadboards with which the circuitry could be modified during the 

Fig. 1a. Original mobility 

scooter       

Fig. 1b. Autonomous 

vehicle microcontroller 
Fig. 1c. Autonomous 

vehicle pins 



built and testing process. The chassis is designed so additional components and sensors 

can be added. Two digital to analogue converters were installed, controlling both 

forwards/backwards motion and the yaw of the vehicle, respectively. The front wheels 

were fixed in place by the removal of the bearings contained in the shafts. This allowed 

the connecting bolts to be tightened fully and restricting the motion of the vehicle to 

forwards and backwards. 

                                           
Fig. 2a. The 

autonomous vehicle 

modified from the 

mobility scooter 

 
            Fig. 2b. Block diagram of the autonomous vehicle 

 

For the vehicle to be autonomous it would have to be controlled by the General-

Purpose Input Output (GPIO) pins on the Pi which would send signals emulating the 

joystick. The GPIO pins work with digital signals therefore a Digital to Analogue 

Converter (DAC) (Fig. 2b) would be required to alter the signal type. An Adafruit 

MCP4725 DAC [20] was used and functioned well with the Raspberry Pi. 

To use the DAC effectively the Inter-Integrated Circuit (I2C) bus on the Raspberry 

Pi had to be operated. This is an interface that utilises data exchange between 

components and microcontrollers, there are many ‘slave’ devices (the DAC/s) 

controlled by a ‘master’ device (the Raspberry Pi). The Pi’s GPIO pins can only output 

5V or 3.3V and the DAC is a 12-bit controller which means it ranges in values from 0 

to 4096, Equation 1 shows the formula used, 

𝐷𝐴𝐶𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = (
𝑉𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑉𝑚𝑎𝑥

) 𝑋212      (1) 

This formula can then be applied directly to the DAC through a Python script. The 

DAC contains two inputs, Vdd and A0 allowing two different I2C bus addresses to be 

used on the Raspberry Pi at once which could then be referred to as parameters in a 

function as 0x62 and 0x63 for forwards/backwards and left/right, respectively.  

 

3.2 Connecting Ultrasonic Sensors to the Raspberry Pi 3 

Ultrasonic sensors provide basic object-detection autonomy to the vehicle. The HC-

SR04 sensor was used which could work with the Pi’s GPIO pins through jumper wires. 

The principle of the HC-SR04 is that there are four pins: power, trigger, echo, and 

ground. The power and ground were connected directly to the Pi’s voltage and ground 

pins, the trigger acts as a ‘starting gun’ for the sensor signifying when to produce a 

soundwave, and the echo receives the soundwave. While these are binary input/output 

functions they can be used on Python to determine the distance of the closest object. 

The programming logic is shown in Flowchart in Fig. 3. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Ultrasonic sensor function flowchart 

 

This ultrasonic object detection function can be imported into the DAC script and 

tell the Pi to fire a STOP (2.5V) or ‘Reverse’ (1.13V) command to the vehicle through 

the DAC if the sensor function detects an object that is below a predefined threshold 

(e.g. < 2m) as shown in the flowchart in Fig. 4. 

The script was modified for multiple sensors to incorporate multiple echo variables, 

however, a single trigger can be used to activate them all simultaneously and add each 



echo onto an array. Python has clocking functions which enable a user to determine the 

length of time between two points in a function, this is important to determine the 

latency of sensors and reaction time of the autonomous vehicle. A voltage divider was 

used to protect the Pi’s GPIO pins from excessive signals generated by the ultrasonic 

sensors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4. Object detection function flowchart 

 

 To ensure the vehicle was mobile, a portable battery producing 5V was powering 

the Pi and a laser-cut housing was designed to hold the system in place and absorb 

forces from potential collisions (Fig. 2b). It is recognised that this methodology of using 

an autonomous vehicle is limited in that it is not the size of an autonomous commercial 

vehicle however the value comes from testing the principles. 

In order to connect the ultrasonic sensors to the Raspberry Pi, the circuit was adjusted 

so that all of the triggers were controlled by the same i/o pin on the Pi, keeping the 

amount of i/o pins used to a minimum of x+1, where x is the number of sensors used in 

the design. Each of the sensors outputs the result to an array which is continually 

updated, and it is this array which can be communicated to an infrastructure hub. 

