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Using GLUE to pull apart the provenance of atmospheric dust  1 

 2 

HIGHLIGHTS 3 

 The GLUE model is applied to reveal the provenance of aeolian dust in Zabol, Iran. 4 

 Quantitative estimates and uncertainties of four different dust sources are distinguished. 5 

 One dry lake, Hamoun Puzak, is by far the dominant dust source, despite others nearby. 6 

 The major dust source is insensitive to large changes in exposed local dry lake beds. 7 

 Cultivated land is the second most important dust source, ahead of some playas. 8 

 9 

Abstract 10 

We apply a Generalized Likelihood Uncertainty Estimation (GLUE) model to constrain the uncertainties 11 

associated with sediment fingerprinting aimed at source contributions of atmospheric dust in the 12 

Sistan region on the Iran-Afghanistan border. Fifty seven dust samples were collected from the rooftop 13 

of the Zabol Department of Environmental Protection during a summer dusty period from 23 June to 14 

4 October 2014 in addition to thirty one surface soil samples collected from potential sources nearby, 15 

including cultivated land (n=8), uncultivated range land (n=7), and two dry lakes: Hamoun Puzak 16 

(n=10) and Hamoun Saberi (n=6). Dust and soil samples were analyzed for 24 tracers including 16 17 

geochemical elements and 8 water-soluble ions. Based on our results, five optimum composite 18 

fingerprints (Fe, Sr, Mn, Cr and Pb) were selected for discriminating sources by a two-stage statistical 19 

processes involving a Kruskal-Wallis test and stepwise discriminant function analysis (DFA). 20 

Uncertainty ranges for source contributions of dust determined from our GLUE methodology showed 21 

that the dry lake Hamoun Puzak is the dominant source for all 57 dust samples from Zabol and 22 

cultivated land is a secondary source. We found marked spatial variance in the importance of regional 23 

dry lake beds as dust sources, and equally notable temporal persistence in dust emissions from 24 

Hamoun Puzak, despite very large areas of adjacent lake beds drying and becoming exposed during 25 

the study period. Aeolian sediment fingerprinting studies can benefit considerably from the 26 

constraints provided by modelling frameworks, such as GLUE, for quantifying uncertainty in dust 27 

provenance data.  28 
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 29 

KEY WORDS: sediment fingerprinting, uncertainty, GLUE, atmospheric dust, Iran 30 

 31 

1. Introduction 32 

Constraining the source of atmospheric dust particles circulating in the ancient past as well as the 33 

present-day is central to understanding the manifold implications of dust in the Earth system 34 

(Ridgwell, 2002; Goudie and Middleton, 2006; Shao et al., 2011). Ancient dust deposits are archives of 35 

long-term environmental change (Dietze et al., 2016); the best-known and longest being the >8 Myr 36 

loess record in China (Sun & Zhu 2010). Present-day dust storms trigger a series of negative off-site 37 

and on-site repercussions (Goossens, 2003). Off-site effects include respiratory disease in humans and 38 

non-humans, contamination of food and water supplies, and interference with traffic safety, 39 

machinery, and electronics. On-site effects include the loss of soil organic matter, nutrients, and 40 

overall agricultural productivity (Goudie and Middleton, 2006). From this perspective, identifying 41 

sources of dust and quantifying multi-source contributions and their uncertainties is a key step 42 

towards hazard mitigation, especially in drylands. 43 

  44 

A diverse range of techniques have been employed for tracing sources of atmospheric dust, including 45 

isotopic ratios (e.g., Krom et al., 1999; Nakano et al., 2004; Grousset and Biscaye, 2005; Chen et al., 46 

2007; Cao et al., 2008; Wang et al., 2005; Rio-Salas et al., 2012; Yang et al., 2009); mineralogical and 47 

chemical characteristics (Shen et al., 2009); meteorological data (Rezazadeh et al., 2013; Nabavi et al., 48 

2016; Ge et al., 2016; Rashki et al., 2017); synthesis of isotopic and geochemical data (e.g., Aarons et 49 

al., 2017; Wei et al., 2017; Chavagnac et al., 2008); synthesis of trace element and water-soluble ion 50 

analyses (Dahmardeh Behrooz et al., 2017a,b); numerical simulation (Hamidi et al., 2014; Nabavi et 51 

al., 2017); satellite data (Long et al., 2016; Cherboudj et al., 2016; Schepanski et al., 2012); and 52 

multidisciplinary approaches (Yan et al., 2015; Cao et al., 2015). While most of the studies listed above 53 

are highly successful at inferring dust sources, we note that in many cases the uncertainties associated 54 

with ascribing provenance are not considered formally. We see this an important omission for two 55 

reasons: 1) airborne dust is commonly generated simultaneously from multiple populations and areas 56 

of fine-grained particles; and 2) these multiple populations are, in turn, typically an amalgam 57 

generated from different sources and mixed to differing degrees over timescales ranging from 58 

geological to individual storm events. In other words, dust provenance presents a diabolical mixing-59 

problem and hence uncertainty is fundamental. These two points ultimately stem from geomorphic 60 

processes of fine-particle production, transport, deposition, and reworking.  61 
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 3 

Sediment fingerprinting is widely used to quantify source contributions of fluvial sediments (e.g., 63 

Collins et al., 1997; Walling, 2005; Stone et al., 2014; Zhou et al., 2016a; and Manjoro et al., 2017) and 64 

its application to aeolian problems is growing (e.g., Liu et al., 2016; and Gholami et al., 2017a,b). 65 

Moreover, the uncertainties involved with this method are gaining increased attention (Walling, 66 

2013). In order to manage and quantify the uncertainty in fluvial sediment fingerprinting, some studies 67 

have applied a Monte Carlo simulation framework (e.g., Motha et al., 2003; Collins et al., 2012; Voli et 68 

al., 2013; Smith and Blake, 2014; Stone et al., 2014; Sherriff et al., 2015; and Vale et al., 2016). 69 

Similarly, Bayesian approaches are also applied to fingerprinting aeolian sands (Gholami et al., 2017b) 70 

and fluvial sediments (e.g., Massoudieh et al., 2013; Cooper et al., 2014; Cooper et al., 2015; Stewart 71 

et al., 2015; and Abban et al., 2016). Yet, several challenges remain in adequately capturing the 72 

uncertainty associated with diverse aeolian dust sources and pathways (Walling, 2013) and we suggest 73 

that techniques developed in other disciplines may offer a way forward (Gholami et al., 2017b).  74 

 75 

First proposed for hydrological modelling by Beven and Binley (1992), GLUE (Generalised Likelihood 76 

Uncertainty Estimation) has gained much favour as a tool for evaluating uncertainty estimates (e.g., 77 

Hassan et al., 2008; Zhou et al., 2016b; Viola et al., 2009; Mantovan and Todini, 2006; and Gong et al., 78 

2011). Here, we apply GLUE to the problem of dust provenance in the Sistan Hamoun region on the 79 

Iran-Afghanistan border. Since it constitutes a major dust source for south-west Asia, Sistan has been 80 

the focus of numerous previous investigations, (e.g., Goudie and Middleton, 2006; Rashki et al., 2012, 81 

2013 a,b, 2015; Alizadeh Choobari et al., 2014). Recent work has generated an important geochemical 82 

dataset of dust samples from a meteorological station at Zabol which has been analyzed geochemically 83 

to provide qualitative estimates of source (Dahmardeh Behrooz et al., 2017a) and the temporal 84 

variability of dust emissions (Dahmardeh Behrooz et al., 2017b).  Here we provide the first attempt to 85 

formally quantify aeolian dust provenance and associated uncertainties with this dataset using GLUE 86 

(Dahmardeh Behrooz et al., 2017a; 2017b). 87 

 88 

 89 

2. Study area 90 

The Sistan-Hamoun study area (Fig. 1) straddles the border between Afghanistan and the Sistan and 91 

Baluchestan province of south-eastern Iran (30˚5ʹ to 31˚28ʹ N and 61˚15ʹ to 61˚50ʹ E) (Rashki et al., 92 

2012, 2013a). The Hamoun lakes complex comprises three main lakes: Hamoun Hirmand, Hamoun 93 

Saberi, and Hamoun Puzak, which are recharged primarily from Afghanistan by the Hirmand 94 

(Helmand) River with smaller contributions from streams to the north and west (Esmaeili and Omrani, 95 

2007). Following exceptionally high runoff, the lakes form a single body of water ~5700 km2 in area 96 
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 4 

and ~13 Mm3 in volume (Sharifikia, 2013), though such events have become rare in recent decades 97 

while dust emissions have grown correspondingly in magnitude (Goudie and Middleton, 2006; Rashki 98 

et al., 2012).  99 

 100 

Figure 1: Sampling sites in the Sistan region: the dry-bed of Hamoun Puzak (HP); the dry-bed of Hamoun 101 
Saberi (HS); uncultivated range land (RL); and cultivated land (CL). Inset shows the hourly averaged 102 
wind regime for the period June-October 2014 (data source: National Climatic Data Centre, Climate 103 
Data Online).  104 

The climate the Sistan region is arid to hyper-arid, and land-use is chiefly linked to agriculture and 105 

fishing. At Zabol meteorological station (Fig. 1), mean rainfall is 55 mm/y and mean evaporation is 106 

178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

_46
Sticky Note
in

_47
Sticky Note
Corrected



 5 

>4000 mm/y (Moghaddamnia et al., 2009). The prevailing wind is the notorious “Wind of 120 Days” 107 

from the north, which in the summer is accelerated into a Low-Level Jet (LLJ) by a persistent high-108 

pressure system over the Hindu Kush and the channeling effect of the surrounding topography 109 

(Alizadeh-Choobari et al., 2014). As a result, the city of Zabol and its ~135,000 inhabitants experience 110 

dust storms of catastrophic proportions, resulting in Zabol ranking as the world's most polluted city 111 

for particulate matter less than 2.5 µm (PM2.5) in size (World Health Organisation, 2016).   112 

 113 

3. Methods 114 

3.1 Field sampling  115 

We set out to characterise the soil materials for four different potential sources of atmospheric dust 116 

emissions to the north of Zabol city (Fig. 1): 1) the dry lake-bed of Hamoun Puzak (Fig. 2a); 2) the dry 117 

lake-bed of Hamoun Saberi (Fig. 2b); 3) cultivated arable farmland generally without crop-cover in 118 

summer (Fig. 2c); and 4) bare land surfaces with sparse to negligible natural vegetation cover (Fig. 2d). 119 

A total of 31 surficial soil samples (<5 cm depth in a 30 cm2 area) were collected from the four potential 120 

sources (Table 1). We sieved the soil samples with a 400-mesh sieve, retaining particles with a nominal 121 

geometric diameter of < 38.5 μm, which is equivalent to the aerodynamic diameter of dust (Cao et al., 122 

