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One of the most controversial debates in cognitive neuroscience concerns the cortical

locus of semantic knowledge and processing in the human brain. Experimental data

revealed the existence of various cortical regions relevant for meaning processing,

ranging from semantic hubs generally involved in semantic processing to modality-

preferential sensorimotor areas involved in the processing of specific conceptual

categories.Why and how the brain uses such complex organization for conceptualization

can be investigated using biologically constrained neurocomputational models. Here, we

improve pre-existing neurocomputational models of semantics by incorporating spiking

neurons and a rich connectivity structure between the model ‘areas’ to mimic important

features of the underlying neural substrate. Semantic learning and symbol grounding

in action and perception were simulated by associative learning between co-activated

neuron populations in frontal, temporal and occipital areas. As a result of Hebbian

learning of the correlation structure of symbol, perception and action information,

distributed cell assembly circuits emerged across various cortices of the network. These

semantic circuits showed category-specific topographical distributions, reaching into

motor and visual areas for action- and visually-related words, respectively. All types of

semantic circuits included large numbers of neurons in multimodal connector hub areas,

which is explained by cortical connectivity structure and the resultant convergence of

phonological and semantic information on these zones. Importantly, these semantic

hub areas exhibited some category-specificity, which was less pronounced than

that observed in primary and secondary modality-preferential cortices. The present

neurocomputational model integrates seemingly divergent experimental results about

conceptualization and explains both semantic hubs and category-specific areas as

an emergent process causally determined by two major factors: neuroanatomical

connectivity structure and correlated neuronal activation during language learning.

Keywords: word acquisition, semantic grounding, Hebbian learning, distributed neural assemblies, spiking neural

network, brain-like connectivity
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INTRODUCTION

Although the brain mechanisms of meaning processing have
been investigated for many years, cognitive neuroscientists
have not reached a consensus about the function and the
organizational principles of semantic knowledge. A range of
neuroimaging and neuropsychological patient studies suggest a
contribution of several cortical areas to semantic processing, but
the precise role of each of them is still subject to debate. Cognitive
and neuroscientists have suggested that the meanings of all
words are equally processed and stored in a central “symbolic
system” cortically located in a “semantic hub.” However,
“semantic hubs” have been proposed in different cortical regions,
including the anterior-inferior-temporal lobe (Patterson et al.,
2007; Ralph et al., 2017), the anterior-inferior-parietal (Binder
et al., 2009; Binder and Desai, 2011) and the posterior-inferior-
frontal cortex (Posner and Pavese, 1998; Bookheimer, 2002;
Tate et al., 2014; Schomers and Pulvermüller, 2016; Carota
et al., 2017). Whereas it is possible, in principle, that several
semantic hubs co-exist, some researchers postulated the need
for bringing together all semantic information into one focal
area and consequently reject the existence of multiple semantic
hubs (Patterson et al., 2007; Ralph et al., 2017). Furthermore,
and over and above semantic hubs generally contributing to
all types of semantics, the phenomenon of category-specific
semantic processing has long been in focus (McCarthy and
Warrington, 1988; Shallice, 1988): modality-preferential cortices,
including visual, auditory, olfactory, gustatory, somatosensory
and motor regions, have been shown to differentially activate
when specific semantic types are processed, for example animal
vs. tool nouns or verbs typically used to speak about different
types of actions (Damasio et al., 1996; Chao et al., 1999;
Hauk et al., 2004; Kemmerer et al., 2012; Grisoni et al., 2016;
Vukovic et al., 2017). Also studies of patients with lesions
in modality-specific regions revealed category-specific semantic
deficits (Warrington and Mccarthy, 1983; Damasio et al., 1996;
Neininger and Pulvermüller, 2003; Gainotti, 2010; Trumpp et al.,
2013; Dreyer et al., 2015) which can not be explained by
symbolic systems accounts presuming category-general semantic
hubs. Likewise, these findings challenge proposals that see the
semantic processing role of sensorimotor areas as optional,
ancillary or epiphenomenal and deny them a genuine semantic
conceptual function (Machery, 2007; Mahon and Caramazza,
2008; Caramazza et al., 2014). The evidence for multiple hubs and
modality-specific areas for conceptual-semantic knowledge is
difficult to reconcile within most current neurobiological models
of symbol processing.

To incorporate the diverging semantic theories and data
from healthy and patient studies described above, it is necessary
to build sophisticated models of relevant cortical areas that
are biologically constrained by mimicking relevant features of
brain function and connectivity. Ideally, such brain-constrained
models may predict and offer mechanistic explanations for
semantic processing in the human brain. Potentially, such
modeling efforts can confirm a given theoretical framework, for
example the existence of distributed semantic circuits spread
out across several semantic hubs and modality-preferential areas
or, as an alternative, the existence of a single focal “semantic

hub.” Based on previous integrative proposals (Damasio, 1989;
Pulvermüller, 2013), we hypothesize that semantic category-
specific and category-general behaviors of different cortical areas
are a direct consequence of the neuroanatomical connectivity
between the areas involved and learning experiences that are
essential for grounding concepts in knowledge about objects and
actions. Here, we attempt to address this theoretical hypothesis
with a neurobiologically constrained spiking model of the cortex
in order to integrate data from healthy and patient studies
described above.

Recent simulations of cortical function and learning
incorporating fine microstructural and physiological details of
millions of neurons (Izhikevich and Edelman, 2008; Markram
et al., 2011) have not yet addressed specific questions about
the neurobiological basis of specific cognitive functions such as
semantic processing. Previous connectionist models have made
significant progress in explaining of language and semantic
processing (Dell et al., 1999; Plaut and Gonnerman, 2000;
Christiansen and Chater, 2001), but most of them do not
attempt to replicate realistic properties of the human brain.
Although recent simulation studies included neuroanatomical
information to model semantic processing, they have used
learning mechanism (i.e., back-propagation—Ueno et al.,
2011; Chen et al., 2017), which were argued to be biologically
implausible (Mazzoni et al., 1991; O’Reilly, 1998). Furthermore,
these studies have incorporated just one semantic hub area in
the anterior temporal lobe, whereas other evidence summarized
above are not addressed. A recent modeling effort incorporates
neuroanatomical structure and connectivity into models of
semantic processing (Garagnani and Pulvermüller, 2016). By
meticulously mimicking the general parcellation of cortex into
areas, their long-range cortico-cortical connections, features
of local connectivity within cortical areas, local and global
inhibitory mechanisms regulating cortical activity, and realistic
neurobiological learning mechanisms, a stepwise approximation
to response properties of real brain-internal networks could
be achieved. Still, these previous study has fallen short of
implementing the complexity of cortico-cortical connectivity
and the activation dynamics of spiking cortical neurons.

Building upon these previous efforts with graded-response
neural-network models (Garagnani and Pulvermüller, 2016),
we here set out to model the brain’s semantic mechanisms
using a mathematically precise model of multiple cortical
areas, incorporating spiking neurons, biologically plausible non-
supervised learning mechanisms and connectivity structure
based on neuroanatomical studies. The network was used to
simulate associative word learning by linking word-forms with
their semantically-related object and action representations. The
present biologically constrained model bridges the gap between
neural mechanisms and conceptual brain functions, offering a
biological account of how aspects of word meaning are acquired,
stored, and processed in the brain.

