
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2019-02-19

Cache Performance Optimization of

QoC Framework

Laghari, AA

http://hdl.handle.net/10026.1/13269

10.4108/eai.13-7-2018.156594

EAI Endorsed Transactions on Scalable Information Systems

European Alliance for Innovation (EAI)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

EAI Endorsed Transactions
on __________________________ Research Article

 1

Cache Performance Optimization of QoC Framework

Asif Ali Laghari1, Hui He1,*, Rashid Ali Laghari2, Asiya Khan3, Rahul Yadav1

1School of Computer Science & Technology, Harbin Institute of Technology, Harbin, China
2School of Mechatronics, Harbin Institute of Technology, Harbin, China
3School of Engineering, University of Plymouth, Plymouth PL4 8AA, U.K.

Abstract

The main aim of this paper is based on the cache performance test of the QoC: quality of experience framework for cloud
computing on the server. QoC framework is based on the server-side design and implementation of the use of hierarchical
architecture. Reverse proxy technology is used to build a server cluster, which is composed of front-end access layer to
achieve the server for load balancing, improve the performance of the system and the use of built-in distributed cache server.
The cluster consists of the cache acceleration layer, which reduces the load of the backend database. The second database
server cluster, which is constructed by the database master and slave synchronization technology, forms the data storage
layer, which realizes the database read and writes separation and data redundancy. The server-side hierarchical architecture
improves the performance and stability of the entire system, and has a high degree of scalability, laying a solid foundation
for future expansion of system business logic and increases user volume. This paper presents new cache replacement
algorithm for inconsistent video file size and then analyses the specific needs for the multi-terminal type of QoC framework,
and gives the client and server-side outline design; it describes the implementation details of the client and the server-side
and finally the whole system of detailed functional and performance testing.

Keywords: Load balancing, Cache management, QoE, QoC, Video platform, Cache replacement algorithms.

Received on DD MM YYYY, accepted on DD MM YYYY, published on DD MM YYYY

Copyright © YYYY Author et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.

doi: 10.4108/_______________
corresponding author email: hehui@hit.edu.cn

1. Introduction

Hypertext transfer protocol is used for communication of
server-side and client applications JSON-type data used for
encapsulation of data communication [1, 2]. Server-side side
interface is designed for the convenience of the administrator
to perform the operation of management and the client side
site made for user operations. Through the entire server, the
architecture can be dividing into front-end operation server
and database server. The main work and operation of front
end of the server is work for the client and the information
exchange when the client sends an information request. The
front-end operation of the client requests information
contained in the client to resolve to understand the command
to get the corresponding limits of the command and send a
command with limits to the back-end database server for the
query. When the database server returns the processing result,
the front-end server encapsulates the returned data again into

a JSON string and returns the message to the client via the
HTTP protocol [3]. On this basis, a content server is build,
the user uploaded by the client all the video content for
storage and processing.
The proposed QoC framework does the function of
monitoring the internal cloud environment, the client device
and middle network environment from cloud to end user’s
device [4]. The quality of experience/service (QoE/S) data
submitted by end users and objective QoE/QoS data collected
by the system will be analysed for service delivery according
to SLA. The proposed QoC framework distinguishes the
negative and positive QoE by comparison of current service
delivery parameters. The QoC framework will upgrade policy
for the time being if the user does not get QoS according to
SLA and extend package limitation for users to complete
current task. The proposed Quality of Experience framework
for cloud computing (QoC) designs and implements a multi-
type terminal for the video service platform. The client can
run on multiple types of smart

EAI Endorsed Transactions
on __________________________ Research Article

 2

Figure 1 Simple architecture for multi-terminal type video service platform

terminals, such as the Android app and PC platform to offer
user login and register, the personal information
management, recommended the video, video search, view
and play video, video reviews, video uploading and
downloading The customer's end set up and other eight
functional modules, allowing users to anytime, anywhere
through a variety of intelligent mobile terminal to use the
video service platform services. Simple architecture for
multi-terminal type QoC video service platform is given in
Figure 1.
The motivation of this work is to address the major issue of
QoC framework in terms of cache management on the
server-side to handle more requests and provides fast
response to users on their requests. Therefore, there is a
need to analyze the performance of QoC video framework
on a server in single and cluster mode. Beijing Sixiang
Time Technology Co. Ltd provides a technological
solution and provides free servers for a test of websites and
performance analysis so we use their server to test our QoC
video framework [34]. In this paper, we test the
performance of the QoC framework on the server and
gradually improve the system's ability to resist the
limitations and solve the system defects to meet
the real needs of the video service platform after
optimization. Finally, give the server the most reasonable
and optimized basic design.

