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RCAMP: A Resilient Communication-Aware Motion Planner
for Mobile Robots with Autonomous Repair of Wireless Connectivity

Sergio Caccamo, Ramviyas Parasuraman, Luigi Freda, Mario Gianni, Petter Ögren

Abstract— Mobile robots, be it autonomous or teleoperated,
require stable communication with the base station to exchange
valuable information. Given the stochastic elements in radio
signal propagation, such as shadowing and fading, and the
possibilities of unpredictable events or hardware failures, com-
munication loss often presents a significant mission risk, both in
terms of probability and impact, especially in Urban Search and
Rescue (USAR) operations. Depending on the circumstances,
disconnected robots are either abandoned, or attempt to au-
tonomously back-trace their way to the base station. Although
recent results in Communication-Aware Motion Planning can
be used to effectively manage connectivity with robots, there are
no results focusing on autonomously re-establishing the wireless
connectivity of a mobile robot without back-tracing or using
detailed a priori information of the network.

In this paper, we present a robust and online radio signal
mapping method using Gaussian Random Fields, and propose
a Resilient Communication-Aware Motion Planner (RCAMP)
that integrates the above signal mapping framework with a
motion planner. RCAMP considers both the environment and
the physical constraints of the robot, based on the available
sensory information. We also propose a self-repair strategy us-
ing RCMAP, that takes both connectivity and the goal position
into account when driving to a connection-safe position in the
event of a communication loss. We demonstrate the proposed
planner in a set of realistic simulations of an exploration task
in single or multi-channel communication scenarios.

Index Terms— Mobile Robots, Self-Repair, Wireless Commu-
nication, Communication-Aware Motion Planning.

I. INTRODUCTION

Recent years have witnessed an increased development of
wireless technologies and significant improvements in com-
munication performance and quality. As wireless networks
possess many advantages over a tethered connection, such
as the ease of deployment and fewer physical constraints,
it has become the ’de facto’ means of communication in
mobile robots. However, this development has not come
without problems. A 2004 study [1] found a drastic increase
in communication-related failures in robots compared to its
prior in 2002.

These problems are important under normal circum-
stances, but become even more significant in USAR sce-
narios, where electromagnetic infrastructure is often dam-
aged. Furthermore, USAR missions often rely more on
bi-directional communication channels than other robotic
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Fig. 1: The simulated mobile robot (UGV) with its receiver and an
omnidirectional transmitter on a urban search and rescue scenario.

applications, since the performance of a combined human-
robot team is still superior compared to purely autonomous
solutions in tasks such as inspecting or assessing potentially
hazardous areas [2], [3].

To address this problem, several researchers have fo-
cused on Communication-Aware Motion (or path) Planning
(CAMP) to simultaneously optimize motion and communi-
cation constraints and finding and executing an optimal path
towards a destination [4]. In particular, Mostofi et al. laid
solid foundations in this research area [5]–[7]. It can be
noted that most previous works consider either a binary or a
disk based connectivity model, or an accurate communication
model to optimize the robots motion and communication
energy without focusing on resilience. Additionally, none
of the previous works explicitly addresses the problem of
efficiently re-establishing the communication in case of a
connection loss.

In this paper, we propose a Resilient Communication-
Aware Motion Planner (RCAMP) that combines two key
elements: 1) a Gaussian Random Field (GRF) based proba-
bilistic model to map the Radio Signal Strength (RSS) of an
unknown environment and use it to predict the communica-
tion quality of the planned path; 2) a motion planning strat-
egy that starting from sensory information (such as LIDAR),
computes a traversability map for a given robot taking into
account environmental constraints. Additionally we propose
a strategy to autonomously repair a communication loss by
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steering the robot towards a communication-safe position
using the proposed RCAMP.

Specifically, inspired by [8], we use GRFs for dynamically
mapping the heterogeneous distribution of the RSS. We then
merge this online framework with a motion planner

● to obtain a semi-optimal path considering both commu-
nication and motion constraints, and

● to quickly re-establish connection in case of signal loss.
We demonstrate the feasibility of our approach through

extensive simulations on a variety of use cases that re-
produce realistic wireless network changes (e.g. a sudden
connection loss) in single and multi-channel set-ups. The
main advantages of our planner compared to others are the
response to dynamic changes in the network configuration
(e.g. disruptions or movement in Access Points) or in the
environment (e.g. path planning in presence of dynamic
obstacles) and the fact that we do not require prior knowledge
of the network, such as the location of the Access Points.
We propose a fully online, dynamic and reactive CAMP that
adapts to the recent sensory information.

