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ABSTRACT: Biofilm-sediment aggregate (BSA) contains a high water content,
either within internal pores and channels or bound by extracellular polymeric
substances (EPS) forming a highly hydrated biofilm matrix. Desiccation of BSAs
alters the biofilm morphology and thus the physical characteristics of porous media,
such as the binding matrix within BSA and internal pore geometry. Observing BSAs
in their naturally hydrated form is essential but hampered due to the lack of tech-
niques for imaging and discerning hydrated materials. Generally, imagery techniques
(scanning electron microscopy (SEM), transmission electron microscopy (TEM),
and focused ion beam nanotomography (FIB-nt)) involve the desiccation of BSAs
(freeze-drying or acetone dehydration) or prevent differentiation between BSA
components such as inorganic particles and pore water (confocal laser scanning
microscopic (CLSM)). Here, we propose a novel methodology that simultaneously
achieves the 3D visualization and quantification of BSAs and their components in
their hydrated form at a submicron resolution using X-ray microcomputed tomography (μ-CT). It enables the high-resolution
detection of comparable morphology of multiphase components within a hydrated aggregate: each single inorganic particle and the
hydrated biofilm matrix. This allows the estimation of aggregate density and the illustration of biofilm-sediment binding matrix.
This information provides valuable insights into investigations of the transport of BSAs and aggregate-associated sediment particles,
contaminants (such as microplastics), organic carbon, and their impacts on aquatic biogeochemical cycling.

1. INTRODUCTION

Sediment particles in aquatic environments provide suitable
solid−liquid interfaces for microorganism (e.g., bacteria, algae,
diatom, fungi, and archaea) accumulation.1 By secreting copious
amounts of extracellular polymeric substances (EPS) binding
sometimes more than 90% water2,3 and adhering sediment
particles together, these microorganisms form hydrogel-like
microorganism-sediment aggregates, defined here as “biofilm-
sediment aggregates” (BSAs). These aggregates are extensively
present, either in overlying water or as part of a soft or con-
solidating layer aggregated across the sediment-water inter-
face.4−6 The internal structure of BSAs reflects microbial media-
tion on sediment particles, such as by reducing the pore space
among particles for flow,7 rearranging the particle distribution,
altering particle/aggregate cohesionmechanism,8 and absorbing
various materials and contaminants including microplastics and
nanoparticles, as well as trapping and storing nutrients and
microbes.9 The internal structure of BSAs is critical to the
physical transport of BSAs and associated materials, often

accelerating the deposition of suspended particulate matter
(SPM)10 and strengthening the resuspension resistance of benthic
deposits.11,12 From an ecological viewpoint, it affects biogeo-
chemical cycling of the nutrients, carbon, and the transport of
associated microplastics, nanoparticles, and heavy metals.13−15

Fractal theory has been applied to study aggregate struc-
ture,16−18 assuming a self-similar structure that self-repeats at all
dimensional scales.19 However, this is due to a lack of currently
available techniques to validate the internal structure of BSAs.
Free-settling tests using optical microscopy or camera imaging
have been used to collect 2D external morphologies and settling
velocities.20 The porosity, permeability, or density cannot be
directly measured but instead are estimated by Stokes’ law,
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erroneously assuming a homogeneous and impermeable internal
architecture.21

A single BSA is an EPS-bound network usually consisting of
several associated microaggregates/clusters (≤10 μm) in dif-
ferent development stages.22 EPS is present in various forms,
including colloidal, capsular, surface film, or fibrous.2,23 If con-
firmed, a highly heterogeneous internal mass distribution within
BSAs would challenge the use of Stokes’ law or fractal theory to
represent the “true” biofilm-sediment binding nature24 of BSA.
Scanning ElectronMicroscopy (SEM) has been used to image

