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RESEARCH ARTICLE

Serotonin Stimulates Secretion of Exosomes
from Microglia Cells

Konstantin Glebov,1 Marie L€ochner,1 Ronald Jabs,2 Thorsten Lau,3 Olaf Merkel,1

Patrick Schloss,3 Christian Steinh€auser,2 and Jochen Walter1

Microglia are resident immune cells in the brain and exert important functions in the regulation of inflammatory processes
during infection or cellular damage. Upon activation, microglia undergo complex morphological and functional transitions,
including increased motility, phagocytosis and cytokine secretion. Recent findings indicate that exosomes, small vesicles that
derive from fusion of multivesicular bodies with the plasma membrane, are involved in secretion of certain cytokines. The
presence of specific receptors on the surface of microglia suggests communication with neurons by neurotransmitters. Here,
we demonstrate expression of serotonin receptors, including 5-HT2a,b and 5-HT4 in microglial cells and their functional
involvement in the modulation of exosome release by serotonin. Our data demonstrate the involvement of cAMP and Ca21

dependent signaling pathways in the regulation of exosome secretion. Co-culture of microglia with embryonic stem cell-
derived serotonergic neurons further demonstrated functional signaling between neurons and microglia. Together, these data
provide evidence for neurotransmitter-dependent signaling pathways in microglial cells that regulate exosome release.
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Introduction

Microglia are brain immune cells and serve important

functions in the innate immune response, including

phagocytosis and cytokine release upon infection and cell

damage (for review: Kettenmann et al., 2011). Microglia are

highly dynamic cells and constantly screen the brain for

threats. Upon stimulation, microglia undergo complex physi-

ological and morphological transitions from “resting state”

with a highly ramified cell body to a mobile ‘activated state’

(for review: Kettenmann et al.; 2011Streit, 2002). Along with

the alterations in cell morphology and motility, microglia also

change the expression of various cell surface molecules, release

of chemokines and cytokines, and increase phagocytic activity.

Recent findings indicate that certain cytokines are released

in association with small vesicles named exosomes (Bianco et al.,

2005). These microglia-derived vesicles could play important

roles in the inflammatory response and neurotransmission (for

review: Prada et al., 2013; Turola et al., 2012). A variety of pro-

teins could be found in the lumen and limiting membranes of

exosomes (for review: Simpson et al., 2009). Exosomes can trans-

fer different molecules between cells including proteins, lipids

and RNAs, and mediate secretion of cellular waste into extracel-

lular fluids (for review: van Niel et al., 2006).

Exosomes are formed intracellularly by inward budding

of endosomal membranes to generate multivesicular bodies

(MVBs). After fusion of MVBs with the plasma membrane,

the intraluminal vesicles are released as exosomes (Simons and

Raposo, 2009). Exosomes are found in different body fluids

like blood, urine, and cerebrospinal fluid (Keller et al., 2011;

Street et al., 2012). However, very little is known about the

extracellular stimuli and downstream signaling pathways that

regulate exosome secretion.
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The presence of neurotransmitter receptors on microglia

surface suggests that microglia could receive signals from neurons

(for review: Pocock and Kettenmann, 2007). 5-HT receptors (5-

HTRs) have been described on microglia, but their functional

relevance remains unclear (Krabbe et al., 2012). Some of the 5-

HTRs belong to the G-protein coupled receptor superfamily and

regulate two major signaling pathways. One group of 5-HTRs

can modulate the production of cAMP via Gas and Gai signal-

ing to adenylate cyclase (AC). The second group regulates phos-

pholipiase C (PLC) via Gaq (for review: Berumen et al., 2012).

5-HT has multiple functions such as regulation of sleep and

digestion and is also involved in pathophysiological conditions

like irritable bowel syndrome and schizophrenia (Mohammad-

Zadeh et al., 2008).

In this study we demonstrate that 5-HT can stimulate

release of exosomes from microglial cells via activation of 5-

HT2a,b and 5-HT4 receptors. Further, embryonic stem cell-

derived serotonergic neurons could trigger exosome release

from microglia in a co-culture system, indicating that release

of serotonin from neurons could regulate microglial release of

exososmes under physiological conditions. Ca21 imaging

revealed an elevation of cytosolic Ca21 levels in microglia

upon stimulation with 5-HT. Together, our data indicate that

5-HT from neurons can signal to microglia via 5-HTRs to

stimulate exosome release.

