Holocene land cover and population dynamics in southern France

Berger, J-F

http://hdl.handle.net/10026.1/13133

10.1177/0959683619826698
Holocene
SAGE Publications

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Holocene Land Cover and Population Dynamics in Southern France

Journal: The Holocene
Manuscript ID: HOL-18-0137.R1
Manuscript Type: Paper
Date Submitted by the Author: 04-Jan-2019

Complete List of Authors:
Berger, Jean-François; UMR 5600, CNRS
Shennan, Stephen; UCL, Institute of Archaeology
Woodbridge, Jessie; University of Plymouth, Geography
Palmisano, Alessio; University College London (UCL), Institute of Archaeology;
Mazier, Florence; Toulouse-Le Mirail University, GEODE UMR 5602
Nuninger, Laure; Univesite Franche-Comte, Laboratoire Chrono-Environnement
Guillon, Sebastien; Independent researcher
Doyen, Elise; UMR 6249 Laboratoire Chrono-Environnement, University of Franche-Comté
BEGEOT, Carole; UMR 6249 Laboratoire Chrono-Environnement, University of Franche-Comté
Andrieu-Ponel, Valérie; Institut Méditerranéen de Biodiversité et d’Écologie Marine et Continentale (IMBE)
Azuara, Julien; Museum National d'Histoire Naturelle, Homme, Nature et Sociétés
Bevan, Andrew; University College London (UCL), Institute of Archaeology
Fyfe, Ralph; University of Plymouth, Roberts, C. Neil; University of Plymouth, Geography

Keywords: Holocene, Southern France, radiocarbon summed probability distribution, population proxy, pollen, land cover, human impact, population dynamics, site count, aoristic weights

Abstract: This paper describes long-term changes in human population and vegetation cover in southern France, using summed radiocarbon probability distributions and site count data as population proxies and information from fossil pollen cores as a proxy for past land cover. Southern France is particularly well-suited to this type of study as a result of previous programmes of intensive survey work and excavation in advance of large-scale construction. These make it possible to calibrate the larger scale occupation patterns in the light of the visibility issues created by the burial of archaeological sites beneath alluvial sediments. For purposes of analysis the region was divided into three biogeographical zones, going from the Mediterranean coast to the middle Rhône valley. All the different population proxies in a given zone show broadly similar patterns of fluctuation, though with varying levels of
resolution. The long-term patterns in the different zones all show significant differences from the overall regional pattern but this is especially the case for the non-mediterranean middle Rhône area. Cluster analysis of pollen samples has been carried out to identify the main regional land cover types through the Holocene, which are increasingly dominated by open types over time. A variety of other pollen indicators show evidence of increasing human impact through time. Measures of human impact correlate strongly with the population proxies. A series of thresholds are identified in the population-human impact trajectory that are related to other changes in the cultural sequence. The lack of independent climate data for the region means that its impact cannot currently be assessed with confidence. However, for the later periods it is clear that the incorporation of southern France into larger regional systems played a major role in accounting for changes in land cover and settlement.
A Introduction

In the Mediterranean region, separating the impact of human activity from climate remains a challenging task (Roberts et al., 2011), but all the more important because over recent millennia Mediterranean environments have become very vulnerable to the emergence of new risks (Van der Leeuw et al. 2005, Leveau 2007). Identifying the rhythms, intensity and scales of the processes involved is essential for understanding the causes of change in any socio-environmental system and their impacts. In order to do so it is necessary to adopt a broad scale of spatial and temporal analysis focusing on key factors including demography, subsistence techniques, vegetation and soil erosion. This paper addresses long-term trends in population and land cover in southern France, one of the main settlement areas in the western Mediterranean.

Table I about here

In this region, the impacts of the first Neolithisation in the early to mid 8th millennium BP (see table I for cultural chronology) are still largely considered local and negligible (Richard 2004). A first threshold is envisaged in the Middle Neolithic, a millennium later, with the establishment of settlement networks extending from the plains to the mountains (Beeching 1991), the first pastoral systems associated with the widespread use of cave-sheepfolds (Brochier et al. 1999) and the development of true oak parklands (Delhon et al., 2008). From the Late Neolithic (5000–4500 Cal yr BP), the spread of sclerophyllous taxa and loss of forest cover could result mainly from anthropogenic impacts on vegetation (Vernet and Thiébault 1987, Pons et Quezel 1998), although a climatic explanation of the same phenomena has also been offered (Jalut et al., 2000, 2009). The end of the Iron Age and the Roman (Gallia Narbonensis) and Medieval periods see major human modification of environments and landscapes.