EPS strands and plates; however, the standard SEM requires
dehydrating the hydrated samples, unavoidably resulting in
considerable distortion of hydrated biofilm matrix.25 Low-
temperature SEM (LTSEM) or cryo-SEM requires freezing of
fully hydrated biofilm, which has been proven to cause con-
siderable artifacts, thereby making it difficult to interpret the
biofilm binding mechanisms.26 Transmission electron micros-
copy (TEM) is another technique for a high-resolution imaging
of EPS fibril bundles in BSAs but only for 2D observation.27

Focused Ion Beam Nano tomography (FIB-nt) has recently
been used for 3D characterization of the structure of suspended
flocculated matter.24 However, as with TEM, the FIB-nt tech-
nique requires aggregates to be dehydrated and stabilized in
resin blocks. The preparatory losses of EPS during conventional
resin-embedding methods is considerable, sometimes account-
ing for 50%−80%.28
Either SEM or TEM/FIB-nt involves various degrees of

desiccation of BSAs, rather than direct 3D imaging of hydrated
BSAs in liquid media. Biofilms in natural BSAs are predomi-
nantly comprised of water,3 and the majority (up to 98%)3

bound by EPS within the biofilm matrix can be easily removed.3

Prior work has shown that biofilms create an environment which
can retain moisture.2 When biofilms are exposed in dry envi-
ronments, the loss of water at the biofilm surface brings polymer
sites closer together,8 forming a skin-like protector against
further evaporation of the water underneath.2,8 The binding
architecture is altered, and the internal pores and channels are
distorted. The observed structure of BSAs undergoing
desiccation is thus unlikely to be representative of the structure
of the samples when they transport in fully hydrated form.25

Given that fluid flow through BSA pores and channels is a key
mechanism for uptake, storage, andmineralization of carbon and
nutrients from surrounding environments,29 a realistic observa-
tion of the flow pathways through BSA is crucial for investigating
nutrient exchange,30 entrapping, and accumulation of microbes
in such porous media8 and fully understanding the function of
BSA. Conducting nondestructive, 3D imaging and quantifica-
tion of hydrated BSA sustained in liquid medium is therefore
important.31 Environmental SEM (ESEM) and confocal laser
scanning microscopic (CLSM) in combination with fluorescent
staining are two of the most promising currently available tools
for observing a hydrated biofilm matrix.32 However, ESEM is
limited to the characterization of surface structure, instead of
the 3D internal structure (pores and channels), while CLSM
fails to distinguish the morphology of sediment particles and
pore water in aggregates as neither can be targeted by appro-
priate staining.33

These standard specimen preparation techniques provide
limited aggregate imaging to date, and the direct imaging
of hydrated aggregates in liquid media would be a preferable
approach. The objective of this work was to introduce a
methodology which could achieve direct imaging of aggregates
in their hydrated form and be able to distinguish between

hydrated biofilm, water, and sediment particles at a high-
resolution and in 3D.
X-ray microcomputed tomography (μ-CT) techniques are

applied in this work to capture the volumetric characterization of
3D internal structures at the micron scale.34 While it has been
used in prior work in combination with FIB-nt to get the resin-
cured flocs, its use has been limited to provide gross-scale
information on flocculated materials.35 To assess the suitability
of the technique and design an optimized protocol for imaging,
we compared typical BSAs specimen preparation methods,
including fast-freezing, resin-embedding, and wet staining. The
resulting method proposed simultaneously achieved the non-
destructive imaging and quantification of the 3D matrix of BSAs
in their hydrated forms. It enables the precise detection of
multiphase components within an individual aggregate: indi-
vidual sediment particles hydrated biofilm matrix and pore
water. It also enables the estimation of density of individual
aggregates and the detection of the biofilm-sediment binding
matrix. The imaging period was successfully optimized to 3 h for
a submicron resolution, significantly improving cost effective-
ness.

2. MATERIALS AND METHODS
Simplified, replicable laboratory-cultivated alga-kaolinite aggre-
gates were generated and used to ensure reproducibility and
cross comparison among different preparationmethods. By which,
the ultimate purpose is to investigate the best methodology for
imaging. Work flows from aggregate creation through to image
acquisition and processing are explained in the following section.