The rest of this paper is organized as follows: Section 2
describes related studies, section 3 provides details of
design of server and cloud video server and section 4 is
based on the front-end access layer implementation.
Sections 5 and 6 presents the implementation of cache and
data storage respectively. Section 7 describes realization of
business logic and section 8 is based on the system
performance testing. Finally in section 9 we conclude our
work.

2. Related Work

QoE is used to collect reviews about product or services
[36, 37]. QoE based video cache management scheme for
cellular communication has been proposed by Wang et al.
[9]. In the proposed scheme three parameters under
consideration were a base station, client and RAN cache
server for provision of quality of service of the video under
limited cache capacity and statistics of video popularities.
During the experiments, the author developed relationship
and recording between the QoE value and three parameters
such as the response from the cache server, request rate
from client and bandwidth air interface. The first step of
experiment cache assigned to different video clips
according to their reputations and second step based on the

Paper title

3

optimization of cache space allocation for different video
clips based on the QoE value relationship, bandwidth and
request rate based on the different models. The results
show that video cache management scheme provides better
QoE performance under constraints of total cache capacity,
specific distributions of the request rate and the bandwidth.
Hierarchical video cache scheme for the wireless cloud
was proposed by Ahlehagh and Dey [10]. The purpose of a
hierarchical video cache scheme is to fetch videos
from CDNs, which decrease the backhaul traffic, increase
the network capability to provision more concurrent video
request with better video QoE. The hierarchical model of
cache management increases the network capability by
allowing many cell sites to share the hierarchical levels of
the cache without increasing the total cache size, thus
improving the cache hit ratio. The hierarchical cache
scheme provides better mobility when the user moves from
one cell to another cell with a video session; it is likely that
video downloaded is already in the cache with the radio
access network (RAN) or CDN associated with the new
cell. The results show that using hierarchical video cache
scheme hit ratio improved by 24% and network capability
up to 45% compared to caching only in the RAN.
In [11], Hoang et al. proposed a mechanism named as
Movie Atom Caching (MAC) which increases the user
experience by reusing previously downloaded metadata
atoms and cache metadata of mp4 movies at video players
before users play the video. The user behaviour model
avoids long startup delay and increases the QoE of users
who leaving or abandons their video streaming before the
video start to play. The results showed that MAC improves
startup delay significantly in MP4 file streaming
applications and have reasonable startup delay with
modern fragmented streaming schemes with very little
difficulty and overhead.

3. Cloud Video Server

The server side consists of three roles: the server, the
database server and the content server.

3.1 Web server

Web server is mainly responsible for receiving and sending
HTTP messages [5]. After receiving the HTTP request sent
by the client, the server will analyse the JSON data, get the
result from the query database, encapsulate the result as
JSON data, and return it to the client as the response of the
HTTP message. In the special request, such as upload
video, download video and play video, interaction with the
content server is required.

3.2 Database server

The database server is responsible for storing the entire
system in addition to all the information outside the video
file [6]. After the Web server receives the HTTP request

from the client, it will return the result to the client by
querying the database.

3.3 Content server

Content server stores all uploaded files of users after
transcoding, multiple copies of video may exist with the
different resolution of the transcoding. When users play
video, through HTTP progressive download way and direct
access to the content server specifies the resolution of the
video file.

The basic structure of the content server is the number
of users, small flow, low degree of concurrent and low load
applications can basically meet the needs of users. But
when the number of users increases on the system then
traffic is also increasing, the system stability requirements
increase, and there will be the following defects [7].
(1) Server and content server stand-alone hot: all requests
from the client are handled by the server, all upload, and
download from the client and play video requests are
handled by a content server. When the number of user
requests increases, the traffic continues to increase, it will
reach a single server of the calculation and storage
resources limit, a single server response speed and
concurrency will be greatly reduced.
(2) A single point of dependence on the three types of
servers: Web server, database server and content server,
once a server rock situation, the entire system services will
be affected and cannot work properly.
(3) System security is poor: the front of the Web server and
content server, if attacked, will make a lot of consumption
of computing resources that impose an impact on the entire
system services [8].
(4) The lack of cache server: front-end server to receive
each message, basically need to interact with the database,
including add or delete data, which data query operation,
high repeatability, many queries may obtain the same data,
which will produce extra expenses. On the other hand,
when the number of users increases, the user will upload
and play the request each time, will visit the same content
server, and will inevitably cause the user to block, so the
need for the content server also increases the corresponding
content cache server.