II. RELATED WORK

Considerable efforts have been made to address the prob-
lem of maintaining robust wireless communication between
mobile robot(s) and a base station [3], [9], [10]. Many
solutions focus on using mobile repeater (relay) robots to
establish and/or repair an end-to-end communication link
[11]–[13]. Other solutions focus on means to provide sit-
uation awareness of wireless connectivity to the robot or the
teleoperator [14].

An overview of the CAMP problem is presented in [4].
Several works rely upon an oversimplified model in which
the connectivity is modelled as a binary function. In this case,
the predicted Signal to Noise Ratio (SNR) and the estimated
distance from the robot (aerial or ground) to the radio source
are empirically thresholded in order to identify regions with
high probability of communication coverage [15].

In [16], the authors propose an optimization strategy to
compute a path along which the predicted communication
quality is maximized. They make use of supervised learning
techniques (Support Vector Regression) to predict the link
quality such as the Packet Reception Ratio. It is worth noting
that in this case the learning mechanism is offline and hence
can only be applied to a static environment.

A communication aware path planner is proposed in [17]
for an aerial robot. Here, the authors present a probability
function which is based on the SNR between two nodes. The
SNR model is learned from the measurements online using
an Unscented Kalman Filter (UKF) model.

Works that combine communication and motion planning
are strongly influenced by Mostofi et al. In [6], the authors
developed a mathematical framework to predict the commu-
nication quality (mainly the SNR) in unvisited locations by
learning the wireless channels online. This prediction model
is then used to define a motion planner either to improve the
channel assessment [5] or to optimize for communication and
motion energy to reach a given target [7]. This framework is

further extended in [18] to include online channel learning
for co-optimization of communication transmission energy
and motion energy costs. Here, the transmission power is
modelled as a function of SNR, whereas the motion power
is a function of the robot’s velocity and acceleration.

Recovering from a communication failure is a topic that
has not been given much attention in the community. A
simplistic solution is to back-track the robot along the path it
has already travelled, until it regains communication. Alter-
natively, the robot can predict positions where the connection
has high quality and move towards those locations in case
of connection loss. In [19], a decentralized algorithm is
proposed to move the disconnected robot towards the known
position of the gateway (radio signal source or relay) by
taking into account obstacles along the way. In [10], the
authors demonstrated a behaviour to drive the disconnected
robot towards the closest robot node (assuming a multi-robot
network) and repeat this until connection is restored. Note
that in the above mentioned works, the wireless channel
parameters are not estimated, but instead perfect knowledge
on the network topology is assumed (e.g, the positions of
the gateway nodes, base station, etc.).

In the Wireless Sensor Networks (WSN) community,
where it is commonly assumed that ample amounts of
hopping nodes are available, the problem of repairing a
connectivity failure is viewed differently. In this case, mobile
robots can be used as sensor nodes which can be repositioned
or added to replace failed nodes [20], [21].

It can be seen that predicting the communication quality
in regions not explored by a mobile robot is a challenging
problem. As pointed out above, probabilistic approaches such
as maximum likelihood and UKF have been used to model
the path loss and shadowing components of the RSS. Yet
these models perform efficiently only when there is at least
some prior information available regarding the network, such
as source or relay node positions, which is difficult to know
in field robotics applications such as the emergency deploy-
ment of robots to help in disaster response operations. In [8],
a Gaussian Process based method is proposed to estimate the
channel parameters and map the RSS in real-time using a few
sample measurements. Taking inspirations from this work, in
this paper, we propose a truly online Gaussian Random Field
model to assess the RSS by continuously learning from the
field measurements.

