
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2019-08-24

Pedestrian Recognition and Obstacle

Avoidance for Autonomous Vehicles

using Raspberry Pi

Day, C

http://hdl.handle.net/10026.1/13282

10.1007/978-3-030-29513-4_5

Springer series "Advances in Intelligent Systems and Computing"

Springer International Publishing

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Pedestrian Recognition and Obstacle Avoidance for

Autonomous Vehicles using Raspberry Pi

Charlie Day 1, Liam McEachen 1, Asiya Khan 1*, Sanjay Sharma1 and Giovanni

Masala2

1 School of Engineering
2 School of Computing, Electronics and Mathematics, University of Plymouth, Plymouth

PL4 8AA UK

*asiya.khan@plymouth.ac.uk

Abstract. The aim of this paper is twofold: firstly, to use ultrasonic sensors to

detect obstacles and secondly to present a comparison of machine learning and

deep learning algorithms for pedestrian recognition in an autonomous vehicle. A

mobility scooter was modified to be fully autonomous using Raspberry Pi 3 as a

controller. Pedestrians were initially simulated by card board boxes and further

replaced by a pedestrian. A mobility scooter was disassembled and connected to

Raspberry Pi 3 with ultrasonic sensors and a camera. Two computer vision

algorithms of histogram of oriented gradients (HOG) descriptors and Haar-

classifiers were trained and tested for pedestrian recognition and compared to

deep learning using the single shot detection method. The ultrasonic sensors were

tested for time delay for obstacle avoidance and were found to be reliable at

ranges between 100cm and 500cm at small angles from the acoustic axis, and at

delay periods over two seconds. HOG descriptor was found to be a superior

algorithm for detecting pedestrians compared to Haar-classifier with an accuracy

of around 83%, whereas, deep learning outperformed both with an accuracy of

around 88%. The work presented here will enable further tests on the autonomous

vehicle to collect meaningful data for management of vehicular cloud.

Keywords: Pedestrian recognition, Obstacle avoidance, Ultrasonic sensors,

Haar classifier, HOG descriptor, deep learning

1 Introduction

According to a recent report from the Department of Transport, from October 2015 to

September 2016, there were around £183,000 casualties resulting from traffic accidents

of which 1,800 were fatal and over 25,000 were life changing [1]. The vision for the

autonomous car revolution is to reduce this figure by at least 76%. Cars are undergoing

a revolution just like mobile phones did twelve years ago. They are increasingly

becoming intelligent agents that have the capability to learn from their environment and

be driven in an autonomous manner. Therefore, to improve road safety and traffic

congestion, fully or partially autonomous vehicles offer a very promising solution.

Most modern vehicles are equipped with advanced driver assistance systems (ADAS)

that assists in driving in a number of ways such as lane keeping support, automatic

parking, etc. More recently, traffic sign recognition systems are becoming an integral

part of ADAS.

Most new vehicles are capable of some form of autonomy e.g. automatic parking,

lane recognition, etc. Raspberry Pi 3 is a small low cost computer and offers opportunity

for research towards the roadmap of autonomy. Therefore, the objective of this paper

is to use Raspberry Pi version 3 as a microcontroller for an autonomous vehicle

connected with ultrasonic sensors and a camera and discusses the suitability of using

Raspberry Pi as a controller. The mobility scooter was acquired from Betterlife

healthcare [19] and adapted such that its controller communicated with the Pi which

was connected to ultrasonic sensors and a camera. Ultrasonic sensors are cheap and

has less power consumption and measures the accurate distance from the obstacle and

transmits the measured data to the system. The ultrasonic sensor are connected to the

Raspberry Pi in a way so that obstacles present in the front, back and side of the vehicle

are being detected. The obstacles in the blind zone are also detected by the ultrasonic

sensors. This emulates obstacle detection on the road. Presence of pedestrians is

detected by computer vision using Haar-classifier and HOG descriptors and further by

deep learning.

Therefore, the contributions of the paper are two-fold:

 To convert a mobility scooter to be fully autonomous with ultrasonic sensors

and camera to detect an obstacle and find the reliable range.

 To present comparative analysis between HOG descriptors, Haar-classifiers and

deep learning for pedestrian recognition.

The rest of the paper is organised as follows. Section 2 presents related work, section

3 presents the conversion of the mobility scooter to an autonomous vehicle. In Section

4, the computer vision and deep learning algorithm implementation on Raspberry Pi 3

is presented. Section 5 presents the experiments, results and discussions. Section 6

concludes the paper highlighting areas of future work.

2 Related Work

An important feature of autonomous driving is recognizing pedestrians and

obstacles. Computer vision allows autonomous vehicles to process detailed information

about images that would not be possible with only sensors and has been increasingly

used to study facial recognition. Two methods in computer vision have been widely

applied in image recognition as firstly, the Haar feature like classifier [2] where a set

of positive and negative images are used and Haar-like features are applied to each set.