Central to analysing the causal links and processes behind these developments is the reconstruction of human population dynamics at different scales – Mediterranean France as a whole and its different
biogeographic sub-regions – in order to compare the results with independent data on land cover. A long-established approach to modelling population dynamics in a diachronic perspective is to use the counts of archaeological sites dated to established typo-chronological phases, but for much if not most of Holocene prehistory these phases are not short enough to provide a useful degree of chronological resolution and the methods implicitly assume that changes occur only at phase boundaries. In recent years, as the number of radiocarbon dates available has increased, it has been shown that summed radiocarbon date probabilities (SPD) provide a useful additional proxy for fluctuations in human population levels, at a much higher level of resolution for most of prehistory and without having to be concerned with the impact of artificial typo-chronological phase boundaries (Shennan et al. 2013, Timpson et al. 2014). However, it has also been demonstrated that at some point in the 1st millennium BCE, depending on the region, this proxy loses its usefulness as researchers switch to increasing use of typo-chronological dating (which is now much more fine-grained than earlier, e.g. Palmisano et al. 2017).

Southern France provides an exceptionally good case-study region for documenting long-term population trends. Large numbers of radiocarbon dates are available and regional reports provide a strong set of site count data (see Supplemental material 1 for a full list of sources) for quantitative comparison. Moreover, these regional data can also be compared with the results of previous micro-regional studies that have made southern France one of the best-documented regions of the Mediterranean for quantitative archaeological analysis (Archeomedes and Archaedyn surveys, Van der Leeuw et al. 2003, Favory et al. 1999, Gandini et al. 2012). It is also one in which taphonomic processes have been extensively documented by numerous rescue archaeology operations over 30 years in the Middle Rhône Valley (MRV; for example, the Mediterranean TGV express train line, pipelines, urban expansion projects), which can be used to estimate the number of sites invisible on the surface (Verhagen and Berger 2001, Berger 2011, 2015), though there are no large diachronic quantitative syntheses at the scale of southern France that go back beyond the last three millennia (see below).
Southern France also possesses a large number of pollen records for reconstructing past land-cover. Although several reviews have tried to decipher the causes of long-term Mediterranean vegetation change, there is still no clear understanding of the respective role of past human activities and climate in vegetation change (de Beaulieu et al. 2005, Jalut et al. 2000, 2009, Azuara et al. 2015, 2018). This is partly due i) to the chronology (age-depth models), which is still a limiting factor when comparing several pollen records, ii) to the definition of similarities and differences in vegetation patterns when exploring multiple pollen records, and iii) to the difficulties of relating them to independent climatic and population proxies. Recently, pollen sequences and their chronologies from the European Pollen Database have been reviewed and corrected (Fyfe et al. 2009) in order to compare those sequences. New use of cluster analysis has also offered useful results for exploring past vegetation change (Fyfe et al. 2018, Woodbridge et al. in press).

The aim of this paper is to remedy the lack of synthetic quantitative synthetic land-cover and population studies and to test how far regional vegetation changes and ecological transformations within southern France can be explained by archaeologically-derived records of demographic change (10000-500 BP), while evaluating the validity of the regional archaeological data through comparison with the results of the previous micro-regional studies. Regional trends in vegetation through the Holocene are derived from synthesis of multiple pollen sequences.

A The study area

The area of southern France examined here, the “French Mediterranean South”, covers nearly 100,000 km² and is located at the north-western edge of the Mediterranean morpho- and bioclimatic system (latitude 42.5° to 46° N., Fig. 1), just south of a zone characterised by mid-European and Alpine climatic influences. As a basis for our spatial and chronological analysis of the archaeological and pollen records we have divided it into three homogeneous biogeographical zones (BGZ), which correspond to a topographic, climatic and latitudinal gradient along the Rhône corridor and its tributaries as far as its confluence with the River Saône in Lyon, and in the western part along the
main river basins that run from the southern Massif Central and eastern Pyrenees. They are the coastal and hinterland eu/meso-mediterranean lowlands (BGZ I); the supra-mediterranean uplands (BGZ II); and the middle Rhône valley and low Dauphiné (BGZ III (Fig. 1).