We make use of this probabilistic model to obtain the
communication cost of a given path. We then co-optimize
this cost along with the motion costs (ensuring feasibility
of traversal by taking into account environment obstacles
and constraints) to compute a path to a given destination.
The motion planner then executes this path by actively re-
planning. In case of a connection loss and if no destination
is defined, the motion planner makes use of the online GRF
model to quickly drive to a position that has the highest
probability to restore connectivity, by setting the robot’s
starting position as the goal.
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III. METHODOLOGY

In this section, we first define the RSS model, and then
discuss how to apply Gaussian Random Fields (GRF1) to
generate an online prediction map of the RSS distribution
which will be used in both motion planning and reconnection
planning. We conclude this section with a description of
the Communication-Aware Motion Planner and its utility
function. Note that the method can be extended to 3D and
hence be applied to aerial robots as well.

A. Radio Signal Strength Model

When a radio signal propagates from a source to a des-
tination, its strength attenuation depends on environmental
factors such as distance (path loss), objects in the environ-
ment (shadowing) and spatio-temporal dynamics (multipath
fading) [22]. A frequently used model to represent the RSS
is given by [23]:

RSS(d,t) = RSSd0 − 10η log10(
d

d0
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
path loss

− Ψ(d)
´¸¶

shadowing

− Ω(d,t)
´¹¹¹¸¹¹¹¶

multipath

.

(1)

Here, RSSd0 is the RSS at a reference distance d0 (usually
1m), which depends on the transmit power, antenna gain, and
the radio frequency used. η is the path loss exponent which is
a propagation constant of a given environment. d = ∣∣x−x0∣∣
is the distance of the receiver (at position x) from the radio
source (at position x0). Ψ ∼ N (0, σ) is a Gaussian random
variable typically used to represent shadowing while Ω is a
Nakagami-distributed variable representing multipath fading.

Usually, the RSS measurements (in dBm) coming from
wireless adapters are prone to noise and temporal fluctu-
ations in addition to multipath fading. This noise can be
mitigated by applying an exponentially weighted moving
average (EWMA) filter [12]:

RSSf(i) = RSSf(i− 1)+α(RSS(i)−RSSf(i− 1)), (2)

where RSS(i) is the RSS value measured at the ith instant,
RSSf is the filtered RSS value and α is an empirical
smoothing parameter.

We use Gaussian Processes for regression (GPR) [24] for
modeling the radio signal distribution as demonstrated in
[8], [25], [26]. A key difference compared to the previous
approaches is that we employ online learning with dynamic
training size that adapts to the changes in the environment
(e.g. change from line of sight to non-line of sight of the
source, switching between access points, losing/regaining a
connection, etc.). Below we briefly describe how the GPR is
performed.

B. Gaussian Random Fields

The RSS distribution can be described with a function
f ∶ R2 → R where each vector of xy-coordinates generates a
single RSS. Such a function can be efficiently modeled by a

1GRF is a term for the Gaussian Process Regression with 2.5 dimensional
datasets where each x − y coordinate has a single value v.

GRF which places a multivariate Gaussian distribution over
the space of f(x). The GRF allows us to probabilistically
handle noisy meausurements of a dynamic and unknow pro-
cess and predict the behaviour of such a process at unknown
and unexplored states. GRF have been widely used on a
broad range of robotics problems such as haptic and visual
perception [27], geometric shape description and planning
[28]. As shown in [26], environmental observation of RSS
can condition a GRF so that its posterior mean defines the
signal distribution of interest. The GRF is in fact shaped by
a mean function m (x) and a covariance function k (xi,xj).

To properly describe the probabilistic model we define
the set RV = {r1, r2 . . . rN}, with ri ∈ R3, of measure-
ments of robot xy-positions and corresponding RSS. DRF =
{xi, yi}Ni=1 is a training set where xi ∈ X ⊂ R2 are the xy-
coordinates of the points in RV and yi the RSS readings
from the mobile robots wireless adapters. X∗ ≡ Xrf∗ ⊂ R2

represents a set of M test points where xrf i ∈ R2 is a xy-
coordinate of the environment.

The joint Gaussian distribution on the test set X∗, as-
suming noisy observation y = f (x) + ε with ε ∼ N (0, σ2

n),
assumes the following form

[y
f∗
] ∼ N (m (x) , [K + σ

2
nI k∗

kT
∗

k∗∗
]) (3)

where K is the covariance matrix between the training points
[K]i,j=1...N = k (xi,xj), k∗ the covariance matrix between
training and test points [k∗]i=1...N,j=1...M = k (xi,x∗j) and
k∗∗ the covariance matrix between the only test points
[k∗∗]i,j=1...M = k (x∗i,x∗j).