Critical analysis of the technique has shown that the background complexity plays a

role in the quality of the classifier and can be easily corrupted by lighting [3]. This

method was originally used for facial recognition, the same principles can be applied

to almost any other object therefore a pedestrian cascade can be made using this method

and has been presented here. Secondly, the Histogram of Oriented Gradients (HOG)

descriptor and has been used in [4] for pedestrian recognition. The principles behind

the HOG descriptor [5] is that it is a type of ‘feature descriptor’ that has been trained

using a Support Vector Machine (SVM), a type of supervised machine learning that

works on the classification of positive and negatives samples of data. The HOG feature

descriptor, unlike conventional techniques applies a general feature as opposed to a

localized one to the image area. This is sent to the SVM which would then classify it

as a pedestrian.

The authors in [6] present an efficient hardware architecture based on an improved

HOG version and linear SVM classifier for pedestrian detection for full high definition

video with a reduced hardware resource and power consumption. Image processing

algorithms have been used in [7] to remove unwanted noise from the image based

sensor. A vision optical flow based vehicle collision warning system is proposed in [8]

based on computer vision techniques.

Raspberry Pi is a credit card sized single board low cost computer and provides the

flexibility of using it as a microcontroller and is increasingly used in academic research,

e.g. in [7] authors present the implementation of image processing operations on

Raspberry Pi. In [9] ultrasonic sensors are used for object detection from the moving

vehicle. In [10] authors have combined Haar detection with laser distance to recognize

pedestrians. The work presented in [11] concludes that codebook representation of Haar

and HoG features outperform detection based on only HoG and Haar. The codebook is

generated from a set of features given by the Bag of Words [12] model. More recently,

deep learning based on deep convolutional neural networks has been used for image

classification of road signs [13] with 97% accuracy and for pedestrian recognition [14].

The work presented in [15] uses detection based on Haar features and classification

based on HOG features with support vector machine. Pedestrian recognition using

OpenCV on Raspberry Pi was implemented in [16]. In [17] authors have used

Raspberry Pi for detecting road traffic signs using image processing techniques,

whereas, in [18] a combination of MATLAB with Raspberry Pi is used for face

detection using Haar classifier.

There has been an increasing interest from the research community in image

classification for pedestrian recognition. Most modern vehicles now have some form

autonomous features, confidence level in obstacle detection and pedestrian recognition

has to increase towards the roadmap of fully autonomous vehicles. In addition, utilizing

the computational capability of Raspberry Pi in research is still in its early stages. The

novelty of our work from the work presented in literature is that we are implementing

our pedestrian recognition algorithms on Raspberry Pi 3, comparing them and testing

its suitability from a research point of view.

3 Autonomous vehicle using Raspberry Pi

The vehicle used for this project is a Capricorn Electric Wheelchair from Betterlife

Healthcare [19] as shown in Fig. 1a. It is a small, four wheeled vehicle with caster type

front wheels, two fixed driven rear wheels and powered by two 12V batteries. It is

driven by two separate electric motors, which are connected directly to each of the rear

wheels. It has a maximum speed of 4mph, a maximum incline of 6° and a turning circle

of radius 475mm. The maximum range of the wheelchair is 9.5km. The tyres are solid

and have a larger radius than many other models of its type, helping to improve

performance on rough or uneven surfaces.

This section will present the conversion of the mobility scooter into an autonomous

vehicle controlled by Raspberry Pi 3. It will further describe the connection of

ultrasonic sensors and camera.

3.1 Connecting the Raspberry Pi 3

The autonomous vehicle was built from a mobility scooter as shown in Fig. 1a. The

scooter had an inbuilt microcontroller shown in Fig. 1b which was used as a

communicative tool between the Raspberry Pi version 3 and the vehicle’s motors. The

directional actions of the joystick voltage levels for each pin is shown in Fig. 1c (shown

in the red circle in Fig. 1b) and is presented in Table 1.

 Table 1. Voltage directional values.
Direction Voltage applied (volts) Pin colour

Forward 3.97 Green/Grey

Reverse 1.13 Green/Grey

Right 3.97 Purple/Yellow

Left 1.13 Purple/Yellow

Static/Stop 2.5 All

Turn ON 2.5 Black

In order to make space for a platform on which the system can be installed, the chair

was removed, as was the housing surrounding the frame of the vehicle. The central

column between the chair and the frame was also removed, allowing the new chassis

to be placed over the frame. The new chassis is shown in Fig. 2a, whereas, the block

diagram is presented in Fig. 2b showing the connections of the Raspberry Pi with the

sensors and the vehicle’s controller. The chassis shown in Fig. 2a has enough space for

the control panel – rewired to connect the Raspberry Pi directly to the joystick input,

the Pi itself, and two breadboards with which the circuitry could be modified during the

Fig. 1a. Original mobility

scooter

Fig. 1b. Autonomous

vehicle microcontroller
Fig. 1c. Autonomous

vehicle pins

built and testing process. The chassis is designed so additional components and sensors

can be added. Two digital to analogue converters were installed, controlling both

forwards/backwards motion and the yaw of the vehicle, respectively. The front wheels

were fixed in place by the removal of the bearings contained in the shafts. This allowed

the connecting bolts to be tightened fully and restricting the motion of the vehicle to

forwards and backwards.