Materials and Methods

Cell Culture
Murine microglial BV-2 cells were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% fetal calf serum

(PAN) and 1% penicillin and streptomycin (v/v) (Life Technologies).

Cells were grown on 10-cm dishes (Greiner) or T-75 flasks (Corn-

ing). Cells were incubated at 37�C with 5% CO2 atmosphere till

confluence of 70–80%. Pharmacological treatments were carried out

in 24-well plates (Corning) with 8 3 104 cells per well. Upon treat-

ment, medium was replaced by serum-free DMEM containing 1%

penicillin and streptomycin (v/v).

Primary microglia were derived from embryonic 18 (e18)

mouse brains (C57BL/6J). Hippocampi were isolated and trypsi-

nyzed. Dissected material was incubated with Trypsin 0.1%/EDTA

for 13 min, separated by passing through a glass pipette and plated

onto T-75 flasks in RPMI (Life Technologies) with L-glutamine,

10% FBS (PAN), and 1% Penicillin/Streptomycin (Life Technolo-

gies). After fourteen days in vitro, microglia were removed by shak-

ing at 100 rpm for 2 h. Conditioned medium was replaced by fresh

one and mixed culture was incubated for another week. Harvest was

repeated as described above.

Antibodies
The following antibodies were used: polyclonal rabbit anti-

body against the insulin degrading enzyme (IDE) (Abcam,

ab25970), mouse monoclonal antibodies against b-actin

(SIGMA, a1978) and flotillin-1 (BD sciences, 610820). Pri-

mary antibodies were detected by horse radish peroxidase-

conjugated anti-rabbit and anti-mouse secondary antibodies

(SIGMA, a9169 and a9044).

Chemicals
Serotonin creatinine sulfate monohydrate (25 mM, Carl Roth,

8385.1), GR113808 (100 nM, Tocris, 1322), altanserine hydrochlor-

ide (10 nM, Tocris, 1809), RS127445 hydrochloride (5 mM, Tocris,

2993), m-3m3FBS (5 mM for 5 h, Tocris, 1941), U73122 (5 mM,

Tocris, 1268), 8CPT-2Me-cAMP (8 mM, Tocris, 1645), thapsigargin

(1 mM for 3 h, Invitrogen, T-7458) and pertussis toxin (500 ng

mL21, Invitrogen, PHZ1174). All compounds were dissolved in

DMSO.

Secretion Assay and Immunoblot Analysis
Cells were treated with the respective compounds for 16 h as

described in the figure legends. Where indicated, cells were pre-

incubated with receptor antagonists for 6 h. Conditioned media

were collected and centrifuged (1,000g, 10 min, 4�C). Proteins were

precipitated with trichloroacetic acid (20%, w/v) and sodium deoxy-

cholate (0.02% w/v; Calbiochem) on ice, sedimented by centrifuga-

tion (16,000g, 10 min, 4�C), and resulting pellets dissolved in

Tris-SDS buffer (0.25% bromophenol blue,0.5 M dithiothreitol,

50% glycerol, 10% sodium dodecyl sulfate, 0.25 M, pH 6.8Tris-Cl).

Cells were lysed in ice-cold RIPA lysis buffer (pH 7.5). Proteins

were separated by sodium dodecyl sulfate-polyacrylamide gel electro-

phoresis (SDS-PAGE), transferred to nitrocellulose membranes

(Whatman), and detected by Western immunoblotting using

enhanced chemiluminescence imaging (ChemiDoc XRS, Bio-Rad).

Signals were quantified with Quantity One Software (Bio-Rad).

Exosome Preparation
Exosomes in conditioned media were isolated via differential centrif-

ugation as described earlier (Tamboli et al., 2010a). Briefly, media

were centrifuged for 10 min at 300g, twice for 10 min at 2,000g,

then 30 min at 10,000g and finally for 1 h at 100,000g. The respec-

tive supernatants and pellets were analyzed by Western

immunoblotting.