We use the popular squared-exponential kernel

k (xi,xj) = σ2
eexp

⎛
⎝
−(xi − xj)T (xi − xj)

σ2
w

⎞
⎠
. (4)

as it better represent the variance in RSS [8], [26].
Following the example of [8], we could define a model-

based potential prior based on the path loss eq. (1) to improve
the accuracy of prediction

m (x) = RSS0 − 10η log10 (∥x − xs∥) , (5)

where xs is the source location which is an unknown param-
eter in the mean function. One could potentially optimize the
mean hyper-parameters (θm = [RSS0, η, x

s]) by training the
model with the measured data. In [8], [25], [26], they either
assumed the knowledge of the source location or estimated
it in a dedicated control/training phase with the measured
data.

However, given the unbounded nature of the source lo-
cation xs and the fact that only sparse measurements in
a limited explored area is available in a practical robotic
application, optimizing these hyper-parameters will result in
extensive computation and low accuracy.

Moreover, this model can be applied only to a fixed radio
source (Access point). Therefore, considering a practical
USAR scenario, where the Access Points can be mobile or
is frequently moved, trying to optimize the source location
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in eq. (5) with the measured data will not only be inaccurate,
but also result in poor prediction performance of the GPR
model.

Finally, more complex potential priors can be used or
interchanged in order to incorporate propagation phenomenas
(e.g. attenuation due to walls, floors, etc.) or environmental
knowledge and improve the prediction on those regions
of the map far from the measured data [29]. However,
such approaches require a larger amount of information and
increase the number of hyperparameters to be optimized.

Thus in our work, we consider a constant mean function,

m (x) = C, (6)

for practical and computational aspects. Note that this mean
function has shown low prediction errors in [30] when
compared to a linear mean function.

The predictions are obtained from the GPR conditioning
the model on the training set [24] :

p (f∗∣X∗,X,y) = N (f∗,V [f∗]) (7)

f∗ =m (x) + kT
∗
(K + σ2

nI)
−1 (y −m (x)) (8)

V [f∗] = k∗∗ − kT
∗
(K + σ2

nI)
−1

k∗ (9)

The predictive variance of the GRF highlights regions of
low density or highly noisy data. The hyper-parameters of
the mean and the kernel θ = [C,σc, σw] are periodically
optimized while the mobile robot moves and collects mea-
surements. The optimization (hyperparameter estimation) is
done by maximizing the marginal logarithmic likelihood of
the distribution on the measured data.

For online optimization purposes, we efficiently train the
GPR after each measurement by dynamically adjusting the
training set size based on the magnitude of the changes in
the measurements. We optimize the GPR and start with the
RSS prediction after the robot has moved enough to acquire
the minimum amount of training samples (around 5 meters
of displacement). The GPR model is continuously re-trained
with every new collected sample. When the connection
status is active, we keep increasing the training set size
up to a certain maximum limit. If the connection is lost,
we keep decreasing the training size until the minimum
limit. The hyper-parameters are re-optimized with current
measurements whenever the training size reaches a certain
minimum.

Next we describe how to define a utility function that takes
into account the prediction of the RSS and its uncertainty
to generate trajectories that guarantee communication or to
re-establish a connection in case of signal loss. We use
the term ”Wireless Map Generator (WMG)” to refer the
above described Gaussian random field that generalizes over
robot positions and RSS measurements to generate wireless
distribution maps.

C. Communication-Aware Motion Planner

We use the RSS predictions from the GPR along with the
traversibility cost in the RCAMP to plan and execute a path
to a given destination. As the planner is dynamic, it keeps
track of both RSS predictions and the traversibility based on
the incoming sensory information. We detail the basic steps
below.

1) Mapping and Point Cloud Segmentation: As a nec-
essary prerequisite for path planning, a map representation
M of the environment is incrementally built in the form of
a point cloud. An ICP-based SLAM algorithm is used in
order to register the different 3D laser scans collected by
the robot. At each new scan, both the map and a structure
interpretation of it are updated. In particular, the point cloud
map M is segmented in order to estimate the traversability
of the terrain.

In a first step, M is filtered using an efficient occupancy
voxel-map representation [31]: recursive binary Bayes fil-
tering and suitable clamping policies ensure adaptability to
possible dynamic changes in the environment.