2.1. Biofilm-Sediment Aggregate Creation. A commer-
cially available kaolinite powder (ACROS Organics, 1−1.8 μm)
was fully saturated in distilled water before use and placed under
vacuum to eliminate potential hydrophobic effects caused by air
bubbles on particle surfaces.36 Primary particle size distribution
(PSD) was measured using a LS300 Coulter laser37 for later
comparison with primary particle size of the created aggregates
using imaging analyzing. The algae, phaeodactylum tricornutum,
was used as a single species for aggregation (cultured in the
Research Aquarium Laboratory, National Oceanography Centre,
Southampton (NOCS)). The alga was cultured in artificial
seawater (Sigma sea salts, salinity 35 ppt) with added nutrients
(sodium metasilicate) and added sodium hypochloride, to inhibit
bacterial growth in order to simplify the whole system (10:5:2).
The culture solution was left illuminated for 24 h at 18 °C, after
which 1.25 mL of sodium thiosulfate was added to neutralize the
pH. After this, 100mLof kaolinite and 100mLof algal suspension
were added and gently mixed. After a 6-day incubation period,
aggregates were found suspended in the water column and formed
a fluff layer at the bottom of the incubation vessel. Aggregates at
the surficial fluff layer were easily resuspended through gentle
agitation. Aggregates were sampled using a wide-mouthed pipet
and immediately underwent specimen preparation protocols in
order to minimize sampling artifacts.38 The sampled aggregate
size range and shape were also obtained using a camera-imaging
system during settling tests20 and found to have a size range of
15.8−593.0 μm and a height to width ratio of 0.3−3.0.

2.2. Aggregate Specimen Preparation. Different BSA
specimen preparation methods for μ-CT were chosen and
compared, to assess the suitability for imaging. The ultimate
purpose of each preparation method was to sustain the fully
hydrated matrix of aggregates.

2.2.1. Liquid Nitrogen Freezing of Aggregates. Liquid
nitrogen (LN2) was used as a high-speed freezing treatment to
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minimize the freezing artifacts.39 Fresh aggregate samples were
placed in a 20 mL plastic syringe (radius 2 cm and depth 3 cm)
and immediately immersed into an LN2 pool at −196 °C for
2 min, which ensured that the aggregates were sufficiently
frozen.40 The frozen aggregates were not dried, as while drying
preserves the fibril bundles of biofilms, it does not sustain the
hydrated polymers in BSAs.26 As thawing of the frozen samples
can cause significant displacement of features inside the
specimen, the specimen vial was held in dry ice during scanning.
2.2.2. Embedding Aggregates in Resin. A 3 mm-diameter

hole (3mmdepth) in a preprepared pure resin block was created
in advance to hold aggregates that were carefully transferred into
the hole immediately after creation. The embedding of the
aggregates in resin was carried out following standard prepara-
tion procedures24 (with the main steps summarized herein).
As epoxy resin is hydrophobic, the aggregates were repeatedly
soaked in anhydrous acetone to replace the internal water. This
is followed by resin filtration, after which the sample was cured at
60 °C. A 5*5*5 mm resin sub-block containing the target
aggregates was sectioned for whole-volume scanning to avoid
artifacts during alignment of the sectioned image series to a 3D
data set.
2.2.3. Wet Staining Aggregates. A sealed 200 μL pipet

was used as the specimen container for wet aggregates. The
pipettes are composed of polypropylene ensuring low X-ray
absorption. The thin walls (200−300 μm)41 of the container
allow forminimization of the amount ofmedia between the aggre-
gate target and the detecting probe, reducing extra X-ray absorp-
tion.42 One of the most challenging problems for wet aggregate
scanning is to stabilize aggregates in the liquid media during the
entire scanning process which can last several to dozens of hours.
To address this from a specimen preparation approach, initial
attempts were made to stabilize the samples in an absolute
alcohol treatment. The alcohol treatment aims to immobilize the
algae cells and the production of bubbles by algae activities,
which can cause irreparable failure in image reconstruction.
Following the alcohol treatment, Alcian blue dye solution was
added in specimen for a 7 min staining period which has been
reported as sufficient.43 Alcian blue has been used in several
studies investigating the size, form, and abundance of acidic
polymeric substances (APS) which contribute significantly to bio-
film adhesion.44,45 Alcian blue (Sigma; 0.4 wt %/wt at pH 2.5)43