3.4. Hierarchical Design of the server

The hierarchical design of the server, making the system
architecture is very clear and easy to carry out independent
design and development work at all levels, but also reduces
the maintenance and upgrading of the pressure [12]. At the
same time, in the hierarchical design of the server-side
scalability is also greatly enhanced [13].
The server architecture is divided into three layers from top
to bottom:

3.4.1 Front-end access layer

A. N. Author, B. N. Author and C. N. Author

 4

A Nginx reverse proxy server and many Apache Tomcat
server components [14]. Nginx server used for traffic
distribution and load balancing; Apache Tomcat server
used for business logic to give the operating environment.

3.4.2 Cache layer
Cache layer composed of two parts, one composed of
multiple Memcached distributed cache server composed of
cache acceleration layer and back-end database query
structure cache which reduces the load on the database. The
other part is the multi-content cache, the server composed
of the contents of the cache layer and the content server in
the video file cache, the content server load to more than
one server to meet the purpose of load balancing [15, 16].

3.4.3 Data storage layer
Mainly composed of two parts master and slave MySQL
database server cluster and file server. The master-slave
data cluster uses the master-slave replication mechanism of
the database so that read and write operations to the
database can do separately, reducing the load on each
database server in the entire database server cluster and
improving the performance of the entire database server
cluster. The File server is mainly used to store all users after
uploading the video file after transcoding them.

4. Front-end access layer
implementation

4.1 Reverse proxy load balancing

Load balancing refers to the load (work tasks) to balance,
spread to multiple operating units to do, to work together
to complete the task Load balancing has two meanings:
First, many of concurrent access or data traffic sharing to
multiple nodes on the device separately to reduce the user
to wait for the response time; second, a single heavy load
operation to share multiple nodes on the device to do
parallel processing, each node device processing is
complete. The results will summarize, returned to the user,
the system processing capacity has been greatly improved.
There are many ways to solve server-side load balancing,
where the reverse proxy is one of the most important ways.
The reverse proxy refers to the proxy server to accept
external network connection request, and then send the
request to the internal network of a server, and the results
of the server after processing to return to the external
request to connect the user, then the entire server the cluster
represented as a server for external users.
The system uses Nginx server to achieve reverse proxy.
Nginx is the same as the engine X, a high-performance
HTTP and the reverse proxy server developed by Russian
programmers for the Rambler search engine. At present,
China's Nginx server users use Sina, Netease, Tencent and
other large network sites. Its features are less memory
consumption, concurrency, support rewrite rules, built-in

health check function, and high stability. Many operating
systems are supported, including FreeBSD, Linux, Solaris,
MacOS X, and compiled versions support a series of
operating systems. The QoC framework uses the Linux
operating system.

4.2 Nginx installation

Nginx is an installation configuration file and is very
simple, but also supports Perl syntax. Firstly the Nginx
installation package downloaded, the current version is
1.0.2 version, and the installation of the source code has
ngix-1.0.2.tar.gz. By default, Nginx will install in / usr /
local / ngix, by setting the compiler option, the installation
directory can modify. The installation process is as follows:
#tar zxvf nginx-1.0.2.tar.gz
#cd nginx-1.0.2
#. / configure -prefix = / home / nginx -user = asif
#make
#sudo make install
Nginx's installation is over
5.3.3 Nginx configuration
Nginx configuration files are mainly composed of events
module, HTTP module, and server module configuration
[17, 18]. The configuration of the events module
configures Nginx's working mode and the maximum
number of connections allowed. The following modes
work: select (standard mode), poll (standard mode), kqueue
(efficient mode), epoll (efficient mode), / dev / poll
(efficient mode). In this system, select the epoll mode of
operation. As shown below:
events {
use epoll;
worker_connections 50000;
}
The configuration of the HTTP module mainly refers to the
configuration of Nginx as a server, including upload file
size restrictions, gzip compression, server name hash table
size, default file type and so on as shown below.
upstream backend {
server 192.168.1.100: 8000 weight = 1 max_fails = 3
fail_timeout = 30s;
server 192.168.1.100: 8000 weight = 1 max_fails = 3
fail_timeout = 30s;
server 192.168.1.100: 8000 weight = 1 max_fails = 3
fail_timeout = 30s;
server 192.168.1.100: 8000 weight = 1 max_fails = 3
fail_timeout = 30s;
}
Through the upstream field of the reverse proxy server is
responsible for the set [19], backend Nginx is responsible
for the server cluster, the cluster has four Apache Tomcat
server, IP was 192.168.1.91 ~ 192.168.1.94, work at 8000
ports. The weight parameter indicates the weight assigned
by the server, where all Apache Tomcat servers have the
same weight, and each machine can access with the same
probability. The parameters max_fails and fail_timeout-
cooperate to control how Nginx determines that a server in