METHODS AND MATERIALS

General Features of the Model
We implemented a neurobiologically constrained model
replicating cortical areas of fronto-temporo-occipital lobes and
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FIGURE 1 | (A) Structure and connectivity of 12 frontal, temporal and occipital cortical areas relevant for learning the meaning of words related to actions. Perisylvian

cortex comprises an inferior-frontal articulatory-phonological system (red colors), including primary motor cortex (M1i), premotor (PMi) and inferior-prefrontal (PFi), and

a superior-temporal acoustic-phonological system (areas in blue), including auditory parabelt (PB), auditory belt (AB) and primary auditory cortex (A1). Extrasylvian

areas comprise a lateral dorsal hand-motor system (yellow to brown), including lateral prefrontal (PFL ), premotor (PML ) and primary motor cortex (M1L ), and a visual

“what” stream of object processing (green), including anterior-temporal (AT), temporo-occipital (TO), and early visual areas (V1). When learning words in the context of

perceived objects or to actions, both peri- and extrasylvian systems are involved. Numbers indicate Brodmann Areas (BAs) and the arrows (black, purple, and blue)

represent long distance cortico-cortical connections as documented by neuroanatomical studies. (B) Schematic global area and connectivity structure of the

implemented model. The colors indicate correspondence between cortical and model areas. (C) Micro-connectivity structure of one of the 7,500 single excitatory

neural elements modeled (labeled “e”). Within-area excitatory links (in gray) to and from cell e are limited to a local (19 × 19) neighborhood of neural elements

(light-gray area). Lateral inhibition between e and neighboring excitatory elements is realized as follows: the underlying cell i inhibits e in proportion to the total

excitatory input it receives from the 5 × 5 neighborhood (dark-purple shaded area); by means of analogous connections (not depicted), e inhibits all of its neighbors.

Adapted from (Garagnani and Pulvermüller, 2013).

their connectivity to shed light on the mechanism underlying
semantic processing grounded in action and perception.
We created a neural architecture with 15,000 representative
neurons for simulating activity in twelve cortical areas in
the left language-dominant hemisphere (see Figure 1A).
These “areas” represented three levels of processing—
primary, secondary, and higher-association cortex—in four
modality-systems: (motor) frontal superior-lateral hand-motor,
(articulatory) inferior face-motor, (auditory) superior-temporal
and (visual) inferior-temporo-occipital system. Two of these,
the auditory and articulatory systems (areas highlighted in blue
and red, Figure 1A) are in perisylvian language cortex and
appear most relevant for language processing (Zatorre et al.,
1996; Pulvermüller, 1999; Fadiga et al., 2002; Pulvermüller
and Fadiga, 2010). The motor and visual system (yellow
and green highlighted areas) are outside the perisylvian
language cortex (called “extrasylvian” in the present work) and
involved in processing visual object processing (Ungerleider
and Haxby, 1994), and the execution of manual actions

(Deiber et al., 1991; Lu et al., 1994; Dum and Strick, 2002,
2005).

The model replicates a range of important anatomical and
physiological features of the human brain (e.g., Garagnani et al.,
2008, 2017; Tomasello et al., 2017). As follow a summary of the
six neurobiological principles incorporated in the neural network
model:

(i) Neurophysiological dynamics of spiking pyramidal cells
including temporal summation of inputs, threshold-based
spiking, nonlinear transformation of membrane potentials
into neuronal outputs, and adaptation (Connors et al., 1982;
Matthews, 2001);

(ii) Synaptic modification by way of Hebbian-type learning,
including the two biological mechanisms of long-term
potentiation (LTP) and long-term depression (LTD) (Artola
and Singer, 1993);

(iii) Area-specific global regulationmechanisms and local lateral
inhibition (global and local inhibition) (Braitenberg, 1978;
Yuille and Geiger, 2003);
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(iv) Within-area connectivity: a sparse, random and initially
weak connectivity was implemented locally, along with
a neighborhood bias toward close-by links (Kaas, 1997;
Braitenberg and Schüz, 1998);

(v) Between-area connectivity based on neurophysiological
principles and motivated by neuroanatomical evidence; and

(vi) Uncorrelated white noise was constant present in all
neurons during all stages of learning and retrieval with
additional noise added to the stimulus patterns to mimic
uncorrelated input conditions (Rolls and Deco, 2010).

Note that the connectivity structure implemented in the network
reflects existing anatomical pathways between corresponding
cortical areas of the cortex revealed by neuroanatomical
studies using diffusion tensor and diffusion-weighted imaging
(DTI/DWI) in humans and non-human primates (Table 2)
(Rilling et al., 2011; Thiebaut de Schotten et al., 2012). A detailed
description of the single-neuron properties, synaptic plasticity
rule, and single-area model structure is provided next, followed
by details of the network anatomy and connectivity structure.

Structure and Function of the Spiking
Model
Each of the 12 model areas consists of two layers of artificial
neuron-like elements (“cells”), 625 excitatory and 625 inhibitory
(e- and i-cells), thus resulting in 15,000 cells in total (see
Figure 1C). Each e-cell models a single representative pyramidal
spiking neuron situated in a local patch of the cortex and the
underlying i-cell represents the cluster of inhibitory interneurons
located within the same cortical column (Wilson and Cowan,
1972; Eggert and van Hemmen, 2000). The state of each cell x
at time t is uniquely defined by its membrane potential V(x,t),
specified by the following equation:

τ ·
dV(x, t)

dt
= −V(x, t)+ k1(VIn(x, t)+ k2η(x, t)) (B1)

where VIn (x,t) is the net input acting upon cell x at time t (sum
of all inhibitory and excitatory postsynaptic potentials—I/EPSPs;
inhibitory synapses are given a negative sign), τ is themembrane’s
time constant, k1, k2 are scaling values (seeTable 1 for the specific
parameter values used in the simulations) and η(·,t) is a white
noise process with uniform distribution over [−0.5, 0.5]. Note
that noise is an inherent property of each model cell, intended to
mimic the spontaneous activity (baseline firing) of real neurons.
Therefore, noise was constantly present in all areas, in equal
amounts (inhibitory cells have k2 = 0, i.e., the noise is generated
by the excitatory cells). The output (or transformation function)
ϕ of an excitatory cell e is defined as follows:

φ(e, t) =
{

1 if (V(e, t)− αω(e, t)) > thresh
0 otherwise

(B2)

Thus, an excitatory cell e spikes (=1) whenever its membrane
potential V(e,t) overcomes a fixed threshold thresh by the
quantity αω(e,t) (where α is a constant and ω is defined below).
Inhibitory cells are graded response neurons, for simplicity, as
they intend to represent the average impact of a cluster of local

interneurons; the output ϕ(i,t) of an inhibitory neuron i is 0 if
V(i,t) < 0 and V(i,t) otherwise.