Fig 1 about here

BGZ I covers the southern coastal band from Nice to Perpignan and its hinterland up to 500/600m in altitude (almost 40,000 km²). The regional climate is characterized by a strong summer drought close to the coast and in lowland Provence, which weakens as you move northwards up the Rhône Valley or into the mountainous foothills (BGZ II and III). Seasonal rainfall maxima are in the autumn, with a rainy season from September to April and little summer rainfall. The intensity of the rains and the irregularity of precipitation from one year to the next result in rivers with strongly contrasted regimes. High river flows occur during September and October and again in spring in the river Rhône, as the snow melts in the Alps.

BGZ II corresponds to the supra-mediterranean to mountain-mediterranean zones, which follow a continuous calcareous pre-alpine zone (c.47,000 km²) associated with karstic relief in the eastern part of the study area, from 500 to 2000m in altitude. These areas have many caves and rockshelters conducive to pre- and proto-historic settlement. They are also favourable to the concentration of fortified sites on the edges of plateaus or on barred spurs. In the western part of the region (Languedoc), the BGZ II band is much narrower because the transition from the high plateaux of the southern part of the Massif Central takes place very abruptly. Further south this band is associated with the foothills of the eastern Pyrenees. This zone is defined quite well to the north by the area where olive cultivation becomes impossible because of the cold, and often by the disappearance of the summer rainfall lull.

BGZ III corresponds to the middle basin of the Rhône (c. 13,000 km²), between its exit from the southern Jura and the northern Alps where the Guiers and Ain rivers converge, and its confluence.
with the basins of the Western calcareous pre-Alps (Vercors, Diois), where the Rhône is joined by the Isère and the Drôme rivers (Fig.1). In this zone of climatic convergence (Mediterranean, oceanic and alpine), the alluvial plains, Quaternary terraces and moraines, and many lakes and marshes resulting from glacial morphogenesis, predominate in the vast molassic sedimentary triangle of the low Dauphiné, forming an extensive detrital tertiary fan. This zone presents landscapes of hills, plateaus and active or dead alluvial valleys, the altitude of which does not exceed 600m.

From a hydrographic point of view, these three BGZs are crossed by the river Rhône, the backbone of the study area. This axis has had a strong structural effect on settlement and interaction throughout history, encouraging penetrations of people from the Mediterranean coast and north-south cultural exchanges with Central Europe.

A Methodology and materials

B Archaeological data and demographic indicators

C The southern France region dataset

Archaeological datasets from southern France (sites and radiocarbon dates) have been collected as exhaustively as possible, either from extant online databases or manually input from print and electronic publications, in order to create two georeferenced databases, one for radiocarbon dates and one for archaeological sites (see Supplemental material 1 for a full list of sources). These are taken as the basis for demographic proxies that characterise major relative population trends at a regional scale.

A total of 3,507 uncalibrated radiocarbon dates from 1056 sites have been collected for southern France. All of these radiocarbon dates are from archaeological contexts, with the majority being
samples of bone, charcoal and wood. Radiocarbon dates exhibiting poorly understood reservoir effects such as marine samples from shells have been removed (and are not part of the above total). A potential bias from the oversampling of specific sites or site-phases for radiocarbon was reduced by aggregating uncalibrated radiocarbon dates from the same site that are within 100 years of each other and dividing by the number of dates that fall in this ‘bin’ (Timpson et al. 2014). As a result our 3,507 radiocarbon dates have been grouped into 2490 bins. The probabilities from each calibrated date are combined to produce a summed probability distribution (SPD). Unnormalised dates were used prior to summation and calibrated via IntCal13 curve in order to avoid narrow artificial peaks in SPDs due to the effect of steepening portions of the radiocarbon calibration curve when normalized calibrated dates are used (Reimer et al. 2013; see previous applications in Palmisano et al. 2017; Bevan et al. 2017). A logistic null model, corresponding to the assumption that population would have gradually increased until a carrying capacity was reached, was fitted to the observed SPD in order to produce a 95% critical envelope (composed of 1,000 random SPDs) and statistically tested to establish whether the observed pattern significantly departs from this model (see Timpson et al. 2014, 555-556; Bevan et al. 2017; and for the specific implementation Crema and Bevan 2018: ‘modelTest’). Radiocarbon SPDs were also created for each of the three biogeographic zones described above and permutation tests (Crema et al 2016, Roberts et al. 2018) carried out to establish whether they were significantly different from the overall regional pattern. These data were also used to create a cave/rock shelter use index, representing the proportion of site-phases at a given time made up of these site types. This provides a basis for discussing the intensity of use of karstic environments.

