
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Biological and Marine Sciences

2019-03

Internal lee waves and baroclinic bores

over a tropical seamount shark 'hot-spot'

Hosegood, Philip

http://hdl.handle.net/10026.1/13205

10.1016/j.pocean.2019.01.010

Progress in Oceanography

Elsevier

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



 1 

Internal lee waves and baroclinic bores over a 1 

tropical seamount shark ‘hot-spot’ 2 

 3 

 4 

P.J. Hosegood1* 5 

W. A. M. Nimmo-Smith1 6 

R. Proud2 7 

K. Adams3 8 

A. S. Brierley2 9 

 10 
1Marine Institute and School of Biological and Marine Science, 11 

University of Plymouth, 12 

Drake Circus, 13 

Plymouth 14 

Devon, PL4 8AA 15 

 16 
2Pelagic Ecology Research Group, 17 

Scottish Oceans Institute, 18 

Gatty Marine Laboratory, 19 

University of St Andrews, 20 

Fife KY16 8LB 21 

 22 
3Scripps Institution of Oceanography, 23 

University of California, 24 

San Diego,  25 

La Jolla,  26 

California, USA8 27 

 28 

*Corresponding author: Phil Hosegood, phil.hosegood@plymouth.ac.uk 29 

 30 

Declarations of interest: None  31 



 2 

Abstract 32 

Oceanographic observations were made with a subsurface oceanographic mooring 33 

over the summit and flanks of two neighbouring seamounts in the tropical Indian 34 

Ocean to identify processes that may be responsible for the aggregation of silvertip 35 

sharks (Carcharhinus albimarginatus) in the deep water drop-off surrounding the 36 

summits. The seamounts, which are in the Chagos Archipelago in the British Indian 37 

Ocean Territories, are narrow in horizontal extent (<10 km), have steeply sloping 38 

(>15°) sides that rise from depths of >600 m, and flat summits at a depth of 70 m. 39 

They are subjected to forcing at subinertial, basin-scales and local scales that 40 

include a mixed tidal regime and storm-generated near inertial waves. At the drop-41 

off, at a depth of between 70 – 100 m, isotherms oscillate at both diurnal and 42 

semidiurnal frequencies with amplitudes of ~20-30 m. The waves of tidal origin are 43 

accompanied by short period (~5 minutes) internal waves with amplitudes O(10 m) 44 

and frequencies close to the local buoyancy frequency, N, within the thermocline 45 

which is the maximum frequency possible for freely propagating internal waves. The 46 

tidal oscillations result from internal lee waves with 30 m vertical wavelength 47 

generated by the prevailing currents over the supercritical seamount flanks, whereby 48 

the bottom slope is greater than the internal tide wave slope. The ‘near-N’ waves are 49 

due to enhanced shear associated with the hydraulic jumps that form from the lee 50 

waves due to the abrupt transition from steeply sloping sides to a relatively flat 51 

summit. The jumps manifest themselves as bottom-trapped bores that propagate up 52 

the slope towards the summit. Further observations over the summit reveal that the 53 

bores subsequently flush the summits with cold water with tidal periodicity. The 54 

bores, which have long wave phase speeds more than double that of the bore 55 

particle velocities, are characterised by intense vertical velocities (>0.1 m s-1) and 56 

inferred local resuspension but relatively little turbulence based on temperature 57 

overturns. Our results strongly implicate lee waves as the dynamic mechanism of 58 

leading order importance to the previously observed accumulation of biomass 59 

adjacent to the supercritical slopes that are commonplace throughout the 60 

archipelago. We propose that further investigation should identify the spatiotemporal 61 

correlation between internal wave activity and fish schooling around the summit, and 62 

whether such schooling attracts predators. 63 

Keywords: Chagos Archipelago; Indian Ocean; lee waves; seamount; apex 64 

predators; internal waves  65 
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1. INTRODUCTION 66 

 67 

The Chagos Archipelago (Figure 1) is located within the central Indian Ocean and 68 

hosts the world’s second largest no-take Marine Protected Area (MPA). It is 69 

considered a ‘hotspot’ of marine biodioversity and abundance, with coral reef fish 70 

abundance an order of magnitude higher than other areas of the Indian Ocean 71 

(Sheppard et al. 2012). Within a largely oligotrophic ocean (Morel et al. 2010), the 72 

archipelago is readily visible in remotely sensed images of chlorophyll-a (Figure 1b), 73 

suggestive of local processes sustaining higher levels of primary production than 74 

those observed in the surrounding ocean. Recent surveys also demonstrate that 75 

higher trophic levels, in particular shark species including silvertips, grey reef and 76 

scalloped hammerhead, that are not directly dependent on primary production, are 77 

also especially abundant throughout the region, particularly over shallow topography 78 

(Letessier et al. 2016; Tickler et al. 2017).  79 

 80 

Whilst the archipelago is subject in a regional sense to the influence of a range of 81 

basin-scale oceanographic processes, including the Indian Ocean Dipole (IOD) 82 

(Praveen Kumar et al. 2014), the Madden Julian Oscillation (MJO)(Vialard et al. 83 

2008), equatorial Rossby waves (Webber et al. 2014) and the monsoon (Hermes 84 

and Reason 2008), at a more local scale the role of flow-topography interaction 85 

becomes important due to the steeply sloping topography. Given the remote location 86 

of the archipelago, there have been no detailed physical oceanographic 87 

measurements made to date that enable an identification of the dominant dynamics 88 

and how they impact on the marine ecosystem, particularly the concentration of 89 

biomass at topographic features as observed by Letessier et al. (2016). Due to the 90 

archipelago’s volcanic origins, the seafloor topography throughout the British Indian 91 

Ocean Territories (BIOT) is characterised by numerous seamounts and banks 92 

flanked by steeply sloping sides. To assess the efficacy of the MPA in sustaining 93 

ocean life, there is a need to understand the processes, both regional and local 94 

scale, that may promote production and biodiversity throughout the region and how 95 

such mechanisms might sustain the observed high abundance of species that reside 96 

there. 97 

 98 
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 99 
Figure 1. a) Depth chart of the Chagos Archipelago in the British Indian Ocean Territory, indicating the position of the 100 
seamounts considered in this paper, Sandes and Swart, located approximately 10 nautical miles north west of  Diego 101 
Garcia, and b) the January–mean chlorophyll-a over a 20 year period throughout the Indian Ocean with the location of the 102 
Chagos Archipelago indicated by the red box. 103 

Due to the protected status of BIOT, it is of particular interest whether discrete 104 

features within the archipelago such as seamounts and isolated submarine banks 105 

play a disproportionate role in, firstly, potentially promoting primary production 106 

through the injection of nutrients to the euphotic zone and, secondly, acting as a 107 

refuge for apex predators due to as yet unidentified processes. Recent shark 108 

surveys at shallow (<100 m) sites throughout BIOT reveal that shark abundance 109 

increases markedly near such features (Tickler et al. 2017), especially over an 110 

isolated seamount called Sandes where many tens of sharks have been observed to 111 

aggregate around the flanks of the seamount summit but not over the centre (Figure 112 

2). Similarly, acoustic surveys throughout the region showed acoustic backscatter at 113 

38 and 120 kHz, which are rough proxies for fish and zooplankton biomass, within 114 



 5 

the upper 180 m to be increased by a factor of 100 within 1.6 km of steeply sloping 115 

topography relative to the pelagic environment (Letessier et al. 2016). Similar results 116 

were found for seamounts throughout the open ocean and suggest higher species 117 

diversity to extend 30-40 km from the seamounts (Morato et al. 2010). There is 118 

presently little direct observational evidence of the processes responsible for, or 119 

contributing to, the aggregation of biomass at steeply sloping topography, particularly 120 

at higher trophic levels. The importance of seamounts to apex predators in a 121 

conservation context has been recognised in the Coral Sea area of Australia where 122 

its seamounts are viewed as an integral component of conservations plans (Barnett 123 

et al. 2012). Efforts to design an effective management and conservation plan which 124 

may ultimately lead to the creation of an MPA in the Coral Sea have thus been 125 

deemed to require an understanding of the spatial ecology of sharks over and 126 

around the seamounts. Our goal here, therefore, is to develop our understanding of 127 

what physical mechanisms occurring over seamounts may be responsible for the 128 

spatial ecology of sharks over Sandes and throughout BIOT more generally, thereby 129 

improving our understanding of the sensitivity of such ecosystems to environmental 130 

change and anthropogenic pressure in a large MPA. 131 

 132 

The physical mechanisms typically invoked within a conservation context as 133 

explaining higher productivity, species diversity and abundance over and around 134 

seamounts include, Taylor columns (Genin and Boehlert 1985; Genin 2004; Boehlert 135 

1988) internal waves dynamics (Stevens et al. 2014; Van Haren et al. 2017) and 136 

upwelling (White and Mohn 2004); biophysical mechanisms further include trophic 137 

focussing whereby zooplankton are trapped over shallow topography during daytime 138 

when attempting to vertically migrate at dawn (Haury et al. 2000; Stevens et al. 139 