4 Computer Vision and Deep Learning on Raspberry Pi  

Computer Vision on the Raspberry Pi was run by importing the OpenCV (Open Source 

Computer Vision) [21] module through a stream. Open-CV is a library by Intel that 

consists of functions used for computer vision. The digital image is processed pixel by 



pixel, applying convolution and smoothing through a local operator, which operates 

threshold on the histogram. Python programming language has been used in this paper.  

A pre-trained pedestrian Haar-classifier [2] was used where a cascade function is 

trained from a number of positive and negative images.  This is based on the detection 

stage that generates the rectangular regions which may contain pedestrians. These 

regions of interest (ROI) are then classified and confirms the presence of a pedestrian 

or discards the ROI if the classification is negative. The system output consists of 

bounding boxes describing size and position of the pedestrians in each frame. 

Computer Vision was run on the Raspberry Pi by importing the OpenCV module 

and run through a stream. A pre-trained pedestrian Haar-classifier was used that 

contains 19 Stages of Haar-training [21]. This included 5000 positive images and 3000 

negative images [22]. 

 
Fig. 5. Still images comparison flowchart 



The Haar-classification uses an integral method that takes each rectangle as the sum 

of pixels and reduces them to an array of four values massively decreasing the time for 

a detection to take place. The Adaboost (Adaptive Boosting) machine learning 

algorithm [23] is used to sum all weak classifiers into a final strong classifier which is 

then applied to an image.The video stream from the Pi camera was parsed through this 

cascade and ROI returned a 4-index array which was used to determine the presence of 

a pedestrian. The Pi’s Frames Per Second (FPS) on the camera was low even without 

running an algorithm for each frame, therefore a method called threading was 

implemented to increase the FPS allowing for faster reaction times from the Pi. 

Threading (or Multi-threading) is the method of having processes run parallel 

independently with one another but transferring data, therefore instead of one main 

thread, there are multiple threads which while require more computational resources 

allow an increase in process quality, such as passing frames per second. The 

programming logic to execute the computer vision algorithms for still images and 

frames from a video stream are shown in Figs. 5 and 6 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 6. Raspberry Pi 3 video comparison flowchart 



Deep learning was applied with single shot detection method [21] based on a single 

neural network. The method [21] discretises the output space of bounding boxes into a 

set of default boxes over different aspect ratios and scales per feature map location. The 

scores are generated by the network at prediction time for the presence of each object 

category in each default box and produces adjustments to the box to better match the 

object shape. In addition, predictions from multiple feature maps are combined by the 

network with different resolutions to naturally handle objects of various sizes. The deep 

learning algorithm was trained with COCO and VOCO712 datasets [24] with a total of 

82,943 images. 

5 Experiments, Results and Discussions 

The experiments comprised of two parts. The first part tests the hardware and 

software of the autonomous vehicle. This will include the evaluation of the vehicle’s 

stopping properties on the Raspberry Pi and sensor connections along with the Python 

script to recognise obstacles and react accordingly. This has been tested by laying out 

an obstacle for the autonomous vehicle and sending it from two arbitrary points while 

avoiding solid objects which would translate in the real world as parked cars or 

pedestrians. The metrics used as results of this test are stopping distance, speed of 

recognition, accuracy, sensor latency and sensor clock of the ultrasonic sensors.  

The second part of the investigation examines the quality of computer vision 

methods used for recognising pedestrians, the Haar Classifier, HOG Descriptor and 

deep learning, and their detection rates recorded. The computer vision methods will 

then be transferred onto the Raspberry Pi 3 and test distances will be run to measure 

the quality of the frames per second (FPS) on the Pi running the algorithms. 

Sub-sections 5.1, 5.2 and 5.3 presents the ultrasonic sensor testing, 5.4 presents 

pedestrian recognition testing using Haar-classifier, HOG descriptors and deep learning 

on the vehicle, whereas, discussion of results is presented in section 5.5. 