Fig. 2a. The

autonomous vehicle

modified from the

mobility scooter

 Fig. 2b. Block diagram of the autonomous vehicle

For the vehicle to be autonomous it would have to be controlled by the General-

Purpose Input Output (GPIO) pins on the Pi which would send signals emulating the

joystick. The GPIO pins work with digital signals therefore a Digital to Analogue

Converter (DAC) (Fig. 2b) would be required to alter the signal type. An Adafruit

MCP4725 DAC [20] was used and functioned well with the Raspberry Pi.

To use the DAC effectively the Inter-Integrated Circuit (I2C) bus on the Raspberry

Pi had to be operated. This is an interface that utilises data exchange between

components and microcontrollers, there are many ‘slave’ devices (the DAC/s)

controlled by a ‘master’ device (the Raspberry Pi). The Pi’s GPIO pins can only output

5V or 3.3V and the DAC is a 12-bit controller which means it ranges in values from 0

to 4096, Equation 1 shows the formula used,

𝐷𝐴𝐶𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = (
𝑉𝑑𝑒𝑠𝑖𝑟𝑒𝑑

𝑉𝑚𝑎𝑥

) 𝑋212 (1)

This formula can then be applied directly to the DAC through a Python script. The

DAC contains two inputs, Vdd and A0 allowing two different I2C bus addresses to be

used on the Raspberry Pi at once which could then be referred to as parameters in a

function as 0x62 and 0x63 for forwards/backwards and left/right, respectively.

3.2 Connecting Ultrasonic Sensors to the Raspberry Pi 3

Ultrasonic sensors provide basic object-detection autonomy to the vehicle. The HC-

SR04 sensor was used which could work with the Pi’s GPIO pins through jumper wires.

The principle of the HC-SR04 is that there are four pins: power, trigger, echo, and

ground. The power and ground were connected directly to the Pi’s voltage and ground

pins, the trigger acts as a ‘starting gun’ for the sensor signifying when to produce a

soundwave, and the echo receives the soundwave. While these are binary input/output

functions they can be used on Python to determine the distance of the closest object.

The programming logic is shown in Flowchart in Fig. 3.

Fig. 3. Ultrasonic sensor function flowchart

This ultrasonic object detection function can be imported into the DAC script and

tell the Pi to fire a STOP (2.5V) or ‘Reverse’ (1.13V) command to the vehicle through

the DAC if the sensor function detects an object that is below a predefined threshold

(e.g. < 2m) as shown in the flowchart in Fig. 4.

The script was modified for multiple sensors to incorporate multiple echo variables,

however, a single trigger can be used to activate them all simultaneously and add each

echo onto an array. Python has clocking functions which enable a user to determine the

length of time between two points in a function, this is important to determine the

latency of sensors and reaction time of the autonomous vehicle. A voltage divider was

used to protect the Pi’s GPIO pins from excessive signals generated by the ultrasonic

sensors.

Fig. 4. Object detection function flowchart

 To ensure the vehicle was mobile, a portable battery producing 5V was powering

the Pi and a laser-cut housing was designed to hold the system in place and absorb

forces from potential collisions (Fig. 2b). It is recognised that this methodology of using

an autonomous vehicle is limited in that it is not the size of an autonomous commercial

vehicle however the value comes from testing the principles.

In order to connect the ultrasonic sensors to the Raspberry Pi, the circuit was adjusted

so that all of the triggers were controlled by the same i/o pin on the Pi, keeping the

amount of i/o pins used to a minimum of x+1, where x is the number of sensors used in

the design. Each of the sensors outputs the result to an array which is continually

updated, and it is this array which can be communicated to an infrastructure hub.

4 Computer Vision and Deep Learning on Raspberry Pi

Computer Vision on the Raspberry Pi was run by importing the OpenCV (Open Source

Computer Vision) [21] module through a stream. Open-CV is a library by Intel that

consists of functions used for computer vision. The digital image is processed pixel by

pixel, applying convolution and smoothing through a local operator, which operates

threshold on the histogram. Python programming language has been used in this paper.

A pre-trained pedestrian Haar-classifier [2] was used where a cascade function is

trained from a number of positive and negative images. This is based on the detection

stage that generates the rectangular regions which may contain pedestrians. These

regions of interest (ROI) are then classified and confirms the presence of a pedestrian

or discards the ROI if the classification is negative. The system output consists of

bounding boxes describing size and position of the pedestrians in each frame.