2014). Much of the previous observational evidence for such processes has been 140 

obtained from large, deep seamounts in relatively weak flow fields where Taylor 141 

columns are more likely to occur than over the smaller scale, narrow seamounts 142 

found throughout BIOT.  143 

 144 

In most cases, however, direct evidence of the role played by dynamic processes in 145 

promoting productivity or interactions between higher trophic levels is lacking. 146 

Internal tides have been extensively studied, predominantly over continental slopes 147 

where their generation and reflection promotes enhanced turbulent mixing of 148 
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importance to the global circulation (e.g. Wunsch and Ferrari 2004). In the vicinity of 149 

seamounts and submarine banks, internal tides may elevate production by 150 

increasing turbulent diffusion of nutrients from the deep ocean into the euphotic zone 151 

(e.g. Palmer et al. 2013; Sharples et al. 2013). Similarly, over a seamount in the Mid-152 

Atlantic Ridge, internal wave driven mixing may be responsible for the vertical mixing 153 

of oxygen to depths where a sponge belt thrived due to enhanced resuspension of 154 

particulate matter on which the sponges depend by internal waves (Van Haren et al. 155 

2017). The vertical displacement of isotherms due to internal tides may also impact 156 

on vertical distributions of chlorophyll rather than production per se; over Melville 157 

Bank in the southern Indian Ocean, the internal tide advects layers of high 158 

chlorophyll vertically by 200 m rather than increasing production by supplying 159 

nutrients (Pollard and Read 2017). It was speculated, however, that the internal 160 

tides, which generate oscillations in temperature over tidal periods of more than 3°C, 161 

may also drive the periodic injection of nutrients to the euphotic zone over the 162 

summit at seamounts that reach close enough to the surface. Direct nutrient injection 163 

through advection may occur more readily in shallower reef environments; the tidally-164 

induced upwelling of nutrient rich water from depth was identified as a potential 165 

mechanism for promoting reef growth at Cook’s Passage in the Great Barrier Reef 166 

(Thompson and Golding 1981) but the observations were unable to resolve the 167 

forcing mechanism as internal tides.  168 

 169 

In this paper, we consider the dynamics occurring within BIOT over a pair of recently 170 

discovered seamounts, Sandes seamount and a close neighbour, Swart, of almost 171 

identical scale and height. We demonstrate that both are effective generators of 172 

internal lee waves at tidal frequencies in the precise location where resident silvertip 173 

sharks have been observed. We show that the seamount summits, which each reach 174 

a depth of 70 m and rise from depths of more than 600 m, are subjected to flushing 175 

by internal bores that are generated by the release of internal lee waves over the 176 

flanks of the seamounts. Lee waves are formed over especially steep topography, 177 

defined as slopes steeper than the characteristic of an internal wave of a given 178 

frequency, and manifest themselves as depressed isopycnals on the lee side of a 179 

ridge or summit. As the flow forcing the depression of isopycnals weakens or 180 

releases, the wave propagates upslope, potentially in the form of a bottom-trapped 181 
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internal bore (Legg and Klymak 2008). Whilst recent work on lee waves have 182 

focussed on their generation at ridges (Legg and Klymak 2008; Pinkel et al. 2012; 183 

Alford et al. 2014; Buijsman et al. 2014; da Silva et al. 2015), earlier work identified 184 

tall isolated seamounts as effective generators of lee waves that destroy Taylor caps 185 

(Chapman and Haidvogel 1992). Such a mechanism promotes turbulence, 186 

resuspension of material deposited over the seabed and is confined to the top of the 187 

slope; it is demonstrated in this paper that such a mechanism is consistent with the 188 

topography, the forcing, resulting dynamic response, and furthermore occurs in the 189 

same location as where apex predators are concentrated around the summits of the 190 

seamounts. 191 

 192 
Figure 2. a) Acoustic backscatter, Sv, from a night-time EK60 (38kHz) transect over the summit of Sandes indicating the 193 
aggregation of biomass over the flanks and b) a single frame from visual observations of the silvertip community over the 194 
flanks of Sandes seamount during the CTD survey. During multiple excursions into the water, the sharks were only present 195 
when the boat was positioned over the steeply sloping sides surrounding the summit where the increased biomass was 196 
observed in a). We estimated that, over the flanks of Sandes, there were in excess of 50 sharks typically within view at a 197 
given moment. 198 

2. MATERIALS AND  METHODS  199 

 200 

Observations are presented from two multidisciplinary cruises to BIOT aboard the 201 

Fisheries Patrol vessel, the M/V Pacific Marlin. The first took place between 10th - 202 

25th January 2015 and the second during the following year between 5th - 24th 203 

February 2016. As such, both cruises took place between the northeast and 204 

southwest monsoons when atmospheric conditions are typically relatively settled. 205 

Whilst this was the case during 2015, the 2016 cruise was subjected to more 206 
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unsettled conditions although the monthly mean wind speed estimated from the 207 

Cross-calibrated Multi-Platform (www.remss.com) remained <3 m s-1. During both 208 

cruises, a storm passed near the site of the mooring at Sandes and Swart, located 209 

approximately 30 miles from Diego Garcia (Figure 1a) from which the majority of 210 

results are taken in the present paper.  211 

 212 

2.1 Geophysical context: seamount location and dimensions 213 

Both Sandes and Swart seamounts have almost identical dimensions, rising from 214 

depths of >2000m on their northern flank to 70 m (Figure 3). The pair of neighbouring 215 

seamounts lie at the eastern end of a bank of depth ~1000 m; the bank is bordered 216 

to the north by a deep channel, one of the numerous deep passages within BIOT 217 

whose depths exceed 2000 m and that intersect the various atolls.   218 

 219 

Each seamount has a short horizontal scale compared to the more heavily studied 220 

examples in the literature such as Great Meteor (60 km), Fieberling Guyot (50 km), 221 

Cobb (25 km) and Condor Seamounts (40 km). The distance across the seamount at 222 

a depth of 600 m, which corresponds to the depth at which the very steeply sloping 223 

sides (up to 20º) start to reduce in gradient, is <10 km. Thus, Sandes and Swart fall 224 

into the category of narrow, steep seamounts whose heights are at the lower end of 225 

the criteria for defining isolated topographic features as seamounts (nominally 226 

defined as features rising more than 1000 m). As both seamounts have almost 227 

identical dimensions and bottom slopes, we consider the dynamics (e.g. prevailing 228 

tidal regime) occurring at one to be also occurring at the other. 229 

 230 

2.2 Oceanographic mooring and vessel-based measurements 231 

A mooring was deployed over the flanks of Sandes during the 2015 cruise and over 232 

the summit of Swart during 2016. The 2015 mooring was deployed on the western 233 

flank of Sandes summit at 7° 9.006’S, 72° 7.256’E in a water depth of 96 m. The 234 

2016 mooring was deployed over the centre of the summit of Swart at 7° 8.373’S, 235 

72° 11.362’E in a water depth of 70 m (Figure 3). Both moorings were deployed for 236 

14.5 days. 237 
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 238 
Figure 3. Bathymetry measured with the EK60 over Sandes (left) and Swart (right) indicating the location of the CTD profiles 239 
conducted during 2016 over Sandes (Black lines). The locations and vertical extent of the moorings over both seamounts are 240 
indicated by the dashed blue lines. Depth contours are overlain at the surface in 100 m increments. 241 

The specific mooring configuration for each deployment differed slightly between 242 

2015 and 2016 but in both cases comprised a pair of RDI 600 kHz acoustic Doppler 243 

current profilers mounted at mid-depth with one looking upward and the other 244 

downward. The ADCPs provided near full water-column coverage when sampling in 245 

1 m vertical bin sizes and in 3 second ensembles. In the analysis that follows we 246 

consider the barotropic currents defined as the depth mean currents and the 247 

baroclinic components as the observed currents minus the barotropic component.  248 

 249 

Seabird SBE56 temperature sensors were mounted on the mooring line with a 250 

vertical spacing of either 2 or 4 m during 2015 and 2 m during 2016. Sensors 251 

sampled at 1 Hz with an accuracy of 0.002°C. Temperature measurements were 252 

complemented by RBR conductivity-temperature-depth (CTD) sensors, also 253 

sampling at 1 Hz, mounted at the bottom, mid-depth and towards the surface (20 m 254 

depth in 2015, 10 m depth in 2016). The upper CTD in each case enabled an 255 
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assessment of the vertical displacement arising from mooring knockdown due to 256 

drag of the mooring elements in the currents (which were <0.4 m s-1), particularly the 257 

uppermost buoyancy which comprised in 2015 of a single subsurface buoy with 50 258 

kg buoyancy and two of the same buoys in 2016. Data have been interpolated to 259 

regularly spaced heights above the seabed expressed in metres above bottom 260 

(mab). 261 

 262 

Vertical profiles were acquired at regular intervals throughout both cruises with a RBR 263 

Concerto (2015) or Maestro (2016) CTD sensor sampling at 6 Hz (2015) and 12 Hz 264 

(2016). The Maestro was further integrated with a Rinko dissolved oxygen sensor and 265 