 

5.1 Sensor testing for stopping distance 

The first test was performed with two different scenarios – a cardboard box and ‘real’ 

pedestrian. The dimensions of the cardboard box was 29cmx21cmx8cm. The vehicle is 

programmed to run at five different speeds as 0.2, 1.6, 2.4, 3.2 and 4 mph (maximum 

speed) and was tested for these speeds. 

The two sets of data retrieved from the first test are shown in Figs. 7 and 8 at 

different speeds. Fig. 7 shows the results with simulated pedestrians (cardboard boxes), 

whereas, in Fig. 8, the cardboard boxes were replaced by a pedestrian. The black trend 

line signifies the minimum stopping distance showing that 7 tests resulted in a collision. 

These collisions occurred at higher speeds and lower ultrasonic sensor distances 

however for distances above 150cm all speeds have a successful object-detection result 

and no collisions were recorded. 

To simulate real-world environments more effectively the cardboard box was 

replaced with a pedestrian. The results from the box and the pedestrian were compared. 

Analysis of results show that the data points remain in a similar position as shown in 

Fig. 7, however, as speeds increase the performance marginally decreased, specifically, 



at 200cm in the box test where it passed although results show a collision in the 

pedestrian test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 
Fig. 7. Simulated pedestrians (rectangular boxes) stopping distances at different speeds of 

the autonomous vehicle 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. Pedestrian stopping distances at different speeds of the autonomous vehicle 

 

An additional test was passed on the final distance (300cm) for each speed, where 

the pedestrian stood front facing with their legs apart in contrast to a side facing pose 

(to simulate crossing the street) which demonstrated to no difference.  
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It can be concluded from Figs. 7 and 8 that the ultrasonic sensors combined in the 

autonomous vehicle working at practical speeds would work sufficiently at 100cm but 

for optimum use, 250cm would be the ideal distance range.  

 

5.2 Sensor latency testing 

Sensor latency directly affects the response time of the whole system and therefore was 

chosen as a parameter for testing. Sensor latency was tested according to the flowchart 

of Fig. 9 where the program was allowed to run with the minimum allowable distance 

(MAD) set so that the forward sensor would not cause the program to terminate early. 

Initially, the test was run ‘as-is’ without changing any of the code. This was in order to 

obtain a baseline cycle time for comparison. Once the program had been running for 

approximately 3 minutes, the program was stopped by placing an obstacle in front of 

the forward sensor below the MAD. Initially, the main control panel attached to the 

motors was kept off for the duration of the experiment. This is because the Pi output 

signals via the input/output pins regardless of whether the board on the other end of the 

circuit is powered, this was not considered to be a potential factor in how long the 

sensors take to output data. 

To set up the test, the vehicle was placed in the middle of the testing area, with 

obstacles placed at known distances from each of the four sensors locations as shown 

in Table 2. Table 2 describes the details of the tests conducted at four distances 

respective to the four ultrasonic sensors connected in four location as Forward, 

Starboard, Aft and Port. This was not only to establish whether the cycle time had an 

effect on the accuracy of the ultrasonic sensors, but also to allow further analysis on the 

accuracy of the sensors at a variety of ranges. 

Table 2. Obstacle distances. 

Sensor location Measured distances (cm) 

Tests 1.1-1.3  Tests 2.1-2.2 Tests 3.1-3.5 

Forward 120 200 350 

Starboard 80 40 10 

Aft 100 150 150 

Port 50 30 20 

 

The baseline cycle time was 2.58s. The cycle time was reduced for forward statement 

in the code. The default setting was at 0.5s. For each test it was decreased to 0.1s and 

then increased to 1s in order to test see the effect of changing known factors in the code. 

Further, the cycle time was reduced for all of the four sensors as calling all four 

sensors adds a delay to the program due to the sleep time of 0.5s which allows the 

sensors to settle and receive the echo from any detected obstacle. This is not desirable 

from a design point of view since it introduces an unnecessary source of inconsistency 

into the readable results, especially if the sensors have an inherent inconsistency cycle 

to cycle. Fig. 10 shows the average cycle time for each test. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9. Flowchart for sensor latency testing 

 

                         
 

Fig. 10. Cycle time by test number 

 

In Fig. 10 the red, blue and green bars show the cycle time for a series of different 

distances, none of which seem to have an appreciable effect on the cycle time. Each 

distance runs the forward statement for 0.5s, 0.1s and 1s, respectively from left to right. 