Computer Vision was run on the Raspberry Pi by importing the OpenCV module

and run through a stream. A pre-trained pedestrian Haar-classifier was used that

contains 19 Stages of Haar-training [21]. This included 5000 positive images and 3000

negative images [22].

Fig. 5. Still images comparison flowchart

The Haar-classification uses an integral method that takes each rectangle as the sum

of pixels and reduces them to an array of four values massively decreasing the time for

a detection to take place. The Adaboost (Adaptive Boosting) machine learning

algorithm [23] is used to sum all weak classifiers into a final strong classifier which is

then applied to an image.The video stream from the Pi camera was parsed through this

cascade and ROI returned a 4-index array which was used to determine the presence of

a pedestrian. The Pi’s Frames Per Second (FPS) on the camera was low even without

running an algorithm for each frame, therefore a method called threading was

implemented to increase the FPS allowing for faster reaction times from the Pi.

Threading (or Multi-threading) is the method of having processes run parallel

independently with one another but transferring data, therefore instead of one main

thread, there are multiple threads which while require more computational resources

allow an increase in process quality, such as passing frames per second. The

programming logic to execute the computer vision algorithms for still images and

frames from a video stream are shown in Figs. 5 and 6 respectively.

Fig. 6. Raspberry Pi 3 video comparison flowchart

Deep learning was applied with single shot detection method [21] based on a single

neural network. The method [21] discretises the output space of bounding boxes into a

set of default boxes over different aspect ratios and scales per feature map location. The

scores are generated by the network at prediction time for the presence of each object

category in each default box and produces adjustments to the box to better match the

object shape. In addition, predictions from multiple feature maps are combined by the

network with different resolutions to naturally handle objects of various sizes. The deep

learning algorithm was trained with COCO and VOCO712 datasets [24] with a total of

82,943 images.

5 Experiments, Results and Discussions

The experiments comprised of two parts. The first part tests the hardware and

software of the autonomous vehicle. This will include the evaluation of the vehicle’s

stopping properties on the Raspberry Pi and sensor connections along with the Python

script to recognise obstacles and react accordingly. This has been tested by laying out

an obstacle for the autonomous vehicle and sending it from two arbitrary points while

avoiding solid objects which would translate in the real world as parked cars or

pedestrians. The metrics used as results of this test are stopping distance, speed of

recognition, accuracy, sensor latency and sensor clock of the ultrasonic sensors.

The second part of the investigation examines the quality of computer vision

methods used for recognising pedestrians, the Haar Classifier, HOG Descriptor and

deep learning, and their detection rates recorded. The computer vision methods will

then be transferred onto the Raspberry Pi 3 and test distances will be run to measure

the quality of the frames per second (FPS) on the Pi running the algorithms.

Sub-sections 5.1, 5.2 and 5.3 presents the ultrasonic sensor testing, 5.4 presents

pedestrian recognition testing using Haar-classifier, HOG descriptors and deep learning

on the vehicle, whereas, discussion of results is presented in section 5.5.

5.1 Sensor testing for stopping distance

The first test was performed with two different scenarios – a cardboard box and ‘real’

pedestrian. The dimensions of the cardboard box was 29cmx21cmx8cm. The vehicle is

programmed to run at five different speeds as 0.2, 1.6, 2.4, 3.2 and 4 mph (maximum

speed) and was tested for these speeds.

The two sets of data retrieved from the first test are shown in Figs. 7 and 8 at

different speeds. Fig. 7 shows the results with simulated pedestrians (cardboard boxes),

whereas, in Fig. 8, the cardboard boxes were replaced by a pedestrian. The black trend

line signifies the minimum stopping distance showing that 7 tests resulted in a collision.

These collisions occurred at higher speeds and lower ultrasonic sensor distances

however for distances above 150cm all speeds have a successful object-detection result

and no collisions were recorded.

To simulate real-world environments more effectively the cardboard box was

replaced with a pedestrian. The results from the box and the pedestrian were compared.

Analysis of results show that the data points remain in a similar position as shown in

Fig. 7, however, as speeds increase the performance marginally decreased, specifically,

at 200cm in the box test where it passed although results show a collision in the

pedestrian test.

Fig. 7. Simulated pedestrians (rectangular boxes) stopping distances at different speeds of

the autonomous vehicle

Fig. 8. Pedestrian stopping distances at different speeds of the autonomous vehicle

An additional test was passed on the final distance (300cm) for each speed, where

the pedestrian stood front facing with their legs apart in contrast to a side facing pose

(to simulate crossing the street) which demonstrated to no difference.