Seapoint chlorophyll-a fluorometer. 266 

 267 

A brief CTD survey using a RBR Concerto sampling at 1 Hz was undertaken over the 268 

summit of Sandes during 2016 (indicated by the black solid lines in Figure 3). The 269 

survey comprised two transects over the summit during each of which 7 profiles were 270 

acquired to a depth of almost 100 m. As the two transects were separated by half of a 271 

semidiurnal tidal cycle, the difference between the two transects demonstrates the 272 

tidal influence on water properties over the seamount summit and flanks. 273 

 274 

Bathymetry data were obtained from repeated transects with the Simrad EK60 275 

echosounder operating at 38 and 120 kHz that were conducted to map the spatial and 276 

temporal distribution of biomass around the seamounts. Point measurements of depth 277 

were gridded to a regular grid with 100 m horizontal resolution. 278 

 279 

2.3 Remote sensing and regional climate indices 280 

Sea surface height and derived products including surface geostrophic velocities and 281 

their anomalies computed from a 20-year mean were obtained at 0.25° resolution 282 

from www.marine.copernicus.eu. Sea surface temperature was measured by the 283 

MODIS sensor and obtained from the Jet Propulsion Laboratory website 284 

(https://podaac.jpl.nasa.gov/). The data are used to demonstrate the difference in 285 

regional conditions between the two mooring deployments in 2015 and 2016. 286 

 287 

2.4 Data Handling 288 
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2.4.1 Tidal Analysis 289 

To isolate the tidal contribution to the observed currents, harmonic analysis 290 

(Pawlowicz et al. 2002) was used to identify the deterministic barotropic or phase-291 

locked baroclinic currents in the ADCP data. Incoherent (baroclinic) internal waves 292 

that are not phase-locked lead to a smearing of energy around the primary tidal 293 

frequency (Hosegood and van Haren 2006). Predicted tidal velocities are estimated 294 

using those tidal constituents with a signal-to-noise ratio >2 and at depths for which 295 

the predicted ellipse properties exceed the predicted 95% confidence interval. A lack 296 

of daytime scatterers in the lower 30 m at Sandes resulted in intermittent missing 297 

data during times of sunlight, precluding the determination of the periodic tidal 298 

contribution by harmonic analysis. As a result, there are no reliable tidal velocity 299 

predictions at Sandes below depths of ~60 m.  300 

 301 

2.4.2 Shear instability estimates 302 

The internal wave processes studied in this paper lend themselves to the promotion 303 

of turbulent mixing by shear instability. To assess the likelihood of shear instability, 304 

the Richardson number, Ri = N2/S2 where N2 = (-g/ro)/(¶r/¶z) is the buoyancy 305 

frequency squared, g is the gravitational acceleration and ro is a reference density, 306 

and S2 = ((¶u/¶z)2+(¶v/¶z)2), where u and v are the eastward and northward 307 

velocities, respectively was estimated and for which instability is expected when Ri < 308 

0.25 (Turner, 1973). Shear was computed over the 1 m vertical intervals 309 

corresponding to the ADCP bin sizes following smoothing with a 3 point running 310 

average filter.  311 

 312 

In the absence of vertical profiles of density, density was estimated from the 313 

temperature profile after applying the T-S relationship derived from the CTD profile 314 

acquired adjacent to Sandes during 2016 at the time of the mooring deployment. The 315 

T-S relationship was observed to be very stable throughout the archipelago during 316 

both 2015 and 2016. Stratification was estimated from temperature measured by the 317 

sensors spaced between 2-5 m apart and subsequently interpolated to 1 m intervals 318 

to match the velocity data. Both shear and stratification were interpolated to the 319 

same times with 10 second resolution between estimates. 320 

 321 



 12 

3. INTERNAL TIDES AND LEE WAVES OVER SEAMOUNTS 322 

 323 

The narrow and steep seamounts studied here are less susceptible to slow and 324 

steady perturbations to the mean flow and more likely to be influenced by internal 325 

wave-related processes. Stratification supports the propagation of internal waves 326 

between frequencies f < s < N, where f = 2Wsinf is the local Coriolis frequency, 327 

which is twice the local vertical component of the Earth’s rotation vector, W, at 328 

latitude f (1.77 x 10-5 s-2 at 7°S). Previous observations have demonstrated predator 329 

foraging over submerged banks to be closely related to the timing of internal lee 330 

wave formation and their release following the reversal of the forcing tidal currents 331 

(Jones et al. 2014). In this section we demonstrate the favourable geometry and 332 

oceanographic conditions for the generation of similar features to provide the context 333 

for interpreting the results in following sections.  334 

 335 

The sloping flanks of seamounts and neighbouring banks promote the generation of 336 

linear, feely propagating internal tides by interaction between the barotropic tide and 337 

stratification. Internal tides are generated most efficiently at the location where the 338 

bottom slope, g, matches the angle with respect to the horizontal of the slope, s,  339 

 340 

𝑠 = #
𝜎% − 𝑓%

𝑁% − 𝑓% 341 

 342 

of an internal wave with frequency s (LeBlond and Mysak 1978).  In a continuously 343 

stratified fluid, beams of internal tidal energy are predicted to radiate away from the 344 

source region where elevated near-bed shear and dissipation is expected. 345 

 346 

For supercritical topography, whereby the bottom slope exceeds s, lee waves may 347 

form on the downstream side of isolated topography and propagate back upstream 348 

as the flow weakens and, potentially reverses. Lee waves are formed at the top of 349 

the slope when the lee wave frequency slee = Nb > 2so, where b = ho/W is the aspect 350 

ratio of the topography, ho is the seamount height and W its width, is greater than the 351 

forcing frequency, so, which here is assumed to be the tide (Legg and Klymak 2008). 352 
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In our observations, slee ~ 0.002 s-1, which is more than an order of magnitude larger 353 

than that of the M2 tide, so = 1.4 x 10-4 s-1. 354 

 355 

Additional nondimensional parameters quantifying the susceptibility to lee wave 356 

generation include the topographic steepness, defined here as a=g/s. For ho = 600 m 357 

and W = 3000 m and N taken from the CTD profile acquired adjacent to Sandes, 10 358 

< a < 61 with a mean value of 25, significantly higher than the critical value of unity 359 

(which essentially determines the transition to supercritical slopes). The value of the 360 

parameter h0/W = 0.2 estimated here is exactly the same as that used by Legg and 361 

Klymak (2008) in their ‘steep’ simulations. Sandes and Swart seamounts are thus 362 

expected to block the incident flow and generate lee waves on the downstream 363 

flanks. The steepness of the sloping flanks compared to the wave slope 364 

concentrates the elevated dissipation associated with the lee wave at the top of the 365 

slope rather than over a wider area of seabed extending downslope (Klymak et al. 366 

2010b). 367 

 368 

The lee wave formation is associated with the depression of isotherms on the 369 

downstream side of the obstacle; as the flow slackens and even reverses as would 370 

be the case for an oscillatory tide, the isotherms rebound and generate a wave that 371 

propagates upwards. When both the flanks are supercritical and the top of the slope 372 

is critical, i.e. l=s, is satisfied, nonlinear internal bores develop that propagate along 373 

the bed over the top of the slope (Legg and Huijts 2006). The degree of nonlinearity 374 

in the lee waves formed is predicted by the topographic Froude number,  375 

 376 

𝐹𝑟 =
𝑈,
𝑁ℎ,

 377 

 378 

for which the incident flow is blocked by the topographic obstacle and nonlinear lee 379 

waves and internal hydraulic jumps are predicted when Fr < 1 (Mayer and Fringer 380 

2017). Here, Fr =0.017 for U0=0.2 m s-1, N = 4 x 10-2 s-1, which are typical values for 381 

the current case based on the observed CTD profiles and velocity time series. For 382 

other realistic parameter values, Fr is generally always <0.1. For such small Fr, the 383 

vertical scale of the lee wave scales as lz/2 » pUc/N (Klymak et al. 2010a). The 384 
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waves are ‘high mode’ and therefore of small vertical scale, dissipate energy locally 385 

and have the further consequence that any tidal beam escaping the seamount is 386 

more diffuse than would otherwise be the case in the absence of local dissipation of 387 

high modes. 388 

 389 

Hydraulic jumps form where the flow transitions from supercritical, whereby the 390 

internal wave phases speed c, 391 

 392 

𝑐 = /
𝑔′𝐻3𝐻%
(𝐻3 + 𝐻%)

7
3
%8

 393 

 394 

where g’ = g(r2-r1)/r2, with ri the density for the respective layer, i = 1,2 (Henyey and 395 

Hoering 1997), is less than the current velocity, i.e. U/c>1, to subcritical as it flows 396 

downslope. The implication is that the depth change during the tidal period is large, 397 

expressed as; 398 

 399 

𝑁
𝜎9%

𝑑ℎ
𝑑𝑥 > 1 400 

 401 

For N = 4 x 10-2 s-1 and dh/dx=0.25 over the steeply sloping sides of Sandes and 402 