To simulate neuronal adaptation (Kandel et al., 2000), the
function ω(·,t) is defined so as to track the cell’s most recent
firing-rate activity. More precisely, the amount of adaptation
ω(e,t) of cell e at time t is defined by:

τADAPT ·
dω (e, t)

dt
= −ω (e, t) + φ(e, t) (B3.1)

where τADAPT is the “adaptation” time constant. The solution
ω(e,t) of Equation (B3.1) is the low-pass-filtered output ϕ of cell
e, which provides an estimate of the cell’s most recent firing-
rate history. A cell’s average firing activity is also used to specify
the network’s Hebbian plasticity rule [see Equation (B4) below];
in this context, the (estimated) instantaneous mean firing rate
ωE(e,t) of an excitatory neuron e is defined as:

τFavg ·
dωE (e, t)

dt
= −ωE (e, t) + φ(e, t) (B3.2)

To regulate and control activity in the network, local and area-
specific inhibition is implemented (Palm, 1982; Bibbig et al.,
1995; Wennekers et al., 2006), realizing, respectively, local and
global competition mechanisms (Duncan, 1996, 2006). More
precisely, in Equation (B1) the input VIn(e,t) to each excitatory
cell of the same area includes an area-specific (“global”)
inhibition term kGωG(e,t) [with kG a constant andωG(e,t) defined
below] subtracted from the total I/EPSPs postsynaptic potentials
VIn in input to the cell; this regulatory mechanism ensures that
area (and network) activity is maintained within physiological
levels (Braitenberg and Schüz, 1998):

τGLOB ·
dωG(e, t)

dt
= −ωG(e, t)+

∑

e∈area

ϕ(e, t) (B3.3)

Excitatory links within and between (possibly non-adjacent)
model areas are established at random and limited to a local
(topographic) neighborhood; weights are initialized at random,
in the range [0, 0.1]. The probability of a synapse to be created
between any two cells falls off with their distance (Braitenberg
and Schüz, 1998) according to a Gaussian function clipped
to 0 outside the chosen neighborhood (a square of size n =
19 for excitatory and n = 5 for inhibitory cell projections).
This produces sparse, patchy and topographic connectivity, as
typically found in the mammalian cortex (Amir et al., 1993;
Kaas, 1997; Braitenberg and Schüz, 1998; Douglas and Martin,
2004).

The Hebbian learning mechanism implemented simulates
well-documented synaptic plasticity phenomena of long-term
potentiation (LTP) and depression (LTD), as implemented by
Artola, Bröcher and Singer (Artola et al., 1990; Artola and
Singer, 1993). This rule provides a realistic approximation of
known experience-dependent neuronal plasticity and learning
(Musso et al., 1999; Rioult-Pedotti et al., 2000; Malenka and
Bear, 2004; Finnie and Nader, 2012), and includes both (homo-
and hetero-synaptic, or associative) LTP, as well as homo- and
hetero-synaptic LTD. In themodel, we discretized the continuous
range of possible synaptic efficacy changes into two possible
levels, +1 and –1 (with 1 << 1 and fixed). Following Artola
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TABLE 1 | Parameter values used in the simulation.

Equation (B1) Time constant (excitatory cells) τ = 2.5 (simulation

time-steps)

Time constant (inhibitory cells) τ = 5 (simulation

time-steps)

Total input rescaling factor k1 = 0.01

Noise amplitude k2 = 5·
√
(24/1t)

Global inhibition strength kG= 0.60

Equation (B2) Spiking threshold Thresh = 0.18

Adaptation strength α = 7.0

Equation

(B3.1)

Adaptation time constant τADAPT = 10 (time steps)

Equation

(B3.2)

Rate-estimate time constant τFavg = 30 (time steps)

Equation

(B3.3)

Global inhibition time constant τGLOB = 12 (time steps)

Equation (B4) Postsynaptic membrane potential thresholds:

ϑ+=0.15

ϑ−− = 0.14

Presynaptic output activity required for LTP:

ϑpre = 0.05

Learning rate 1 = 0.0008

et al., we defined as “active” any (axonal) projection of excitatory
cell e such that the estimated firing rate ωE(e,t) of cell e at
time t [see Equation (B3.2)] is above ϑpre, where ϑpre ∈]0,1]
is an arbitrary threshold representing the minimum level of
presynaptic activity required for LTP (or homosynaptic LTD)
to occur. Thus, given a pre-synaptic cell i making contact
onto a post-synaptic cell j, the change 1w(i,j) inefficacy of
the (excitatory-to-excitatory) link from i to j is calculated as
follows:

1w
(

i, j
)

=















+1 ifωE (i, t) ≥ ϑpre and V
(

j, t
)

≥ ϑ+ (LTP)

−1 ifωE (i, t) ≥ ϑpre and ϑ− ≤ V
(

y, t
)

< ϑ+
(

homosynaptic LTD
)

−1 ifωE (i, t) < ϑpre and V
(

y, t
)

≥ ϑ+
(

heterosynaptic LTD
)

0 otherwise

(B4)
The values in Table 1 describes the parameters used during
word learning simulation in the network, which were chosen on
the basis of previous simulations (e.g., Garagnani et al., 2007,
2009; Garagnani and Pulvermüller, 2011; Schomers et al., 2017;
Tomasello et al., 2017).

Simulated Brain Areas and Their
Connectivity Structure
The spiking model mimics 12 different cortical areas with
area-intrinsic connections and mutual connections between
them. Six areas were modeled for the left-perisylvian language
cortex including the primary auditory cortex (A1), auditory
belt (AB), and modality-general parabelt areas (PB) constituting
the auditory system, and the inferior part of primary motor
cortex (M1i), inferior premotor (PMi) andmultimodal prefrontal
motor cortex (PFi) representing the articulatory system (i.e.,
inferior face-motor areas). Additionally, six extrasylvian areas

TABLE 2 | Connectivity structure of the modeled cortical areas.

Between-Area Connectivity (black arrows)

Modeled areas References

Perisylvian System

A1, AB, PB Pandya, 1995; Kaas and Hackett, 2000; Rauschecker and

Tian, 2000

PFi, PMi, M1i Pandya and Yeterian, 1985; Young et al., 1995

Extrasylvian System

V1, TO, AT Bressler et al., 1993; Distler et al., 1993

PFL, PML, M1L Pandya and Yeterian, 1985; Arikuni et al., 1988; Lu et al.,

1994; Rizzolatti and Luppino, 2001; Dum and Strick, 2002,

2005

Between System

AT, PB Gierhan, 2013

PFi, PFL Yeterian et al., 2012

LONG DISTANCE CORTICO-CORTICAL CONNECTIONS (PURPLE ARROWS)

Perisylvian System

PFi, PB Meyer et al., 1999; Romanski et al., 1999b; Paus et al.,

2001; Catani et al., 2005; Parker et al., 2005; Rilling et al.,

2008; Makris and Pandya, 2009

Extrasylvian System

AT, PFL Bauer and Jones, 1976; Fuster et al., 1985; Ungerleider

et al., 1989; Eacott and Gaffan, 1992; Webster et al., 1994;

Parker, 1998; Chafee and Goldman-Rakic, 2000

Between System

PB, PFL Pandya and Barnes, 1987; Romanski et al., 1999a,b

AT, PFi Pandya and Barnes, 1987; Ungerleider et al., 1989; Webster

et al., 1994; Romanski, 2007; Petrides and Pandya, 2009;

Rilling, 2014

HIGH-ORDER “JUMPING” LINKS (BLUE ARROWS)

Perisylvian System (Rilling et al., 2008, 2011; Thiebaut de Schotten et al.,

2012; Rilling and van den Heuvel, 2018)

A1, PB Pandya and Yeterian, 1985; Young et al., 1994

PB, PMi Rilling et al., 2008; Saur et al., 2008

AB, PFi Romanski et al., 1999a; Kaas and Hackett, 2000; Petrides

and Pandya, 2009; Rauschecker and Scott, 2009

PFi, M1i Deacon, 1992; Young et al., 1995; Guye et al., 2003

Extrasylvian System (see also Thiebaut de Schotten et al., 2012)

V1, AT Catani et al., 2003; Wakana et al., 2004

AT, PML Bauer and Fuster, 1978; Fuster et al., 1985; Pandya and

Barnes, 1987; Seltzer and Pandya, 1989; Chafee and

Goldman-Rakic, 2000

TO, PFL Bauer and Jones, 1976; Fuster and Jervey, 1981; Fuster

et al., 1985; Seltzer and Pandya, 1989; Makris and Pandya,

2009

PFL, M1L Deacon, 1992; Young et al., 1995; Guye et al., 2003

weremodeled including the primary visual cortex (V1), temporo-
occipital (TO) and anterior-temporal areas (AT) for the ventral
visual system and the dorsolateral fronto-central motor (M1L),
premotor (PML), and prefrontal cortices (PFL) for the motor
system.