was sonicated for 15 min to disaggregate the particles and then
passed through a 0.45 μm filter twice to remove stacked particles
and ensure a homogeneous solution.

3. BSA IMAGING AND IMAGE PROCESSING
The LN2 frozen aggregates packed around by dry ice were
imaged with X-ray micro-CT using a modified 225 kVp Nikon
HMX ST, while the 3D imaging of BSAs embedded in resin and
in liquid (stained and unstained) was conducted using a Zeiss
160 kVp Versa 510 X-ray microscope, both located at the μ-VIS
X-ray Imaging Centre, University of Southampton. The latter
scanner uses a two-stage magnification approach, combining the
geometric magnification of the X-ray cone beam and source-to-
detector/object distances, with optical magnification through a
microscope lenses system to further magnify the image ahead of
the detector (Figure 1c). μ-CT scanning protocols for each BSA
specimen are listed in Text S1, Supporting Information. In the
reconstructed stack images, voxel intensity (grayscale value)
reflects the variation in X-ray absorption, which is a function
of the material’s physical and radio-density throughout the
volume.46 In summary, it can be inferred that brighter pixels

represent denser materials (e.g., sediment in this case), while
darker pixels represent less dense materials (biofilm and pore
water)47 (Figure 1d). Details of the density calibration and
estimation protocols are explained in section 4.5.
Multipurpose image processing was conducted using Avizo

9.3.0 software (FEI Hillsboro, OR, USA)48 in cooperation with
Fiji/ImageJ (National Institutes for Health, USA),49 including
image filtration and image segmentation. The ultimate purpose
was to distinguish differentmaterial components (biofilm, pores,
and sediment particles in this circumstance) within a BSA.
Initially, stack images were cropped to retain one targeted aggre-
gate. In order to increase the accuracy and efficiency of image
segmentation, image filtration was conducted using the Avizo
9.3.0 Median Filter to average out image noise. Segmentation
relied on a Trainable Weka Segmentation 3D plugin within Fiji/
ImageJ, using a collection of visualization tools and machine-
learning algorithms based on the user input and then performing
the same task in the untested data.50 By identifying and rec-
ognizing targeted objects manually in a subset of images and
annotating them to train the classifier, the machine-learning
algorithms apply multiple filters to perform particle separation
(operation details see https://imagej.net/Trainable_Weka_
Segmentation).24,49 Thereafter, successfully segmented bio-
films, pores, and sediment particles could be imported together
into Avizo 9.3.0 for subsequent volume rendering, quantitative
label analysis, and permeable flow simulation.51,52

4. RESULTS AND DISCUSSION
4.1. Comparisons of the Different Specimen Prepara-

tionMethods. 4.1.1. LN2-Freezing Specimens.Keeping aggre-
gate specimens frozen during the several-hour scanning period
was challenging due to the room-temperature scanning environ-
ment. Covering the aggregate specimen in dry ice effectively
mitigates the temperature difference but increases the distance
between the specimen and the X-ray source. As a result, the best
achievable resolution is sacrificed. This effect may be minimized
by reducing the amount of dry ice used, but then insufficient
cooling by a small amount of dry ice would lead to the sample
defrosting and therefore scanning failure. Given an average scan
time of several hours, it was challenging keeping specimens
sufficiently frozen, even without reducing the amount of dry ice