Swart, we obtain values of 71, indicating that the depth change is easily capable of 403 

supporting the development of a hydraulic jump during the downslope flow.  404 

 405 

Theory thus indicates that the flanks of Sandes and Swart are steep compared to the 406 

slope of internal tidal waves, rendering them conducive to the generation of internal 407 

lee waves on their downstream sides and the generation of internal bores as the tide 408 

weakens and reverses.   409 

Figure 4 illustrates the evolution of the density field over the summit of Sandes and 410 

Swart throughout the tidal cycle. Note that the lee wave formation mechanism is 411 

more complicated when a persistent, unidirectional background current is present 412 

with an amplitude equal to or exceeding the tidal forcing; under such circumstances, 413 
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the current depressing isotherms on the downstream may not reverse with the tide 414 

such that the rebounding of isotherms onto the summit may not occur ( 415 

Figure 4c,d)  416 

 417 
Figure 4. Cartoon demonstrating in two dimensions the lee wave generation during (a-b) 418 

westward flow and its evolution into an internal bore that propagates onto the seamount 419 

summits as (c-d) the flow weakens and reverses. Typical timescales are indicated at the 420 

bottom of each panel. The red arrow superimposed on the seamount indicates the direction 421 

of flow, here assumed to be purely east-west. The vertical black dashed lines illustrate the 422 

relative position of the moorings presented in this paper; the 2015 mooring was deployed 423 

on the flank of Sandes and the 2016 mooring on the summit of Sandes. 424 

 425 

4. RESULTS 426 

 427 

4.1 Oceanographic context 428 

 429 
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4.1.1 Regional conditions: Geostrophic currents and Sea Surface 430 

Temperature  431 

The 2015 cruise followed a period during which the MJO was in a strongly positive 432 

phase, driving strong and persistent westerly winds over a broad area spanning the 433 

equator. Due to the extension of the Seychelles-Chagos Thermocline Ridge (SCTR) 434 

within which the thermocline shoals due to Ekman pumping, SST was significantly 435 

lower (28°C) to the north-west (Figure 5b) but was also lower more generally 436 

throughout the region during 2015 compared t 2016. This was likely due to the 437 

turbulent entrainment of cold water from beneath the shallow thermocline due to the 438 

enhanced wind stress (Vialard et al. 2008). The shoaling of the thermocline within 439 

the SCTR is important to the regional primary productivity throughout the region 440 

(Currie et al. 2013) and was likely partly responsible for a plankton bloom 10 days 441 

prior to the 2015 mooring deployment. During 2016, a distinct zonal band of higher 442 

SST (>30.5°C) extended across the central Indian Ocean to the north of BIOT (Figure 443 

5c), accompanied by an intensification of westward currents along the equator and 444 

extending 4° of latitude into each hemisphere, thereby not reaching BIOT.  445 

 446 

The significant difference in forcing between 2015 and 2016 lies in the prevailing 447 

geostrophic currents. During 2015, the mooring over Sandes was subjected to a 448 

persistent south-westward mean current of >0.4 m s-1, decreasing throughout the 449 

cruise to 0.2 m s-1 and becoming purely westward (Figure 5a). In contrast, the 450 

background geostrophic current during 2016 was <0.1 m s-1 in both components; as 451 

a result, the tidal and near inertial currents attain greater significance in the resulting 452 

dynamics during 2016 compared to 2015 when the persistent westward current 453 

dominated tidal currents.  454 

 455 

4.1.2 Tidal, near-inertial and mean current regime  456 

The frequent lack of scatterers in the lower 30 m at the Sandes mooring in 2015 457 

precluded accurate estimates of tidal velocities there; as the two mooring locations 458 

were so close, we focus on the characteristics of the diurnal and semidiurnal tidal 459 

motions over the summit of Swart. Currents exhibited a mixed tidal regime. M2 460 

currents were ~8 ±2 cm s-1 and directed towards the east-north-east with mean 461 

heading of 65°N and little (<10°) variation with depth. K1 currents rotate with depth 462 
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from a north east heading at the surface but becoming north west near the bed. 463 

Compared to the semidiurnal tide, amplitudes of the diurnal tide are ~60% of M2 464 

towards the surface but increase to ~80% at 5 m above the bed (Figure 6).  465 

 466 

 467 
Figure 5. a) Geostrophic currents during 2015 (blue lines) and 2016 (red lines) at the position of Sandes and Swart as 468 
indicated in b) and c) by the magenta dot, and b) sea surface temperature (°C) and geostrophic velocity vectors during 2015 469 
and c) 2016. The 1000 m isobath is indicated by the black contours. SST are monthly means for (2015) January and (2016) 470 
February. Geostrophic velocities plotted as vectors in b) and c) are daily values for mid-way through the mooring 471 
deployment in each year. 472 

The two mooring deployments reflect the potentially strong influence of background 473 

conditions that may influence internal wave generation; during 2015 a steady, 474 

persistent westward current exceeded any eastward tidal current throughout almost 475 

the entire deployment (Figure 7b). The westward current, with typical current speeds 476 
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of ~0.4 m s-1, was due to a narrow band of elevated westward currents that occupied 477 

the zonal band centred exactly on the mooring location (Figure 5b). Whilst limited in 478 

meridional extent, the current persisted throughout January 2015 although 479 

weakened to 0.2 m s-1 by the end of the month.  In contrast, geostrophic currents 480 

were weak throughout BIOT during the 2016 cruise, remaining <0.1 m s-1 throughout 481 

February 2016. 482 

 483 

 484 
Figure 6. Tidal ellipses for the M2 and K1 tidal constituents plotted at 5 m vertical intervals over the summit of Swart during 485 
2016 (right).  486 

 487 

Observed currents also differed from tidal velocities due to the generation of near 488 

inertial waves by storms that passed the mooring site on day 14 in 2015 and day 48 489 

in 2016. At this latitude (7°S) near-inertial waves have a period of 4.1 days, a 490 

periodicity reflected by the peaks of northward velocity during days 15, 19 and 23 in 491 

2015 (indicated by the blue arrows in Figure 7a) and 49 and 53 in 2016 (red arrows in 492 

Figure 7d). The full depth profile of low-pass filtered currents (not shown) 493 

corroborates the vertical structure of the near–inertial wave as exhibiting upward 494 

phase velocity, indicative of downward energy propagation following the generation 495 

of the wave by strong winds at the sea surface. 496 
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 497 
Figure 7. Observed total (red or blue) eastward (U) and northward (V) currents filtered at 1 cph and predicted tidal currents 498 
(black lines) at a depth of 50 m at Sandes (a,b) and Swart (c,d). The three blue arrows above a) indicate the periodicity of a 499 
near intertial wave (period 4.1 days) generated by a storm at the beginning of the cruise, beginning with the peak 500 
northward velocity towards the end of day 43. Note that the currents appear to suggest the frequency of the wave to be 501 
superinertial. The two red arrows in d)  indicate the peak in eastward velocity associated with a near inertial wave 502 
generated by the storm on day 48 in 2016. 503 

 504 

Observed currents at Swart during 2016 were much closer to those predicted by 505 

harmonic analysis because of the lack of a background current except when the 506 
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storm passed BIOT during days 48-50 (Figure 7 c,d). Currents exceeded 0.5 m s-1 at t 507 

= 51.0 and rotated anticlockwise throughout an approximately 4 day period, 508 

consistent with the generation of a near-inertial wave. During both 2015 and 2016 509 

the near-inertial wave generated currents that rotated with a super-inertial frequency, 510 

i.e. a period of slightly less than 4.1 days. 511 

 512 

4.1.3 Water column vertical structure  513 

CTD profiles acquired adjacent to Sandes and Swart in 2015 and 2016 consistently 514 

demonstrated a moderately stratified upper layer above a strongly stratified 515 

pycnocline with maximum N2 = 3 x 10-3 s-2. The depth of the pycnocline coincided 516 

with the depth of the deep chlorophyll maximum (DCM) between 60 and 70 m depth 517 

(Figure 8). The layer of maximum chl-a, which consistently approaches 1 µg l-1 518 

throughout the archipelago, has a thickness of approximately 20 m, diminishing to 519 

<0.2 µg l-1 at a depth of 110 m (Figure 8).  520 

 521 

At the DCM, dissolved oxygen concentrations decrease rapidly from >4 mL L-1 to <2 522 

mL L-1 within 20 m. Thus, the pycnocline at 60 m depth marks the depth of maximum 523 

chl-a and lower limit of oxygenated surface waters. It is furthermore a vertical 524 

structure that is replicated throughout the archipelago during the 2016 cruise 525 

(oxygen was not measured during 2015), although regional scale forcing may 526 

influence this, particularly strong wind forcing such as that arising due to the MJO. 527 

 528 

The pycnocline and DCM intersect the seamount summit, such that perturbations in 529 

the pycnocline depth will directly drive pronounced changes in water properties over 530 

the summit. Most notably, the shoaling of the pycnocline will lead to large reductions 531 

in oxygen concentration over the summit. Similarly, the deeper water surrounding, 532 

but beneath, the summit is low in dissolved oxygen and contains few phytoplankton, 533 

indicating that the zooplankton active during diel vertical migration (DVM) need to 534 

reach depths of 60 m or above to benefit from the energy source provided by 535 

phytoplankton. 536 

 537 

 538 
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 539 
Figure 8. Vertical profile of temperature (blue), salinity (red), density (pink), chlorophyll-a (green) and dissolved oxygen 540 
(black) acquired from a location adjacent to the flank of Swart seamount summit during 2016. The right-hand panel 541 
indicates the buoyancy frequency estimated from the corresponding density profile at 0.5 m vertical intervals and following 542 
smoothing with a 7 point running average filter.  543 