Tests 1.1-1.3, 2.1-2.2 and 3.1-3.5 were taken at the same distances as shown in Table 

2. This has made a large difference to the cycle time of the program and would improve 

the response time of the program, thus improving the stopping distance.  
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Fig. 11. Program clock time verses sensor distance 

 

5.3 Sensor clock testing 

The test measuring the clock time of the Python program is shown in Fig. 11 and shows 

the time taken from the sensor detecting that the vehicle is too close (under the distance 

threshold) to a complete stop function from the Python script at varying vehicle speeds. 

Immediate analysis of the data shows that there are two outliers (Speed 3 at 50cm and 

Speed 1 at 200cm), possible causes for these anomalies are sensor failures due to 

inconsistent connections which is the most likely reason. Trend lines show that the 

speed of the vehicle and sensor distance have negligible effects on the speed of the 

program, they are all generally inline between 2.05 and 2.15 seconds.  

 Five data points appear to be above the ideal trend line indicating that the system is 

stopping at a sensor value greater than the threshold suggesting a sensor error. This 

could potentially have been caused by overlapping soundwaves sent from previous 

triggers. 

 

5.4 Pedestrian recognition 

The Haar-classifier and HOG descriptor were compared against one another initially to 

determine the more suitable computer vision algorithm for pedestrian detection. All 

images were converted to 300 pixels wide (with aspect ratios remaining constant) to 

ensure integrity of results. An example of the images with the ROI is shown in Fig. 12 

(left, right and bottom). For the experimental results, confirmed bounding boxes would 

only be a success if they identified pedestrians, therefore an identification of a cyclist 

or a dog would be counted as a false positive (as they should have their own 

classifiers/descriptors). These methods were compared against further twelve images 

taken from a number of webpages and can be found in [25]. The results from Haar-

classifier and HOG descriptors were then compared to deep learning on the same twelve 

images using the Single Shot Detection method [26] described earlier. 
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Fig. 12. Computer vision algorithm for Haar-classifier (left), HOG descriptor (right) and Deep 

learning (bottom) 

 

Table 3 shows the numerical results for the comparisons of the two computer vision 

methods against deep learning. The bounding boxes refer to the rectangular boxes 

indicating the ROIs (Figs. 12 – blue for Haar (left), green for HOG (right) and red for 

deep learning (bottom)). The false positives refer to any bounding box that is outside a 

pedestrian or repeating an ROI that has already been identified. The detection failures 

indicate that there was no bounding box (or not sufficient to qualify as an ROI). The 

results show that out of 41 pedestrians, the Haar correctly identified 22 pedestrians 

giving it an accuracy of 53.66%, HOG achieved a success rate of 82.93% and deep 

learning outperformed both by achieving a success rate of around 88%. 

Both Haar and HOG had high amounts of false positives and struggled when given 

an image of multiple pedestrians scattered across the image. However, comparison 2 in 

Table 3 shows that the deep learning algorithm recognised pedestrians that were not 

recognised by the HOG and Haar as they were deemed unnecessary because they were 

too far away. Similarly, detection failures in comparison 11 and 12 are due to the 

algorithm recognising multiple pedestrians together as a single pedestrian. To ensure 

the same pass parameters were taken for Deep Learning as well as HOG and Haar, these 

were taken as a detection failures even though practically the system would avoid those 

pedestrians.  



                                                                                                           

The HOG and Haar-Classifier were further compared on the Raspberry Pi 3. The Pi 

camera was used and results from the FPS were taken and displayed in Table 4. 

Table 4. FPS comparison. 