Figure 1. Schematic illustrations of workflow from BSAs creation (a),
sampling and BSA specimen prepared using a full range of available
protocols (b), to X-ray micro-CT setup (c). Illustrates the dual-
magnification imaging system including both the geometric magnifi-
cation and optical magnification. The resulting reconstructed
volumetric slice images composed of different voxel grayscale values
representing the X-ray absorption map throughout the volume which is
closely relevant to the material density variations (d).
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used. The best scan provided a 10 μm resolution. No aggregates
were captured in the image, which instead indicated a con-
siderable amount of ice crystal formation and air bubbles within
the sample (Figure S1, Supporting Information). This showed
that high-speed freezing by LN2 can still result in the formation
of ice crystals, and the authors advise caution when using
freezing methods to interpret biofilm-sediment binding due to
potentially considerable freezing artifacts.39 As such, freezing
aggregates by LN2 was not deemed a suitable specimen pre-
paration method for Micro-CT.
4.1.2. Resin-Embedded Aggregates Scanning. As the

aggregates were well stabilized in the resin block, a 20 h long
scan was possible, which secured a high-resolution of 683 nm
(Figure 2). Although primary particles and sufficient aggregates

were detectable, a considerable number of aggregates showed
blurred biofilm boundaries (BSAs 4, 5, 6 in Figure 2a). This may
be due to the high X-ray absorption properties of resin materials.
This prevents a precise discrimination of aggregate morphology,
biofilm matrix, or the internal pore geometry against the back-
ground resin during subsequent image processing for some
samples. Meanwhile, some aggregates show distinct, regular,
sharp, and spherical edges (BSAs 1, 2, 3 in Figure 2), as well as an
easily detectable biofilm network, which was common in the
scans. As widely acknowledged by prior investigations53 and optical
microscopy observation of untreated aggregates (Figure S2,
Supporting Information), the shape of aggregates is generally
irregular and amorphous, and a regular sphere was not expected.
This architecture may result from the preparation procedure
during embedding BSAs in resin. The resin should theoretically
penetrate into the pores within aggregates to replace the bulk
liquid without any perturbation by compression or dehydra-
tion.28 However, the regular and circle-like aggregates observed
may indicate that, instead of penetrating these pores, the resin
wraps around the aggregate body, possibly due to the nontrivial
internal micro/nanopore geometry. Some compression effects
on aggregates structure seem unavoidable. Thus, although a
dense network of biofilm can sometimes be observed, caution
should be taken to interpret the structure and biofilmmatrixes of
resin-embedded aggregates.
It also should be noted that not all resin penetration into the

aggregates failed (blue arrows in Figure 2(b)). In these areas,

aggregates have irregular morphology, but this is associated with
a low contrast between the biofilm matrix and the surrounding
resin. As high noise and low contrast were typical of resulting
images, this may be partially caused by the high X-ray absorption
of resin materials. However, sufficient contrast can be obtained
when the resin fails to completely penetrate into the pores of
aggregates but instead forms around the aggregate body (BSAs1,
2, 3 in Figure 2(a)). It is thus clear that the contrast between the
saturated biofilm and the resin itself is enough to be detected,
and so the low contrast highlighted in the blue-arrowed aggre-
gates may result from the resin-penetrated biofilm. As explained
in the introduction, biofilms are predominantly comprised of
water, the majority of which is bound by EPS forming the
hydrated matrix of biofilm. Such water is easily removed through
dehydration and replacement,3 which are always accompanied
by resin penetration and always associated with artifacts (e.g.,
shrinkage).25 Therefore, the resin-penetrated biofilm and BSAs
were unavoidably altered. In conclusion, embedding hydrated
biofilm-sediment aggregates in resin might not be optimal to
allow interpretation of the hydrated matrix characteristics, due
to the resulting low-contrast, possible compression by resin and
partial dehydration.