4.2 Internal wave regime: Summit flanks 544 

Given the low latitude of BIOT and the strong stratification, the internal wave band 545 

(IWB) spans a wide range of frequencies in the current study region corresponding 546 

to periods of 4.1 days (i.e. the inertial period) to ~5 minutes. We focus here on the 547 

generation mechanism and implications of isotherm oscillations over the flanks of 548 

Sandes in two frequency bands, tidal and near-N. 549 

 550 

Isotherms oscillate with amplitudes of 20-30 m at both diurnal and semidiurnal 551 

frequencies in the low-pass (3 cycles per day cut off) filtered temperature field (Figure 552 

9a). The temperature variance spectra reflect the comparatively weak stratification 553 

above depths of 40 m (Figure 9c). Variance is more than an order of magnitude less 554 

at 65 metres above bed (mab) than 1 and 21 mab which each have similar levels of 555 

variance that exceed those at 65 mab for all frequencies. Short-period internal waves 556 

appear in packets at Sandes and have periods of ~5 minutes (Figure 9b) 557 
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corresponding to a distinct increase in variance at N ~ 200 cpd at 21 mab (Figure 9c). 558 

where N is the maximum frequency for freely propagating internal waves. 559 

 560 

 561 
Figure 9. Temperature measured by the mooring deployed over the flank of Sandes during 2015 after filtering a)  the entire 562 
timeseries at, 3 cpd and b) at 1 minute for a subset of data spanning 1.6 hours. The corresponding variance spectra for 563 
heights above the bottom of 1 m, 21 m and 65 m in c) indicate the enhancement at 21 mab at frequencies close to N. The 564 
period selected for b) corresponds to the upslope phase of the lee wave where the westward tidal current had relaxed to the 565 
extent that the combined impact of the south equatorial current (SEC) and tide on the depression of isotherms on the 566 
western flank of the seamount had diminished, enabling the wave to propagate up the slope to the east. 567 

4.2.1 Internal tide: potential generation sites 568 

To evaluate whether internal tides are generated over the sloping sides of the 569 

seamounts and cause the observed isotherm displacements at tidal frequencies, the 570 

wave slope was compared to the bottom slope. Two different CTD profiles were 571 

used to estimate the wave slope; the 2016 profile acquired over the side of Sandes 572 

that reached 120 m and a second profile from Peros Banhos that extended to a 573 

depth of 300 m and enabled an assessment of slope criticality to that depth. The two 574 

profiles were qualitatively similar although the profile from Peros Banhos 575 

demonstrated stronger stratification in the upper 50 m due to more settled 576 

atmospheric forcing at the time of the profile, a property that is not important to the 577 

generation of the internal tide that occurs at or below the depth of the summits at 70 578 

m.  579 

 580 
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The western flanks of Sandes and Swart are similar in terms of the maximum bottom 581 

slope, in both cases reaching 20° at depths of 300-400 m. At no location over the 582 

flanks do the slopes become less than 5°. As a result, the flanks of the seamount are 583 

supercritical to the semidiurnal tide whose slope is 1 – 1.5° in the weakest 584 

stratification (which increases the steepness of the angle of propagation) and further 585 

decreases to 0.25° in the strongest stratification at 70 m depth (Figure 10b). The 586 

summits of Sandes and Swart are potentially critical to the M2 tide but the slopes 587 

would need verification with multibeam bathymetry given the small slopes involved 588 

that are sensitive to measurement error over short horizontal distances. The bottom 589 

slopes on the summits are estimated at the positions indicated by the black lines in 590 

Figure 10c, d for Sandes and Swart as 0.73° and 0.99° respectively, rendering them 591 

potentially capable of generating internal tides. 592 

 593 

Overall, the slopes associated with Sandes and Swart are, based on observed N 594 

profiles, supercritical to all IWB frequencies except for those with frequencies 595 

approaching N, the highest permitted for freely propagating internal waves (Figure 596 

10e, f). Over the more gentle slopes of the summits, minimum critical frequencies 597 

(wave frequencies at which the wave slope matches the bottom slope), are 5 cpd 598 

over the summit of Swart and 7-8 cpd over Sandes. The strongest stratification at 599 

60-70 m increases the critical frequency to 40 cpd for the weak slopes at the 600 

summits but significantly more over the steep slopes below the summit where the 601 

Sandes mooring was deployed. Here, critical frequencies reach 225 cpd where the 602 

strongest stratification intersects slopes of 10° of more. At this frequency, the wave 603 

slope matches that of the bottom and theory predicts elevated shear and turbulent 604 

mixing.  605 
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 606 
Figure 10. a) Bathymetry over Sandes and Swart with the sections along which depth is presented in c) indicated by the blue 607 
and red lines. The wave slope for the M2 internal tide in b) is estimated using N from 2 CTD profiles, the first adjacent to 608 
Sandes (blue line)  and the second from Peros Banhos to the north (red line). The bottom slope is presented in d) for both 609 
sections indicated in a). The critical frequency for internal wave reflection is calculated for bottom slopes, g, representative 610 
of the summit (e) and the upper slope (f) using the two N profiles used to compute the wave slopes in b). The slope angles 611 
are estimated for the locations indicated in c) by the black lines along the sea bed at the upper slope and on the summit of 612 
Sandes (blue line) and Swart (red line). 613 
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4.2.2 Internal lee wave generation 614 

The supercritical of the slopes suggest that internal lee waves are more likely to be 615 

responsible for the isotherm oscillations. Two CTD transects conducted half an M2 616 

tidal cycle apart over the summit of Sandes in 2016 illustrated isotherm displacement 617 

consistent with lee wave formation and the subsequent propagation of cold water 618 

bores onto the summit (Figure 11). As the measurement period during 2016 lacked 619 

the persistent westward flow observed during 2015, the lee wave formation may be 620 

expected to be more clearly related to the tidal forcing. Transect 1 followed a period 621 

of sustained westward flow due to the near inertial wave which reversed to an 622 

eastward flow at t = 52.0, approximately 6 hours before the transect (Figure 7d) such 623 

that a lee wave generated on the western flank would be able to propagate back up 624 

the slope. Thereafter the current is eastward such that eastern flank is in the lee of 625 

the prevailing current (Figure 11d).  626 

 627 

The isotherm orientation is consistent with the transition from depressed isotherms 628 

on the western flank (left hand side of Figure 11 a,b) to the opposite as the eastward 629 

flow intensifies; the cold water on the western flank propagates up the slope between 630 

transect 1 and 2 as the current increases in intensity to the east. The lee wave 631 

formed by the westward flow was released, allowing the cold water to rebound up 632 

the western flank and spill onto the summit. As the eastward velocity increases, 633 

isotherms are depressed on the eastern side of the summit as a lee wave is formed 634 

on the opposite side of Sandes (Figure 11b). At no time in our observations have we 635 

observed any doming of isotherms over the summit consistent with Taylor cap 636 

formation.  637 

 638 

The correspondence between isotherm displacement and currents associated with 639 

lee wave formation and subsequent propagation as a bottom-trapped bore over the 640 

flanks of Sandes is derived from the filtered time series of temperature and velocity 641 

measured by the 2015 mooring. The 2015 deployment was characterised by a 642 

persistent westward flow; the mooring, located on the western flank, was thus 643 

deployed on the downstream (leeward) side of the seamount but the flow was 644 

primarily steady with a weaker oscillatory (tidal) component. Consequently, the 645 

formation of lee waves is not expected with tidal periodicity (in particular during the 646 
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first half of the deployment when mean currents were strongest) but rather a 647 

complex function of the total incident current which includes background mean, near 648 

inertial, and tidal currents.  649 

 650 

 651 
Figure 11. a),b) Temperature (°C) over Sandes summit (c) during two transects in 2016 that were separated in time by 6 652 
hours. The locations of the CTD profiles were indicated in Figure 3 and are again in c) by the black dots. The first station 653 
(distance = 0) for both transects was in the west and progressed due east. The heavy black line in a) and b) indicates the 654 
bottom depth measured at each location. The time elapsed between the last profile of the first transect (upper panel) and 655 
the first profile of the second transect (lower panel) was exactly 5 hours such that the two transects can be considered as 656 
having been completed at almost exactly opposite phases of the semidiurnal tide. Due to the influence of the near inertial 657 
wave generated 5 days earlier, the total currents measured at the time of each transect indicated in d) are stronger to the 658 
south and east than predicted for the tide alone. The red crosses in c)  indicate the positions of the 2015 mooring over the 659 
flank of Sandes and the 2016 mooring over the summit of Swart. 660 