Paper title

5

the upstream is invalid. When the fail_timeout time, a
server connection failed max_fails times, the server will be
considered a failure. At the same time will no longer be
distributed to the failure of the server, to ensure the
reliability of the entire server cluster.
http module configuration refers to the configuration of the
Nginx virtual host, the corresponding configuration is as
follows:
server {
listen to 50000;
server_name localhost;
root / home / nginxroot;
location / vsReq {
proxy_pass http: // backend;
proxy_set_header Host $ host;
proxy_set_header X-Forwarder-For $ remote_addr;
}
Error_page 500 502 503 504 / 50x.html
Location = /50x.html {
Root html
}
}
The above configuration indicates that the listening port of
the reverse proxy server is 50000 and the server named as
local host and will send to the backend server cluster for
processing.

5. Implementation of the cache layer

5.1 Cache Acceleration Layer

5.1.1Memcached Introduction
Memcached is a high-performance distributed memory
object cache server for dynamic web applications to reduce
the load on the database [20]. It reduces the number of
reading databases by caching data and objects in memory,
providing dynamic, database-driven websites. Memcached
based on a hashmap that stores key-value pairs. All
operations, including insert, update, and delete, are done
via the key. Its characteristics are as follows:
(1) The agreement is simple. Memcached server-side and
client-side communication uses text-based protocols
instead of complex XML formats. You can also access
Memcached via Telnet to insert, update, and delete data.
(2) Based on the libevent event handling. libevent is an
event triggered by the network library, that can support
select, epoll, kqueue and other system call management
time mechanism for Windows, Linux, BSD and other
platforms.
(3) Built-in memory storage. In order to improve the speed
of access, Memcached will cache objects stored in
memory. The advantage is that access is very fast and the
disadvantage is to restart the software or system and the
cache data will be lost. When the memory space allocated
by Memcached is exhausted, the program removes the
most frequently used cache objects according to the LRU
(Least Recently Used) algorithm [21].

(4) Memcached server-side is independent of other
Memcached and will not communicate with each other to
share the cache information. Therefore, the distribution of
the entire cache cluster depends on the implementation of
the client.
Since Memcached data is based on a hashmap that stores
key-value pairs, it has a very strong scalability [22]. If the
cache capacity of the distributed cache server cluster of the
current system is exhausted or too complicated, it is very
convenient to extend the cache capacity of the entire
distributed cache server cluster by adding an appropriate
number of Memcached servers.

5.1.2 Memcached distributed algorithm
Memcached server does not communicate with each other,
the server cannot share the cache information, so the entire
cache cluster distributed algorithm depends on the
realization of the Memcached client [23, 24].
The following describes the principle of its distributed
algorithm; the implementation of each client is basically
the same. Assuming that there are three Memcached
servers, node1 ~ node3, the application needs to save the
data named "Tokyo", "China", "Canada", "American". The
first application adds "Tokyo" to "Tokyo" to the client, and
the algorithm implemented by the client will select the
server that saved the data. After selecting the server, the
server is ordered to save "Tokyo" and its value. Similarly,
"China", "Canada", "American" is the first choice of the
corresponding server, and then save. Get the data, the first
need to get the key "Tokyo" passed to the client, the client
according to the same algorithm to calculate the server to
save the data. And then send a command to the server to
obtain the appropriate data. As long as the algorithm used
to save and get the same, select the server is also consistent.
Unless the data is deleted for some other reason, the
corresponding saved data can get.
The Memcached client has many ways to do this, there are
two commonly used distributed algorithms [25, 26]:
(1) Algorithm based on remainder
According to the remainder method of dispersion is very
simple, refers to the number of servers according to the
remainder of the dispersion. Use the hash function (such as
CRC) to find the key value of the hash, and then divided by
the number of servers, according to the remainder to select
the target server.
The remainder of the calculation method is simple, the data
has also been very good dispersion, but also has its
shortcomings. That is when the server cluster in the server
because of the failure to remove or adds a new server, the
cost of cache reorganization is very large. Because the
addition or removal of the server, the number of servers
from N to N-1 or N + 1, the hash value in the spare time,
the change will be very large, so you cannot get the same
server with the save, will cause a lot of cache loss.
(2) Consistent Hashing algorithm
The Consistent Hashing algorithm finds the hash value of
the Memcached server information (such as IP: port) and
configured on a ring of 0 ~ 232. And then use the same way
to find the need to store the data hash value, but also

A. N. Author, B. N. Author and C. N. Author

 6

mapped to a location on the ring from this position to start
the clockwise search, the data saved to find the first server.
If more than 232, no server has been found, the data will be
saved on the first server.
After adding a server, according to the remainder of the
algorithm because of preservation of the key server will all
change and affect the cache hit rate. However, in the
Consistent Hashing algorithm, only the corresponding key
values on the first server in the counter clockwise direction
of the server's location is affected. The Consistent Hashing
algorithm can greatly limit redistribution of key values in
the case of a change in the number of servers, which has
little effect on the hit rate of the cache [27, 28].