Next, geometric features such as surface normals and prin-
cipal curvatures are computed and organized in histogram
distributions. Clustering is applied on 3D-coordinates of
points, mean surface curvatures and normal directions [32].
As a result, a classification of the map M in regions such
as walls, terrain, surmountable obstacles and stairs/ramps is
obtained.

2) Traversability Cost: Traversability is then computed on
the mapM as a cost function taking into account point cloud
classification and local geometric features [33]. In particular,
the traversability cost function trav ∶ R3 z→ R is defined as

trav(p) = wL(p)(wCl(p) +wDn(p) +wRg(p)) (10)

where p ∈ R3 is a map point, the weight wL(p) depends
on the point classification, wCl(p) is a function of the
robot obstacle clearance, wDn(p) depends on the local point
cloud density and wRg(p) measures the terrain roughness
(average distance of outlier points from a local fitting plane).
A traversable map Mt is obtained from M by suitably
thresholding the obstacle clearance wCl(⋅) and collecting the
resulting points along with their traversability cost.

3) Global and Local Path Planners: Path planning is
performed both on global and local scales. Given a set of
waypoints as input, the global path planner is in charge
of (1) checking the existence of a traversable path joining
them and (2) minimizing a combined RSS-traversability
cost along the computed path. Once a solution is found,
the local path planner safely drives the robot towards the
closest waypoint by continuously replanning a feasible path
in a local neighbourhood of the current robot position. This
allows us to take into account possible dynamic changes in
the environment and local RSS reconfigurations.

Both the global and the local path planners capture
the connectivity of the traversable terrain by using a
sampling-based approach. A tree is directly expanded on the
traversability map Mt by using a randomized A* approach

2013



along the lines of [33]. The tree is rooted at the starting robot
position. Visited nodes are efficiently stored in a kd-tree.
The current node n is expanded as follows: first, the robot
clearance δ(n) is computed at n; second, a neighbourhood
N (n) of points is built by collecting all the points of Mt

which falls in a ball of radius δ(n) centred at n. Then,
new children nodes are extracted with a probability inversely
proportional to the traversability cost. This biases the tree
expansion towards more traversable and safe regions. The
total traversal cost of each generated child is evaluated by
using eqn. (12) and pushed in a priority queue Q. The child
in Q with the least cost is selected as next node to expand.

4) Cost Function: The randomized A* algorithm com-
putes a sub-optimal path {ni}Ni=0 in the configuration space
C by minimizing the total cost

J =
N

∑
i=0

c(ni−1,ni) , (11)

where n0 and nN are respectively the start and the goal
configurations, and ni ∈ C. In this paper we define the cost
function c ∶ C × C z→ R so as to combine traversability and
RSS predictions. In particular

c(ni,ni+1) = (d(ni,ni+1)+
h(ni+1,nN))π1(ni+1)π2(ni+1)

π1(n) = λt
trav(n) − travmin

travmax − travmin + ε
+ 1

π2(n) = λrαre−t/τ
rssmax − rss(n)

rssmax − rssmin + ε
+ 1

(12)

where d ∶ C ×C z→ R+ is a distance metric, h ∶ C ×C z→ R+

is a goal heuristic, λt, λr ∈ R+ are scalar positive weights,
rss ∶ C × C z→ R is the estimated RSS, αr ∈ [0,1] is
a confidence which can be obtained by normalizing the
variance of the RSS prediction (as returned by the GPR),
ε is a small quantity which prevents division by zero and
τ is an exponential decay constant (determines the amount
of time after which π2 goes to its minimum value 1). In
particular, with abuse of notation we use trav(n) to denote
the traversability of the the point corresponding to n. The
first factor in eq. (12) sums together the distance metric and
the heuristic function (which depends on the distance to the
goal). The other two factors π1 and π2 respectively represent
a normalized traversability cost and a normalized RSS cost,
whose strengths can be increased by using the weights λt
and λr respectively (πi ≥ 1). The exponential decay is used
to decrease the effect of the RSS cost after a certain time
(e.g. before the path planner is stopped by a timeout in case
a path solution is difficult to find).

Note, instead of jointly optimizing the motion and com-
munication energy for a given path as in [7], we plan an
optimized trajectory to a given goal position using a cost
function that represents a balanced optimization between
communication and traversibility costs, includes normaliza-
tion of the used metrics, and allows setting different priorities
using the parameters λt and λr.