RNA Isolation and RT-PCR Analysis
Total RNA was extracted from BV-2 cells using the RNeasy Mini

Kit (Qiagen) according to the manufacturer’s instructions. RNA was

reverse-transcribed with the SuperScriptVR III First-Strand Synthesis

System (life Technologies) using random hexamers primers according

to the manufacturer’s instructions. Two-mL aliquots of cDNA were

subjected to PCR using 10x PCR buffer without Mg21, 50 mM

MgCl2, 10 mM dNTP mix, 100 pM of each primer and Taq DNA

polymerase. DEPC-treated water was added to a final volume of 50

mL. PCR was performed for 35 cycles (30 s at 95�C, 30 s at 65�C

and 2 min at 72�C), preceded by a denaturation step at 95�C for 4

min and terminated with an elongation step at 70�C for 5 min.

PCR products were analyzed on 1.5% agarose gels containing
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GelRed. As positive controls for the RT-PCR procedure, we used

genomic DNA of BV-2 cells.

Ca21 Measurements
BV-2 cells were pretreated over night in the presence or absence of

the indicated antagonists and then bulk labeled with Fluo-4 by

incubation in cell culture medium supplied with Fluo-4 AM (3

mM, Invitrogen) and Probenecid (2 mM, Sigma–Aldrich) for 30

min at 37�C, followed by a 30-min washing period. Subsequent

time-lapse recordings were performed with a Confocal Laserscan

Microscope (Leica DMI 6000, SP8, Leica, Mannheim, Germany)

at an excitation wavelength of 488 nm (Haberlandt et al., 2011).

Emission was detected between 500 and 650 nm every 15 s.

Changes in intracellular Ca21 concentration ([Ca21]i), measured

as change in fluorescence intensity (DF), were offline normalized

to baseline fluorescence (F0) according to DF/F0 5 (F 2 F0)/F0.

To this end, cell surfaces were fitted for every time point applying

particle analysis. Time courses of mean intensities were tracked

and ratios calculated for each particle. Only cells with a complete

track over the whole time period were plotted. Pre-application

base lines were averaged, fitted linearly, and used to correct for

bleaching. Three independent experiments were performed for

controls and each pharmacological pre-treatment. Data analysis

was performed with LAS Live Data Mode (Leica), Imaris (Bit-

plane, Zurich, Switzerland), and IgorPro 6 software (WaveMetrix,

Lake Oswedo, USA).

FIGURE 1: 5-HT stimulates secretion of exosomal proteins from microglial cells. A. Cells were incubated in the absence or presence of 5-
HT at the indicated concentration (5, 25, and 50 lM) and secreted IDE detected by Western immunblotting (n 5 3). B. MTT reduction
assay did not show toxic effects of 5-HT on BV-2 cells at the indicated concentrations and incubation times. C,D. BV-2 cells (C) or pri-
mary microglia from mouse brain (D) were incubated in absence or presence of 25 lM 5-HT and the respective proteins secreted into
conditioned media detected by immunoblotting (n 5 3).

628 Volume 63, No. 4



Co-culture of Microglia with Embryonic Stem Cell-
derived 5-HT-ergic Neurons
Mouse embryonic stem (ES) cell-derived serotonergic neurons were

generated as described previously (Lau et al., 2010). Briefly, ES cells

were cultured for at least two passages in Dulbecco’s modified Eagle’s

medium supplemented with 15% v/v ES cell-qualified fetal bovine

serum (PAA, A15–108), 1x MEM non-essential amino acids, peni-

cillin (100 U mL21) and streptomycin (100 mg mL21; all from Life

Technologies) and LIF (1,000 U mL21, Millipore). The serotonergic

differentiation was induced by removal of LIF and addition of

recombinant bFGF, EGF (20 ng mL21 each; RND Systems) and

ethanolamine (30 nM, Sigma). For the co-culture experiments,

20,000 ES cell-derived neuronal precursors/mm2 were plated on

0.1% v/v gelatin-coated 24-well dishes and kept in differentiation

medium for 7 days to generate stem cell-derived serotonergic neu-

rons. Next, 80,000 BV-2 cells were seeded into the wells with neu-

rons, and 16 h later conditioned media and cells were harvested

and subjected to immunoblotting.