5.1.3 Memcached deployment
Four servers used to build Memcached server cluster, IP
address was 192.168.1.110 ~ 192.168.1.113. The following
describes the installation process.
First install the dependent libevent library, the process is as
follows:
#tar vxf libevent-2.0.21-stable.tar.gz
#cd libevent-2.0.21
#. / configure -prefix = / usr / local / libevent
#ake && make install
Then install Memcached, the process is as follows:
#tar vxf memcached-1.4.10.tar.gz
#cd memcached-1.4.10
#. / configure -prefix = / home / memcached -with-libevent
= / usr / local / libevent
#make $$ make install
Finally start Memcached server, allocate 2GB of memory,
listening port for 12000, the maximum number of
concurrent connections to 256.
#. / memcached -d -m 2048 -p 12000 -c 256

5.2 Caching Substitution Algorithm for
Content Caching Layer

The content cache layer refers to the contents of the cache
video file server [29]. Its architecture is similar to the
content distribution network and each content cache server
to the different video users to the server, the content cache
server content may also repeat. When the user sends a
video playback request, the server will return a video
playback HTTP address pointing to a content cache server,
the client to the server to initiate a play connection [30]. If
the file does not exist in this cache server, the file copied
from the content server. When the cache server storage
space is full then there is a need for cache replacement
algorithm to select the existing cache file to delete.
Common cache replacement algorithms based on a premise
that the size of each file is consistent [31, 35]. In the system
each cache file, that is the size of the video file is
inconsistent. Common cache replacement algorithms may
not well adapted to the current system. In order to solve the
problem of cache algorithm failure caused by file size, this
system has developed a set of file-size cache replacement
algorithm which adapts to the system environment. The

following describes the specific implementation of this
algorithm.
SLRU cache is divided into two segments, a probationary
segment and a protected segment. Lines in each segment
are ordered from the most to the least recently accessed
[32]. Data from misses add to the cache at the most recently
accessed end of the probationary segment, to sort the
information of all the video files on the cache server in the
order of the most recent access time [33], and then the file
size to select the files that need to replace. To achieve this,
all caches are divided into two areas. S-LRU algorithm 1 is
given below.

Algorithm 1. Cache Page Replacement

Input: video file, size of file,
Output: Cache Page Replacement for new video

1 Initialized request
2 q = vide file
3 s = size of file
4 If (q in cache)
5 {
6 Goto : LRU stack
7 }
8 Else
9 if (s > remaining storage space)
10 {
11 Download video from content server to

Cache server
12 }
13 Else
14 {
15 Get beg s from LRU stack
16 Delete q
17 }
18 LRU Stack
19 End

When the storage space is not enough time, the algorithm
first selects the sorted stack in the old file size of the largest
video file to remove. When the first file removed, the
remaining storage space is still not enough to accommodate
the new video file, continue to follow the above way to
select the file removed until the remaining space is enough
to accommodate the new video file. When the storage
capacity of the cache server is different from the total
content of the content server, the selection of the
parameters is different.

6. Implementation of Data Storage Layer

The system uses the database master-slave mode to achieve
the server-side metadata storage. In the master and slave
database server cluster, there are three MySQL database
servers, one for the Master database (192.168.1.120) and
the other two as the Slave database (192.168.1.121 and
192.168.1.122). Writing to the database (insert, delete, and
update) occurs only on the master database, and the read

Paper title

7

operation (query) occurs only on the slave database. Read
and write operations are from the smart terminal client
request.
Mysql's replication mechanism can synchronize data on the
master database and the data on the slave database. The
specific implementation is when the master database is on
the write operation, the write operation will be recorded in
the binary log file, through the synchronization thread on
the server to synchronize the binary log to the slave server,
modify the data on the slave server to achieve data
consistency between master and slave databases.
Compared with the stand-alone mode, the master-slave
mode of the database has the characteristics of load
balancing, reading and writing analysis and high data
security, and is suitable for the environment of the system.