 Haar (FPS) HOG (FPS) 

Comparison 1 3.974 0.808 

Comparison 2 3.623 0.780 

Comparison 3 3.776 0.815 

Comparison 4 3.580 0.783 

Comparison 5 3.603 0.792 

Average FPS 3.711 0.796 

 

Analysis of the results show that the Haar-Classifier performs significantly better 

than the HOG Descriptor for maximising the FPS. This is likely due to the quality of 

HOG requiring more computational resources thus slowing down the frames being 

passed through the Pi per second. The test also showed repeated false positives with the 

Haar-Classifier which could be caused by lighting while the HOG descriptor could be 

fooled (Comparison (HOG) 4) if the pedestrian’s clothing was of similar colour to the 

Table 3. Comparison of Haar-classifier, HOG descriptor and Deep learning  

 

 Bounding Boxes Pedestrians False positives Detection Failures    

Com

-parison 

 

Haar HOG Deep 

learning 

Haar/HOG

/Deep 

learning 

Haar HOG Deep 

learning 

Haar HOG Deep 

learning 

   

1 4 4 4 4 0 0 0 0 0 0    

2 3 3 13 1 2 3 13 0 1 0    

3 3 6 2 2 2 4 0 1 0 0    

4 4 3 2 1 3 2 2 0 0 0    

5 1 2 2 1 0 1 2 0 0 0    

6 4 5 3 4 1 3 3 1 1 1    

7 5 4 4 4 3 1 0 2 1 0    

8 2 1 1 1 1 0 0 0 0 0    

9 1 4 2 2 0 1 0 1 0 0    

10 6 2 4 4 2 0 0 0 0 0    

11 2 6 6 8 0 0 1 6 1 2    

12 2 3 9 9 1 0 2 8 3 2    

Total    41 30 30 23 19 7 5    

Succ

-ess     

Rate 

       53.66

% 

82.93

% 

87.8

% 

   

 



background. All images on the Raspberry Pi comparison in Table 4 can be found in 

[23]. 

The implementation of pedestrian recognition via computer vision and deep learning 

demonstrates the effectiveness that the different machine learning algorithms have for 

autonomous cars. Computer Vision and deep learning however, can produce an 

accurate description of an object but it is a relatively new technology that has only 

recently had machine learning methods applied to it.  The results had shown that both 

methods of computer vision worked poorly on images of dispersed pedestrians, 

however, was much improved with deep learning.  

 

5.5 Discussion of results 

The stopping distance results have shown the need for a factor of safety to protect 

against the inconsistency of the ultrasonic sensors and the clock time results support 

this. The speed of the software and hardware play an important role in the stopping 

time. The sensor accuracy results have shown that while the ultrasonic sensors in most 

test runs avoided an obstacle, they can not be used in this form in real systems. For 

example, the use of breadboard and jumper wires was adding to the delay for stopping 

the vehicle.  Although ultrasonic sensors are simple to use and can give results 

sufficient enough for the system to avoid collisions they are unable to differentiate 

between objects or give detailed data back to the Raspberry Pi for analysis. Similarly, 

Raspberry Pi is running Raspbian which is not optimised for real world performance.  

Our results agree with current studies [28] where HOG outperforms Haar-

Classifiers, however, other peer-reviewed comparisons have shown a significantly 

higher number of false detections in the Haar-Classifier [29] compared to our study, 

however, a larger dataset would have to be used to confirm this difference. Results 5 

from Table 3 demonstrate the Haar-Classifier’s limits with lighting thus agreeing with 

[30] analysis although their study was performed on faces compared to ours where we 

are detecting pedestrians the principles behind the constraints are still valid. 

The pedestrian recognition using computer vision and deep learning demonstrates 

the effectiveness and potential that machine and deep learning algorithms have for 

autonomous cars. The machine learning results have shown that both methods worked 

less effectively on images of dispersed pedestrians, however, deep learning 

outperformed machine learning.  

6 Conclusions 

This paper has presented results from converting a mobility vehicle to be fully 

autonomous with computer vision and deep learning implemented for pedestrian 

recognition. We further present results on ultrasonic sensors for obstacle detection. Our 

results show that at short distances ultrasonic sensor shows a delay, however, for 

distances above 100cm the sensors react very well.  

The comparison between computer vision algorithms of Haar-classifier and HOG 

descriptor with deep learning show that deep learning outperform both algorithms, 

whereas, HOG descriptor gave better results than Haar-classifier. We conclude that 



Raspberry Pi 3 is well suited as a microcontroller for research purposes, however, a 

more bespoke device would be recommended for ‘real’ vehicles.  