0

50

100

150

200

250

0 50 100 150 200 250 300

St
o

p
p

in
g

D
is

ta
n

ce
 (

cm
)

Sensor Distance (cm)

Speed 1 Speed 2 Speed 3 Speed 4 Speed 5

0

50

100

150

200

250

0 50 100 150 200 250 300

St
o

p
p

in
g

D
Is

ta
n

ce
 (

cm
)

Sensor Distance (cm)

Speed 1 Speed 2 Speed 3 Speed 4 Speed 5

It can be concluded from Figs. 7 and 8 that the ultrasonic sensors combined in the

autonomous vehicle working at practical speeds would work sufficiently at 100cm but

for optimum use, 250cm would be the ideal distance range.

5.2 Sensor latency testing

Sensor latency directly affects the response time of the whole system and therefore was

chosen as a parameter for testing. Sensor latency was tested according to the flowchart

of Fig. 9 where the program was allowed to run with the minimum allowable distance

(MAD) set so that the forward sensor would not cause the program to terminate early.

Initially, the test was run ‘as-is’ without changing any of the code. This was in order to

obtain a baseline cycle time for comparison. Once the program had been running for

approximately 3 minutes, the program was stopped by placing an obstacle in front of

the forward sensor below the MAD. Initially, the main control panel attached to the

motors was kept off for the duration of the experiment. This is because the Pi output

signals via the input/output pins regardless of whether the board on the other end of the

circuit is powered, this was not considered to be a potential factor in how long the

sensors take to output data.

To set up the test, the vehicle was placed in the middle of the testing area, with

obstacles placed at known distances from each of the four sensors locations as shown

in Table 2. Table 2 describes the details of the tests conducted at four distances

respective to the four ultrasonic sensors connected in four location as Forward,

Starboard, Aft and Port. This was not only to establish whether the cycle time had an

effect on the accuracy of the ultrasonic sensors, but also to allow further analysis on the

accuracy of the sensors at a variety of ranges.

Table 2. Obstacle distances.

Sensor location Measured distances (cm)

Tests 1.1-1.3 Tests 2.1-2.2 Tests 3.1-3.5

Forward 120 200 350

Starboard 80 40 10

Aft 100 150 150

Port 50 30 20

The baseline cycle time was 2.58s. The cycle time was reduced for forward statement

in the code. The default setting was at 0.5s. For each test it was decreased to 0.1s and

then increased to 1s in order to test see the effect of changing known factors in the code.

Further, the cycle time was reduced for all of the four sensors as calling all four

sensors adds a delay to the program due to the sleep time of 0.5s which allows the

sensors to settle and receive the echo from any detected obstacle. This is not desirable

from a design point of view since it introduces an unnecessary source of inconsistency

into the readable results, especially if the sensors have an inherent inconsistency cycle

to cycle. Fig. 10 shows the average cycle time for each test.

Fig. 9. Flowchart for sensor latency testing

Fig. 10. Cycle time by test number

In Fig. 10 the red, blue and green bars show the cycle time for a series of different

distances, none of which seem to have an appreciable effect on the cycle time. Each

distance runs the forward statement for 0.5s, 0.1s and 1s, respectively from left to right.

Tests 1.1-1.3, 2.1-2.2 and 3.1-3.5 were taken at the same distances as shown in Table

2. This has made a large difference to the cycle time of the program and would improve

the response time of the program, thus improving the stopping distance.

2
.5

7
9

2
.1

9
1

3
.0

7
7

2
.6

2
7

9

2
.2

2
4 2
.6

0
9

2
.2

2
5

3
.1

1
9

2
.0

4
4

1
.6

4
2

1

1.5

2

2.5

3

3.5

1.1 1.2 1.3 2.1 2.2 3.1 3.2 3.3 3.4 3.5

C
yc

le
 T

im
e

(s
)

Test Number

Fig. 11. Program clock time verses sensor distance

5.3 Sensor clock testing

The test measuring the clock time of the Python program is shown in Fig. 11 and shows

the time taken from the sensor detecting that the vehicle is too close (under the distance

threshold) to a complete stop function from the Python script at varying vehicle speeds.

Immediate analysis of the data shows that there are two outliers (Speed 3 at 50cm and

Speed 1 at 200cm), possible causes for these anomalies are sensor failures due to

inconsistent connections which is the most likely reason. Trend lines show that the

speed of the vehicle and sensor distance have negligible effects on the speed of the

program, they are all generally inline between 2.05 and 2.15 seconds.

 Five data points appear to be above the ideal trend line indicating that the system is

stopping at a sensor value greater than the threshold suggesting a sensor error. This

could potentially have been caused by overlapping soundwaves sent from previous

triggers.