Fig. 2: Experimental scenario 1. The UGV tries to reach the goal
position avoiding connection drops. The blue dotted line represents
the shortest path, that will cause a connection loss (going outside
the AP range). The green line represents a path that reaches the
goal position while keeping the robot connected to the AP.

Self-recovery: The cost function in eq. (12) gives us
the leverage in generating a trajectory that recovers from
communication loss. In the case of a connection loss, we
define the goal position as the robot’s initial position or the
AP position (if known), so as to bound the search and to
guarantee the re-establishment of connectivity.

IV. EXPERIMENTAL EVALUATION

We evaluated the performance of the proposed method
through a series of experiments made on simulations using
V-REP. Using the 3D model of the real UGV used in [34]
we created 3 different simulation environments, reproducing
typical USAR use cases, containing several obstacles and
sources of signal (APs). The AP is simulated following
eq. (1) with typical parameters such as η = 3, σ = 2
[23] considering a 2.4 GHz Wi-Fi communication. For each
environment, we changed the positions of the robot and
APs and repeated the experiments in several trials. All the
software components including the RCAMP ran under the
Robot Operating System (ROS).

Note we do not evaluate the GRF model separately.
Nevertheless, the GRF with mean functions in eq. (5) and
(6) have shown to perform well in signal source prediction
and location estimations [25], [26], [30].

A. Experimental scenarios

Scenario 1: In the first scenario, see Fig. 2, the UGV is
placed on the start position and must traverse an area contain-
ing a damaged building, to reach the goal position. An AP
is placed on the northern part of the map (zone N in Fig. 2).
The AP uses an omni-directional antenna covering a circular
area that extends to half of the map, leaving the southern
part (zone S in Fig. 2) uncovered. Start and goal positions
are placed such that the shortest connecting path between
the two points would traverse the poorly connected part of
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Fig. 3: Experimental scenario 2. The UGV tries to reach the goal
position avoiding connection drops. The blue dotted line represents
the shortest path to the goal position. The UGV is connected to
AP1 in the first part of the path. PE1 indicates the location of the
UGV when AP1 shuts down after a simulated hardware failure. The
green line represents a new path that reaches the goal position while
keeping the UGV connected, after switching from AP1 to AP2.

the map (S). Thus, RCAMP must generate a trajectory that
connects the start and goal positions while keeping the robot
in the signal covered area avoiding communication drops.
With this scenario we want to demonstrate the capability of
our utility function in keeping the robot connected to the AP.

Scenario 2: In the second scenario, see Fig. 3, two
different APs cover the whole map. In this use case we
want to test the promptness of the RCAMP to adapt to
drastic changes in the wireless signal distribution. The robot
starts the mission connected to AP1. The RCAMP must
generate a path from the start position to the goal position
that ensures WiFi coverage. During the mission, AP1 is
switched off when the robot enters the region PE1, so to
simulate a communication loss event. When the connection
is lost, the robot connects to other APs (if available) in the
same network, in a typical roaming behaviour. Once the robot
connects to AP2, the WMG must adapt its predictive model
to the new signal distribution accordingly and reshape the
RSS map. The RCAMP must then promptly update the path
to the goal to ensure WiFi coverage.

Scenario 3: Finally, in the last scenario, see Fig. 4, we test
our self-repair strategy in case of a complete connection loss
event. The UGV is tele-operated until the connection drops
(blue circle, outside the WiFi coverage area). The goal posi-
tion (red circle) cannot be reached with teleoperation because
of the missing communication channel. In this scenario, the
UGV must autonomously re-establish the connection while
moving to the goal position. If the goal position was not
specified (e.g. during an exploration task) the UGV must
move to the closest location in the map where the RSS is
high enough to ensure re-connection to the AP.

Fig. 4: Experimental scenario 3. The UGV is teleoperated in a
USAR mission. The operator drives the robot outside the WiFi
coverage area (at point TP) and the connection is lost. The system
autonomously re-establishes the connection driving the UGV to a
location with high RSS and then continues to reach the goal.

V. RESULTS

In the following we discuss the results of the experiments
described in Sec. IV. Fig. 6 shows the recorded RSS and the
path taken for the three scenarios. We present a comparison
between the proposed RCAMP and a common path planner
(PP). In the the first column we report the RSS values sensed
by the antenna on-board the mobile robot.