The network’s connectivity structure reflects relevant features
of cortical connectivity between corresponding areas of the
cortex. These were modeled between neighbor cortical areas
within each of the 4 “streams” (see black arrows Figures 1A,B)
and between all pairs of multimodal areas (PB, PFi, AT, and
PFL) through the long distance cortico-cortical connections
(purple arrows). Additionally, non-adjacent “jumping” links
were included within the superior or inferior temporal
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and superior or inferior frontal cortices (blue arrows). The
neuroanatomical evidence motivated by studies using diffusion
tensor and diffusion-weighted imaging (DTI/DWI) in humans
and non-humans primates are reported in Table 2 and described
in previous study (Garagnani et al., 2017).

Simulating Word Acquisition
Prior to network training, all synaptic links (between- and
within-areas) connecting single cells were established at random
(see Methods section under “Structure and function of the spiking
model”). Based on Hebbian (Hebb, 1949) learning principles,
word-meaning acquisition was simulated under the impact
of repeated sensorimotor pattern presentations (Fuster, 2003;
D’Esposito, 2007) to the primary areas of the network (see
Figure 2), as follows: Each network instance used twelve distinct
sets of sensorimotor neural patterns representing six action- and
six object-related words. Each pattern consisted of a fixed set of 19
cells chosen at random within the 25× 25 cells of an area (ca. 3%
of the cells) and simultaneously activated in one of the primary
areas of the network. The learning of object- and action-related
words were grounded in sensorimotor information presented to
the primary cortices of the model: besides perisylvian auditory
A1 and articulatory M1i activity, object-related words received
concordant visual (V1) and, similarly, action-related words
received lateral motor area (M1L) grounding activity. Note that
white (so-called “contextual”) noise was continuously presented
to all primary areas of the network, and thus superimposed on
all learning patterns. This partly accounted for the variability of
perceptions and actions of the same type. To sum up, the network
was set up to learn correlations between word and referential
semantic information in action and perception and to investigate
which type of representations (i.e., cell assemblies) would develop
in the model as a result of learning and cortical structure. Note
that similar approaches to simulating spontaneous emergence of
associations between articulatory and acoustic-phonetic neural
patterns have been used in other computational studies (e.g.,
Westermann and Reck Miranda, 2004; Guenther et al., 2006),
although these previous works did not attempt tomodel semantic
processes (i.e., word meaning acquisition).

Sensorimotor neural patterns in the arrangement of 3 × 19
cells, were presented for 3,000 times to the relevant primary
regions (this number was chosen on the basis of previous
simulations obtained with a six area model, showing that no
substantial change between 1,000 and 2,000 learning steps was
revealed, Garagnani et al., 2009; Schomers et al., 2017). A word
pattern was presented for 16 simulation time steps, followed by a
period during which no input (interstimulus interval—ISI) was
given. The next learning step (pattern presentation) occurred
only when the global inhibition of PFi and PB areas reduced
below a specific fixed threshold allowing the activity to return to a
baseline value so that one trial is not affecting the next one. Only
the inherent baseline noise (simulating spontaneous neuronal
firing) and “contextual” noise were present in the neural network
during each ISI.

After learning, following a procedure which has become
standard in our simulation studies (Garagnani et al., 2008;
Garagnani and Pulvermüller, 2016; Schomers et al., 2017;

Tomasello et al., 2017), we identified and quantified the neurons
forming the 12 distributed CA circuits that emerged across
the network areas during object and action word production.
For simulating “word production” in the network, the motor
and auditory neurons of each word form in areas M1 and
A1 were activated together for 15 time-steps. Separate analyses
were performed for object recognition and action execution,
which was simulated by activating the corresponding stimulation
pattern in visual or motor cortex (V1 orM1) thought to represent
the object-related or action-related schemas semantically linked
to the word forms. During this period, we computed and
displayed the average firing rate of each excitatory cell (7,500
e-cells, cell’s responses).

As an estimate of a cell’s average firing-rate here we used
the value ωE(e,t) from Equation (B3.2), integrated with time-
constant τFavg = 5. An e-cell was then taken to be a member
of a given CA circuit only if its time-averaged rate (output value
or “firing rate”) reached a threshold θ which was area- and cell-
assembly specific, and defined as a fraction γ of the maximal
single-cell’s time-averaged response in that area to pattern w.
More formally,

θ = θA(w) = γ max
x∈A

O(x, t)w

where O(x, t)w is the estimated time-averaged response of cell
x to word pattern w (see in Method section under “Structure
and function of the spiking model”) and γ ∈ [0, 1] is a constant
[we used γ = 0.5 on the basis of previous simulation results
(see Garagnani et al., 2008, 2009; Tomasello et al., 2017)]. This
was computed for each of the 12 trained network instances,
averaging the number of CA cells per area over the 6 object- and
6 action-related words.

To statistically test for the presence of significant differences
in the topographical CA distribution across the twelve network
areas, for each network instance we performed a repeated-
measures Analyses of Variance (ANOVA). A 4-way ANOVA
was run with factors WordType (two levels: Object vs. Action),
PeriExtra (two levels: Perisylvian = {A1, AB, PB, M1i, PMi,
PFi}, Extrasylvian cortex = {V1, TO, AT, M1L, PML, PFL}),
TemporalFrontal (TempFront)” (2 levels: temporal areas = {A1,
AB, PB, V1, TO, AT}, frontal areas={M1L, PML, PFL, M1i, PMi,
PFi}) and Areas (three levels: Primary = {A1, V1, M1L, M1i},
Secondary = {TO, AB, PML, PMi} and Central = {PB, AT, PFL,
PFi} areas). Finally, we further run a second statistical analysis on
the data of the 6 perisylvian and 6 extrasylvian areas separately
with factors “WordType,” “TempFront,” “Areas,” as described
above.