Statistical Analysis
Statistical analysis was performed with standard statistical functions of

Excel or GraphPadPrizm using a two-tailed t test. If not stated other-

wise, all values represent means 6 SD; the number of replicates is indi-

cated in each figure legend. The error probability was set at P< 0.05

(indicated in figures by *), P< 0.01 (**) or P< 0.001 (***).

Results

5-HT Stimulates the Release of Exosomes from
Primary Microglia and BV-2 Cells
To assess whether 5-HT affects the release of exosomes, we used

an established secretion assay for microglial cells (Glebov et al.,

2011; Tamboli et al., 2010). First, we analyzed the effect of 5-

HT at different concentrations on the release of the insulin

degrading enzyme (IDE), a protein known to be released from

microglia in association with exosomes. 5-HT increased the

release of IDE in a concentration dependent manner (Fig. 1A).

At the concentrations tested, 5-HT did not exert toxic effects

on microglial BV-2 cells as analyzed by MTT assay (Fig. 1B)

(Tamboli et al., 2010). We decided to apply 5-HT at a concen-

tration of 25 mM for further experiments. It should be noted

that 5-HT is very instable and thus, is often used at concentra-

tions up to 10 mM in cellular assays (Hambek et al., 2006).

We next assessed the effect of 5-HT on the release of

flotillin-1 and actin from BV-2 cells. Both proteins are also

associated with exosomes in other cell types. 5-HT significantly

FIGURE 2: 5-HT stimulates release of exosomes. A. Detection and quantification of exosomal proteins in the P100 exosomal fraction
upon incubation of BV-2 cells with or without 5-HT. BV-2 cells were incubated in the absence or presence of 5-HT, and conditioned
media subjected to a series of centrifugation steps (see Methods, and Tamboli et al., 2010). 5-HT induced an increase in levels of
exosome-associated proteins (n 5 2). B. After differential centrifugation, the P100 pellet was applied to centrifugation on a sucrose gra-
dient. Exosomal proteins were then detected in individual fractions by Western immunoblotting. Alix, flotillin-1, IDE, and actin co-
migrated, indicating their simultaneous secretion in exosomes.
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increased the levels of flotillin-1 (246% 6 98% of control),

actin (239% 6 94% of control), and IDE (477% 6 83%) in

conditioned media of microglial BV-2 cells (Fig. 1C).

To confirm that the observed effect was not limited to

the microglial BV-2 cell line, we also tested the effect of 5-

HT on mouse primary microglial cells. As observed for BV-2

cells, 5-HT also increased levels of flotillin-1 (113% 6 4% of

control) and IDE (178% 6 14% of control) in conditioned

media of primary mouse microglia (Fig. 1D).

To confirm that these proteins are indeed associated

with microglia-derived exosomes, we performed biochemical

isolation of exosomes by differential centrifugation. IDE was

detected together with flotillin-1 in the P100 fraction. Quan-

tification revealed that both proteins are significantly

increased in the P100 fraction upon cell incubation with

5-HT (Fig. 2A). In addition, the vesicles in the P100 frac-

tions were further subjected to subsequent fractionation on a

sucrose gradient. Importantly, known exosomal marker pro-

teins like alix, flotillin-1, IDE, and actin were found in same

fractions. All four proteins were increased in the same exoso-

mal fractions upon cell treatment with 5-HT (Fig. 2B). These

data strongly indicate a general stimulation of exosome release

from microglia upon treatment with this neurotransmitter.

Functional Involvement of 5-HTRs in the Regulation
of Exosome Secretion
An increase in exosome release upon treatment with 5-HT

implicates that microglial cells should express one or more

types of 5-HTRs. RT-PCR revealed that BV-2 cells indeed

express 5-HT2a, 5-HT2b, 5-HT3, and 5-HT4Rs (Fig. 3A).

Recently, a similar expression pattern of 5-HTRs has also

been described for primary microglia (Krabbe et al., 2012).

The 5-HT2 and 5-HT4 receptors belong to the G-

protein coupled receptor superfamily. Pretreatment of the cells

with a combination of three antagonists of these receptors,

strongly reduced release of exosomes in the P100 fraction as indi-

cated by the reduction in exosome-associated proteins flotillin-1,

alix, and IDE (Fig. 3B). The effect of 5-HT was most pro-

nounced in the exosome (P100) fraction as compared with other

vesicular (P10) fractions, suggesting a preferential effect on exo-

some secretion. To further dissect the involvement of different

5-HTRs, we applied the specific receptor antagonists separately.