5.4 Pedestrian recognition

The Haar-classifier and HOG descriptor were compared against one another initially to

determine the more suitable computer vision algorithm for pedestrian detection. All

images were converted to 300 pixels wide (with aspect ratios remaining constant) to

ensure integrity of results. An example of the images with the ROI is shown in Fig. 12

(left, right and bottom). For the experimental results, confirmed bounding boxes would

only be a success if they identified pedestrians, therefore an identification of a cyclist

or a dog would be counted as a false positive (as they should have their own

classifiers/descriptors). These methods were compared against further twelve images

taken from a number of webpages and can be found in [25]. The results from Haar-

classifier and HOG descriptors were then compared to deep learning on the same twelve

images using the Single Shot Detection method [26] described earlier.

2

2.1

2.2

2.3

2.4

2.5

0 50 100 150 200 250 300

Ti
m

e
(s

)

Sensor Distance (cm)

Speed 1 Speed 2 Speed 3 Speed 4 Speed 5

Fig. 12. Computer vision algorithm for Haar-classifier (left), HOG descriptor (right) and Deep

learning (bottom)

Table 3 shows the numerical results for the comparisons of the two computer vision

methods against deep learning. The bounding boxes refer to the rectangular boxes

indicating the ROIs (Figs. 12 – blue for Haar (left), green for HOG (right) and red for

deep learning (bottom)). The false positives refer to any bounding box that is outside a

pedestrian or repeating an ROI that has already been identified. The detection failures

indicate that there was no bounding box (or not sufficient to qualify as an ROI). The

results show that out of 41 pedestrians, the Haar correctly identified 22 pedestrians

giving it an accuracy of 53.66%, HOG achieved a success rate of 82.93% and deep

learning outperformed both by achieving a success rate of around 88%.

Both Haar and HOG had high amounts of false positives and struggled when given

an image of multiple pedestrians scattered across the image. However, comparison 2 in

Table 3 shows that the deep learning algorithm recognised pedestrians that were not

recognised by the HOG and Haar as they were deemed unnecessary because they were

too far away. Similarly, detection failures in comparison 11 and 12 are due to the

algorithm recognising multiple pedestrians together as a single pedestrian. To ensure

the same pass parameters were taken for Deep Learning as well as HOG and Haar, these

were taken as a detection failures even though practically the system would avoid those

pedestrians.

The HOG and Haar-Classifier were further compared on the Raspberry Pi 3. The Pi

camera was used and results from the FPS were taken and displayed in Table 4.

Table 4. FPS comparison.

 Haar (FPS) HOG (FPS)

Comparison 1 3.974 0.808

Comparison 2 3.623 0.780

Comparison 3 3.776 0.815

Comparison 4 3.580 0.783

Comparison 5 3.603 0.792

Average FPS 3.711 0.796

Analysis of the results show that the Haar-Classifier performs significantly better

than the HOG Descriptor for maximising the FPS. This is likely due to the quality of

HOG requiring more computational resources thus slowing down the frames being

passed through the Pi per second. The test also showed repeated false positives with the

Haar-Classifier which could be caused by lighting while the HOG descriptor could be

fooled (Comparison (HOG) 4) if the pedestrian’s clothing was of similar colour to the

Table 3. Comparison of Haar-classifier, HOG descriptor and Deep learning

 Bounding Boxes Pedestrians False positives Detection Failures

Com

-parison

Haar HOG Deep

learning

Haar/HOG

/Deep

learning

Haar HOG Deep

learning

Haar HOG Deep

learning

1 4 4 4 4 0 0 0 0 0 0

2 3 3 13 1 2 3 13 0 1 0

3 3 6 2 2 2 4 0 1 0 0

4 4 3 2 1 3 2 2 0 0 0

5 1 2 2 1 0 1 2 0 0 0

6 4 5 3 4 1 3 3 1 1 1

7 5 4 4 4 3 1 0 2 1 0

8 2 1 1 1 1 0 0 0 0 0

9 1 4 2 2 0 1 0 1 0 0

10 6 2 4 4 2 0 0 0 0 0

11 2 6 6 8 0 0 1 6 1 2

12 2 3 9 9 1 0 2 8 3 2

Total 41 30 30 23 19 7 5

Succ

-ess

Rate

 53.66

%

82.93

%

87.8

%

background. All images on the Raspberry Pi comparison in Table 4 can be found in

[23].

The implementation of pedestrian recognition via computer vision and deep learning

demonstrates the effectiveness that the different machine learning algorithms have for

autonomous cars. Computer Vision and deep learning however, can produce an

accurate description of an object but it is a relatively new technology that has only

recently had machine learning methods applied to it. The results had shown that both

methods of computer vision worked poorly on images of dispersed pedestrians,

however, was much improved with deep learning.