7. The Realization of Business Logic

The server receives the HTTP message sent by the system
client, Restful Web Services determines the type of the
request according to the URL address, and calls the
corresponding module to deal with, including the string
parsing, database query, JSON string encapsulation and
other operations to complete The entire business logic, the
package will be a good string as the corresponding BODY,
back to the client. The following describes the module
processing flow.
The client sends the HTTP request to the client, and the
client divided into eight modules: registration module, user
information management module, video upload and
download module, video information module, video
comment module, recommended video module, video
search module, set the module. The eight modules in
addition to set the module will interact with the server side.
Most of the modules of the process are the client to the
server to start data requests, the server from the database
query to get the right data and the data packaged in a
format, through the response to the client. The client
performs further processing and presentation based on the
data obtained. The following two sections (sections 8 & 9)
describe the detailed flow description of the registered
registration module in which the interaction process is
more complex.
The registration login module divided into three parts: send
verification code part, registration part and login part. The
process of sending the verification code is given in
algorithm 2.

Algorithm 2. Server Verification Code
Input: Login ID,
Output: Verification Code

1 Get facility from JSON
2 For(facility in database)
3 {
4 If (Facility = Register)
5 {
6 Send Identification code
7 Status =0;

8 }
9 Else
10 Status = 1;
11 }
12 Set Status in JSON
13 Return to client
14 End

8. System Performance Testing

8.1 Front End Access Layer
Performance Test

This section uses Apache's own performance testing tool
AB to perform performance testing on the front-end access
layer. The test is divided into two parts, a single server for
stand-alone mode test and load balancing under the cluster
mode test. By simulating large-scale requests, the average
response time in standalone mode and cluster mode is
obtained in the case of different concurrency numbers. The
test results are shown in Figure 2, where the horizontal axis
represents the number of concurrent and the vertical axis
represents the average response time in milliseconds.

Figure 2. Performance test of front end access layer
(x-axis = number concurrent and y axis = response

time)

As can be seen from Figure 2, the average response time of
stand-alone mode and cluster mode is not much different in
the case of low concurrency. From the data analysis, the
performance of stand-alone mode is slightly higher than
cluster mode. In the cluster mode, the reverse proxy server
is responsible for traffic distribution. With the increase in
the number of concurrent, single-mode performance
greatly reduced, but the performance of cluster mode can
be maintained in a relatively stable state.

A. N. Author, B. N. Author and C. N. Author

 8

8.2 Cache layer performance test

This section uses libmemcached and the memaslap
performance test tool provided by the source library to
perform a performance test on the cache acceleration layer.
The test object is Memcached distributed cache cluster,
composed of four servers, working in 12000 ports, the
memory space used by 2GB. The test is divided into
multiple groups, each group of cache size is different, and
the length of the key is fixed 16 bytes. For the set cache
operation (set) and get the cache operation (get) were
tested.
When the number of concurrent times is 100, the system
throughput will have a different program of decline,
encountered a bottleneck. Because the memory has reached
the upper limit, and the server's network card traffic is close
to the limit. Also from Figure 2, the server's cache data is
smaller, the greater the throughput of the system. The cache

acceleration layer, which consists of the server, exhibits
good performance and is able to maintain good
performance in high concurrent situations.

8.3 Data layer performance testing

The tests in this section are divided into two parts: testing
a single server in stand-alone mode on a database server;
testing the server cluster in cluster mode on the two
database servers. Through the preparation of database
testing procedures, simulation database read operation, the
use of multi-threaded technology to simulate concurrent
operations.
The results of the test are shown in Figure 3. The abscissa
indicates the number of concurrent threads. The ordinate
indicates the response time of the database read operation
in Figure 3.

Figure 3. Data layer performance test results

As can be seen from Figure 3, in the stand-alone mode,
with the increase in concurrency intensity, a single
response time increases rapidly, and when the number of
concurrent increases, the single response will reach the
limit and cannot respond. In cluster mode, as the
concurrency intensity increases, the response time
increases slowly, but the performance is better than the
stand-alone mode.

8.4 Cache replacement algorithm test.

For the test of the cache replacement algorithm, it divided
into two parts. The first part is the comparison with other

classical cache replacement algorithms. The second part is
the performance change of the cache replacement
algorithm under different parameter selection.
Use the program to simulate the test, assuming that the
number of video files on the content server is 1 million, the
average size of the video file is 100MB, and then the size
of all the files on the content server is about 100TB. The
access rules for video files conform to the normal
distribution.
The first part of the test simulation algorithms is S-LRU,
RAND, FBR, LRU, and LFU. Among them, the S-LRU
algorithm set the parameter Fold = 60. FBR algorithm
Fnew = 25, Fold = 60. In different cache size, the hit rate
test, the test results are given in Figure.