RS127445 and GR113808 that target 5-HT2b and 5-HT4Rs,

respectively, significantly attenuated the stimulation of exosome

release by 5-HT. Altanserine that targets 5-HT2aRs, also

decreased the 5-HT stimulated exosome release (Fig. 3C). The

treatment with 5-HT in combination with receptor antagonists

did not affect cell viability as tested by MTT assay (not shown).

The differential extent of inhibition by the antagonists might be

explained by the different expression levels of 5-HTRs (Fig. 3A).

Taken together our data suggests that both 5-HT2 and 5-HT4Rs

might be involved in stimulation of exosome release by 5-HT.

5-HT Increases Cytosolic Ca21 to Stimulate
Exosome Release
The 5-HT2Rs signal via PLC to increase the cytosolic Ca21

concentration (Pocock and Kettenmann, 2007). To test

whether stimulation of PLC can increase exosome release

from microglia, we incubated BV-2 cells with 3m3FBS, a spe-

cific activator of PLC. 3m3FBS significantly increased

FIGURE 3: Expression and functional involvement of 5-HT2 and
5-HT4 receptors in microglial exosome release. A. Analysis of 5-
HTR mRNA expression by RT-PCR. B. Detection of exosomal pro-
teins in the P100 exosomal fraction upon incubation of BV-2 cells
in the presence or absence of 5-HT and a combination of specific
receptor antagonists GR113808 (against 5-HT4R), altanserine
(against 5-HT2aR), and RS 127445 (against 5-HT2bR). Conditoned
media were subjected to differential centrifugation steps and exo-
somal proteins detected in individual fractions by Western immu-
noblotting. C. Co-treatment of BV-2 cells with 5-HT and individual
specific antagonists. Proteins in conditioned media were detected
by Western immunoblotting and quantified by ECL imaging (n 5 3).
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exosome release as indicated by elevated levels of IDE and

b-actin in conditioned media (to 186% 6 12% vs. control,

P 5 0.0005 and 163% 6 30% vs. control, P 5 0.0223,

respectively). Importantly, the co-treatment with the selective

PLC-inhibitor U73122 attenuated the 3m3FBS-induced

secretion of exosomal proteins (Fig. 4A).

Next we analyzed the effect of 5-HT on the [Ca21]i

employing the fluorescent Ca21 sensor Fluo-4. Application of

5-HT mediated a biphasic increase in [Ca21]i. Pretreatment of

the cells with individual subtype-specific 5-HTR antagonists

significantly reduced the [Ca21]i increase (Fig. 4B). Simultane-

ous co-treatment of cells with the three different antagonists

almost completely blocked the response to 5-HT. Together,

these data indicate that the stimulation of exosome release by

5-HT involves different 5-HTR subtypes and elevation of

[Ca21]i.

Involvement of cAMP-GEF1/2 in 5-HT4R Signaling
The specific 5-HT4R antagonist GR113808 also decreased

the Ca21 response and exosome release (see Figs. 3C and

4B). However, 5-HT4R signals to adenylate cyclase (AC) via

Gas to stimulate the production of cAMP (Bockaert et al.,

2004). To check whether cAMP evokes exosome release, we

treated the cells with pertussis toxin (PTX), which increases

the intracellular level of cAMP via inhibition of Gai, there-

fore preventing the inactivation of AC (Burns, 1988). Indeed,

treatment of BV-2 cells with PTX strongly induced exosome

release as indicated by a approximately sixfold increase of

IDE in the conditioned media (Fig. 5A).

Whether 5-HT4Rs can regulate Ca21 in microglia via

signaling to PLC has not been shown previously. However,

cAMP can activate GEF1/2 (epac1/2) (de Rooij et al., 2000),

and cAMP-GEF1/2 could signal to PLC via Rap1 (Oestreich

et al., 2007). Thus, we hypothesized that 5-HT4Rs might

also be functionally linked to Ca21 signaling in BV-2 micro-

glia via cAMP-dependent RapGEF (epac1/2). We tested

whether direct activation of epac1/2 with 8-CPT (selective

activator of epac1/2) recapitulated the 5-HT induced release

of exosomes. Indeed, treatment of microglia with 8-CPT

increased secretion of exosomes, as indicated by increased lev-

els of flotillin-1, actin, and IDE in conditioned media (Fig.