5.5 Discussion of results

The stopping distance results have shown the need for a factor of safety to protect

against the inconsistency of the ultrasonic sensors and the clock time results support

this. The speed of the software and hardware play an important role in the stopping

time. The sensor accuracy results have shown that while the ultrasonic sensors in most

test runs avoided an obstacle, they can not be used in this form in real systems. For

example, the use of breadboard and jumper wires was adding to the delay for stopping

the vehicle. Although ultrasonic sensors are simple to use and can give results

sufficient enough for the system to avoid collisions they are unable to differentiate

between objects or give detailed data back to the Raspberry Pi for analysis. Similarly,

Raspberry Pi is running Raspbian which is not optimised for real world performance.

Our results agree with current studies [28] where HOG outperforms Haar-

Classifiers, however, other peer-reviewed comparisons have shown a significantly

higher number of false detections in the Haar-Classifier [29] compared to our study,

however, a larger dataset would have to be used to confirm this difference. Results 5

from Table 3 demonstrate the Haar-Classifier’s limits with lighting thus agreeing with

[30] analysis although their study was performed on faces compared to ours where we

are detecting pedestrians the principles behind the constraints are still valid.

The pedestrian recognition using computer vision and deep learning demonstrates

the effectiveness and potential that machine and deep learning algorithms have for

autonomous cars. The machine learning results have shown that both methods worked

less effectively on images of dispersed pedestrians, however, deep learning

outperformed machine learning.

6 Conclusions

This paper has presented results from converting a mobility vehicle to be fully

autonomous with computer vision and deep learning implemented for pedestrian

recognition. We further present results on ultrasonic sensors for obstacle detection. Our

results show that at short distances ultrasonic sensor shows a delay, however, for

distances above 100cm the sensors react very well.

The comparison between computer vision algorithms of Haar-classifier and HOG

descriptor with deep learning show that deep learning outperform both algorithms,

whereas, HOG descriptor gave better results than Haar-classifier. We conclude that

Raspberry Pi 3 is well suited as a microcontroller for research purposes, however, a

more bespoke device would be recommended for ‘real’ vehicles.

The construction and evaluation of the autonomous vehicle shows that the Raspberry

Pi functions as a possible microcontroller option for an autonomous system [31]. The

speed is the main concern with the Raspberry Pi as it is running Raspbian which is not

optimised for real world performance. However, Raspberry Pi as a microcontroller

from our results has shown the benefits of autotomizing a system, the feasibility of use

allows access to data which can be extrapolated to deduce problems within the system.

Future work will include increasing the training images on all algorithms to improve

their performance, getting test data from the vehicle for vehicular cloud data

management.

7 Acknowledgments

The authors would like to thank Mr Stuart MacVeigh, Mr John Welsh and Dr Toby

Whitley for their support in building the autonomous vehicle and general electronics.

The work reported here is in part supported by the internal School of Engineering

Research Grant.

References

1. Land transportation system report by Cisco

http://www.cisco.com/c/dam/global/pt_pt/assets/ciscoconnect-

2013/pdf/16_outubro_helder_antunes.pdf last accessed 2018/09/11.

2. Viola, P. M. J. ‘Rapid object detection using a boosted cascade of simple features’,

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR), 2011, Kauai, USA.

3. Chaudhari M. S. S. ‘A review on Face Detection and study of Viola Jones method’.

International Journal of Computer Trends and Technology, 2015.

4. Takuya K. A. H. ‘Selection of Histograms of Oriented Gradients Features for

Pedestrian Detection’. Kitakyushu, Japan: Neural Information Processing, 2007.

5. Dalal, N. B. T. ‘Histogram of oriented gradients for human detection’. San Diego:

Computer Vision and Pattern Recognition, 2005.

6. Ameur H., Msolli, A., Helali, A., Maaref H. and Youssef, A. ‘Hardware

implementation of an improved HOG descriptor for pedestrian detection’, ICCAD’17,

Hammamet - Tunisia, January 19-21, 2017.

7. Shilpashree, K., S., Lokesha, H., Shivkumar, H. ‘Implementation of Image Processing

on Raspberry Pi’, International Journal of Advanced Research in Computer and

Communication Engineering Vol. 4, Issue 5, May 2015.

8. Pan, J-S., Ma, S., Chen, S-H. and Yang, C-S. ‘Vision-based Vehicle Forward Collision

Warning System Using Optical Flow Algorithm’, Journal of Information Hiding and

Multimedia Signal Processing, Volume 6, Number 5, September 2015.

9. Mammeri, A., Zuo, T. and Boukerche, A. ‘Extending the Detection Range of Vision-

based Driver Assistance Systems Application to Pedestrian Protection System’,

Globecom-Communications Software, Services and Multimedia Symposium 2014.

10. Lin, S. F. and Lee, C. H., ‘Pedestrians and Vehicles Recognition Based on Image

Recognition and Laser Distance Detection’, 16th International Conference on Control,

Automation and Systems (ICCAS 2016) Oct. 16-19, 2016 in HICO, Gyeongju, Korea.