Paper title

9

As shown in Figure 4 the cache capacity is from the time,
the hit rate than many other algorithms are much higher. In
other words, when the cache capacity is not large than
RAND is a better choice. When the cache capacity
gradually increases, the hit rate is not the highest one
algorithm, but compared with several other algorithms, the
difference is not great. In the real cache system, the
parameter Fold can be dynamically changed to achieve
better performance by dynamically scaling the cache
capacity and content capacity.

9. Conclusion

This paper presents the test of QoC video framework on the
server system, through the text analysis and function
screenshots in the form of a complete test of the project
involved in the three modules of the specific functions.
Through the performance test of the server side different
cache algorithms were used, each layer of the hierarchical
structure can run normally according to the design and can
run normally in the case of high concurrent volume and the
processing ability can meet the current business needs, and
the ability to expand the business needs. After testing, the
system can be in normal operation, the three modules can
be a normal collaboration between the completions of the
established demand targets of users. Through the test
section, we can also more clearly understand the various
functional modules of the project.

Figure 4. Replace the algorithm hit rate test chart x-axis is time and y-axis is file size

Declaration

Availability of data and material: No

Acknowledgments

Professor Hui He is corresponding author of this paper.

Funding

This work is supported by the National Key R&D Program
of China under Grant no. 2017YFB0801801 and the
National Natural Science Foundation of China (NSFC)
under Grant no. 61472108 and Grant 61672186.

Author Contributions: First author has conducted the
research and written the paper, the third author has set the
template and formatted of paper. Rest of the authors
reviewed the paper to set context and contributed as experts
in the field.

Competing Interest: Declare conflicts of interest or
state “The authors declare no conflict of interest."

A. N. Author, B. N. Author and C. N. Author

 10

References

[1] Mills, R. L., & Newman, D. M. (2013). U.S. Patent No.

8,595,613. Washington, DC: U.S. Patent and Trademark
Office.

[2] Carlson, M., Martin C., Alex H., Scott H., Duncan J.-W.,

Anish K., Tobias K. (2012). "Cloud application
management for platforms." OASIS, http://cloudspecs.
org/camp/CAMP-v1. 0. pdf, Tech. Rep.

[3] Zhang, J., Liu, W., Zhao, W., Ma, X., Xu, H., Gong, X., ...

& Yu, H. (2018). A Webpage Offloading Framework for
Smart Devices. Mobile Networks and Applications, 1-14.

[4] Laghari, A. A., He, H., Khan, A., Kumar, N., & Kharel, R.

(2018). Quality of experience framework for cloud
computing (QoC). IEEE Access, 6, 64876-64890.

[5] Wang, P., & Chen, X. (2017, November). Co_Hijacking

Monitor: Collaborative Detecting and Locating Mechanism
for HTTP Spectral Hijacking. In Dependable, Autonomic
and Secure Computing, 15th Intl Conf on Pervasive
Intelligence & Computing, 3rd Intl Conf on Big Data
Intelligence and Computing and Cyber Science and
Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), 2017 IEEE 15th
Intl(pp. 61-67). IEEE. Congress
(DASC/PiCom/DataCom/CyberSciTech), 2017 IEEE 15th
Intl, pp. 61-67. IEEE, 2017.

[6] Cantelon, M., Harter, M., Holowaychuk, T. J., & Rajlich, N.

(2014). Node. js in Action (pp. 17-20). Greenwich:
Manning.

[7] Wu Yuesheng , L. X. (2010). Eclipse 3.0 application

development technology explains [M]. Tsinghua University
Press, 128131.

[8] Ullman . (2009)Database system based tutorial. [M] YUE

Li-hua translated. Machinery Industry Press, 251254.

[9] Wang, Y., Zhou, X., Sun, M., Zhang, L., & Wu, X. (2017).

A new QoE-driven video cache management scheme with
wireless cloud computing in cellular networks. Mobile
Networks and Applications, 22(1), 72-82.

[10] Ahlehagh, H., & Dey, S. (2012, June). Hierarchical video

caching in wireless cloud: Approaches and algorithms.
In Communications (ICC), 2012 IEEE International
Conference on(pp. 7082-7087). IEEE.

[11] Hoang, X. T., & Nguyen, T. T. (2016). Reducing Startup

Time in MP4 On-demand Video Streaming Services with
Movie Atom Caching. VNU Journal of Science: Computer
Science and Communication Engineering, 32(1).

[12] Che, H., Tung, Y., & Wang, Z. (2002). Hierarchical web

caching systems: Modeling, design and experimental

results. IEEE Journal on Selected Areas in
Communications, 20(7), 1305-1314.