RESULTS

Word Learning Results
Twelve different instances of spiking networks were initialized
at random having the same architecture as described above
(Figure 1B), providing analogs of 12 human subjects in a
word learning experiment. Word-meaning acquisition was then
simulated under the impact of repeated sensorimotor pattern
presentations, in the 3 of the 4 sub-systems (see Figure 2),
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FIGURE 2 | Distributions of cell-assemblies (CAs) emerging in the 12 area network during simulation of word learning in the semantic context of visual perception (A)

and action execution (B). Results of one typical instantiation of the model in Figure 1B are shown, using the same area labels. Each set of 12 squares (in black)

illustrates one specific network area, with white dots indexing the distribution of CA neurons across the 12 network areas as a result of sensorimotor pattern

presentation in 3 of the 4 primary areas. The perisylvian cortex was always stimulated, which mimics the learning of a spoken word form characterized by

articulatory-acoustic features, while object words (A) received concordant stimulation to visual area (V1) and action words (B) to motor area (M1i). Note that a random

pattern simulating realistic noise input, changing in every learning phase, was presented to the non-relevant system (see Methods section). As a consequence of

learning, CA circuits emerged in the network which extends into higher and primary visual cortex (V1, TO, but not M1L ) for object words. In contrast, network

correlates of action-related words extend into lateral motor cortex (M1L, PML, but not V1), thus semantically grounding words in information about actions. For

convenience, the area structure of the network is repeated at the top.

by co-activating specific neurons in their respective primary
cortex. The cells activated inM1i and A1 represented articulatory
and acoustic-phonetic features by which spoken words are
typically characterized, while those presented to V1 and M1L
simulated visually-related and action-related semantic features.
This simulates associative learning of object-related word,
whereby the word is uttered while the referent object is present
(Vouloumanos and Werker, 2009) or the related action is
being performed (Tomasello and Kruger, 1992). While each
learning pattern directly activated three primary areas, the fourth
unrelated area (M1i for object- and V1 for action-related words)
received further uncorrelated noise pattern input that changed
inconsistently over learning episodes. This aimed at ensuring that
the correlation between word-form activity in perisylvian cortex
and semantic information was high in one modality (for action

/object words, in motor and visual systems respectively) but low
in the non-relevant one.

Cell assemblies gradually emerged as a consequence of
learning with different assemblies responding to different input
patterns. These neural circuits spanned different areas, linking
up word-forms in the auditory and articulatory sub-systems
with referential-semantic information in the visual and motor
sub-systems. Figure 2 illustrates 6 of the 12 CA-distributions
emerging across the novel spiking network along with the
sensorimotor pattern presented as input during learning. Each
set of 12 squares is a snapshot of a distributed word-related CA
circuit across the network areas; 3 for object-related words (A)
and 3 for action-related (B) words of one network instance (the
other simulated networks exhibited similar results). Each white
pixel in the squares represents an active cell of the CA.
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FIGURE 3 | Activation spreading in the 12 area network showing examples of the simulated recognition processes for object- and action-related words (on the left

and right, respectively; see CA #6 and CA #10 in Figure 2, respectively). Network responses to stimulation of A1 with the “auditory” patterns of two of the learned

words; similar to Figure 2, the 12 network areas are represented as 12 squares, but, in this case, selected snapshots of network activity are shown. The re-activation

process comes in different consecutive neuronal and cognitive phases, the stimulation phase, which corresponds to word perception (orange pixel), the full activation

or “ignition” phase, the correlate of word comprehension (magenta pixel), and the reverberant maintenance of activity, which underpins verbal working memory (blue

pixels). Each colored pixel indicates one spike one neuron included in the CA circuit at a given time step. At the top, the 12 model areas and their connectivity

structure are shown and their location in the cortex indicated.
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FIGURE 4 | Mean numbers of cell assembly neurons in different model areas after simulating the learning of action- (light gray) and object-related words (dark gray)

during word production (A) and object and action recognition (B); error bars show standard errors over networks. (A) Simulated word production (simultaneous

presentation of articulatory-auditory patterns in A1 and M1i areas) after word meaning acquisition. The extrasylvian areas (upper part) whose cells can be seen as

circuit correlates of word meaning show a double dissociation, with relatively more strongly developed CAs for object- than for action-related words in primary and

secondary visual areas (V1, TO), but stronger CAs for action-related than for object-related words in dorsolateral primary motor and pre-motor cortices (PML, M1L ).

Also, the semantic hub areas (PFi, AT) showed a degree of dissociation between the two word types. Data from the perisylvian cortex (lower part), namely articulatory

and auditory areas, whose cells can be seen as circuit correlates of spoken word-forms do not show category-specific effects. Brain areas and their connectivity

structure are also illustrated. The shaded areas, but not the colored boxes, indicate location in the cortex. (B) Simulated object and action recognition [alternated

presentation of sensorimotor patterns in visual (for object) and in motor areas (for action words)]. The present simulation exhibits similar results to the word production

simulation. The small horizontal segment indicates the stimulus input presentation. Asterisks indicate that, within a given area, the number of CA cells significantly

differed between the circuits of action and object words (Bonferroni-corrected planned comparison tests).

The CA circuits in Figure 2 show roughly the same spread
across the perisylvian areas for object and action-related words.
By contrast, the visual and motor sub-systems of the extrasylvian
cortex appear to show a different pattern of CA cell distribution,
namely a double dissociation, i.e., object-related words seemed to
extend more to the visual areas (V1, TO) and less to the motor
areas (PML, M1L) and vice versa for action-related words.

Figure 3 illustrates examples of CA circuit activation (i.e.,
each white pixel represents a spike) after the training has
been undertaken. The network was confronted with the
acoustic component (input pattern in primary auditory area)
representing the auditory word-forms of the learned (A)
object- and action-related (B) words, which in turn caused
the “ignition” of the whole CA circuit for that specific word-
pattern. The snapshot numbers indicate simulation time-steps
of the network activity. Similarly, as in the distribution of
the emerging CA circuits illustrated in Figure 2, action- and
object-related word recognition exhibited a semantic category-
specific spreading of activity in the modality-preferential
areas, which is near simultaneous (i.e., synchronous spikes)
binding information from phonological (articulatory-acoustic)
and semantic information. Interestingly, the re-activation of the

word-related cell assemblies across the cortical areas exhibit
the distinct consecutive neuronal and cognitive processes; the
stimulation phase (time steps 1–2), which corresponds to word
perception (orange pixel), the full activation or “ignition” phase
(time steps 5–8), the correlate of word comprehension (magenta
pixel), and the reverberant maintenance of activity (time steps
12–14), which underpins verbal working memory (blue pixels).

The bar graph in Figure 4 reports the topographical
distribution of the CA circuits across the network areas averaged
over 12 networks. Different panels show results from the
word production (A) and object and action recognition (B)
“experiments.” In each panel, average numbers of cell assembly
neurons (plus standard errors) are shown for each area, with
extrasylvian areas displayed at the top and perisylvian ones at
the bottom. Intriguingly, the extrasylvian areas show a different
CA distribution between the two word-type circuits, while the
perisylvian language areas seem not to show any word-category
differences.

Furthermore, independently of whether an object or action-
related word is represented, the word learning results showed
higher density of CA cells in the connector hubs (PB, PFi, AT,
and PFL) than in the secondary (AB, PMi, TO, PML) and primary
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areas (A1, M1i, V1, M1L). Similar results were revealed for both
word production and action and object recognition, which is in
line with the differential CA topographies already noted above
and in Figure 2. However, there were minor differences in the
estimated cell assembly topographies, as the relatively larger
number of CA cells in the primary areas of the extrasylvian
systemwere obtained for object and action recognition compared
to word production, which was (trivially) due to the stimulus
presentation there.