The construction and evaluation of the autonomous vehicle shows that the Raspberry 

Pi functions as a possible microcontroller option for an autonomous system [31]. The 

speed is the main concern with the Raspberry Pi as it is running Raspbian which is not 

optimised for real world performance. However, Raspberry Pi as a microcontroller 

from our results has shown the benefits of autotomizing a system, the feasibility of use 

allows access to data which can be extrapolated to deduce problems within the system. 

Future work will include increasing the training images on all algorithms to improve 

their performance, getting test data from the vehicle for vehicular cloud data 

management.  

7 Acknowledgments 

The authors would like to thank Mr Stuart MacVeigh, Mr John Welsh and Dr Toby 

Whitley for their support in building the autonomous vehicle and general electronics.  

The work reported here is in part supported by the internal School of Engineering 

Research Grant.  

References 

1. Land transportation system report by Cisco 

http://www.cisco.com/c/dam/global/pt_pt/assets/ciscoconnect-

2013/pdf/16_outubro_helder_antunes.pdf last accessed 2018/09/11.  

2. Viola, P. M. J. ‘Rapid object detection using a boosted cascade of simple features’, 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition 

(CVPR), 2011, Kauai, USA. 

3. Chaudhari M. S. S. ‘A review on Face Detection and study of Viola Jones method’. 

International Journal of Computer Trends and Technology, 2015. 

4. Takuya K. A. H. ‘Selection of Histograms of Oriented Gradients Features for 

Pedestrian Detection’. Kitakyushu, Japan: Neural Information Processing, 2007. 

5. Dalal, N. B. T. ‘Histogram of oriented gradients for human detection’. San Diego: 

Computer Vision and Pattern Recognition, 2005. 

6. Ameur H., Msolli, A., Helali, A., Maaref H. and Youssef, A. ‘Hardware 

implementation of an improved HOG descriptor for pedestrian detection’, ICCAD’17, 

Hammamet - Tunisia, January 19-21, 2017. 

7. Shilpashree, K., S., Lokesha, H., Shivkumar, H. ‘Implementation of Image Processing 

on Raspberry Pi’, International Journal of Advanced Research in Computer and 

Communication Engineering Vol. 4, Issue 5, May 2015. 

8. Pan, J-S., Ma, S., Chen, S-H. and Yang, C-S. ‘Vision-based Vehicle Forward Collision 

Warning System Using Optical Flow Algorithm’, Journal of Information Hiding and 

Multimedia Signal Processing, Volume 6, Number 5, September 2015. 

9. Mammeri, A., Zuo, T. and Boukerche, A. ‘Extending the Detection Range of Vision-

based Driver Assistance Systems Application to Pedestrian Protection System’, 

Globecom-Communications Software, Services and Multimedia Symposium 2014. 

10. Lin, S. F. and Lee, C. H., ‘Pedestrians and Vehicles Recognition Based on Image 

Recognition and Laser Distance Detection’, 16th International Conference on Control, 

Automation and Systems (ICCAS 2016) Oct. 16-19, 2016 in HICO, Gyeongju, Korea. 



11. Brehar R. and Nedevschi, S., ‘A comparative study of pedestrian detection methods 

using classical Haar and HoG features versus bag of words model computed from Haar 

and HoG features’, IEEE 7th International Conference on Intelligent Computer 

Communication and Processing (ICCP), 2011. 

12. Fei-fei, L., ‘A bayesian hierarchical model for learning natural scene categories,’ in In 

CVPR, 2005, pp. 524–531. 

13. Bruno D. R. and Osório, F. S., ‘Image classification system based on Deep Learning 

applied to the recognition of traffic signs for intelligent robotic vehicle navigation 

purposes’, Latin American Robotics Symposium (LARS) and 2017 Brazilian 

Symposium on Robotics (SBR), 2017. 

14. Orozco, C., I., Buemi, M., E., and Berlles, M., J., ‘New Deep Convolutional Neural 

Network Architecture for Pedestrian Detection’, 8th International Conference of 

Pattern Recognition Systems (ICPRS 2017). 