The near-inertial current in particular, which rotates anticlockwise with a superinertial 661 

period and an amplitude equal to or exceeding the mean geostrophic current, 662 

renders all sides of Sandes as being ‘leeward’ at some stage throughout the ~4 663 

days. As a result, the correlation between the cross-slope currents and isotherm 664 

displacements is not as close as one would expect for ridges considered in previous 665 

studies , e.g. Kaena Ridge, Hawaii (Legg and Klymak 2008; Alford et al. 2014), 666 
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Luzon Strait (Pinkel et al. 2012; Buijsman et al. 2014) and the Mascarene Ridge (da 667 

Silva et al. 2015).  668 

 669 

We therefore focus on the end of the mooring deployment when the zonal 670 

geostrophic currents weakened to 0.2 m s-1 permitting the tidal currents to exert 671 

more influence on the dynamic response over the seamount (Figure 5a). The near 672 

inertial wave generated 8-10 days beforehand twice generated meridional velocities 673 

that peaked briefly at >0.4 m s-1 on day 22. By focussing on this period we are able 674 

to evaluate the consistency between the orientation of the horizontal currents with 675 

the isotherm displacements during a period when the influence of the steady 676 

geostrophic current was reduced and tidal motions were more important; for lee 677 

waves to be generated we expect the isotherms to be depressed during downslope 678 

(south-westward) flow near the bed and for the potentially rapidly rising isotherms to 679 

be accompanied by upslope (north-eastward) flow. Vertical structure in the horizontal 680 

currents permit an approximate estimate of the vertical wavelength, suggested 681 

above to scale as pUc/N » 30 m. 682 

 683 

Consistent with the generation of lee waves by a south-westward flow and 684 

subsequent propagation to the north east as the current weakens, we observe 4 685 

distinct events during days 22-24 characterised by a rapid decrease in temperature 686 

at the bed as cold water moves upslope with semidiurnal frequency (Figure 12). The 687 

events are preceded by a gradual deepening of isotherms and downslope flow, 688 

indicative of the formation of a lee wave. The thermal structure is replicated further 689 

from the bed with downward displacements of the 28°C isotherm of >20 m 690 

amplitude, consistent with the simulations of Klymak et al. (2010a). 691 

 692 

Significant vertical structure is observed in both the cross-slope and along-slope 693 

baroclinic velocity components, with each component oscillating in the vertical with a 694 

30-40 m wavelength. Currents immediately above the bed are predominantly 695 

directed downslope (blue shading in Figure 12 b) until the isotherms rebound; cold 696 

water appears near the bed at the same time as near bed currents reverse to an 697 

upslope orientation. 698 

 699 
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The echo intensity provides a measure of suspended particulate matter but also 700 

stratified turbulence. The dominant signal apparent in Figure 12e is the diel vertical 701 

migration of zooplankton; echo intensity is higher during night time (between 22.8 < t 702 

< 23.3 and at the same time every day) due to the presence of mesopelagic 703 

organisms (e.g. zooplankton and small fish) that had migrated to the upper 100 m 704 

from the deep scattering layer which here is at 400 m depth (Letessier et al. 2016). 705 

Note that the clear water apparent at t = 23.0 occurs during the downslope phase of 706 

the lee wave formation. Clear water was observed during the same phase of 707 

downslope flow by (van Haren and Gostiaux 2010) over the flanks of Great Meteor 708 

Seamount where similar bore-like features were observed and accompanied by high 709 

frequency waves with frequencies approaching N. 710 

 711 

4.2.3 High frequency, near N internal waves 712 

Whilst the isotherms oscillate with tidal periodicity and ‘rebound’ vertically with a 713 

shock-like leading edge as is typical for propagating internal bores (e.g. Hosegood 714 

and van Haren 2004), there are clearly higher frequency oscillations present 715 

throughout the record over the flanks of Sandes and which are most intense during 716 

the upslope phase of the lee wave. The waves have periods of ~5 minutes and 717 

reach amplitudes of 20 m (Figure 9b). This frequency equals that of the maximum 718 

value of the local buoyancy frequency, N, observed in the CTD profile over the flank 719 

of Sandes at a depth of 60 m (Figure 8) which is furthermore the depth where the 720 

high frequency waves are observed (red boxes in Figure 12d). Thus, high frequency 721 

internal waves propagate along the thermocline with a frequency centred on the local 722 

buoyancy frequency which attains its maximum value at that depth.  723 

 724 

Packets of near-N waves are most pronounced at t = 22.25 and 23.25 (identified by 725 

the dashed boxes in Figure 12d), indicative of a dominant diurnal tidal component 726 

during the period presented here. A detailed view of such waves was presented in 727 

Figure 9b. However, weaker signals are also evident at semidiurnal frequency, i.e. t = 728 

22.75 and 23.75. The vertical velocity, W, is enhanced at two different frequencies; 729 

at mid-depth on the leading edge of the bore (red dashed boxes in Figure 12d) the 730 

characteristic signature of nonlinear internal waves is observed as an alternating  731 
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 732 
Figure 12. a) Temperature, baroclinic b) cross-slope and c) long-slope velocities, d) vertical velocity and e) echo amplitude 733 
anomaly measured by moored ADCPs over the flank of Sandes during 2015. Velocity data are filtered at 1 cycle per hour. 734 
The echo anomaly is computed as the measured return signal strength intensity with the time mean for each depth bin 735 
subtracted. The dashed boxes in d) times during which different internal wave frequencies were dominant; red boxes 736 
indicate high frequency (near N) wave packets as exemplified by Figure 9b) and the pink boxes slower wave motions 737 
associated with the bore’s passage upslope. The horizontal lines at the top of the figure indicate the periods associated with 738 
the semidiurnal (M2) tidal constituent and the diurnal (K1) constituent. Note that the colour shading in a) corresponds to the 739 
unfiltered (10 second) temperature data but the isotherms presented as black contours in each panel are the temperature 740 
filtered at 1 cycle per hour to remove high frequency content. 741 
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band of upwards and downwards velocities corresponding to isotherm displacements 742 

with periods O(10 minutes) that represent the near-N waves. The occurrence of 743 

these wave groups with tidal periodicity is apparent in the wavelet scalogram at 60 m 744 

depth (30 mab) of the vertical velocity component. Elevated variance is seen to 745 

extend from tidal frequencies down to N with a corresponding period of 5 minutes 746 

(Figure 13). Following this wave packet, a more sustained pattern of downward 747 

velocity is associated with the deepening of the 22°C isotherm and then a sustained 748 

upward velocity as the isotherms rapidly shoal (pink dashed boxes in Figure 12d). 749 

The latter corresponds to the upslope passage of the bore that evolved from the lee 750 

wave. 751 

 752 
Figure 13 a) Vertical velocity measured at 60 m depth (30 mab) and b) the corresponding wavelet scalogram for the 753 
mooring deployment over the flank of Sandes, 2015. The horizontal grey dashed lines in b) represent periods ranging from 754 
the maximum local buoyancy period, Nmax = 5 minutes, to 5 days. The vertical black arrows between days 20 and 24 755 
indicate the occurrence of high frequency wave packets within which waves with periods reach Nmax with a diurnal 756 
periodicity. Note the rapid diminishment of energy at periods less than Nmax, demonstrating the limiting frequency of N for 757 
internal waves. 758 

 759 
 760 
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4.3 Summit flushing events by propagating internal bores 761 

The previous section demonstrated that, during 2015 when background mean 762 

currents were significant in comparison to the tidal currents, internal lee waves 763 

formed on the western flank of Sandes. With a weakening of the prevailing current, 764 

the lee waves evolved into hydraulic jumps and propagated up the slope as internal 765 

bores, accompanied by high frequency internal wave packets, with tidal periodicity. 766 

In this section, we demonstrate that these bores reach the summit and flush the bed 767 

with cold water originating from depths below that of the summit. We first present the 768 

whole time series from the summit of Swart in 2016 to demonstrate the persistence 769 

of the bore propagation before focussing in detail on one event to highlight the 770 

dynamics and implications. 771 

 772 

4.3.1 Bore periodicity: tidal dominance 773 

As a result of the tidal dominance of the hydrodynamic forcing, the bottom-trapped 774 

bores appeared with a predominantly semidiurnal periodicity (Figure 14a). Their 775 

vertical extent was usually <30 m but the cold water signature extended towards the 776 

surface following the storm after day 50, presumably due to elevated mixing. The 777 

coldest temperatures observed near the bed most often coincide with the periods 778 

immediately following more sustained southward flow (for example on days 45, 48) 779 

that are associated with the diurnal tide (see annotation indicating diurnal period in 780 

Figure 14b).  781 

 782 
The temperature signal associated with the bores was most pronounced along the 783 

pycnocline that, whilst on average was observed at a depth between 60-70 m, varied 784 

in vertical position with the passage of the bores due to the elevation of isopycnals 785 

by individual waves. The vertical velocity associated with the nonlinear waves carried 786 

a signal over the water column that, when viewed in frequency space, highlights the 787 

frequency range within which the waves exist. Energy spectra for vertical velocity 788 

exhibit a broad-band enhancement for 30 < s < 300 cpd, similar to the high 789 

frequency (i.e. near-N) waves observed over the flanks of Sandes (Figure 15). To 790 

examine in more detail the structure and properties of an individual bore, we focus 791 

on the period t = 43.6 – 43.75 indicated by the dashed black box in Figure 14. 792 