2008). After sieving we retained about 5 g of dust-sized material from each sample.  123 

 124 
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 6 

Figure 2. Typical examples of the land surfaces we sampled. a) Hamoun Puzak dry lake-bed, b) Hamoun 125 

Saberi dry lake-bed, c) close-up view of cultivated agricultural land surface during the summer months, 126 

and d) sparsely vegetated, uncultivated rangeland.  127 

 128 

During an exceptionally dusty summer period in Zabol (23 June to 4 October 2014), 57 atmospheric 129 

dust samples were collected at one- to four day intervals (Table 1) with sampling apparatus fitted to 130 

the rooftop of the Department of Environmental Protection (5 m above ground level, 31˚N, 61.3˚E) in 131 

an outer suburban area with no major industrial activities nor local fugitive dust sources. Our two dust 132 

samplers (Model Chrono, Zambelli, Milan) were equipped with cyclones operating at a flow rate of 133 

16.7 L/min as per the EU norms (Dahmardeh Behrooz et al, 2017a; 2017b). Total suspended-particle 134 

(TSP) samples were collected in Teflon filters (0.45 μm pore size and 47 mm diameter) and then 135 

desiccated for 24-hours at 25 °C. Dust mass concentrations were measured gravimetrically by 136 

weighing the Teflon filters before and after sampling using an analytical balance (Adam model) with 137 

±0.1 mg precision. We refrigerated all dust samples at 4˚C until chemical analysis (Dahmardeh Behrooz 138 

et al., 2017 a).  139 

 140 

3.2 Laboratory analysis of water-soluble ions and trace elements 141 

We measured the concentrations of 8 water-soluble ions in our samples (viz., Na+, NH+
4, K+, Ca2+, Mg2+, 142 

Cl‾, NO‾
3, NO‾

2). Three cations (Na+, NH+
4 and K+) were measured with a Shim-pack IC-C1 (Shimadzu 143 

DGU-12A) using 5-mM HNO3 solution as eluent. Three anions (Cl‾, NO‾
3 and NO‾

2) were measured with 144 

a Shim-pack ICA1 (Shimadzu DGU-12A), using 2.5–mM phthalic acid combined with 2.4-mM tris-145 

(hydroxymethyl) aminomethane as eluent (Lin, 2002). Two cations (Ca2+ and Mg2+) were measured via 146 

flame atomic absorption spectrometry (Philips, PU9400X, England). 147 

 148 

After acid digestion, all samples were analyzed to determine the concentrations of 16 trace elements 149 

(viz., Al, As, Au, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Pb, Pt, Sn, Sr, and Zn) via Inductively Coupled Plasma 150 

Atomic Emission Spectroscopy (ICP-OES, Perkine Elmer, Optima 2000, USA). Further details of 151 

sampling and laboratory procedures are given in Dahmardeh Behrooz et al. (2017a,b). 152 

 153 

3.3 Two-stage method: Kruskal-Wallis test and discriminant function analysis 154 

Our measurements of 8 water-soluble ions and 16 trace elements form the basis of the sediment 155 

fingerprinting method aimed at identifying the source contribution of the Zabol dust samples. We 156 

adopt a two-stage statistical procedure following the approach of Collins et al. (1997). In stage one we 157 

tested the primary ability of tracers to discriminate dust sources using the Kruskal-Wallis H test. 158 
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 7 

Tracers with critical values at the 95 % confidence levels or better were taken to the second stage in 159 

which we identified optimum composite fingerprints using a stepwise discriminant function analysis 160 

based on minimization of Wilk’s lambda.  161 

 162 

3.4 Generalised Likelihood Uncertainty Estimation (GLUE) 163 

GLUE was first devised by Beven and Binley (1992) as a means of sensitivity analysis and uncertainty 164 

estimation in environmental model outputs. We use GLUE to quantify the uncertainty in the sediment 165 

fingerprinting results via the following five steps:  166 

 167 

1) Random sampling of parameter sets (300,000 iterations) are conducted using the Latin Hypercube 168 

Sampling (LHS) method (Zhou et al, 2016b) and assuming source contributions from each source are 169 

non-negative and total contributions sum to unity. Due to the lack of prior information, we used a 170 

uniform distribution as the prior distribution for all parameters. 171 

 172 

2) Selection of a likelihood function and behavioral parameter thresholds. Here, we adopt the Nash–173 

Sutcliffe coefficient (ENS) as the likelihood function (Jin et al, 2010): 174 

 175 

𝑀𝐸 = 1 −  
∑(𝑂𝑜𝑏𝑠−𝑂𝑠𝑖𝑚)

∑(𝑂𝑜𝑏𝑠−Ộ𝑜𝑏𝑠)
= 1 −  

𝜎𝑖
2

𝜎𝑜𝑏𝑠
2                                                                                               (eq.1), 176 

 177 

where Ộobs is the mean value of the observed tracer concentration; Osim is the simulated tracer 178 

concentration; Oobs is the observed tracer concentration; σ2
i is the error variance for the ith model 179 

(i.e., the combination of the model and the ith parameter set) and σ2
obs is the variance of the 180 

observations. 181 

 182 

3) Sampled parameter sets from step 1 are input to the mixing model (equation 2) and the likelihood 183 

function is calculated for each parameter set as:  184 

 185 

𝐶𝑑𝑢𝑠𝑡 = 𝐶𝑆𝑜𝑢𝑟𝑐𝑒𝑠 × 𝑃                                                                                                                          (eq. 2)      186 

 187 

where P is an m dimensional column vector of sources contribution (sampled parameter sets), 𝐶𝑑𝑢𝑠𝑡 188 

is  an n-dimensional column vector of element concentration in sediment sample, 𝐶𝑆𝑜𝑢𝑟𝑐𝑒𝑠 is an n×m-189 

dimensional matrix representing mean tracer concentration in sources (each row represents mean 190 

tracer concentration in each source), where n is the number of optimum composite fingerprints (n=5) 191 

and m is the number of dust sources (m=4). 192 
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 193 

4) Parameter sets are divided into behavioural and nonbehavioural types with respect to a threshold 194 

value (Zhou et al, 2016). In this step, those parameter sets that have likelihood functions greater than 195 

a threshold value were classified as behavioural parameter sets. For the next step, nonbehavioural 196 

parameter sets were discarded. 197 

 198 

5) For behavioural parameter sets, likelihood weights are rescaled such that they sum to one, then 199 

each parameter is sorted and we calculate cumulative distributions for each parameter. Quintiles and 200 

uncertainty intervals are calculated via the cumulative distributions.  201 

 202 

3.5 Geospatial analysis and climate data 203 

Landsat data were downloaded from the United States Geological Survey’s Earth Explorer, and all 204 

analysis was conducted within ArcGIS 10.3. Quantitative analysis of water extent was conducted using 205 

a modified Normalized Difference Water Index (NDWI), based on the green (Band 3) and short-wave 206 

infrared (Band 6) bands of Landsat 8 data (Xu, 2006). Climate data are taken from the Hourly Global 207 

Surface Data (DS3505) dataset for the Zabol station (World Meteorological Organization ID: 40829), 208 

accessed via the legacy Climate Data Online (CDO) portal of the National Oceanic and Atmospheric 209 

Administration’s (NOAA) National Climatic Data Centre (NCDC) online (available at 210 

https://www7.ncdc.noaa.gov/CDO/dataproduct). 211 

 212 

4. Results 213 

4.1 Kruskal-Wallis test and discriminant function analysis 214 

The results of the Kruskal-Wallis tests (Table 2) indicate that among the twenty-four measured 215 

properties (8 water-soluble ions and 16 element concentrations), thirteen trace elements (Mg, Sr, Li, 216 

Fe, Cr, Cu, As, Ni, Pb, Mn, Co, and Sn) and one ion (Ca2+) show statistically significant differences at the 217 

95 %-level between our four potential dust sources (the two dry lake beds, cultivated farmland, and 218 

areas of natural vegetation cover). Trace elements clearly out-performed water-soluble ions for 219 

tracking spatial sources of dust. We passed the thirteen trace elements to stage-two for stepwise 220 

discriminant function analysis (DFA). The DFA yielded five trace elements (Fe, Sr, Mn, Cr and Pb) with 221 

optimum composite fingerprints that correctly discriminate 87 % of our source samples (Table 2 and 222 

Fig. 3).   223 
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 224 

Figure 3. Scatterplot constructed from the first and second functions derived from a stepwise DFA for 225 

the source groups including the four land (i.e. Hamoun Puzak (HP), Hamoun Saberi (HS), cultivated land 226 

(CL) and uncultivated rangeland (RL). Five optimum fingerprints (Fe, Sr, Mn, Cr and Pb) were used to 227 

construct the scatterplot and 87% of the source samples are discriminated, correctly.   228 

 229 

4.2 Using GLUE to constrain uncertainty in the source contributions of dust  230 

Uncertainty intervals of source contributions estimated by our GLUE-mixing model at the 95 % 231 

confidence level are presented in Figure 4. These results show that the most important dust source is 232 

clearly Hamoun Puzak (FigS 4a and 5). Median contributions from this lake-bed span 29 to 88 % 233 

(samples 33 and 45, respectively). Hamoun Saberi is a less important source for our samples. Median 234 

contributions from this lake bed span 3 to 24 % (samples 11 and 33, respectively) (Figs. 4b). The 235 

sparsely vegetated rangeland is the least active dust source. Median contributions span 2 to 22 % 236 

(samples 45 and 34, respectively) (Fig. 4c). Cultivated farmland is recognized as the second-most 237 

important source for all of 57 samples. Median contributions from farmland span 4 to 25 % (samples 238 

23 and 34, respectively) (Figs. 4d). We note that for most samples, the lower-limit of predicted 239 

uncertainty is zero for contributions from the three sources other than Hamoun Puzak (Figs. 4b-d). 240 
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 10 

Figure. 5 presents an overview of the source contributions with all samples plotted together as a 241 

frequency histogram. 242 

 243 

Figure 4. GULE results for dust source contributions yielding 95% confidence limits (with percentiles 244 

2.5, 25, 50, 75 and 97.5). A) Hamoun Puzak; B) Hamoun Saberi; C) uncultivated rangeland; and d) 245 

cultivated land. 246 
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 247 

Figure 5. Summary of all source contributions plotted as a probability density function.  248 