In the first row (first experimental scenario) the PP leads
the robot to lose connection whereas the RCAMP defines a
trajectory that maintains the robot inside the operative range
of the radio transmitter as it is possible to see in the second
column of the same row. The second row of Fig. 6 shows
that the RCAMP adapts to the drastic variation of the radio
signal distribution (due to the simulated hardware failure
and consecutive connection loss) and modifies the trajectory
accordingly maintaining the robot inside the operative range
of the new AP. The PP leads the robot to lose connection
again. This demonstrates how the WMG promptly reacts to
a connection loss in case a new source of signal is present.

Finally, in the last row we present the results for the third
scenario where the mobile robot, after a brief exploration
step, is tele-operated outside the wireless range. The RCAMP
first brings the robot back to a position where the connection
can be reestablished and then moves the robot to the goal
position. The RSS value of the robot using the RCAMP, red
signal in the third row, increases after the connection loss.

Fig. 5 shows the predicted radio signal distribution
(WMG) for experiments 1 and 2. A red color indicates low
or missing signal whereas a blue-purple color indicates high
signal strength. As described in Sec. III-B, the training set
consists of the last visited points in the environment along
with the measured RSS. The size of the training set depends
on the quality of the sensed signal. The first row (A1-5)
shows the predicted radio signal distribution during the first
experiment.

When the robot drives inside the operational range of the
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Fig. 5: Radio signal distributions for various trajectories in the maps of scenario 1 (A1-A5) and 2 (B1-B5). The white points represent
the APs positions along with their operative ranges. The blue trajectories represent the training samples for the WMG. We can observe
the changes in the RSS map generated by the WMG as the robot explores the region (without RCAMP). Note in A4 the robot is initially
connected but is in a disconnected region the moat of the trajectory.

Fig. 6: Comparison between our RCAMP versus a normal path
planner. The first column shows the RSS values measured using
the on-board antenna during the three experimental scenarios. The
RCAMP enables the robot to maintain an higher RSS value through-
out the whole exploration. The second column shows the trajectories
from start position to goal position for the three scenarios.

AP the training set increases and the model predicts correctly
the position and the shape of the radio signal distribution
(A1,2,5). Viceversa, when the mobile robot moves outside
the operational range the communication with the AP drops
and the training set shrinks as there is less useful information.
This strategy allows the system to promptly adapt to a new

source of signal as show in the last row. Initially the system
adapts to the first source of signal (AP1) as is visible in
B1-2. When the first AP is shut down, the systems quickly
re-sizes the training set size and the WMG converges to the
new signal distribution allowing to identify the position of
the second AP.

VI. CONCLUSIONS

Robots have a major potential in aiding first responders
in USAR missions. In recent robot deployments, wireless
networks were used in order to support mobile robot com-
munication. This mean of communication poses several
challenges, such as sudden network breakdowns and limited
communication bandwidth. Based on our own experience in
helping the Italian Firefighters with our UGVs and drones
(under the EU-FP7 project TRADR [34]) to assess the
damages in historical buildings after the recent earthquake
in Amatrice, we concluded that the inherent limitations of a
wireless network can compromise the outcome of a USAR
mission. Most notably, the Access Points supporting robot
communication had to be regularly relocated in order to let
the robot re-estabilish communication.

To address some of these challenges, we proposed a
Resilient Communication-Aware Motion Planner (RCAMP).
Given a goal point, the RCAMP computes a trajectory by
taking into account traveled distance, communication quality
and environmental constraints. We used an online Gaussian
Random Field to estimate the Radio Signal Strength re-
quested by the motion planner in order to find a feasible path
that takes both traversability and connectivity into account.
We also proposed an efficient strategy to autonomously
repairing a communication loss by steering the robot towards
a communication-safe position computed using the RCAMP.
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Alternatively, if a specific destination is available, the robot
plans a path that combines the objectives of reaching the
destination, and re-establishing the connection.

We demonstrated the proposed framework through simu-
lations in V-REP under realistic conditions and assumptions.
In future work, we plan to test the presented framework on
real UGVs and further evaluate and analyze the performance
and limits of the algorithms through more extensive field
experiments.
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