11. Brehar R. and Nedevschi, S., ‘A comparative study of pedestrian detection methods

using classical Haar and HoG features versus bag of words model computed from Haar

and HoG features’, IEEE 7th International Conference on Intelligent Computer

Communication and Processing (ICCP), 2011.

12. Fei-fei, L., ‘A bayesian hierarchical model for learning natural scene categories,’ in In

CVPR, 2005, pp. 524–531.

13. Bruno D. R. and Osório, F. S., ‘Image classification system based on Deep Learning

applied to the recognition of traffic signs for intelligent robotic vehicle navigation

purposes’, Latin American Robotics Symposium (LARS) and 2017 Brazilian

Symposium on Robotics (SBR), 2017.

14. Orozco, C., I., Buemi, M., E., and Berlles, M., J., ‘New Deep Convolutional Neural

Network Architecture for Pedestrian Detection’, 8th International Conference of

Pattern Recognition Systems (ICPRS 2017).

15. Geismann P. and Schneider, G., ‘A Two-staged Approach to Vision-based Pedestrian

Recognition Using Haar and HOG Features’, 2008 IEEE Intelligent Vehicles

Symposium Eindhoven University of Technology Eindhoven, The Netherlands, June

4-6, 2008.

16. Manlises, C. O., Martinez, J. R., Belenzo, J. L., Perez, C. K. and Postrero, M. K. T. A.,

‘Real-Time Integrated CCTV Using Face and Pedestrian Detection Image Processing

Algorithm For Automatic Traffic Light Transitions’, 8th IEEE International

Conference Humanoid, Nanotechnology, Information Technology Communication

and Control, Environment and Management (HNICEM) The Institute of Electrical and

Electronics Engineers Inc. (IEEE) – Philippine Section 9-12 December 2015, Cebu,

Philippines.

17. Priyanka D, Dharani K, Anirudh C, Akshay K, Sunil M P, Hariprasad S A, ‘Traffic

Light and Sign Detection for Autonomous Land Vehicle Using Raspberry Pi’,

Proceedings of the International Conference on Inventive Computing and Informatics

(ICICI 2017) IEEE Xplore Compliant - Part Number: CFP17L34-ART, ISBN: 978-1-

5386-4031-9.

18. Shah, A. A., Zaidi, Z. A., Chowdhry, B. S. and Daudpoto, J., ‘Real time Face

Detection/Monitor using Raspberry pi and MATLAB’, IEEE 10th International

Conference on Application of Information and Communication Technologies (AICT).

19. Betterlife Healthcare, 2018. Betterlife Capricorn Electric Wheelchair.

20. Adafruit at https://www.adafruit.com/, 2018. [Last accessed 13th April 2018]

21. OpenCV https://github.com/opencv/opencv/tree/master/data

22. Natasha Seo training dataset for HOG and Haar

http://note.sonots.com/SciSoftware/haartraining.html [Last accessed 15th April 2018]

23. Freund, R. E., ‘A Short Introduction to Boosting’, Journal of Japanese Society for

Artificial Intelligence, 1-14, 1999.

24. COCO and VOCO712 datasets http://cocodataset.org/#download and

https://github.com/chuanqi305/MobileNet-SSD

25. Images for pedestrian training and Raspberry Pi comparison

https://github.com/asiyakhan0/images-

26. Liu, W., Anguelov, D., Erhan, D., Szegedy, C. and Reed. S. E., SSD: single shot

multibox detector. CoRR, 2015, 5, 6.

27. Vinayak V. Dixit, S. C., ‘Autonomous Vehicles: Disengagements, Accidents’, and

Reaction Times. PLOS. ONE, 11(12), e0168054, 2016.

28. Wei, T. Q. ‘An Improved Pedestrian Detection Algorithm Integrating Haar-Like

Features and HOG Descriptors’, Advances in Mechanical Engineering,

2013, 5(546):206.

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6041100
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6041100
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8168942
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8168942
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8055198
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8055198
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7981282
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7981282
https://www.adafruit.com/
https://github.com/opencv/opencv/tree/master/data
http://note.sonots.com/SciSoftware/haartraining.html
http://cocodataset.org/#download
https://github.com/chuanqi305/MobileNet-SSD
https://github.com/asiyakhan0/images-

29. Xing, W., Zhao, Y., Cheng, R., Xu, J., Lv, S.,and Wang, X., ‘Fast Pedestrian Detection

Based on Haar Pre-Detection’, International Journal of Computer and Communication

Engineering, Vol. 1, pp. 207-209, 2012.

30. Chaudhari M., Sondur S. and Vanjare G., ‘A review on Face Detection and study of

Viola Jones method’. International Journal of Computer Trends and Technology, vol.

25, no. 1, July 2015.

31. Chaudhari, H., ‘Raspberry Pi Technology: A Review’, International Journal of

Innovative and Emerging Research in Engineering, vol. 2, issue 3, 2015.