15. Geismann P. and Schneider, G., ‘A Two-staged Approach to Vision-based Pedestrian 

Recognition Using Haar and HOG Features’, 2008 IEEE Intelligent Vehicles 

Symposium Eindhoven University of Technology Eindhoven, The Netherlands, June 

4-6, 2008. 

16. Manlises, C. O., Martinez, J. R., Belenzo, J. L., Perez, C. K. and Postrero, M. K. T. A., 

‘Real-Time Integrated CCTV Using Face and Pedestrian Detection Image Processing 

Algorithm For Automatic Traffic Light Transitions’, 8th IEEE International 

Conference Humanoid, Nanotechnology, Information Technology Communication 

and Control, Environment and Management (HNICEM) The Institute of Electrical and 

Electronics Engineers Inc. (IEEE) – Philippine Section 9-12 December 2015, Cebu, 

Philippines. 

17. Priyanka D, Dharani K, Anirudh C, Akshay K, Sunil M P, Hariprasad S A, ‘Traffic 

Light and Sign Detection for Autonomous Land Vehicle Using Raspberry Pi’, 

Proceedings of the International Conference on Inventive Computing and Informatics 

(ICICI 2017) IEEE Xplore Compliant - Part Number: CFP17L34-ART, ISBN: 978-1-

5386-4031-9. 

18. Shah, A. A., Zaidi, Z. A., Chowdhry, B. S. and Daudpoto, J., ‘Real time Face 

Detection/Monitor using Raspberry pi and MATLAB’, IEEE 10th International 

Conference on Application of Information and Communication Technologies (AICT). 

19. Betterlife Healthcare, 2018. Betterlife Capricorn Electric Wheelchair. 

20. Adafruit at https://www.adafruit.com/, 2018. [Last accessed 13th April 2018] 

21. OpenCV https://github.com/opencv/opencv/tree/master/data 

22. Natasha Seo training dataset for HOG and Haar 

http://note.sonots.com/SciSoftware/haartraining.html [Last accessed 15th April 2018] 

23. Freund, R. E., ‘A Short Introduction to Boosting’, Journal of Japanese Society for 

Artificial Intelligence, 1-14, 1999. 

24. COCO and VOCO712 datasets http://cocodataset.org/#download and 

https://github.com/chuanqi305/MobileNet-SSD 

25. Images for pedestrian training and Raspberry Pi comparison 

https://github.com/asiyakhan0/images- 

26. Liu, W., Anguelov, D., Erhan, D., Szegedy, C. and Reed. S. E., SSD: single shot 

multibox detector. CoRR, 2015, 5, 6. 

27. Vinayak V. Dixit, S. C., ‘Autonomous Vehicles: Disengagements, Accidents’, and 

Reaction Times. PLOS. ONE, 11(12), e0168054, 2016. 

28. Wei, T. Q. ‘An Improved Pedestrian Detection Algorithm Integrating Haar-Like 

Features and HOG Descriptors’, Advances in Mechanical Engineering, 

2013,  5(546):206. 

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6041100
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6041100
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8168942
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8168942
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8055198
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8055198
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7981282
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7981282
https://www.adafruit.com/
https://github.com/opencv/opencv/tree/master/data
http://note.sonots.com/SciSoftware/haartraining.html
http://cocodataset.org/#download
https://github.com/chuanqi305/MobileNet-SSD
https://github.com/asiyakhan0/images-


29. Xing, W., Zhao, Y., Cheng, R., Xu, J., Lv, S.,and Wang, X., ‘Fast Pedestrian Detection 

Based on Haar Pre-Detection’, International Journal of Computer and Communication 

Engineering, Vol. 1, pp. 207-209, 2012. 

30. Chaudhari M., Sondur S. and Vanjare G., ‘A review on Face Detection and study of 

Viola Jones method’. International Journal of Computer Trends and Technology, vol. 

25, no. 1, July 2015. 

31. Chaudhari, H., ‘Raspberry Pi Technology: A Review’, International Journal of 

Innovative and Emerging Research in Engineering, vol. 2, issue 3, 2015. 

 

 

 
 