4.1.3. Wet Specimen Scanning: Stained and Unstained.
Stabilizing aggregates in a liquid media remains a problem
during the long scanning process. To achieve the best spatial
resolutions of 683 nm, a 14 h plus scanning period is typically
required. However, initial results indicate that such a scanning
period results in considerable movement of the untreated wet
aggregates, causing a complete failure of image reconstruction.
The consolidation of materials, movement of the algae cells, and
the production of bubbles by live algae during scans lasting >14 h
can accept considerable movement. The problem is to acquire
acceptable scans thus remains as to how to reduce the scanning
period without sacrificing image resolution, contrast, and signal-
to-noise ratio (SNR). The μ-CT machine parameters were
adjusted for conducting a shorter 3-h scan (parameter details are
listed in Supporting Information SI1, text S1). However, tests of
untreated samples showed significant sample movements even
within 2 h.
To avoid resolution sacrifice and the decrease of image quality

(e.g., lose the ability to distinguish biofilm matrix), efforts from
specimen preparation were also contributed to address this
question (Section 2.2.3). Absolute alcohol treatment was
applied to immobilize algae cells andminimize their metabolism.
Alcian blue treatment was then applied to help discern hydrated
biofilm from surrounding pore water. This procedure led to
successful images of the wet aggregates. The resulting scanning
time was 3 h, with a high-resolution of 777 nm, and allowed for
the discrimination of hydrated biofilm from surrounding water
and sediment particles. As such, the following results and dis-
cussions are all based on the wet scanning of stained specimens
prepared in section 2.2.3.

4.2. 3D Models of Hydrated BSAs. In the cross-sectional
grayscale raw images (Figure 3a), an image was segmented into
different regions (Figure 3b), based on the grayscale values of
each voxel using a semiautomatic trainable segmentation tool in
Fiji/ImageJ.51 Grayscale levels reflect the X-ray attenuation
degrees which are determined by the densities of different
materials.47 Each constituent of an aggregate, such as sediment
particles, biofilm, and water, produces their own specific gray-
scale ranges (details in section 4.5 and Figure 6) and reflects
their different geometries, which enables partition of an aggre-
gate into three component materials. The raw image stacks

Figure 2.An example image slice of resin-embeddedBSAs. The inorganic
fine particles and a sufficient amount of aggregates were detected (a):
BSAs1, 2, 3 showed a sufficient contrast with surrounding resin, while
BSAs 4, 5, 6 showed poor discrimination against surrounding resin and
poor discrimination of components. Aggregates with a sufficient contrast
present sharp, regular, and curved edges (BSAs2 red-arrow in (b)), while
the aggregates with an amorphous shape suffer from a lower contrast with
surrounding resin (blue-arrow in (b)).
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(2D image slices) of an aggregate were divided into three image
stacks: sediment particles, biofilm, and water. Each 2D image
stack is then reconstructed to a 3D data set/model by the
volume rendering algorithm in Avizo 9.3. (Figure 3c, operation
manual52). The 3D models of each of the components can then
be overlaid to reconstruct the intact aggregate (Figure 3d
and 3e). This method avoided BSA desiccation and allows for
the discriminantion of internal pores from a comparable matrix
of hydrated biofilm.
4.3. Particle Size Distribution (PSD) of Sediment

Particles in Aggregates. PSD was measured by labeling
sediment particles and conducting label analysis using Avizo
9.3.0. This was compared to more conventional laser sizing data.
These two methods are both based on using an equivalent
diameter to measure the sediment particle size. The CT-based
PSD showed a distribution with a median grain size D50 =
4.72 μm (Figure 4a), validated against the Coulter-measured

PSD D50 (5.11 μm), both of which exceed the size range of
the primary particles (1−1.8 μm). Considering that a voxel
resolution of 0.777 nm allows the detection of particles within
this primary particle size range, this suggests aggregation of the
primary clay particles. A comparison of the two data sets shows
that D10, D25, and D50 all exhibit similar results, while D75 and
D90 showed some differences (Figure 4b). The Coulter-measured