5B). Taken together, these findings suggest that stimulation

FIGURE 4: Involvement of PLC and Ca21 in microglial exosome release. A. BV-2 cells were incubated in the absence or presence of the
PLC-specific activator 3m3FBS alone or in combination with the specific PLC inhibitor U73122 for 5 h. Proteins in conditioned media and
cell lysates were detected by Western immunoblotting and quantifed by ECL imaging (n 5 3). B. BV-2 cells were bulk loaded with the
Ca21 indicator Fluo-4. Time lapse recordings were performed before and during application of 5-HT (25 lM). DF/F ratios were deter-
mined for all individual cells with a complete track of mean fluorescence intensities. The 5-HT mediated increase in [Ca21]i (no antago-
nist, n 5 236) was decreased by pretreatment with the 5-HT antagonists GR 113808 (n 5 141), RS 127445 (n 5 289), altanserine (n 5 410).
The combination of all three antagonists had the strongest inhibitory effect (n 5 210). Error bars indicate 95% confidence intervals.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of 5-HT4Rs might increase exosome release via epac1/2/Rap1

signaling to PLC.

Serotonergic Neurons Stimulate Exosome Release
from Microglia
In the brain, 5-HT is produced by a specific subset of neurons

(Smidt and van Hooft, 2013). Thus, we wanted to test whether

exosome release could be stimulated by serotonergic neurons in a

co-culture system. In conditioned media from co-cultures of

mouse BV-2 microglial cells and ES cell-derived serotonergic

neurons, we observed a significant increase in levels of secreted

IDE (to 154.7% 6 1.67%; Fig. 6A) as compared with control

cultures with BV-2 cells or neurons alone. Serotonergic neurons

alone secreted only marginal levels of IDE, indicating that the

secreted IDE mainly derived from BV-2 cells. Importantly, pre-

treatment of the co-cultures with 5-HTRs antagonists

(RS127445, GR113808, and altanserine) significantly reduced

this secretion (Fig. 6A), indicating the involvement of 5-HTRs

in the neuron-dependent stimulation of microglial exosome

release. Together, the combined data suggest that microglia

respond to 5-HT released from serotonergic neurons with

increased secretion of exosomes.

Discussion

Here we demonstrate that 5-HT can stimulate the release of

exosomes from microglial cells. This effect is mediated by

microglial 5-HTRs and involves the elevation of [Ca21]i

levels (Fig. 6B).

Cytosolic Ca21 is critical in vesicle fusion at synapses (for

review: Kochubey et al., 2011) as well as for the fusion of secre-

tory lysosomes with the plasma membrane (Verderio et al.,

2011). Ca21 has also been suggested to modulate exosome

release from other cell types, including SH-SY5Y and K562

cells (Emmanouilidou et al., 2010; Savina et al., 2003, 2005).

FIGURE 5: Stimulation of exosome release by cAMP and epac1/
2. A. BV-2 were incubated with or without 1 lM PTX (to increase
cAMP via inhibition of Gai) for 8 h. IDE in conditioned media and
cell lysates was detected by Western immunoblotting. Relative
secretion was quantified by ECL imaging (n 5 3). B. Stimulation
of epac1/4 with the specific activator 8-CPT also significantly
promoted the release of exosomal proteins (n 5 3).