The 4-way repeated measurement ANOVA (with factors
WordType, PeriExtra, TemporalFrontal, and Areas) performed
on the word production data from all of the 12 network areas
fully confirmed the empirical and visual observation described
above. A highly significant interaction emerged with factors
WordType, PeriExtra, TempFront and Areas (F2,22 = 14.012,
p < 0.0002), revealing different CA circuits across the 12 area
network between object- and action-related words. A main
effect of Areas (F2,22 = 265.721, p < 0.0001), indicating the
different CA cell densities distributed across the network as
noted above, namely higher CA cells in hubs than in secondary
regions (p < 0.0001), and higher in secondary than in primary
cortices (p < 0.0001). We separately ran a 3-way ANOVA
on the data from the two systems, because of the significant
interaction between peri- and extrasylvian areas. As expected, the
extrasylvian system revealed a highly significant interaction of
all 3 factors WordType, TempFront, and Areas (F2,22 = 53.11,
p < 0.0001), confirming the word category dissociation in the
CA topographies and local cell-density distributions across the
extrasylvian regions as suggested by Figures 2, 3. No significant
differences between CA distributions of the 2 word types were
found in the perisylvian areas (F2,22 = 0.067, p= 0.93).

We further ran Bonferroni-corrected planned comparison
tests (12 comparisons, corrected critical p< 0.0042) to investigate
the differences between CA types that emerged after learning.
Differences in CA-cell densities between word types and pairs of
areas in the semantic systems were all significant (p < 0.0001),
confirming the presence of a higher neuron-density in visual
(V1, TO, and AT) than in motor (M1L, PML, and PFL) areas
for object-related words (p < 0.0001), and the opposite for
action-related words (p < 0.0001). Analysis of the connector
hubs (AT, PFL) also showed a significant difference between
the 2 word types there, i.e. stronger action-related word CA
cell densities in PFL compared to AT (p < 0.0001), and the
opposite for object-related words (p < 0.0001). As observed
above, no significant differences emerged in the perisylvian areas
(p = 0.029) between the word types. We further run the same
statistical analysis on the object and action recognition data,
which revealed similar results as the word production simulation,
i.e., double dissociation between action and object-related words
in the extrasylvian system (F2,22 = 467.321, p < 0.0001) with no
significant difference in perisylvian cortex (F2,22 = 0.060, p <

0.91).

DISCUSSION

We investigated the neural mechanisms underlying word
learning in a biologically constrained spiking model replicating
connectivity and cortical features of the frontal, temporal and

occipital areas to simulate aspects of semantic grounding in
action and perception. The present neural-network showed

• Emergence of neuron circuits distributed across primary,
secondary, and multimodal areas, as a result of simulating
the grounding of word-forms in their semantically-related
objects and actions (Figure 2). We call these “semantic
circuits,” because they interlink articulatory-acoustic word-
from information with referential semantic representations
coded in motor and visual areas;

• Re-activation of the word-related circuits during word
recognition exhibited the distinct consecutive neuronal and
cognitive processes of word perception, word understanding
and working memory (Figure 3);

• Higher neuron densities of the semantic circuits and
prolonged activity in the multimodal areas, where all semantic
and phonological information first converges;

• Pronounced semantic category-specificity primarily in the
modality-preferential areas and moderate specificity also in
multimodal areas for both word production and object and
action recognition (Figures 4A,B).

The present simulations offer a neurobiological explanation of a
wide range of recent experimental results about word meaning
processing andmake critical predictions about the functional role
of multimodal-association hubs, secondary and primary cortical
regions in language and semantic processing. Below, we provide
a detailed discussion of the models and their results in light of
previous empirical evidence, current semantic brain theories and
its novel critical predictions.

Semantic Brain Processes: Data and
Models
Accumulating evidence emphasizes the relevance of several
cortical regions for semantic processing, including inferior-
frontal, superior- and anterior-temporal multimodal areas
(Patterson et al., 2007; Binder et al., 2009; Pulvermüller,
2013), which are apparently relevant for all types of semantic
processing, and modality-preferential areas, which seemingly
take a category-specific role in semantics (Barsalou, 2008; Binder
and Desai, 2011; Pulvermüller, 2013). Of great relevance in the
current discussion about semantic grounding and “embodiment”
is the contribution of modality-preferential areas including
primary and secondary cortices, for example the motor and
premotor cortex, or the primary and other “early” visual areas,
in semantic processing. These areas, which had classically been
seen as “perceptual” or “motor” in their function, seem to partake
in and contribute to semantic processing, as a range of previous
experimental studies showed. The present results fit the postulate
of semantic grounding (Harnad, 1990) that, in order to know
the meaning of a symbol, it is necessary to relate it to real
world entities, for example, the word “grasp” to grasping actions
and the word “house” to the typical visual shape of houses.
Grounding in this sense needs to be implemented in semantic
representations that reach into motor and sensory systems. Our
simulations applying brain constrained modeling at different
levels demonstrate grounding in this very sense, hence fitting
(and explaining) the experimental results mentioned above.
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Some attempts to integrate both category-general and
category-specific semantic mechanisms into one theoretical
framework have been proposed. The “hub-and-spoke” model
postulates one single semantic hub in anterior-inferior-temporal
lobe with category-specific spokes mainly in posterior brain areas
(Ralph et al., 2017). This model explains crucial features of
semantic dementia, but is inconsistent with hub-like properties
of other multimodal areas (see Introduction) and, in addition,
does not address the motor system’s role in category-specific
processing (Vukovic et al., 2017), along with some fine-grained
differences in the ability to process specific semantic categories
which result from different types of dementias (Shebani et al.,
2017). Neurocomputational studies (Ueno et al., 2011; Chen
et al., 2017) have investigated aspects of the hub-and-spoke
model. However, as mentioned in the introduction, Chen et al.
did not include all the brain areas for which experimental studies
show a critical role in general semantic processing and they used
learning mechanism (i.e., back-propagation—Ueno et al., 2011;
Chen et al., 2017) which were criticized as implausible for cortical
networks (Mazzoni et al., 1991; O’Reilly, 1998).

A claim about multiple semantic hubs has been made,
in association with that about category-specific areas (Binder
and Desai, 2011; Pulvermüller, 2013). However, formal neural-
networks that could act as a foundation of a theory of semantic
brain mechanisms did so far not reach the level of sophisticated
neurobiologically constrained modeling with spiking neurons,
realistic connectivity and learning. Earlier attempts were
made using a preliminary version of the present architecture
adopting non-spiking neurons (Garagnani and Pulvermüller,
2016; Tomasello et al., 2017). These previous models already
suggest an explanation of category-general and category-specific
semantic processing, but their conclusions were more limited
by their less accurate modeling of neurophysiological and
neuroanatomical features of the cortex.

Novel Contribution: Increased
Brain-Constraints
Here, we added important neurobiological constraints,
introducing leaky integrate-and-fire neurons that transform
their summed input non-linearly into discrete output in the
form of spikes. Similarly to biological neurons, functional
interaction within the present model was based on discrete
spikes, whereas previous mean-field networks used continuous
activity functions (i.e., graded-response neurons), a less realistic
implementation. Using graded-response neurons makes it easier
to build distributed neural circuits across multiple areas as a
result of action-perception learning since this type of neuron
retains an increased firing rate for more extended periods. It
was, therefore, crucial to investigate the possibility of distributed
circuit formation with spiking neurons, which show an activation
(action potential) for a short moment and then go silent again.