[13] Oliver R,.D, and Aubrey.J. U. (2003). Connecting with

Java Web Services. InfoWorld., (l25): 48

[14] Bates, A., Hassan, W. U., Butler, K., Dobra, A., Reaves, B.,

Cable, P., ... & Schear, N. (2017, April). Transparent web
service auditing via network provenance functions.
In Proceedings of the 26th International Conference on
World Wide Web (pp. 887-895). International World Wide
Web Conferences Steering Committee.

[15] Xiang, L., Ng, D. W. K., Islam, T., Schober, R., Wong, V.

W., & Wang, J. (2017). Cross-layer optimization of fast
video delivery in cache-and buffer-enabled relaying
networks. IEEE Transactions on Vehicular
Technology, 66(12), 11366-11382.

[16] Li, R., Zhang, J., & Shen, W. (2018). Replicas Strategy and

Cache Optimization of Video Surveillance Systems Based
on Cloud Storage. Future Internet, 10(4), 34.

[17] Nedelcu, C. (2015). Nginx HTTP Server. Packet

Publishing Ltd.

[18] Soni, R. (2016). Introduction to Nginx Web Server.

In Nginx (pp. 1-15). Apress, Berkeley, CA.

[19] Guangji, B . (2007). Java programming tutorial examples.

Beijing: Metallurgical Industry Press.

[20] Li H. (2003). Management information system

development and application. Beijing: Electronic
Industry Press.

[21] Mokhtarian, K., & Jacobsen, H. A. (2017). Flexible caching

algorithms for video content distribution
networks. IEEE/ACM Transactions on Networking
(TON), 25(2), 1062-1075.

[22] Sa, S., X., and Shan W,. (2000) "Introduction to database

system."

[23] Li, Z. (2010). Application of MVC pattern in data

middleware. Computer Engineering, 36(9), 70-72.

[24] Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J.,
Wasi-ur-Rahman, M., Islam, N.S., Ouyang, X., Wang, H.,
Sur, S. and Panda, D.K., 2011, September. Memcached
design on high performance rdma capable interconnects.
In 2011 International Conference on Parallel
Processing (pp. 743-752). IEEE.

[25] McGhan, H., & O'Connor, M. (1998). Picojava: A direct
execution engine for java bytecode. Computer, 31(10), 22-
30.

[26] Fitzpatrick, Brad. "Distributed caching with

memcached." Linux journal 2004, no. 124 (2004): 5.

Paper title

11

[27] Stevens, W. R., Fenner, B., & Rudoff, A. M. (2004). UNIX
Network Programming: The Sockets Networking API (Vol.
1). Addison-Wesley Professional.

[28] Bremler-Barr, A., Hay, D., Moyal, I., & Schiff, L. (2017,
June). Load balancing memcached traffic using software
defined networking. In IFIP Networking Conference (IFIP
Networking) and Workshops, 2017 (pp. 1-9). IEEE.

[29] Su, Z., Xu, Q., Hou, F., Yang, Q., & Qi, Q. (2017). Edge
caching for layered video contents in mobile social
networks. IEEE Transactions on Multimedia, 19(10), 2210-
2221.

[30] Song L., (2007). Thread pool based WEB server

implementation and monitoring [MS Thesis].: Jilin
University Library.

[31] Li P., Zhu Q., (2004) . Linux design and implementation of

the support of resuming multi-threaded download tools.
Computer Engineering and Applications 1: 121123

[32] Markatos, E. P. (2001). On caching search engine query

results. Computer Communications, 24(2), 137-143.

[33] Boating. (2002). HTTP and multi-threaded download (on)

Programmer Technology (2): 9294

[34] https://baike.baidu.com/item/%E5%8C%97%E4%BA%AC%E6

%80%9D%E4%BA%AB%E6%97%B6%E5%85%89%E7%A
7%91%E6%8A%80%E6%9C%89%E9%99%90%E5%85%AC
%E5%8F%B8/623449?fr=aladdin

[35] Benhamida, N., Bouallouche-Medjkoune, L., & Aïssani, D.
(2018). Simulation evaluation of a relative frequency metric
for web cache replacement policies. Evolving Systems, 9(3),
245-254.

[36] Laghari, A. A., He, H., & Channa, M. I. (2018). Measuring
effect of packet reordering on quality of experience (QoE)
in video streaming. 3D Research, 9(3), 30.

[37] Laghari, A. A., He, H., Khan, A., & Karim, S. (2018).

Impact of Video File Format on Quality of Experience
(QoE) of Multimedia Content. 3D Research, 9(3), 39.