 249 

5. Discussion 250 

Sediment fingerprinting is a highly effective technique for quantifying source contributions of fluvial 251 

sediments (e.g. Collins et al., 1997; Walling, 2005; Stone et al., 2014; Zhou et al., 2016a; Manjoro et 252 

al., 2017) and aeolian sands (e.g. Liu et al., 2016; Gholami et al., 2017a,b). Here we build upon this 253 

approach by exploring the potential of the GLUE methodology for distinguishing spatially proximal 254 

aeolian dust sources with similar underlying geology and geomorphology. We demonstrate its efficacy 255 

at formally quantifying the uncertainty distributions associated with aeolian dust fingerprinting due 256 

to spatial and temporal variation in the dust cycle, and use the method to reveal spatial complexity - 257 

alongside an unexpected lack of temporal complexity - in the nature of the dust sources. 258 

 259 

5.1 Environmental context of dust emissions 260 

The strong interannual correlation between dusty days and the surface area of exposed lake floors  261 

indicates that i) dust storms in the Sistan-Hamoun region are directly related to the dryness of the 262 

Hamoun lakes, and ii) these lake beds are the main source of dust emissions (Goudie and Middleton 263 

2006; Rashki et al., 2012; 2013a; 2013b; 2015). Such relationships are not uncommon, as worldwide 264 

observations suggest that exposed dry lake beds can govern the frequency and intensity of dust 265 
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storms; for example, at Owens Lake, USA (Reheis et al., 2009), Aral Sea, Uzbekistan (Breckle et al., 266 

2012), Makgadikgadi pan complex; Etosha Pan, southern Africa (Prospero et al., 2002; Mahowald et 267 

al., 2003; and Washington et al., 2003); and Lake Eyre, Australia (Baddock et al., 2009). 268 

 269 

The frequency and magnitude of dust emissions from the Hamoun Lakes has also been related to 270 

annual/decadal scale variations in the surface area of the lakes, which varies dramatically. At its 271 

maximum extent, observed (following the 1998 spring-melt Hirmand River floods (Rashki et al., 272 

2012a), the Hamoun lake complex forms a single body of water ~4500 km2 in area. This is comprised 273 

of Hamoun Hirmand (~1400 km2), Hamoun Saberi (~1400 km2) and Hamoun Puzak (~1700km2). During 274 

more typical lake-full episodes, these bodies of water are not conjoined; for instance, during the spring 275 

of 1996 (Figure 6a), Hamoun Saberi spanned ~815km2 and Hamoun Puzak spanned 375km2. Hamoun 276 

Hirmand lies mostly downwind of Zabol, and hence is not considered further. Between 1999 and 2010 277 

a prolonged drought, likely related to the El Nino Southern Oscillation, resulted in the rapid and 278 

sustained desiccation of the Hamoun lakes, with a concomitant increase in the frequency of dusty 279 

days (Rashki et al., 2012; 2013). Since 2010, lake levels have been highly variable (Fig. 6), with returns 280 

to lake-full conditions experienced around 2011, but a subsequent return to large areas of exposed 281 

dry lake beds in recent years.  282 

The implications of such changes can develop rapidly. Within the timeframe of this study (June-283 

October 2014), Hamoun Puzak and Hamoun Saberi lost around 295 km2 and 640 km2 of water surface 284 

area, respectively (i.e. 98.5% and 99.9% of their extent on June 14th) (Fig. 7). This desiccation affected 285 

Hamoun Saberi and Puzak proportionally at very similar rates, but Saberi’s larger surface area at the 286 

start of this study led to greater absolute change in lake floor exposure area at Saberi. During this 287 

period, there was no rainfall recorded at the Zabol meteorological station, but the persistent ‘Wind of 288 

120 Days’ blew from 327° ± 36° during June-October, with daily average windspeeds up to 35 mph, 289 

and 50 of the 138 days of the study period exceeding daily averages of 20 mph. 290 

 291 
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 292 

Figure 6. Decadal scale changes in the Hamoun Lakes. Following lake-full conditions in the late 1990s 293 

(a), a sustained decade of drought (b and c) resulted in the exposure of large areas of dry lake-beds 294 

and therefore potential dust sources. Since then, levels have varied and often changed rapidly (d, e and 295 

f). All images are infrared/red/green composites based on Landsat 5 and 8 imagery, using Bands 4/3/2 296 

and 5/4/3 respectively. Vegetation is shown as red tones.  297 
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 298 

Figure 7. Changes in the surface extent of the Hamoun Lakes between June and September, 2014. 299 

Note the rapid desiccation during June and July, and resultant exposure of new surfaces for potential 300 

deflation. 301 
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5.2. Dust sources: dry beds of Hamoun Lakes 304 

The GLUE results (Figs 4 and 5) reveal that the dominant source of dust collected at Zabol is Hamoun 305 

Puzak, and also that in general, the sources of the dust vary little over the three month period from 306 

June to the beginning of October, 2014. This finding is unexpected, for a number of reasons. Firstly, 307 

with the wind at Zabol during this period coming from the northwest to north-northwest (327° ± 36°), 308 

the most obvious candidate source of the Zabol dust is the upwind Hamoun Saberi (Figures. 1 and 7). 309 

Yet, consistently, Hamoun Puzak contributes ~40-90% (uncertainties included) of the dust received at 310 

Zabol. Furthermore, given the rapid increase in Saberi’s exposed dry bed during the early period of 311 

sampling, its contribution would be expected to increase proportionally over this period. But Saberi’s 312 

contributions actually vary little during the season (Fig. 4). When the surface area of the lakes is 313 

considered, either relative to lake-full conditions (Figure 8a and 8c), or as absolute surface areas 314 

(Figure 8b and 8d), there is little temporal relationship with the relative dust contributions of the two 315 

lake beds. 316 

 317 

Similarly, investigation of the meteorological conditions during June-October do not readily explain 318 

the dominance of Hamoun Puzak. There is no clear correlation with either wind magnitude, or 319 

direction, that can readily explain the dominance of Puzak, and no obvious  explanation arise for the 320 

occasional excursions when other sources contribute markedly more. For instance,  on August 27th 321 

replicate samples were collected (S33 and S34 in Fig. 4) and yield consistent results- note that, for 322 

consistency, only one of these samples is included in Figs. 8 and 9.  323 

 324 

These result suggest that Hamoun Puzak – or at least the western margin of Hamoun Puzak, where 325 

the source samples were collected (Fig. 1) - is a prolific and persistent source of dust over Zabol 326 

irrespective of the existence of large adjacent alternative sources. Why is Hamoun Puzak such an 327 

effective dust emitter? And why, despite its size and position directly upwind of Zabol, does Hamoun 328 

Saberi contribute relatively little? We propose that several factors may be at play, as follows.  329 
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 330 

Figure 8. The relative contributions of a) and b) Hamoun Puzak and c) and d) Hamoun Saberi, plotted 331 

alongside a) and c) the surface area of the lakes (expressed as a percentage of the 1996 lake-full 332 

condtions) and b) and d) the absolute surface area of the lakes. There is no consistent trend in dust 333 

provenance, despite the changing area of the potential sources. Solid lines indicate the median 334 

estimate, dashed lines the first and third quartiles and dotted lines the 2.5% and 97.5% bounds. 335 
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 336 

Figure 9. The dominant dust contribution from Hamoun Puzak (top; key for lines as in Figure 8), shown 337 

alongside the magnitude of dust collected at Zabol (bars), and the mean daily wind speed (thin solid 338 

line) and variance in mean wind direction (bold dashed line).  339 

 340 

First, let us consider the hydrological setting and sedimentology of the area. The Hamoun Lakes are 341 

predominantly fed with water from the Hirmand River to the east, with the Khash River also feeding 342 

directly into Hamoun Puzak from the east. Hamoun Saberi is fed largely from the north by the Harut 343 

and Farah rivers. The sampled region at the western margin at Hamoun Puzak lies in series of channels 344 

and small closed basins which act as spillways connecting the lakes during lake-full episodes, and thus 345 

is likely to have distinctly different sedimentology from lake bed areas subject to direct lacustrine 346 

sedimentation (King et al., 2011, Sweeney et al., 2011).  Evidence that these sediments are distinct 347 

from those of Hamoun Saberi is implicitly provided in the primary function of the DFA used here to 348 

define the characteristics of these dusts (Fig. 3). The wind regime necessary for aeolian transport to 349 

Zabol from western Hamoun Puzak is compatible with this zone being a dominant source, as northerly 350 

orientation lies well within the 327° ± 36° (one sigma) direction of the observed winds. It may also be 351 
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that the transport pathways associated with the low-level jet from the north are strongly impacted by 352 

topography. We note that wind streaks evident on the satellite imagery of the region suggest that 353 

topography is steering and deflecting local winds in a complex manner. 354 

 355 

This orientation, however, raises another question: Why does Hamoun Saberi, which lies directly 356 

upwind of Zabol, not contribute more to Zabol’s dust flux, especially during the latter part of our study 357 

when an additional 640 km2 of dry lake bed became exposed? It is well-reported that dust production 358 

can be spatially highly variable, even at sub-basin scales (Mahowald et al., 2003, Reheis et al., 2002, 359 

Bullard et al., 2008). One possibility relates to the differing geochemistry of the sediments that can 360 

promote the formation of protective crusts. Field experiments have shown that, dry river courses that 361 

are replenished frequently with fine-grained fluvial sediment can be much more effective at producing 362 

deflatable dust relative to playas and, counter-intuitively, playa centres are relatively low emission 363 

sources (Sweeney et al., 2011, King et al., 2011). Dry lake-bed deposits from the Mojave, for instance, 364 

have been reported to yield less dust than those with fluctuating water-levels (Reynolds et al., 2007), 365 

and the progressive and rapid desiccation of Hamoun Saberi during the study period may have been 366 

simply unfavourable for the generation of deflatable dust.  367 

 368 

Conversely, it may be that exogenic water supply from the northerly channels sufficiently dampened 369 

the surface to limit additional deflation. We note that shallow flooding was observed during the field 370 

sample collection, despite the lack of rain observed either in Zabol, or the fortnightly Landsat images. 371 

Over longer timescales, rates of aeolian erosion have been shown to inversely relate to soil moisture 372 

(Whitney et al., 2015). Although the whole region is sparsely vegetated, the role of vegetation in 373 

influencing surface roughness and thus susceptibility to aeolian erosion also cannot be overlooked 374 