  793 
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 794 
Figure 14. a) Temperature and b) geostrophic (depth mean) velocity over the summit of Swart during 2016. The dashed 795 
black box indicates the period for which detailed observations are presented below. The principal timescales of variability 796 
are indicated in b) as the near inertial period, Tf, at which currents rotate counter-clockwise (indicated by the red arrow) 797 
with a period of 4.1 days following storm forcing at the surface, the semidiurnal tide (M2) and diurnal tide (K1).  798 

4.3.2 Bore characteristics and implications for mixing 799 

The bore passing the mooring at t = 43.6 is representative of the bores that 800 

propagated over the summit with every semidiurnal tide. For layer heights and 801 

densities of 20 m, 1024 kg m-3 (lower) and 50 m, 1021 kg m-3 (upper), we find clinear = 802 

0.65 m s-1, which is approximately double the typical maximum particle velocities of 803 

0.3 m s-1 and therefore defines the event as a bore. 804 

 805 

Based on the particle velocities beneath the 28°C isotherm, the bores propagate to 806 

the north-east, consistent with their generation by the lee wave formed during the 807 

previous tidal cycle, (i.e. 43.1 < t < 43.6) when the barotropic flow was directed to the 808 

south west (black vectors in Figure 16a); as the tide reversed, the wave evolved into a 809 

bore that propagated onto the summit to the north east. The bore in this instance 810 

contains water with temperatures of ~25°C which, on the basis of the CTD profile 811 

presented in Figure 8, suggests the source water to be only just below the summit 812 
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depth. At other times during the mooring deployment, temperatures reach <22°C, 813 

suggesting the bores to have originated at depths >90 m, 20 m below the depth of 814 

the summit. 815 

 816 
Figure 15. Energy spectrum for kinetic energy (KE) and vertical velocity measured at 16 and 58 mab by the ADCPs moored 817 
over the summit of Swart during 2016. The broadband enhancement in the vertical velocity component at 30 < s < 300 cpd 818 
at 16 m above the bed represents the signature of the high frequency waves accompanying the bores. The larger peak in 819 
energy towards 104 cpd represent surface waves with typical periods of 8 seconds.  820 

A sharp leading edge to the bore exhibits a 2°C decrease in temperature within 75 821 

seconds and was accompanied by the characteristic ‘rotor’ of vertical velocity, with 822 

strong upward vertical velocity of O(10 cm s-1) at t = 43.615 followed immediately by 823 

comparable downwards vertical velocity. The individual waveforms that follow the 824 

initial front each exhibit a similar vertical velocity signature and have periods of ~5 825 

minutes, thereby having the same near-N frequency as the waves observed over the 826 

flank of Sandes. 827 

 828 
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 829 
Figure 16. Detailed observations of a bore over the summit of Swart during 2016 at the time indicated by the dashed black 830 
box in Figure 14; a) barotropic and baroclinic velocities during the time of the bore and the period beforehand (t = 43-44) 831 
when the lee wave was generated by the south westward tidal flow between 43.0 < t < 43.5, b) temperature during the 832 
bore and the associated baroclinic c) eastward and d) northward velocities, the e) vertical velocity and f) echo anomaly. The 833 
black contour in d)-f) represent the 28°C isotherm and the blue horizontal dashed lines in c) and d) the depths for which the 834 
baroclinic velocities are plotted in a). 835 

The bore presented here occurred towards the end of daytime when the echo 836 

intensity was low due to a lack of scatterers in the water column except for a 20 m 837 

thick layer towards the surface that was always present during the day (Figure 16f). 838 



 35 

Otherwise, the echo intensity displayed the expected diurnal signature of high echo 839 

intensity during night-time when the organisms from the deep scattering layer 840 

migrated to the upper 100 m. It is nonetheless notable that the bores are always 841 

associated with particularly clear water but that the echo intensity is increased within 842 

the cold water beneath the 28 °C isotherm. We do not know at present whether the 843 

increase is due to resuspended particles, which would be expected in the presence 844 

of such strong vertical velocities, or stratified turbulence that may arise from shear 845 

instability. 846 

 847 

Horizontal velocity is strongly sheared in the vertical; the cold water within the bore 848 

propagates to the northeast but is overlain by baroclinic velocities directed to the 849 

southwest. The interface between the two layers is thin, <5 m in vertical extent and 850 

corresponds to the position of the 28°C isotherm (indicated by the black contours in 851 

Figure 16).  852 

 853 

Both shear and stratification are enhanced within discrete layers of vertical extent <5 854 

m (Figure 17) but which are not co-located. Instead it is the shear layers that 855 

decrease Ri to critical values of <0.25, indicated in Figure 17b as coloured dots. An 856 

example can be found immediately above the 28°C isotherm in Figure 17; the depths 857 

immediately surrounding the isotherm are strongly stratified, i.e. N2 >10-3 s-2, but the 858 

layer immediately above, separated by only 5 m, exhibits diminished stratification but 859 

elevated shear. It is these layers in which shear instability is likely to occur and lead 860 

to the generation of Kelvin-Helmholtz (K-H) billows that may be the highest 861 

frequency waves we observe accompanying the bores. We note that the short 862 

vertical distance over which layers of enhanced stratification (~10 m) are observed 863 

likely limits the vertical scale to which the billows grow. We do not have direct 864 

estimates of turbulence but examined the vertical profiles of temperature to identify 865 

any overturns that are indicative of turbulence. Surprisingly none were found despite 866 

such bores being typically characterised by energetic turbulence. Except for the 867 

leading wave in the bore, patches of low Ri are typically 2 m in vertical thickness, 868 

which is the minimum vertical spacing of temperature sensors; thus is entirely 869 

feasible that we did not resolve active overturns that were constrained by the vertical 870 

scale of the stratification to thin layers of <2 m thickness. 871 
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 872 
Figure 17. a) Buoyancy frequency squared, N2 (derived from temperature only) and b) shear squared, S2 during the passage 873 
of the bore described in Figure 16. The black line in a, b, represent the position of the 28°C isotherm. The red and green dots 874 
in b) indicate locations where the Ri < 0.25, with green dots indicating those regions in which N2> 10-5 s-2 and red dots 875 
where N2> 10-4 s-2.  876 

5. Discussion 877 

 878 

Our results suggest that the dynamic, energetic internal wave events observed over 879 

and adjacent to the seamount summits may be important to local ecology as 880 

compared to more slowly evolving processes such as Taylor caps that are invoked 881 

as a mechanism explaining enhanced productivity over seamounts (e.g. Genin 882 

(2004). The formation of lee waves and their transition into internal bores ( 883 

Figure 4) supports the theoretical results of Chapman and Haidvogel (1992) who 884 

suggest the internal lee waves over a tall, isolated seamount destroy the fluid 885 

trapping of a Taylor cap. In the present case, there is no evidence of isopycnal 886 

doming nor of fluid retention; whilst more extensive surveys would be required to 887 

conclusively demonstrate this to be the case, the clear evidence demonstrating the 888 

persistent generation of lee waves over the flanks of Sandes and Swart, and their 889 

subsequent propagation as internal bores onto the summits renders it highly unlikely 890 
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that Taylor caps would be able to persist in the presence of such energetic internal 891 

waves. 892 

 893 

The bore occurrence and intensity is impacted by the combination of barotropic tidal 894 

forcing and mean current, the latter of which is determined by the relative position of 895 

the south equatorial current (SEC) and basin-scale variability due to, for example, 896 

the MJO. This is consistent with the numerical modelling of da Silva et al. (2015) who 897 

found that the internal wave generation over the Mascarene Plateau in the Indian 898 

Ocean was sensitive to the superposition of the barotropic tidal forcing and the 899 

properties of the SEC that varied over time. In the present case, this implies that the 900 

modulation of the background mean current due to instabilities in the SEC and other 901 

regional/basin-scale flow fields hold the potential to modify the biophysical regime 902 

around and on top of the seamounts. Taken in combination with the influence of the 903 