PSD showed that particles ranging from 15 to 77 μm account for
12% of the distribution. This significant differencemay be due to
potential electrochemical interactions among the kaolinite clays
enhanced by moderate turbulence54 during stirring of the
sample volume during the Coulter-measurement procedure.
However, it may be an artifact of the laser particle sizing model,
which equates particle sizes to an equivalent particle diameter.
CT based PSD also has the added benefit of direct visualization
of 3D architecture of individual sediment particles, enabling
further shape geometry analysis of each single particle by image-
based programming (e.g., Matlab, developed by MathWorks
Inc., USA).55

4.4. TheHydratedMatrix in Biofilm-Sediment Binding.
As discussed above, the water bound by an EPS hydrogel is easily
removed. The distortion of the biofilm matrix and the internal
geometry of BSAs by dehydration seems largely unavoidable in
previous imaging methodologies. Since no desiccation or
freezing is involved in the proposed methodology, direct 3D
imaging of the wet matrix of biofilm tissues (Figure 5) is

possible. The detailed biofilm matrix, including the fabric-like
stands and plates and gel-likematerials, as well as thematrix voids, is

Figure 3. Grayscale raw images (a) processed by image denoising and segmentation to separate aggregate components into biofilm, pores, and
sediment particles channels (b). (c) shows a 3D reconstructed model of each constituent by volume. (d) is the 3D view of the distribution of biofilm-
sediment in an individual BSA, giving insight into the biofilm-sediment interactions when sustained in water. (e) 3D model of one intact aggregate
comprising of each single constituent, including internal pore water.

Figure 4. (a) Image-based distribution of sediment particles embedded
in biofilm aggregates (PSD, μm). (b) Comparisons between measured
PSD by Coulter and PSD by CT image analysis.

Figure 5. Illustrating different geometries of biofilm-sediment binding
matrixes in BSAs.
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defined by Flemming2 as ‘a pore or channel in the biofilmmatrix that
contains liquid water and is not filled with hydrated EPS molecules’.
These voids are important for the uptake and accumulation of
nutrients, heavy metals, organic substances, and particles23 and are
especially well represented using this methodology.
This method succeeded in capturing different biofilm-

sediment binding matrixes within an individual BSA at a 3D,
submicron voxel resolution and in their hydrated form. We note
that the majority of sediment particles is bound/bridged by
biofilm forming aggregates27 (Figure 3(c) and (d)). This might
be due to the presence of microbial cells, influencing the shape
and surface properties of the inorganic particles compared with
purely abiotic conditions.8 Natural aggregates are significantly
microbiologically mediated, indicating the importance of appro-
priately considering the microbial processes in aggregation for
large-scale morphodynamic modeling which often consider
inorganic aggregates.56

This method illustrates the successful capture of tiny biofilm
patches attached to sediment particles (green arrow in Figure
5(b)). This may arise as an initial attachment with single cell
colonizing the sediment particle surfaces,9 which is followed by
EPS secretion, forming localized biofilm patches.1,8,57 Alter-
natively, this might be caused by the breakup of the biofilm
bridge with another aggregate. Further investigations apply this
method as a straightforward tool to test these hypotheses. Some
relatively developed biofilm patches with different geometries
have also been observed. Some appear “loosely bound” with a
few particles (yellow arrows in Figure 5), while others appear
“well packed” with more particles embedding (red arrows in
Figure 5). This is consistent with the hypothesized cell colo-
nization patterns of “poorly touched” and “well-touched”mentioned
in the studies of biomineral aggregates.58 Clearly, the mechanisms
behind these various biofilm-sediment binding matrixes are still
unclear, and the described methodology provides a visual tool
for informing and testing these and producing a further under-
standing of these mechanisms.
4.5. Quantification of BSA Component Density. Gray