(e.g. Cowie et al., 2013, Li et al., 2007). Lastly, we point to the cause of the additional 13% of variability, 375 

which was not well explained by the discriminant function analysis of the source sediments. This 376 

variability may imply that a significant component of Zabol dust derives from outside the immediate 377 

area of the Hamoun Lakes. Dust plumes transported from Karakum desert in Turkmenistan may affect 378 

the Sistan region (Kaskaoutis et al., 2015) and may be a source of exogenous dust not accounted for 379 

among the four potential sources we sampled. In short, further work is needed to identify precisely 380 

why Hamoun Puzak dominates the aeolian dust flux at Zabol. 381 

 382 

5.3. Dust sources: cultivated and uncultivated land 383 

The connection between land management, agriculture and aeolian dust emissions are well 384 

documented (Wiggs and Holmes, 2011, Okin et al., 2001), and the role of agriculture in exacerbating 385 
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drought-driven dust events such as the decade-scale ‘Dust Bowl’ of 1930s USA is clearly established 386 

(Worster, 2004). We find that the cultivated cropland to the north of Zabol is the region’s second-387 

largest overall source of dust (Fig. 4), slightly out-stripping Hamoun Saberi, and contributing 388 

substantially more than uncultivated rangeland with sparse vegetation. Desertification (i.e. semi-arid 389 

and arid land degradation) has been recognized in other regions of Iran (Sepehr et al., 2007), and given 390 

the difficulties of agriculture in such an extremely dry and hot climate, it is unsurprising that 391 

sustainable land management is difficult to achieve. The spread of wind erosion is challenging land 392 

managers worldwide - from the Argentinian Pampas (Buschiazzo and Zobeck, 2008) to the Tibetan 393 

Plateau (Zhang et al., 2012); and even temperate regions such as southern Sweden (Barring et al., 394 

2003). The findings here that cultivation-based farming is the second largest contributor to Zabol’s 395 

dust flux (with median contributions of 4-25% for individual samples) highlights an anthropogenic dust 396 

source that may be quelled through more considered farming practices in the future.  397 

 398 

6. Conclusion 399 

Identifying source(s) of aeolian sediments (sand and dust) is essential to improved planning and 400 

management of arid and semi-arid regions. Here we present a quantitative sediment fingerprinting 401 

approach coupled with the GLUE methodology to quantify source contributions of dust to the city of 402 

Zabol in the Sistan-Hamoun region of south-east Iran. Zabol consistently ranks globally as one of the 403 

most susceptible to fine (PM2.5 and PM10) aerosol pollutants. Using GLUE, we have assigned 404 

quantitative estimates of the relative contributions of four potential dust sources; two dry lake beds 405 

(Hamoun Puzak and Hamoun Saberi), cultivated land, and sparsely-vegetated uncultivated rangeland. 406 

The dry bed of Hamoun Puzak is the major source supplying sediment for dust samples, with cultivated 407 

land contributing more than Hamoun Saberi or uncultivated areas. Robust estimates of uncertainty 408 

reveal that whilst the other three dust sources are broadly similar in magnitude, the western end of 409 

Hamoun Puzak is undoubtedly the main source.  410 

 411 

The samples used for these analyses were collected over a three-month period, during the first half of 412 

which the surface water extent of both Puzak and Saberi lakes decreased by > 98%.Yet, the relative 413 

contributions from the different land classes remained remarkably consistent. We also note that 414 

despite a persistent seasonal wind bearing NW-NNW upon Zabol, the main dust source lies to the 415 

northerly segment of the winds observed. This suggests that either the median wind direction is not 416 

the most dust-bearing, or the transport pathways are more complex than suspected. 417 
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Our results demonstrate both the potential and the necessity of combining quantitative  provenancing 419 

techniques with robust uncertainty methods and, ultimately, improved land management. The 420 

straightforward approach of linking the main wind direction to a large and rapidly-drying lake bed 421 

(Hamoun Saberi) does not yield a good outcome, in this case. Spatial variation in dust sources has 422 

been identified elsewhere, most strikingly at the Bodélé Depression in the Chadian Sahara 423 

(Washington et al., 2003); here we demonstrate the application of methods with the scope to identify 424 

such spatial variation from the point of receipt of the dust. We are unable to outline the exact reasons 425 

for Hamoun Puzak’s susceptibility to aeolian erosion. However, we attribute notable influence to the 426 

geomorphological conditions of the western arm of the Puzak, with its array of interconnected small 427 

basins and spillways proving more prone to generating dusts emissions. 428 

 429 
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Table 1: Summery characteristics of dust samples collected in Zabol during 21 June to 4 October, 697 
2014. 698 
  699 

dust sample 

no 

Sampling date W V* (m/s) dust mass 

(ug/m3) 

dust sample 

no 

Sampling date W V* 

(m/s) 

dust mass 

(ug/m3) 

1 23 June 2014 7.1 270.2 30 24 August 2014 6.5 300.15 

2 25 June 2014 8.6 1180.5 31 25 August 2014 9 695.65 

3 26 June 2014 6.3 380 32 26 August 2014 10.4 1100.15 

4 29 June 2014 8.1 500.6 33 27 August 2014** 9.8 1052 

5 30 June 2014 9 458 34 27 August 2014*** 9.8 922.39 

6 4 July 2014 9.5 7800 35 28 August 2014 8 606.29 

7 5 July 2014 8.9 570.2 36 29 August 2014 7.4 271.3 

8 11 July 2014 10.3 724 37 3 Sep 2014 10 3594.92 

9 12 July 2014 10.5 1700.7 38 4 Sep 2014 11.4 3594.92 

10 13 July 2014 10.5 831 39 5 Sep 2014 8.1 339.56 

11 14 July 2014 8.9 370.3 40 6 Sep 2014 8.5 1243.88 

12 18 July 2014 11.3 740.2 41 8 Sep 2014 6.1 186.21 

13 19 July 2014 8.3 1800 42 10 Sep 2014 9.1 3188.85 

14 21 July 2014 4.8 320.8 43 13 Sep 2014 7.4 296.8 

15 3 August 2014 12.3 715.3 44 16 Sep 2014 4.6 213.77 

16 4 August 2014 10 1600 45 17 Sep 2014 4.3 192.4 

17 5 August 2014 5.1 216 46 19 Sep 2014 10.1 10785.5 

18 6 August 2014 6.6 246.4 47 20 Sep 2014 8.5 1013.43 

19 7 August 2014 10 1500 48 21 Sep 2014 4.9 111.76 

20 8 August 2014 10 1803 49 22 Sep 2014 2.8 179.61 

21 9 August 2014 10 480.04 50 24 Sep 2014 3.4 155.98 

22 10 August 2014 8 560.04 51 26 Sep 2014 2.3 165.52 

23 11 August 2014 9.1 4500 52 27 Sep 2014 5.5 274.83 

24 12 August 2014 8.3 720 53 29 Sep 2014 4 90.31 

25 13 August 2014 8.3 1480 54 30 Sep 2014 7.1 814.46 

26 14 August 2014 11.5 9004.58 55 1 Oct 2014 5.1 413.15 

27 16 August 2014 10.9 3529.4 56 2 Oct 2014 5.3 331.67 

28 18 August 2014 5.1 126.74 57 3 Oct 2014 7.5 597.6 

29 21 August 2014 8.3 498.5     

        

* W V indicates Wind Velocity; ** Sample collected on the day; *** Sample collected on the night.  700 
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Table 2: Results of a two-stage statistical process for selecting optimum composite fingerprints for 704 
distinguishing sources of dust.  705 

Kruskal-Wallis H test Stepwise DFA 

Fingerprint 

property 

Chi-Square P-value Step Entered 

fingerprint 

Wilk’s lambda 

Trace elements 1 Fe 0.356 

Au 6.79 0.079 2 Sr 0.188 

Pt 1.58 0.664 3 Mn 0.081 

Mg 20.83 0.000** 4 Cr 0.053 

Al 1.48 0.686 5 Pb 0.033 

Sr 20.6 0.000**    

Li 22 0.000** *Statistically significant at P<0.05 

Fe 20.9 0.000** ** Statistically significant at P<0.01 

Cr 19.5 0.000**    

Cu 19.5 0.000**    

Zn 5.16 0.16    

As 9.9 0.019*    

Ni 20.75 0.000**    

Pb 9.58 0.022*    

Mn 20.24 0.000**    

Co 18.73 0.000**    

Sn 12.9 0.005**    

Ions    

Na+ 7.24 0.065 

NH+
4 2.6 0.456    

K+ 4 0.254    

Cl- 0.4 0.941    

NO‾
2 3.3 0.358    

NO‾
3 7.01 0.072    

Mg2+ 1.38 0.709    

Ca+ 14.5 0.002**    
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21  Quantitative estimates and uncertainties of four different dust sources are discriminated.

22  One dry lake, Hamoun Puzak, is by far the dominant dust source, despite others nearby.

23  The major dust source is insensitive to large changes in exposed local dry lake beds.

24  Cultivated land is the second most important dust source, ahead of some playas.
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2

3 HIGHLIGHTS

4  The GLUE model is applied to reveal the provenance of aeolian dust in Zabol, Iran.

5  Quantitative estimates and uncertainties of four different dust sources are discriminated.

6  One dry lake, Hamoun Puzak, is by far the dominant dust source, despite others nearby.

7  The major dust source is insensitive to large changes in exposed local dry lake beds.

8  Cultivated land is the second most important dust source, ahead of some playas.

9

10 Abstract

11 Identifying the sources of aeolian dust is a crucial step in mitigating the associated hazards. We apply 

12 a Generalized Likelihood Uncertainty Estimation (GLUE) model to constrain the uncertainties 

13 associated with sediment fingerprinting of atmospheric dust in the Sistan region on the Iran-

14 Afghanistan border, one of the world’s dustiest places. 57 dust samples were collected from the 

15 rooftop of the Zabol Department of Environmental Protection during a summer dusty period from 

16 June to October 2014, in addition to 31 surface soil samples collected from potential sources nearby, 

17 including cultivated land (n=8), uncultivated rangeland (n=7), and two dry lakes: Hamoun Puzak (n=10) 

18 and Hamoun Saberi (n=6). Dust and soil samples were analyzed for 24 tracers including 16 geochemical 

19 elements and 8 water-soluble ions. Five optimum composite fingerprints (Fe, Sr, Mn, Cr and Pb) were 

20 selected for discriminating sources by a two-stage statistical process involving a Kruskal-Wallis test 

21 and stepwise discriminant function analysis (DFA). Uncertainty ranges for source contributions of dust 

22 determined by the GLUE model showed that the dry lake Hamoun Puzak is the dominant source for 

23 all dust samples from Zabol and cultivated land is a secondary source. We found marked spatial 

24 variance in the importance of regional dry lake beds as dust sources, and temporal persistence in dust 

25 emissions from Hamoun Puzak, despite very large areas of adjacent lake beds drying during the study 

26 period. Aeolian sediment fingerprinting studies can benefit considerably from the constraints 

27 provided by modelling frameworks, such as GLUE, for quantifying the uncertainty in dust provenance 

28 data. 
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29

30 KEY WORDS: Sediment fingerprinting, uncertainty, GLUE, atmospheric dust, Iran

31

32 1. Introduction

33 Constraining the source of atmospheric dust particles circulating in the ancient past as well as the 

34 present-day is essential to understand the manifold implications of dust in the Earth system (Ridgwell, 

35 2002; Goudie and Middleton, 2006; Shao et al., 2011). Ancient dust deposits are also archives of long-

36 term environmental change (Dietze et al., 2016); the best-known and longest being the >8 Myr loess 

37 record in China (Sun & Zhu 2010). Present-day dust storms trigger a series of negative off-site and on-

38 site repercussions (Goossens, 2003). Off-site effects include respiratory disease in humans and 

39 animals, contamination of food and water supplies, and interference with traffic safety, machinery, 

40 and electronics. On-site effects include the loss of soil organic matter, nutrients, and overall 

41 agricultural productivity (Goudie and Middleton, 2006). From this perspective, identifying sources of 

42 dust and quantifying multi-source contributions and their uncertainties is a key step towards hazard 

43 mitigation, especially in drylands.