Compared with earlier studies, the present network included
a more realistic set of cortico-cortical fiber tracts, adding
second-next area connections or “jumping links” (blue arrows
Figures 1A,B) indicated by DTI/DWI studies. A recent
neurocomputational study (Schomers et al., 2017) showed

that these jumping links are instrumental for building verbal
short-term memory, a capacity crucial for human language
learning. Furthermore, previous exploratory implementation of
“jumping links” in an extended semantic network of mean-field
(non-spiking/gradually active) neuronal elements suggested
a degree of over-activation in case of implementation of the
rich set of cortico-cortical connections, thus preventing precise
simulation of more realistic connectivity. The use of spiking
neuronal cells, whose action potentials only last for 1 simulation
time-step and therefore produced less activity overall compared
with the graded-neuron network, opened the possibility to
include additional connection pathways documented by recent
research without running into over-activation problems. On the
other hand, spiking-neuron networks with just next neighbor
connections between areas (thus omitting the “jumping” links)
ran into an under-activation problem, precisely because of
the same feature (i.e., that spiking neurons lose their activity
immediately). Thus, only the combined improvement of
neuroanatomical (jumping connections) and neurophysiological
(spiking) realism led to a functional network, which largely
confirms conclusions formerly proposed on the basis of less
realistic architectures. Incorporating significant biological
detail into networks may be essential for obtaining a better
understanding of the complex cortical mechanisms underlying
semantic processing. Indeed, recent modeling results suggest that
large-scale synchronous spiking within cell assembly circuits,
also observed here, may be important for the binding of form to
meaning during word learning and comprehension (Garagnani
et al., 2017).

In summary, the comparison of less and more biologically
constrained networks showed that improving the degree of
realism does not always help. Moving from graded-response
to spiking neurons alone renders an underactive network
with little perspective on modeling semantic cognition, as
the addition of a more detailed, elaborate and realistic
connectivity structure on its own produces an overactive
and thus, once again, dysfunctional networks. Only the
parallel improvement on structural (anatomical) and functional
(physiological) dimensions, that is, adding jumping links and
spiking neurons, led to a functional network once again, which
could confirm results from the earlier simulations obtained from
the next-neighbor-connectivity and mean-field network, but
provides a simulation at a more brain-constrained and therefore
more realistic level.

Emergence of Distributed Symbolic
Circuits
The present model imitates elementary processes of semantic
learning, where word-forms are presented in the context of
object (Vouloumanos and Werker, 2009) or action information
(Tomasello and Kruger, 1992). In our model, the co-occurrence
of objects or actions with word-forms was implemented
as correlated neuronal activation patterns in the model’s
primary articulatory (M1i) and auditory (A1) along with either
dorsolateral motor (M1L) or visual cortex (V1). The first
significant finding of this study is that such information about
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the semantic grounding of symbols can be mapped reliably
onto biologically constrained associative networks. Each pattern
representing the pairing of one specific symbol and one specific
action or object led to the formation of a distributed circuit
of spiking neurons spread out across several areas of the
architecture. Each of these distributed circuits acted as a coherent
functional unit, with its interlinked neurons in sensory, motor
and multimodal areas activating together. The formation of each
circuit required the spreading of activity across the network
and the selective strengthening of a significant number of
partaking neurons. Such strengthening was substantial enough
so that, after learning, “auditory input” was sufficient to
revive the entire circuit, including its articulatory and semantic
components. By comparing the mean-field next-neighbor model
with the jumping-links spiking model, massive differences
were revealed in the dynamics of cell assemblies activations
during auditory word recognition (Figure 3).Whereas themean-
field model showed cascaded activation dynamics (with serial
onset of activations and only partly overlapping activity of
the hub areas AT, PFL), the full-fledged three-phase dynamics
with perception (activation of auditory areas), ignition (near-
simultaneous activation of cell assembly neurons dispersed across
wide cortical areas), and working memory (reverberation of
activity in part of the cell assembly) was only present in the
spiking and fully connected model. Intriguingly, after ignition,
activity retreats from modality-preferential areas (time step 12,
Figure 3) to hub areas (time step 14), which predicts an “anterior
shift” from visual andmotor areas to adjacent-anterior connector
hub regions in temporal and prefrontal cortex during working
memory (see also Fuster, 2009; Pulvermüller and Garagnani,
2014; Pulvermüller, 2018).

Although the formation of each circuit was driven by
correlated information in sensory and motor areas, widely
distributed circuits with many neurons in multimodal
convergence zones got active. The involvement of neurons
in multimodal areas is explained by long-distance connectivity
structure, in particular by the absence of direct long-distance
connections between sensory and motor areas; to bind
information across modalities, activity must travel through
connector hub areas (also called convergence zones, Damasio,
1989) bridging between sensorimotor cortices. It is important
to emphasize, however, that while the presence of connector
hubs in the model is a (neuroanatomically motivated) structural
feature, the result that the learned action and object word circuits
reach both extrasylvian connector hubs AT and PFL–hence
forming semantic hubs—is not trivial, and could not be a priori
predicted1. In other words, while the presence of connector hubs
is a structural feature of the model, the formation of semantic
hubs is not, and constitutes one of its crucial emergent properties.

The spontaneous formation of internal semantic circuits
spanning the entire spiking neural network is a direct
consequence of neurobiological principles modeled in the
architecture that are known to govern the human brain.

1Note that the linkage of a perisylvian word circuit with semantic information

coming from the visual (or motor) system does not necessarily have to go through

connector hub PFL (or AT).

As discussed below, the activation of the learned distributed
circuits explains relevant “semantic area activations” seen in
neuroimaging experiments (for further discussion, see Garagnani
and Pulvermüller, 2013; Tomasello et al., 2017).

Explaining Multiple Semantic Hubs
Not only did our model firmly bind neurons in multimodal
areas to sensorimotor neurons involved in semantic processing,
but, within each circuit, the proportion of these multimodal-area
neurons was even greater than the percentage of circuit neurons
in primary and secondary areas. On first view, this appears
as surprising, because, during pattern presentation, sensory
and motor neurons were directly stimulated together, whereas
multimodal areas were activated only indirectly, by activity
spreading from primary areas. However, the multimodal areas
occupy a central location in the network topology because they
bridge between sensory and motor areas, and therefore receive
near-simultaneous convergent input from different (here, three)
systems during learning. Such convergence also takes advantage
of the higher “degree” of connectivity characterizing multimodal
areas and of their resultant role as “connector hubs,” for which a
special role in cognition has previously been proposed (van den
Heuvel and Sporns, 2013). The cumulative effect of correlated
inputs through several pathways converging on multimodal hubs
accounts for their higher neuron-densities and their resultant
major contribution to semantic circuit function. Thus, given that
large fractions of the neurons of all semantic circuits were located
in connector hubs, themodel explains the prominent role of these
connector regions in general semantic processing, which is due to
both, the well-known pre-existing neuroanatomical connectivity
and the correlated neuronal activity during word learning.