scale values for each pixel in raw images reflect the variations in
the densities of the component materials.47 Beer’s law59 can be
used to relate pixel intensity (grayscale value) to the corre-
sponding density of the biofilm, sediment, and pore water. This
takes the form of a linear relationship between the Hounsfield
unit (HU, which also reflects a spectrum of X-ray attenuation59)
and the bulk density of sediment and has been evaluated and
successfully applied to approximate sediment density.46,60 The
linear relationship (the slope ratio and intercept) is not constant
but varies with spatial variations of the components and struc-
tures due to the photoelectric effect.61 In prior work, the entire
specimen was usually assigned a single linear relationship
between density and pixel intensity; here the linear relationship
was recalibrated within every 10 image slices for the entire
180 slices of the aggregate. The aim is to reduce the potential
photoelectric effects caused by spatial disunity of components
and structure distribution within one specimen. For each image
slice, 10−15 regions of interest (ROI) were selected. The selec-
tion of each ROI was strictly specified: only the areas containing
all three materials were chosen (Figure 6). This is because we
assume the densities and pixel intensities of sediment, biofilm,
and pore water within this small area obey the same linear
relationship. Comparison of the value of pixel intensity along the
transect with material type at the corresponding position allows
the average pixel intensity of the sediment, pore water, and
biofilm to be estimated and a specific linear relationship to be

calculated for each region. The densities of sediment particles
and water were measured in advance, and the pixel intensities of
all sediment particles, biofilms, and pore water were measured
from the raw grayscale images. Based on the densities and
intensities of sediment particles and pore water, the linear
relationship (intercept and the slope) between pixel intensity
and density in the area was calibrated, by which the density of
biofilms can thus be calculated (Figure 6). Three of the ten
selected ROI lines for one image slice are provided in Figure S4,
Supporting Information, each transecting all three different
materials. Interestingly, results illustrate that the value of biofilm
density in the aggregate is very variable. For example, the bio-
film density in the three ROI lines (Figure S4, Supporting
Information) varies from 1155 to 1503.19 kg/m3. This is not
surprising, given that the polymers that form biofilm are
themselves very variable depending not only on their source and
age but also on local physicochemical conditions such as hydra-
tion state, molecular bonding, and composition that may change
with the nature of available ions that may be absorbed. The
biofilm matrix within the aggregate may form initially from
microbe clusters. As the growth of these residential micro-
organisms and the amount of EPS they secrete increase, more
particles and microbes are adhered, forming a biofilm-sediment
patch. There may also be an element of cell-signaling (quorum
sensing) that attracts other colonizers.
To estimate the density of an aggregate rather than the detailed

aggregate development mechanisms, the biofilm densities along
each ROI line were then averaged, and the heterogeneous char-
acteristics were simplified. As a result, each material component
has one averaged density value. Accordingly,
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where df is the aggregate density, and di and vi are the averaged
density and volume of hydrated biofilm, sediment particles, and

Figure 6. Example ROI containing all three different materials on the
left-hand side. Each material shows a specific range of gray values:
Inorganic sediment particles (orange arrows) represent the highest gray
value range, while the intensity of pore water (blue arrows) shows a
slightly lower intensity than biofilms (green arrows). The calibration of
the linear relationship between intensity and density is illustrated in this
selected ROI line.
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pore water (the volume of each target component is calculated
by counting the voxel number included in this component, each
voxel volume is 0.7773 nm3), respectively.
To conclude, a method for 3D imaging aggregates and their

multiphase components (including the discernment of biofilm
matrix components) in hydrated form during a 3 h μ-CT scan is
presented. This allows the observation of 3D biofilm-sediment
binding geometries, and the calibration and estimation of indi-
vidual aggregate densities, and has been assessed for replicability
using duplicate scans. This method was tested and developed
based on laboratory-cultivated aggregates but has also been used
successfully to capture observations of hydrated biofilm matrix,
inorganic particles, and pores in natural samples. Uncertainties
remain when applying this method to natural samples: (1) it is
uncertain whether this technique is applicable for distinguishing
between different inorganic particles. Sophisticated prior cali-
bration experiments might be required. (2) This method does
not aim to distinguish individual microbial cells, such as algae
cells or bacteria cells, but instead to capture the biofilm matrix
with microbial cells embedded in an EPS matrix. Further work is
required to elucidate the full capabilities of the methodology.
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