44  

45 A diverse range of techniques have been employed for tracing sources of atmospheric dust, including 

46 isotopic ratios (e.g., Krom et al., 1999; Nakano et al., 2004; Grousset and Biscaye, 2005; Chen et al., 

47 2007; Cao et al., 2008; Wang et al., 2005; Rio-Salas et al., 2012; Yang et al., 2009); mineralogical and 

48 chemical characteristics (Shen et al., 2009); meteorological data (Rezazadeh et al., 2013; Nabavi et al., 

49 2016; Ge et al., 2016; Rashki et al., 2017); synthesis of isotopic and geochemical data (e.g., Aarons et 

50 al., 2017; Wei et al., 2017; Chavagnac et al., 2008); synthesis of trace element and water-soluble ion 

51 analyses (Dahmardeh Behrooz et al., 2017a,b); numerical simulation (Hamidi et al., 2014; Nabavi et 

52 al., 2017); satellite data (Long et al., 2016; Cherboudj et al., 2016; Schepanski et al., 2012); and 

53 multidisciplinary approaches (Yan et al., 2015; Cao et al., 2015). While most of the studies listed above 

54 are highly successful at inferring dust sources, we note that in many cases the uncertainties associated 

55 with ascribing provenance are not considered formally. This is an important omission for two reasons: 

56 1) airborne dust is commonly generated simultaneously from multiple populations and areas of fine-

57 grained particles; and 2) these multiple populations are, in turn, typically an amalgam generated from 

58 different sources and mixed to differing degrees over timescales ranging from geological to individual 

59 storm events. In other words, dust provenance presents a very challenging mixing problem and hence 

60 uncertainty is fundamental. These two points ultimately stem from geomorphic processes of fine-

61 particle production, transport, deposition, and reworking. 

62
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63 Sediment fingerprinting is widely used to quantify source contributions of fluvial sediments (e.g., 

64 Collins et al., 1997; Walling, 2005; Stone et al., 2014; Zhou et al., 2016a; and Manjoro et al., 2017) and 

65 its application to aeolian studies is growing (e.g., Liu et al., 2016; and Gholami et al., 2017a,b). 

66 Moreover, the uncertainties involved with this method are gaining increased attention (Walling, 

67 2013). In order to manage and quantify the uncertainty in fluvial sediment fingerprinting, some studies 

68 have applied a Monte Carlo simulation framework (e.g., Motha et al., 2003; Collins et al., 2012; Voli et 

69 al., 2013; Smith and Blake, 2014; Stone et al., 2014; Sherriff et al., 2015; and Vale et al., 2016). 

70 Similarly, Bayesian approaches are also applied to fingerprinting aeolian sands (Gholami et al., 2017b) 

71 and fluvial sediments (e.g., Massoudieh et al., 2013; Cooper et al., 2014; Cooper et al., 2015; Stewart 

72 et al., 2015; and Abban et al., 2016). Yet, several challenges remain in adequately capturing the 

73 uncertainty associated with diverse aeolian dust sources and pathways (Walling, 2013) and we suggest 

74 that techniques developed in other disciplines may offer a way forward (Gholami et al., 2017b). 

75

76 First proposed for hydrological modelling by Beven and Binley (1992), GLUE (Generalized Likelihood 

77 Uncertainty Estimation) has gained much favour as a tool for evaluating uncertainty estimates (e.g., 

78 Hassan et al., 2008; Zhou et al., 2016b; Viola et al., 2009; Mantovan and Todini, 2006; Gong et al., 

79 2011). Here, we apply GLUE to the problem of dust provenance in the Sistan-Hamoun region on the 

80 Iran-Afghanistan border. Since it constitutes a major dust source for south-west Asia, Sistan has been 

81 the focus of numerous previous investigations (e.g., Goudie and Middleton, 2006; Rashki et al., 2012, 

82 2013 a,b, 2015; Alizadeh Choobari et al., 2014). Recent work has generated an important dataset of 

83 dust samples from a meteorological station at Zabol, which has been analyzed geochemically to 

84 provide qualitative estimates of source (Dahmardeh Behrooz et al., 2017a) and the temporal 

85 variability of dust emissions (Dahmardeh Behrooz et al., 2017b).  Here we provide the first attempt to 

86 formally quantify aeolian dust provenance and associated uncertainties with this dataset using GLUE.

87

88 2. Study area

89 The Sistan-Hamoun study area (Fig. 1) straddles the border between Afghanistan and the Sistan and 

90 Baluchestan province of south-eastern Iran (30˚5ʹ to 31˚28ʹ N and 61˚15ʹ to 61˚50ʹ E) (Rashki et al., 

91 2012, 2013a). The Hamoun Lakes complex comprises three main lakes: Hamoun Hirmand, Hamoun 

92 Saberi, and Hamoun Puzak, which are recharged primarily from Afghanistan by the Hirmand 

93 (Helmand) River with smaller contributions from streams to the north and west (Esmaeili and Omrani, 

94 2007). Following exceptionally high runoff, the lakes form a single body of water ~5700 km2 in area 

95 and ~13 Mm3 in volume (Sharifikia, 2013), though such events have become rare in recent decades 
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96 while dust emissions have grown correspondingly in magnitude (Goudie and Middleton, 2006; Rashki 

97 et al., 2012). 

98

99 [Approximate location of figure 1]

100 The climate in the Sistan region is arid to hyper-arid, and land-use is chiefly linked to agriculture and 

101 fishing. At Zabol meteorological station (Fig. 1), mean rainfall is 55 mm y-1 and mean evaporation is 

102 >4000 mm y-1 (Moghaddamnia et al., 2009). The prevailing wind is the notorious Levar or “Wind of 

103 120 Days” from the north, which in the summer is accelerated into a Low-Level Jet (LLJ) by a persistent 

104 high-pressure system over the Hindu Kush and the channeling effect of the surrounding topography 

105 (Alizadeh-Choobari et al., 2014; Kaskaoutis et al., 2016, 2017). As a result, the city of Zabol and its 

106 ~135,000 inhabitants experience dust storms of catastrophic proportions, resulting in Zabol ranking 

107 as the world's most polluted city for particulate matter less than 2.5 µm (PM2.5) in size (World Health 

108 Organisation, 2016).  

109

110 3. Methods

111 3.1 Field sampling 

112 We set out to characterise the soil materials for four different potential sources of atmospheric dust 

113 emissions to the north of Zabol city (Fig. 1): 1) the dry lake-bed of Hamoun Puzak (Fig. 2a); 2) the dry 

114 lake-bed of Hamoun Saberi (Fig. 2b); 3) cultivated arable farmland generally without crop-cover in 

115 summer (Fig. 2c); and 4) bare rangeland surfaces with sparse to negligible natural vegetation cover 

116 (Fig. 2d). A total of 31 surficial soil samples (<5 cm depth in a 30 cm2 area) were collected from the 

117 four potential sources (Table 1). We sieved the soil samples with a 400-mesh sieve, retaining particles 

118 with a nominal geometric diameter of < 38.5 μm, which is roughly equivalent to the aerodynamic 

119 diameter of dust (Cao et al., 2008). After sieving, we retained about 5 g of dust-sized material from 

120 each sample. 

121

122 [Approximate location of Figure 2]

123

124 During an exceptionally dusty summer period in Zabol (23 June to 4 October 2014), 57 atmospheric 

125 dust samples were collected at one- to four-day intervals (Table 1) with sampling apparatus fitted to 

126 the rooftop of the Department of Environmental Protection (5 m above ground level, 31˚N, 61.3˚E) in 

127 an outer suburban area with no major industrial activities nor local fugitive dust sources. Our two dust 

128 samplers (Model Chrono, Zambelli, Milan) were equipped with cyclones operating at a flow rate of 

129 16.7 L/min as per the EU norms (Dahmardeh Behrooz et al, 2017a; 2017b). Total suspended-particle 
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130 (TSP) samples were collected in Teflon filters (0.45 μm pore size and 47 mm diameter) and then 

131 desiccated for 24-hours at 25 °C. Dust mass concentrations were measured gravimetrically by 

132 weighing the Teflon filters before and after sampling using an analytical balance (Adam model) with 

133 ±0.1 mg precision. We refrigerated all dust samples at 4˚C until chemical analysis (Dahmardeh Behrooz 

134 et al., 2017 a). 

135

136 3.2 Laboratory analysis of water-soluble ions and trace elements

137 We measured the concentrations of 8 water-soluble ions in our samples (viz., Na+, NH+
4, K+, Ca2+, Mg2+, 

138 Cl‾, NO‾
3, NO‾

2). Three cations (Na+, NH+
4 and K+) were measured with a Shim-pack IC-C1 (Shimadzu 

139 DGU-12A) using 5-mM HNO3 solution as eluent. Three anions (Cl‾, NO‾
3 and NO‾

2) were measured with 

140 a Shim-pack ICA1 (Shimadzu DGU-12A), using 2.5–mM phthalic acid combined with 2.4-mM tris-

141 (hydroxymethyl) aminomethane as eluent (Lin, 2002). Two cations (Ca2+ and Mg2+) were measured via 

142 flame atomic absorption spectrometry (Philips, PU9400X, England).

143

144 After acid digestion, all samples were analyzed to determine the concentrations of 16 trace elements 

145 (viz., Al, As, Au, Co, Cr, Cu, Fe, Li, Mg, Mn, Ni, Pb, Pt, Sn, Sr, and Zn) via Inductively Coupled Plasma 

146 Atomic Emission Spectroscopy (ICP-OES, Perkine Elmer, Optima 2000, USA). Further details of 

147 sampling and laboratory procedures are given in Dahmardeh Behrooz et al. (2017a, b).