Crucially, the model implicates and explains not only one,
but at least four experimentally observed “semantic hub” areas.
One of these is in anterior-temporal lobe, providing a theoretical
foundation for the critical postulate of the hub-and-spoke model
(Patterson et al., 2007). Other semantic hubs are in superior-
temporal-parabelt and in inferior- and dorsolateral-prefrontal
cortex, where other models postulate sites of general semantic
processing (Posner and Pavese, 1998; Bookheimer, 2002; Tate
et al., 2014; Schomers and Pulvermüller, 2016; Carota et al.,
2017). Our model, therefore, fits (and explains) data indicating
the presence of frontal and temporal semantic hub areas, thus
reconciling extant experimental evidence for a range of regions
generally involved in conceptual processing (for reviews, see
Kiefer and Pulvermüller, 2012; Pulvermüller, 2013).

Explaining Category-Specificity
We modeled the learning and processing of two different
semantic categories: object- and action-related words. The
formation of semantic circuits was driven by sensorimotor
pattern information, involving visual cortex activity for object
words and hand-motor cortex activity for action words. The
respective other input system was activated with random noise
to model the variable action output (visual input) in the context
of specific visual objects (actions). Such uncorrelated noisy
activity counters the spontaneous extension of neuron circuits
toward inactive areas (Doursat and Bienenstock, 2006). Notably,
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as a consequence of the differential sensorimotor activation
patterns, different circuit topographies developed across the areas
for both word production and action or object recognition:
circuits storing action-related information reached into the
motor cortices (M1L-PML) but not or less into visual areas (V1-
TO), and vice versa for object words. Semantic circuits with
different cortical topographies, which are a result of correlated
neuronal activity in different sensorimotor areas during language
learning, can therefore explain the emergence of category-specific
semantic contributions of different cortical areas.

We take this observation as a proof-of-concept that the
present type of spiking and jumping network is capable
of spontaneously developing semantic-category specificity
replicating a number of studies revealing neuroimaging and
neuropsychological dissociations between action verbs and
object nouns or between nouns sub-categories related to animals
and tools (Damasio and Tranel, 1993; Martin et al., 1996;
Martin, 2007; Moseley and Pulvermüller, 2014; Kemmerer,
2015). Interestingly, some category specificity was revealed in
the semantic hubs, although it was less pronounced compared
with primary and secondary areas. This area category-specific
activation predicted by the model (Figure 4) seems to be of
graded nature, with stronger category effect in the primary
areas than in secondary areas and stronger in the secondary
than in the hub areas and awaits experimental validations. The
moderate category specificity predicted in the semantic hub
areas is in line with recent evidence that semantic dementia
patients due to anterior-temporal lesion show category-specific
semantic impairments (Pulvermüller et al., 2010; Gainotti, 2012;
Shebani et al., 2017), which sits less well with the suggested
general-semantic function across all semantic types (Patterson
et al., 2007).

It needs to be emphasized that most previous studies on
semantics have investigated action and object words taken from
natural languages, focusing mostly on the noun-verb distinction,
which makes it difficult to control for all psycholinguistic
proprieties and especially, when these words were acquired
(e.g., Moseley and Pulvermüller, 2014). If we take our present
simulations as models of concrete action verb vs. object noun
processing, there is a good fit with the data, as these semantically
and lexically different word types tend to differentially activate
motor regions or ventral visual areas respectively (Damasio
et al., 1996; Martin et al., 1996; Pulvermüller et al., 1999,
2014; Vigliocco et al., 2004; Martin, 2007; Moseley et al., 2013).
However, note that the “action” and “object words” simulated
here capture the differential action- and object-relatedness of
many verbs and nouns, but not the lack of such semantic
differences seen between abstract verbs/nouns and certainly not
the combinatorial, or distributional differences between word
categories, which result from their differential placements in
specific grammatical contexts. Hence, for directly comparing
the predictions of the present simulations to empirical data, it
will be advantageous to perform analogous learning experiments
and brain imaging studies to investigate where in the brain
the neural signatures of novel object and action words first
emerge. Nevertheless, the present simulation demonstrate the
validity of a neurobiological theory of language processing (see

Introduction, and Damasio, 1989; Pulvermüller, 2013), in which
the mutual interaction of a set of neurobiological principles
at work within anatomically-realistic structures and Hebbian
learning are sufficient for explaining the emergence of semantic
hubs and category specificity in the human brain.

It may be worthwhile to point to additional limitations of
the present work along with possible extensons in the future.
When an infant learns a new action word (e.g., “grasp”), by
hearing a novel word form while performing the related action
toward an object, concurrent activity might be present not
just in the perisylvian language areas and motor cortices, but
also in the visual occipital-parietal “where” stream (Mishkin
and Ungerleider, 1982; Mishkin et al., 1983), which was not
implemented here. Therefore, an important extension of the
present model would be to include parietal areas and the
dorsal visual-where stream. Inclusion of left parietal areas
would also be strongly motivated experimentally, as they are
well known to play a role in general language processing
(Pulvermüller and Fadiga, 2010) and also in category-specific
processing of prepositions, number and tool words (Dehaene,
1995; Binder and Desai, 2011; Tschentscher et al., 2012;
Shebani et al., 2017). Further model extensions should address
other forms of language learning. Here we investigate but
one aspect of word meaning acquisition, namely associative
learning between a word and its referents, which represents
only a very basic step of semantic learning. To capture
other types of semantic learning, the emergence of semantic
knowledge from variable contexts needs to be covered along
with the semantic grounding of words learned from texts,
where semantic links may be explained by co-activation
of linguistic representations. Future work may address with
realistic neuronal networks how, based on a kernel of early
acquired words semantically grounded in referent object and
action contexts, the co-occurrence of words in texts can lead
to the formation of novel semantic circuits and semantic
representations (Harnad, 2011; Stramandinoli et al., 2012).
Furthermore, future simulations should extend the present
work by investigating how combinatorial grammatical binding
between pre-learnt and whole-form-stored lexical units emerges
from correlated activity in co-activated neuronal circuits (see
Pulvermüller, 2010).

Still, already in its current form, the present computational
model makes critical predictions (some of which we spelled
out in detail in discussion above) about how meaning
is acquired, processed and stored in the human brain.
Compared with earlier similar work, the spiking-and-
jumping neural network developed in this work is based
on a wider range of biological principles and features of
the human brain, such as neurophysiological dynamics of
spiking pyramidal cells, synaptic modification by way of
Hebbian learning, local lateral inhibition and area-specific
global regulation mechanisms, uncorrelated white noise
present in all neurons during learning, brain-like connectivity
structure based on neuroanatomical evidence. Therefore,
the present model provides a sophisticated mechanistic
explanation of the differential involvement of semantic cortical
regions.
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CONCLUSION

We used a biologically constrained neurocomputational model
mimicking cortical features and connectivity of frontal, temporal
and occipital cortices to simulate the brain mechanisms of word
meaning acquisition. Extending our earlier work (Garagnani
and Pulvermüller, 2016; Tomasello et al., 2017) by introducing,
for the first time, spiking neuronal cells in a neuroanatomical
constrained model with brain like connectivity, we show that
Hebbian associative learning and connectivity together are
sufficient to account for the emergence of general semantic
areas (“semantic hubs”), as well as specific contributions of
others modality-preferential ones to the processing of specific
semantic categories. The present simulation results show that
neurobiologically constrained networks can fruitfully contribute
to bridging the gap between cellular-level mechanisms, behavior
and cognition by integrating brain theory with experimental data.
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