FIGURE 6: ES cell-derived serotonergic neurons stimulate the
release of exosomes from BV-2 cells. A. BV-2 cells and ES cell-
derived serotonergic neurons were cultured separately or
together for 12 h in the presence or absence of the 5-HTR
antagonists GR113808, altanserine, and RS 127445. IDE was
detected in conditioned media and cell lysates, respectively. Co-
culture of BV-2 cells with neurons increased levels of secreted
IDE. Neurons alone secreted very little if any IDE during the incu-
bation. Pre-treatment of co-cultures with the 5-HTR antagonists
significantly reduced the amount of secreted IDE (n 5 3). B. Sug-
gested signaling pathways that might regulate exosome release
from microglial cells upon stimulation with 5-HT. The 5-HT can
activate 5-HT2a, 5-HT2b, and 5-HT4Rs thereby activating two dis-
tinct pathways that converge on PLC. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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Our data suggest that PLC-mediated increase in [Ca21]i

upon stimulation of 5-HTRs leads to increased fusion of

MVBs with the plasma membrane thereby allowing the

release of intraluminal vesicles as exosomes. This notion

is supported by the observation that direct elevation of

[Ca21]i by thapsigargin also increased exosome release (not

shown).

RT-PCR revealed mRNA expression of different 5-

HTRs in BV-2 cells, including 5-HT2a and 5-HT2bRs. HT2a

and 5-HT2bRs signal to PLC via Gaq protein and thereby

increase [Ca21]i (Berumen et al., 2012; Cussac et al., 2008;

Osborne et al., 1993). We also detected 5-HT4Rs mRNA in

BV-2 cells, and the results with a selective antagonist suggest

that this receptor is also involved in the regulation of exo-

some release. Our data indicate that 5-HT4R, although

directly targeting AC, could also cross-talk to PLC via cAMP-

mediated activation of epac1/2/Rap1 in microglia cells.

It has been shown that in the healthy and diseased

brain, neurons directly communicate through neurotrans-

mitters with astrocytes (Seifert et al., 2006; Volterra and Mel-

dolesi, 2005; Volterra and Steinh€auser, 2004). In addition, a

recent report demonstrated an effect of glutamatergic neurons

on exosome secretion from oligodendrocytes, thereby identify-

ing another type of neurotransmitter dependent neuron-to-glia

signaling (Fr€uhbeis et al., 2013). Interestingly, the existence of

neuron-microglia signalling has been suggested previously

(Pocock and Kettenmann, 2007). Accordingly, 5-HT released

from neurons could approach microglial receptors through

“volume transmission” or “spillover” of the transmitter to

stimulate exosome release from microglia. Our results

obtained with a co-culture model using ES cell-derived sero-

tonergic neurons and microglial BV-2 cells are compatible

with such a scenario. This is, to our knowledge, the first

experimental finding that neuron-derived 5-HT indeed can

stimulate release of exosomes from microglial cells. On the

basis of our results we conclude that 5-HT stimulates prefer-

entially the release of exosomes, rather than that of other

extracellular vesicles. However, it will be interesting to further

dissect the effect of 5-HT on the release and protein composi-

tion of the different pools of extracellular vesicles (for review:

Raposo and Stoorvogel, 2013).

At this time it can only be speculated about the physio-

logical or pathophysiological relevance of the present findings.

Microglial cells secrete neurotrophic factors such as BDNF,

IGF-1, or glial cell line-derived neurotrophic factor and also

shape neuronal architecture (Batchelor et al., 1999; Miwa

et al., 1997; Nakajima and Kohsaka, 2004). The proteomic

analysis of exosomes also revealed the presence of inflamma-

tory modulators or neurotrophic factors, suggesting that glial

cells use unconventional pathways for protein secretion (www.

exocarta.org) (Mathivanan et al., 2012).

Recent experimental data obtained with a mouse model

of Alzheimer’s disease demonstrated that increased 5-HT levels

were associated with reduced concentrations of amyloid b

peptides (Ab) in brain interstitial fluid and decreased Ab

plaque burden (Cirrito et al., 2011). Because increased 5-HT

concentrations were also associated with elevated activity of

a-secretase and transcriptional changes of certain c-secretase

components, it was speculated that 5-HT might affect the gener-

ation of Ab. As exosome-associated IDE from microglial cells

has been shown to promote degradation of extracellular Ab in

vitro (Glebov and Walter, 2011; Tamboli et al., 2010), it is

intriguing to speculate that the beneficial effects of 5-HT in low-

ering Ab load in vivo, also involves stimulated exosome release.

Together, the demonstration of neurotransmitter dependent

release of exosomes from microglia should stimulate further

studies on the molecular mechanisms and the physiological and

pathophysiological relevance of neuronal signaling to microglia.
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