148

149 3.3 Two-stage method: Kruskal-Wallis test and discriminant function analysis

150 The measurements of 8 water-soluble ions and 16 trace elements form the basis of the sediment 

151 fingerprinting method aimed at identifying the source contribution of the Zabol dust samples. We 

152 adopt a two-stage statistical procedure following the approach of Collins et al. (1997) to identify the 

153 most suitable tracers for source discrimination. In stage one we tested the primary ability of tracers 

154 to discriminate dust sources using the Kruskal-Wallis H test. Tracers with critical values at the 95 % 

155 confidence levels or better were taken to the second stage in which we identified optimum composite 

156 fingerprints using a stepwise discriminant function analysis based on minimization of Wilk’s lambda. 

157

158 3.4 Generalised Likelihood Uncertainty Estimation (GLUE)

159 GLUE was first devised by Beven and Binley (1992) as a means of sensitivity analysis and uncertainty 

160 estimation in environmental model outputs. We use GLUE to quantify the uncertainty in the sediment 

161 fingerprinting results via the following five steps: 

162
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163 1) Random sampling of parameter sets (300,000 iterations) are conducted using the Latin Hypercube 

164 Sampling (LHS) method (Zhou et al, 2016b), by assuming source contributions from each source are 

165 non-negative and that total contributions sum to unity. Due to the lack of prior information, we used 

166 a uniform distribution as the prior distribution for all parameters.

167

168 2) Selection of a likelihood function and behavioral parameter thresholds. Here, we adopt the Nash–

169 Sutcliffe coefficient (ENS) as the likelihood function (Jin et al, 2010):

170

171                                                                                               (eq.1)𝑀𝐸 = 1 ‒  
∑(𝑂𝑜𝑏𝑠 ‒ 𝑂𝑠𝑖𝑚)
∑(𝑂𝑜𝑏𝑠 ‒ Ộ𝑜𝑏𝑠) = 1 ‒  

𝜎2
𝑖

𝜎 2
𝑜𝑏𝑠

172

173 where Ộobs is the mean value of the observed tracer concentration; Osim is the simulated tracer 

174 concentration; Oobs is the observed tracer concentration; σ2
i is the error variance for the ith model 

175 (i.e., the combination of the model and the ith parameter set) and σ2
obs is the variance of the 

176 observations.

177

178 3) Sampled parameter sets from step 1 are input to the mixing model (equation 2) and the likelihood 

179 function is calculated for each parameter set as: 

180

181                                                                                                                           (eq. 2)     𝐶𝑑𝑢𝑠𝑡 = 𝐶𝑆𝑜𝑢𝑟𝑐𝑒𝑠 × 𝑃

182

183 where P is an m dimensional column vector of sources contribution (sampled parameter sets),  𝐶𝑑𝑢𝑠𝑡

184 is  an n-dimensional column vector of element concentration in sediment sample,  is an n×m-𝐶𝑆𝑜𝑢𝑟𝑐𝑒𝑠

185 dimensional matrix representing mean tracer concentration in sources (each row represents mean 

186 tracer concentration in each source), where n is the number of optimum composite fingerprints (n=5) 

187 and m is the number of dust sources (m=4).

188

189 4) Parameter sets are divided into behavioural and non-behavioural types with respect to a threshold 

190 value (Zhou et al, 2016). In this step, those parameter sets that have likelihood functions greater than 

191 a threshold value were classified as behavioural parameter sets. For the next step, non-behavioural 

192 parameter sets were discarded.

193

194 5) For behavioural parameter sets, likelihood weights are rescaled such that they sum to one, then 

195 each parameter is sorted and we calculate cumulative distributions for each parameter. Quintiles and 

196 uncertainty intervals are calculated via the cumulative distributions. 
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197

198 3.5 Geospatial analysis and climate data

199 Landsat data were downloaded from the United States Geological Survey’s Earth Explorer, and all 

200 analysis was conducted within ArcGIS 10.3. Quantitative analysis of water extent was conducted using 

201 a modified Normalized Difference Water Index (NDWI), based on the green (Band 3) and short-wave 

202 infrared (Band 6) bands of Landsat 8 data (Xu, 2006). Climate data are taken from the Hourly Global 

203 Surface Data (DS3505) dataset for the Zabol station (World Meteorological Organization ID: 40829), 

204 accessed via the legacy Climate Data Online (CDO) portal of the National Oceanic and Atmospheric 

205 Administration’s (NOAA) National Climatic Data Centre (NCDC) online (available at 

206 https://www7.ncdc.noaa.gov/CDO/dataproduct). To calculate back-trajectories for the air mass 

207 affecting Zabol during selected peak dust events of the observation period, we use NOAA’s Hysplit 

208 model (summarized in Stein et al., 2015). Ensemble runs for the 24 hours preceding peak dust events 

209 were run based on airflow at 50, 100 and 500 m above the land surface. Additional remote sensing 

210 data regarding atmospheric dust flux and dust deposition was derived from NASA’s Earthview 

211 platform in the form of a) visible MODIS imagery from July 2014, b) the MERRA-2 monthly PM2.5 dust 

212 deposition product for July 2014 (see Gelaro et al., 2017) and c) the AURA Ozone Monitoring 

213 Instrument (OMI) Aerosol Index product for July 2nd (Torres, 2006), near the start of the observed 

214 period of study.

215

216 4. Results

217 4.1 Kruskal-Wallis test and discriminant function analysis

218 The results of the Kruskal-Wallis tests (Table 2) indicate that among the twenty-four measured 

219 properties (8 water-soluble ions and 16 element concentrations), thirteen trace elements (Mg, Sr, Li, 

220 Fe, Cr, Cu, As, Ni, Pb, Mn, Co, and Sn) and one ion (Ca2+) show statistically significant differences at the 

221 95 %-level between the four potential dust sources (the two dry lake beds, cultivated farmland, and 

222 rangeland areas of natural vegetation cover). Trace elements clearly out-performed water-soluble 

223 ions for tracking spatial sources of dust. Thirteen trace elements were passed to stage-two for 

224 stepwise discriminant function analysis (DFA). The DFA yielded five trace elements (Fe, Sr, Mn, Cr and 

225 Pb) with optimum composite fingerprints that correctly discriminate 87 % of our source samples 

226 (Table 2 and Fig. 3).  

227

228 [Approximate location of Figure 3]

229

230 4.2 Using GLUE to constrain uncertainty in the source contributions of dust 
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231 Uncertainty intervals of source contributions estimated by the GLUE-mixing model at the 95 % 

232 confidence level are presented in Figure 4. These results show that the most important dust source is 

233 clearly Hamoun Puzak (Figs. 4a and 5). Median contributions from this lake-bed span 29 to 88 % 

234 (samples 33 and 45, respectively). Hamoun Saberi is a less important source for our samples. Median 

235 contributions from this lake bed span 3 to 24 % (samples 11 and 33, respectively) (Fig. 4b). The sparsely 

236 vegetated rangeland is the least active dust source. Median contributions span 2 to 22 % (samples 45 

237 and 34, respectively) (Fig. 4c). Cultivated farmland is recognized as the second-most important source 

238 for all of 57 samples. Median contributions from farmland span 4 to 25 % (samples 23 and 34, 

239 respectively) (Figs. 4d). For most samples, the lower-limit of predicted uncertainty is zero for 

240 contributions from the three sources other than Hamoun Puzak (Figs. 4b-d). Figure 5 presents an 

241 overview of the source contributions with all samples plotted together as a frequency histogram.

242

243 Overall, a strong correlation (Pearson’s r = 0.783, p <0.001) can, unsurprisingly, be seen between dust 

244 flux and the logarithm of the windspeed, with a threshold of around 10 m s-1. However, no significant 

245 correlation is observed between the relative contribution of Hamoun Puzak and Saberi, and either the 

246 windspeed (Pearson’s r = -0.06, p = 0.66) or wind direction (Pearson’s r = 0.238, p = 0.07). 

247

248 [Approximate location of Figure 4]

249 [Approximate location of Figure 5]

250

251 5. Discussion

252 Sediment fingerprinting is a highly effective technique for quantifying source contributions of fluvial 

253 sediments (e.g. Collins et al., 1997; Walling, 2005; Stone et al., 2014; Zhou et al., 2016a; Manjoro et 

254 al., 2017) and aeolian sands (e.g. Liu et al., 2016; Gholami et al., 2017a,b). Here we build upon this 

255 approach by exploring the potential of the GLUE methodology for distinguishing spatially proximal 

256 aeolian dust sources with similar underlying geology and geomorphology. We demonstrate its efficacy 

257 at formally quantifying the uncertainty distributions associated with aeolian dust fingerprinting due 

258 to spatial and temporal variation in the dust cycle. Further, we use the method to reveal spatial 

259 complexity—alongside an unexpected lack of temporal complexity—in the nature of the dust sources.

260

261 5.1 Environmental context of dust emissions

262 The strong correlation between dusty days and the surface area of exposed lake floors indicates that 

263 i) dust storms in the Sistan-Hamoun region are directly related to the dryness of the Hamoun Lakes, 

264 and ii) these lake beds are the main source of dust emissions (Goudie and Middleton 2006; Rashki et 
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265 al., 2012; 2013a; 2013b; 2015). Such relationships are not uncommon, as worldwide observations 

266 suggest that exposed dry lake beds can govern the frequency and intensity of dust storms; for 

267 example, at Owens Lake, USA (Reheis et al., 2009); Aral Sea, Uzbekistan (Breckle et al., 2012); 

268 Makgadikgadi pan complex and Etosha Pan, southern Africa (Prospero et al., 2002; Mahowald et al., 

269 2003; and Washington et al., 2003); and Kata Thandi-Lake Eyre, Australia (Baddock et al., 2009).

270

271 The frequency and magnitude of dust emissions from the Hamoun Lakes has also been related to 

272 annual/decadal scale variations in the surface area of the lakes, which varies dramatically. At its 

273 maximum extent, observed following the 1998 spring-melt Hirmand River floods (Rashki et al., 2012a), 

274 the Hamoun lake complex forms a single body of water ~4500 km2 in area. This is comprised of 

275 Hamoun Hirmand (~1400 km2), Hamoun Saberi (~1400 km2) and Hamoun Puzak (~1700km2), with 

276 Hamoun Baringak forming a series of smaller lakes and spillways between Saberi and Puzak. During 

277 more typical lake-full episodes, these bodies of water are not conjoined; for instance, during the spring 

278 of 1996 (Figure 6a), Hamoun Saberi spanned ~815 km2 and Hamoun Puzak spanned 375 km2 (Hamoun 

279 Baringak is here considered part of the western extent of the Puzak basin). Hamoun Hirmand lies 

280 mostly downwind of Zabol, and hence is not considered further. Between 1999 and 2010, a prolonged 

281 drought likely related to the El Nino Southern Oscillation resulted in the rapid and sustained 

282 desiccation of the Hamoun Lakes, with a concomitant increase in the frequency of dusty days (Rashki 

283 et al., 2012; 2013b). Since 2010, lake levels have been highly variable (Fig. 6), with a return to lake-full 

284 conditions experienced around 2011, and a subsequent return to large areas of exposed dry lake beds 

285 in more recent years.