MJO on regional scale productivity, it is clear that any assessment of the influence of 904 

such dynamic features on the biological environment require a careful and thorough 905 

understanding of the wider dynamical system to place observations that are 906 

potentially sparse in a temporal sense into the correct context. The key role played 907 

by tidal forcing in our results and the properties of the highly sheared bores 908 

described above reinforce the findings of Turnewitsch et al. (2016) who determine 909 

tidally generated internal waves at a tall seamount 1) promote the sudden injection of 910 

nutrients to the euphotic zone and subsequent increase in primary production and 2) 911 

increase settling rates of resuspended particles by the shear-driven aggregation of 912 

smaller, slower-settling particles.  913 

 914 

Whilst our observations are qualitatively consistent with the results of numerical 915 

simulations of lee waves generated over similar topography, we note that three-916 

dimensionality is inevitably important over Sandes and Swart. For example, the near-917 

inertial wave during 2015 significantly increased meridional velocities, thereby 918 

rendering the northern and southern sides of the seamounts subject to lee wave 919 

generation rather than the eastern and western flanks as would be the case when 920 

the tide is superimposed on a predominantly zonal mean flow. Future numerical 921 

simulations for the current configuration may shed light on the preferred locations of 922 

lee wave formation but the simpler current regime during 2016 demonstrates that the 923 

tide alone is effective at generating bores over the western flanks that then 924 
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propagate to the north east with the turning of the tide. The almost circular nature of 925 

the summits here render significant portions of the summit flanks susceptible to the 926 

direct impact of lee wave formation and internal bore propagation; as the region of 927 

most intense activity is the transition from steeply sloping flanks to the flat summit, 928 

we therefore note the close correspondence between the local dynamics and 929 

preferred habitat for the silvertip shark population consistently observed over the 930 

upper flanks of the seamounts.  931 

 932 

The undular structure of the bore is consistent with bores observed elsewhere and in 933 

a range of conditions and geophysical settings, for example the 30 m-high ‘solibores’ 934 

observed at 500 m depth in the Faeroe-Shetland Channel (Hosegood and van Haren 935 

2004) but also the ‘solitary-like wave features’ on the shelf inshore of Monterey Bay, 936 

where the waves had the same amplitude (20-30 m) in approximately the same 937 

water depth (80 m) as observed here (Carter and Gregg, 2002). The bores here 938 

were accompanied by packets of high frequency (near-N) waves. Whilst the waves 939 

were observed near a sloping bed and had frequencies near to N that were 940 

furthermore close to the critical frequency, we propose that they were not indicative 941 

of critically reflecting incident internal waves but due to local generation by shear 942 

instability. Enhancement of vertical displacement spectra at the critical frequency 943 

was observed over the bed of Fieberling Guyot and attributed to reflection of a 944 

broadband incident internal wave field; the critical frequency was close to the local 945 

buoyancy frequency but, due to weaker stratification, approximately an order of 946 

magnitude lower that that observed here (Eriksen 1998). The ‘near-N‘ waves here 947 

are instead trapped within a narrow waveguide, i.e. the thermocline that oscillates 948 

with the lee wave formation and subsequent propagation as an internal bore. Similar 949 

waves were observed in the North Sea shelf sea environment where they may 950 

contribute to nutrient input to surface layers (Van Haren 2005). In the present case, 951 

the amplitude of the high frequency waves is remarkably consistent with the findings 952 

in the North Sea where the maximum amplitude equalled half the vertical scale of the 953 

mean pycnocline; the typical amplitude is 10 m but reaches a maximum of 20 m 954 

here, all within a thermocline of 20-40 m vertical scale.  955 

 956 

The origin of the near-N waves may be through shear instability. Despite little 957 

evidence of overturns, low Richardson numbers indicate a highly-sheared 958 
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environment conducive to shear instability. The waves in our observations are very 959 

similar in period, O(1 minute), amplitude (10 m) and associated properties as the 960 

Kelvin–Helmoltz (K-H) billows, which are generated by strongly sheared flows, 961 

observed over the flanks of the larger Great Meteor Seamount (van Haren and 962 

Gostiaux 2010). The K-H billows were observed to have anomalously high echo 963 

intensity due to their timing of occurrence coinciding with clear water during 964 

downslope flow; their turbulent nature rather than particulate matter increased the 965 

acoustic reflectivity. In our observations, we also note that the high frequency wave 966 

trains occur during periods of low acoustic reflectivity, indicative of clear water, but 967 

instead of occurring during downslope flow, our wave trains occur during upslope 968 

flow as the bores propagate towards the summit although this event follows a period 969 

of sustained downslope flow. The generation of high frequency waves that may 970 

represent K-H billows is consistent with the laboratory and numerical results of 971 

Cabeza et al. (2009) that show K-H billows to develop as secondary instabilities of a 972 

highly sheared lee wave developed over an abrupt obstacle. Their results highlighted 973 

the importance of abrupt topographies in developing hydraulic control points at lower 974 

Froude numbers than more rounded obstacles. We propose that the ubiquity of the 975 

near-N waves in our observations is a direct result of the sharpness of the transition 976 

for summit to slope over Sandes and Swart that renders the downstream flank 977 

permanently supercritical and the interface critical to shear instability. 978 

 979 

Whilst the isotherm oscillations considered here are consistent in all ways with lee 980 

wave generation, we are unable to diagnose the role of incident internal (tidal) waves 981 

generated remotely by baroclinic lee waves (Stashchuk et al. 2007). Given the 982 

ubiquity of steep topography throughout BIOT, it is highly likely that that lee wave 983 

generation is an ubiquitous feature throughout the archipelago and which can radiate 984 

away as linear internal waves. Johnston & Merrifield (2003) consider the refraction 985 

and reflection of incident mode 1 internal waves on ridges and seamounts and 986 

demonstrate that, for supercritical slopes as considered here, horizontal refraction 987 

leads to an alternating band of low and high energy density in the lee of ridges. Over 988 

sloping topography, higher modes which are more susceptible to local dissipation, 989 

develop to maintain the mode-1-like structure, elevating vertical shear over 990 

topography. In the case of an isolated seamount such as Sandes or Swart, flow due 991 
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to an incident mode-1 wave may be diverted around rather than over the seamount, 992 

inhibiting scattering when compared to a ridge.  993 

 994 

We are unable to definitively link the aggregation of the dense silvertip shark 995 

population to the lee wave generation but we note the qualitative consistency with 996 

other locations where resident shark populations exhibit a strong preference in their 997 

choice of location around isolated topographic features. At El Bajo Espiritu Santo, an 998 

isolated seamount in the Gulf of California, large polarized schools of adult scalloped 999 

hammerheads were observed to remain along the drop off into deep water but to 1000 

also migrate with diurnal frequency up to 8 km away from the slope before returning 1001 

in rhythmical fashion (Klimley and Nelson 1984). The location of the shark 1002 

aggregation corresponds to the lee side of the seamount with respect to the tidal 1003 

currents. The seamount sides appear to be highly supercritical, indicating that 1004 

environment to be conducive to the formation of internal lee waves, just as we 1005 

observe here. The same scenario appears to occur in the Galapagos but the lack of 1006 

current measurements in Hearn et al. (2010) prohibit an assessment of the 1007 

consistency between the aggregation of hammerheads on the eastern flank and the 1008 

location of lee wave formation. Whilst beyond the scope of the present work, we 1009 

consider that the turbulent flow field in the region of lee wave generation increases 1010 

the schooling of the forage fish known to be abundant over the seamounts (Liao, 1011 

2007). Previous observations over a submarine Bank in the Celtic Sea demonstrated 1012 

an increase in schooling, and subsequently foraging by predators, at times of internal 1013 

wave propagation (Embling et al. 2013). Schooling fish conserve energy in a 1014 

turbulent flow (Alexander 2004) in addition to reducing predation by predator 1015 

confusion (Olson et al. 2012); however, schooling also exposes the weaker 1016 

individuals who are unable to maintain their position in the school, leading to an 1017 

overall increase in predation success rates (see Thiebault et al. (2016) for a review).  1018 

 1019 

6. Summary 1020 

 1021 

Observations made primarily with a taut-line, subsurface oceanographic mooring 1022 

deployed during two consecutive years over, firstly, the flanks of Sandes seamount 1023 

in the Chagos archipelago during 2015 and, during the following year of 2016, the 1024 

summit of a physical identical neighbouring seamount, Swart, demonstrate the 1025 



 41 

generation of internal lee waves. The waves, which had amplitudes of 20-30 m, 1026 

formed in response to the prevailing currents that comprised to varying degrees a 1027 

combination of mean background geostrophic, near inertial, and tidal currents. The 1028 

steepness of the seamount sloping sides, which were strongly supercritical to the 1029 

internal tide at both diurnal and semidiurnal frequencies, and the rapid transition from 1030 

the flat summits promoted conditions within which the lee waves transformed into 1031 

hydraulic jumps. As the forcing relaxed, the jumps propagated up the slopes as 1032 

bottom-trapped internal bores. The bores were accompanied by packets of short 1033 

period internal waves whose frequencies approached that of the local buoyancy 1034 

frequency and were furthermore at the critical frequency for internal wave reflection.  1035 

 1036 

The observations made over the seamount summit revealed that bores continued 1037 

onto flat summits with tidal periodicity during the second year (2016) when the 1038 

currents were predominantly tidal. The bores had linear long wave phase speeds 1039 

approximately double that of the particle velocities within the bores. They exhibited 1040 

typical characteristics of internal bores including a strong rotor at the leading edge 1041 

and alternating upwards and downwards vertical velocities during the passage of the 1042 

following internal waves of elevation. Their regular occurrence demonstrates the 1043 

consistency of the lee wave generation and subsequent evolution into a propagating 1044 

internal bore and suggests that the overall process may be implicated in the 1045 

aggregation of apex predators, specifically the silvertip sharks observed there, 1046 

around the seamount summit flanks where the lee waves are formed. 1047 

 1048 
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