286  

287 Such changes can also develop rapidly. Within the timeframe of this study (June-October 2014), 

288 Hamoun Puzak and Hamoun Saberi lost around 295 km2 and 640 km2 of water surface area, 

289 respectively (i.e. 98.5% and 99.9% of their extent on June 14th) (Fig. 7). The small, shallow Hamoun 

290 Baringak lakes, directly to the north of Zabol, dried especially early in the season, with almost all water 

291 lost by July 2014. This desiccation affected Hamoun Saberi and Puzak proportionally at very similar 

292 rates, but Saberi’s larger surface area at the start of this study led to greater absolute change in the 

293 lake floor exposure area. During this period, there was no rainfall recorded at the Zabol meteorological 

294 station, but the persistent ‘Wind of 120 Days’ blew from 327° ± 36° during June-October, with daily 

295 average windspeeds up to 15 m s-1 (~35 mph) and 50 of the 138 days of the study period exceeding 

296 daily averages of ~9 m s-1 (~20 mph).

297

298 [Approximate location of Figure 6]
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299 [Approximate location of Figure 7]

300

301 5.2. Dust sources: dry beds of Hamoun Lakes

302 The GLUE results (Figs 4 and 5) reveal that the dominant source of dust collected at Zabol is Hamoun 

303 Puzak, and also that in general, the dust sources vary little over the three-month period from June to 

304 the beginning of October, 2014. This finding is unexpected, for a number of reasons. Firstly, as the 

305 wind at Zabol during this period comes from the northwest to north-northwest (327° ± 36°), the most 

306 obvious candidate source of Zabol dust is the upwind Hamoun Saberi (Figures. 1 and 7). Yet, 

307 consistently, Hamoun Puzak contributes ~40-90% (uncertainties included) of the dust received at 

308 Zabol. Furthermore, given the rapid increase in Saberi’s exposed dry bed during the early period of 

309 sampling, its contribution would be expected to increase proportionally over this period. But Saberi’s 

310 contributions actually vary little during the season (Fig. 4). When the surface area of the lakes is 

311 considered, either relative to lake-full conditions (Figure 8a and 8c), or as absolute surface areas 

312 (Figure 8b and 8d), there is little temporal relationship with the relative dust contributions of the two 

313 lake beds.

314

315 [Approximate location of Figure 8]

316

317 Similarly, investigation of the meteorological conditions during June-October do not readily explain 

318 the dominance of Hamoun Puzak. There is no clear correlation with either wind magnitude, or 

319 direction, that can readily explain the dominance of Puzak, and no obvious explanation for the 

320 occasional excursions when other sources contribute markedly more. For instance, on August 27th 

321 replicate samples were collected (S33 and S34 in Fig. 4) and yield consistent results (note that, for 

322 consistency, only one of these samples is included in Figs. 8 and 9). Satellite aerosol observations, 

323 modelled dust deposition, and aerosols indices (Figure 10), whilst confirming the regional importance 

324 of the Hamoun Lakes, do not readily identify localized sources due to their relative spatial coarseness.

325

326 These results suggest that Hamoun Puzak—or at least Hamoun Baringak at the western margin of 

327 Hamoun Puzak, where the source samples were collected (Fig. 1)—is a prolific and persistent source 

328 of dust over Zabol irrespective of the existence of large adjacent alternative sources. Why is Hamoun 

329 Puzak such an effective dust emitter? And why, despite its size and position directly upwind of Zabol, 

330 does Hamoun Saberi contribute relatively little? We propose that several factors have an influence, 

331 as follows. 
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333 [Approximate location of Figure 9]

334 [Approximate location of Figure 10]

335

336 First, let us consider the hydrological setting and sedimentology of the area. The Hamoun Lakes are 

337 predominantly fed with water from the Hirmand River to the east, with the Khash River also feeding 

338 directly into Hamoun Puzak from the east. Hamoun Saberi is fed largely from the north by the Harut 

339 and Farah rivers. The sampled region around Hamoun Baringak and Hamoun Puzak lies in series of 

340 channels and small closed basins which act as spillways connecting the lakes during lake-full episodes. 

341 Such areas are likely to have distinctly different sedimentology from lake bed areas subject to direct 

342 lacustrine sedimentation (King et al., 2011, Sweeney et al., 2011). Evidence that these sediments are 

343 distinct from those of Hamoun Saberi is implicitly provided in the primary function of the DFA used 

344 here to define the characteristics of these dusts (Fig. 3). The wind regime necessary for aeolian 

345 transport to Zabol from Hamoun Baringak is compatible with this zone being a dominant source, as 

346 northerly orientation lies well within the 327° ± 36° (one sigma) direction of the observed winds. It 

347 may also be that the transport pathways associated with the low-level jet from the north are strongly 

348 impacted by topography. We note that wind streaks evident on the satellite imagery of the region 

349 (visible in the northern and western part of Figure 7) suggest that topography is steering and deflecting 

350 local winds in a complex manner. For instance, topographic roughness caused by rocky hills around 

351 Hamoun Saberi may reduce effective winds at the surface. Further detailed analysis of the possible 

352 role of topographic steering of the winds in this, and other comparable studies, is clearly desirable, 

353 but does require high-resolution data and sophisticated modeling of the wind field to achieve 

354 substantial results.

355

356 The mean orientation of the seasonal winds, however, raises another question: Why does Hamoun 

357 Saberi, which lies directly upwind of Zabol, not contribute more to Zabol’s dust flux, especially during 

358 the latter part of our study when an additional 640 km2 of dry lake bed became exposed? It is well-

359 reported that dust production can be spatially highly variable, even at sub-basin scales (Mahowald et 

360 al., 2003, Reheis et al., 2002, Bullard et al., 2008). One possibility relates to the differing geochemistry 

361 of the sediments that can promote the formation of protective crusts. Field experiments have shown 

362 that dry river courses when replenished frequently with fine-grained fluvial sediment can be much 

363 more effective at producing deflatable dust relative to playas and, counter-intuitively, playa centres 

364 are relatively low emission sources (Sweeney et al., 2011, King et al., 2011). Dry lake-bed deposits 

365 from the Mojave in the western US, for instance, have been reported to yield less dust than those with 

366 fluctuating water-levels (Reynolds et al., 2007), and the progressive and rapid desiccation of Hamoun 
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367 Saberi during the study period may have been simply unfavourable for the generation of deflatable 

368 dust. 

369

370 Conversely, it may be that exogenic water supply from the northerly channels sufficiently dampened 

371 the surface to limit additional deflation. We note that shallow flooding was observed during the field 

372 sample collection, despite the lack of rain observed either in Zabol, or the fortnightly Landsat images. 

373 Over longer timescales, rates of aeolian erosion have been shown to inversely relate to soil moisture 

374 (Whitney et al., 2015). Although the whole region is sparsely vegetated, the role of vegetation in 

375 influencing surface roughness and thus susceptibility to aeolian erosion also cannot be overlooked 

376 (e.g. Cowie et al., 2013, Li et al., 2007). Lastly, we point to the cause of the additional 13% of variability, 

377 which was not well explained by the discriminant function analysis of the source sediments. This 

378 variability may imply that a significant component of Zabol dust derives from outside the immediate 

379 area of the Hamoun Lakes. Dust plumes transported from the Karakum desert in Turkmenistan are 

380 also known to affect much of southwest Asia, including the Sistan region (Kskaoutis et al., 2015), and 

381 may be a source of exogenous dust not accounted for among the four potential sources we sampled. 

382 To address these questions, we use the Hysplit model to calculate back-trajectories for three intervals 

383 characterized by high dust deposition during the study period (Figure 11). These confirm variability in 

384 both localized and regional wind trajectories for the high dust-flux days during period July to 

385 September 2014. The role of the Karakum in contributing long-distance flux is supported, over the 24-

386 hour transport window modelled here (Figure 11a). However, there is also evidence of local and 

387 regional variability, with July and August winds coming locally via a north-northwesterly track (over a 

388 still largely inundated Hamoun Saberi), and the September peak in dust emission driven near Zabol by 

389 a due northerly wind, tracking directly over a desiccated Hamoun Baringak and Puzak (Figure 11b). 

390 This is likely related to seasonal variation of the Caspian Sea – Hindu Kush Index (CasHKI), a broadly 

391 east-west atmospheric pressure dipole between 40–50°N, 50–55°E and 35–40°N, 70–75°E  (Kaskaoutis 

392 et al., 2016, 2017). This suggests that the interplay of atmospheric and hydrological controls on dust 

393 emission is crucial in this region. 

394

395 [Approximate location of Figure 11]

396

397 5.3. Dust sources: cultivated and uncultivated rangeland areas

398 The connections between land management, agriculture and aeolian dust emissions are well 

399 documented (Wiggs and Holmes, 2011, Okin et al., 2001), and the role of agriculture in exacerbating 

400 drought-driven dust events such as the decade-scale ‘Dust Bowl’ of 1930s USA is clearly established 
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401 (Worster, 2004). We find that the cultivated cropland to the north of Zabol is the region’s second-

402 largest overall source of dust (Fig. 4), slightly out-stripping Hamoun Saberi, and contributing 

403 substantially more than uncultivated rangeland with sparse vegetation. Desertification, by which we 

404 mean mainly arid land degradation, has been recognized in other regions of Iran (Sepehr et al., 2007), 

405 and given the difficulties for agriculture in such an extremely dry and hot climate, it becomes apparent 

406 that sustainable land management is difficult to achieve. The spread of wind erosion is challenging 

407 land managers worldwide - from the Argentinian Pampas (Buschiazzo and Zobeck, 2008) to the 

408 Tibetan Plateau (Zhang et al., 2012) and even temperate regions such as southern Sweden (Barring et 

409 al., 2003). The findings here that cultivation-based farming is the second largest contributor to Zabol’s 

410 dust flux (with median contributions of 4-25% for individual samples) highlights an anthropogenic dust 

411 source that could be quelled with alternative farming practices. 

412

413 6. Conclusion

414 Identifying source(s) of aeolian sediments (sand and dust) is essential to improve planning and 

415 management of arid and semi-arid regions. Here we present a quantitative sediment fingerprinting 

416 approach coupled with the GLUE methodology to quantify source contributions of dust to the city of 

417 Zabol in the Sistan-Hamoun region of south-east Iran. Zabol consistently ranks globally as one of the 

418 most susceptible to fine (PM2.5 and PM10) aerosol pollutants. Using GLUE, we have assigned 

419 quantitative estimates of the relative contributions of four potential dust sources: two dry lake beds 

420 (Hamoun Puzak and Hamoun Saberi), cultivated land, and sparsely-vegetated uncultivated rangeland. 

421 The dry bed of Hamoun Puzak is the major source supplying sediment for dust samples, with cultivated 

422 land contributing more than Hamoun Saberi or rangeland areas. Robust estimates of uncertainty 

423 reveal that whilst the other three dust sources are broadly similar in magnitude, the western end of 

424 Hamoun Puzak (Hamoun Baringak) is undoubtedly the main source. 

425

426 The samples used for these analyses were collected over a three-month period, during the first half of 

427 which the surface water extent of both Puzak and Saberi lakes decreased by > 98%. Yet, the relative 

428 contributions from the different land classes remained remarkably consistent. We also note that 

429 despite a persistent seasonal wind bearing NW-NNW upon Zabol, the main dust source lies to the 

430 northerly segment of the winds observed. This suggests that either the median wind direction is not 

431 the most dust-bearing, or the transport pathways are more complex than suspected. Hysplit analyses 

432 suggest important temporal variations during the windy season.
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434 Our results demonstrate both the potential and the necessity of combining quantitative provenancing 

435 techniques with robust uncertainty methods and, ultimately, improved land management. The 

436 straightforward approach of linking the main wind direction to a large and rapidly-drying lake bed 

437 (Hamoun Saberi) does not yield a good predictive outcome, in this case. Spatial variation in dust 

438 sources has been identified elsewhere, most strikingly at the Bodélé Depression in the Chadian Sahara 

439 (Washington et al., 2003); here we demonstrate the application of methods with the scope to identify 

440 such spatial variation from the point of receipt of the dust. We are unable to outline the exact reasons 

441 for Hamoun Puzak’s susceptibility to aeolian erosion. However, we attribute notable influence to the 

442 geomorphological conditions of the western arm of the Puzak, with its array of interconnected small 

443 basins (Hamoun Baringak) and spillways proving more prone to generating dust emissions.

444
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729 Figure Captions

730 Figure 1: Sampling sites in the Sistan region: the dry-bed of Hamoun Puzak (HP); the dry-bed of 

731 Hamoun Saberi (HS); uncultivated range Land (RL); and cultivated Land (CL). Inset shows the hourly 

732 averaged wind regime for the period June-October 2014 (data source: National Climatic Data Centre, 

733 Climate Data Online). 

734

735 Figure 2. Typical examples of the land surfaces we sampled. a) Hamoun Puzak dry lake-bed, b) Hamoun 

736 Saberi dry lake-bed, c) close-up view of cultivated agricultural land surface during the summer months, 

737 and d) sparsely vegetated, uncultivated rangeland. 

738

739 Figure 3. Scatterplot constructed from the first and second functions derived from a stepwise DFA for 

740 the source groups including the four land (i.e. Hamoun Puzak (HP), Hamoun Saberi (HS), cultivated 

741 land (CL) and uncultivated rangeland (RL)). Five optimum fingerprints (Fe, Sr, Mn, Cr and Pb) were 

742 used to construct the scatterplot and 87% of the source samples are discriminated correctly.  

743

744 Figure 4. GLUE results for dust source contributions yielding 95% confidence limits (with percentiles 

745 2.5, 25, 50, 75 and 97.5). A) Hamoun Puzak; B) Hamoun Saberi; C) uncultivated rangeland; and d) 

746 cultivated land.

747

748 Figure 5. Summary of all source contributions plotted as a probability density function. 

749

750 Figure 6. Decadal scale changes in the Hamoun Lakes. Following lake-full conditions in the late 1990s 

751 (a), a sustained decade of drought resulted in the exposure of large areas of dry lake-beds (b and c) 

752 and therefore potential dust sources. Since then, levels have varied and often changed rapidly (d, e 

753 and f). All images are infrared/red/green composites based on Landsat 5 and 8 imagery, using Bands 

754 4/3/2 and 5/4/3 respectively. Vegetation is shown as red tones. 
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755

756 Figure 7. Changes in the surface extent of the Hamoun Lakes between June and September, 2014. 

757 Note the rapid desiccation during June and July, and resultant exposure of new surfaces for potential 

758 deflation.

759

760 Figure 8. The relative contributions of a) and b) Hamoun Puzak and c) and d) Hamoun Saberi, plotted 

761 alongside a) and c) the surface area of the lakes (expressed as a percentage of the 1996 lake-full 

762 condtions) and b) and d) the absolute surface area of the lakes. There is no consistent trend in dust 

763 provenance, despite the changing area of the potential sources. Solid lines indicate the median 

764 estimate, dashed lines the first and third quartiles and dotted lines the 2.5% and 97.5% bounds.

765

766 Figure 9. The dominant dust contribution from Hamoun Puzak (top; key for lines as in Figure 8), shown 

767 alongside the magnitude of dust collected at Zabol (bars), and the mean daily wind speed (thin solid 

768 line) and variance in mean wind direction (bold dashed line).

769

770 Figure 10. The dust plume affecting Zabol from the north is evident in remotely-sensed data from July 

771 2014. a) The MODIS Corrected Reflectance Imagery (Red:Green:Blue) 500 m colour composite clearly 

772 shows the plume as a brown streak emanating from near the Hamoun Lakes and tracking 

773 southeastwards. b) The MERRA-2 PM2.5 monthly dust deposition reanalysis data also highlight the 

774 plume to the southeast of the Hamoun Lakes, as does c) the AURA OMI UV-derived Aerosol Index for 

775 July 4th, 2014.

776

777 Figure 11. Hysplit back trajectories for three dust events during the observation period in summer 

778 2014 (4th July – white triangles, 14th August – grey circles, 4th September – black squares). a) Regional 

779 tracks over the 24 hours preceding the observations demonstrate the long-distance transport of dust, 

780 with a likely source in the Karakum Desert of Turkmenistan. b) Local dust transport pathways over the 
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781 Hamoun Lakes to Zabol demonstrate different pathways during the summer dust season, with early 

782 summer pathways (white triangles and grey circles) routing over the still-inundated Hamoun Saberi, 

783 and the September trajectory (black squares) coming over the desiccated Hamoun Baringak and 

784 Puzak.
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786 Table 1: Summary characteristics of dust samples collected in Zabol during 21 June to 4 October, 
787 2014.
788  

dust sample 
no

Sampling date W V* (m/s) dust mass 
(ug/m3)

dust sample 
no

Sampling date W V* 
(m/s)

dust mass 
(ug/m3)

1 23 June 2014 7.1 270.2 30 24 August 2014 6.5 300.15
2 25 June 2014 8.6 1180.5 31 25 August 2014 9 695.65
3 26 June 2014 6.3 380 32 26 August 2014 10.4 1100.15
4 29 June 2014 8.1 500.6 33 27 August 2014** 9.8 1052
5 30 June 2014 9 458 34 27 August 2014*** 9.8 922.39
6 4 July 2014 9.5 7800 35 28 August 2014 8 606.29
7 5 July 2014 8.9 570.2 36 29 August 2014 7.4 271.3
8 11 July 2014 10.3 724 37 3 Sep 2014 10 3594.92
9 12 July 2014 10.5 1700.7 38 4 Sep 2014 11.4 3594.92
10 13 July 2014 10.5 831 39 5 Sep 2014 8.1 339.56
11 14 July 2014 8.9 370.3 40 6 Sep 2014 8.5 1243.88
12 18 July 2014 11.3 740.2 41 8 Sep 2014 6.1 186.21
13 19 July 2014 8.3 1800 42 10 Sep 2014 9.1 3188.85
14 21 July 2014 4.8 320.8 43 13 Sep 2014 7.4 296.8
15 3 August 2014 12.3 715.3 44 16 Sep 2014 4.6 213.77
16 4 August 2014 10 1600 45 17 Sep 2014 4.3 192.4
17 5 August 2014 5.1 216 46 19 Sep 2014 10.1 10785.5
18 6 August 2014 6.6 246.4 47 20 Sep 2014 8.5 1013.43
19 7 August 2014 10 1500 48 21 Sep 2014 4.9 111.76
20 8 August 2014 10 1803 49 22 Sep 2014 2.8 179.61
21 9 August 2014 10 480.04 50 24 Sep 2014 3.4 155.98
22 10 August 2014 8 560.04 51 26 Sep 2014 2.3 165.52
23 11 August 2014 9.1 4500 52 27 Sep 2014 5.5 274.83
24 12 August 2014 8.3 720 53 29 Sep 2014 4 90.31
25 13 August 2014 8.3 1480 54 30 Sep 2014 7.1 814.46
26 14 August 2014 11.5 9004.58 55 1 Oct 2014 5.1 413.15
27 16 August 2014 10.9 3529.4 56 2 Oct 2014 5.3 331.67
28 18 August 2014 5.1 126.74 57 3 Oct 2014 7.5 597.6
29 21 August 2014 8.3 498.5

789 * W V indicates Wind Velocity; ** Sample collected on the day; *** Sample collected on the night. 
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793 Table 2: Results of a two-stage statistical process for selecting optimum composite fingerprints for 
794 distinguishing sources of dust. 

Kruskal-Wallis H test Stepwise DFA

Fingerprint 
property

Chi-Square P-value Step Entered 
fingerprint

Wilk’s lambda

Trace elements 1 Fe 0.356

Au 6.79 0.079 2 Sr 0.188

Pt 1.58 0.664 3 Mn 0.081

Mg 20.83 0.000** 4 Cr 0.053

Al 1.48 0.686 5 Pb 0.033

Sr 20.6 0.000**

Li 22 0.000** *Statistically significant at P<0.05

Fe 20.9 0.000** ** Statistically significant at P<0.01

Cr 19.5 0.000**

Cu 19.5 0.000**

Zn 5.16 0.16

As 9.9 0.019*

Ni 20.75 0.000**

Pb 9.58 0.022*

Mn 20.24 0.000**

Co 18.73 0.000**

Sn 12.9 0.005**

Ions

Na+ 7.24 0.065

NH+
4 2.6 0.456

K+ 4 0.254

Cl- 0.4 0.941

NO‾
2 3.3 0.358

NO‾
3 7.01 0.072

Mg2+ 1.38 0.709

Ca2+ 14.5 0.002**
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