Archaeological site data have been collected via a comprehensive review, standardisation, and synthesis of settlement data from 45 reports (based on the Bilan Scientifique Regional) of archaeological investigations (excavations and surveys) carried out in the regions of Languedoc-Roussillon, Provence-Alpes-Côte d’Azur, and Rhône-Alpes. In this project we collected data from the reports published between 2001 and 2015 (see Supplementary material 1 for a full list of references). The fiches de synthèse of the Archéologie du TGV Méditerranée have been added (Collectif 2002a-c) for the Tricastin and Valdain areas (see below). Although this approach does not provide a complete
census of all archaeological settlements in southeastern France, at this scale it provides a reliable sub-sample of the entire population both in terms of chronological and spatial coverage. Settlement data were recorded as geo-referenced points per cultural period, which have been defined in terms of calendar dates, though the chronological information given in the bilans is often fairly imprecise. By recording both the stated cultural period and approximate estimated start and end dates in calendar years, we have sought nevertheless to provide maximum comparative potential across archaeological sites. One major caveat is that the estimated site surface area per cultural period was not consistently available and therefore not recorded for all the sites stored in the two databases used here. As a consequence, in this paper we use raw site counts, and derivatives of these, as a proxy for population. A total of 2,944 archaeological sites were divided into 4,974 occupation phases (most sites were occupied in multiple periods). The main socio-cultural entities of southern France discussed in this paper are given in table I, incorporating ranges of uncertainty between archaeological cultures or from one subregion to another.

Site counts have been calculated for each of a series of 200-year time slices, starting at 10,000 Cal Yr BP. Since cultural periods vary in their length according to the dating precision of archaeological artefacts, and the earlier ones tend to be longer, we have used aoristic analysis to deal with the temporal uncertainty of occupation periods and generated aoristic weights (AW; for a more detailed explanation of the methodology see Crema et al. 2010, 1118-1121; Crema 2012, 446-448; Palmisano et al. 2017, 63-65). In addition, to mitigate the discrepancy between wide typo-chronological ranges and shorter likely site durations, we applied Monte Carlo methods to generate randomised start dates (RSD) of occupation phases for sites with low-resolution information, assuming a mean occupation length of 200 years within any given cultural period (cf. Crema 2012, 450-451; Palmisano et al. 2017, 63-64). The resulting probabilistic distributions of site frequencies through time, based on the aoristic sums and Monte Carlo simulations, help to refine the raw site frequency data.

C Micro-regional studies
In addition to the radiocarbon and site-count data collected for the region as a whole, this paper also makes use of further micro-regional datasets collected by earlier projects within the region. These data provide a basis for calibrating and evaluating the broader regional patterns.

The “Tricastin-Valdain” micro-regional zone (TVZ) at the interface between BGZ I and II (fig. 1: TVZ settlement survey zone), is probably the best archaeologically-documented area from the Neolithic to Medieval period in Southern France. Over the past 30 years, a number of archaeological surveys have been carried out here, based on field-walking projects that began in the 1980s and increased in the 1990s under the combined action of CNRS (ATP “First farmers”, GDR 954), Ministry of Culture (H 11 Tricastin), and European (“Archaeomedes”, van der Leeuw et al. 2001) projects. In addition, a programme of mechanical trenching was carried out as part of the Mediterranean TGV (the high-speed railway) rescue archaeological project along a 120-km strip on the left bank of the Rhône (INRAP, Guthertz and Odiot 2001), as well as a 50-km strip in the Valdain basin in advance of a pipeline (Berger 2015; fig 1: TVZ zone). This dataset provides a basis for evaluating the taphonomic impact of hydrogeomorphological processes on the initial relative population estimates derived from the radiocarbon and site data described above because it is derived from a dataset randomly created during the excavation of linear mechanical trenches across the superficial deposits of the different landscape units.

For later periods (800 BCE-1600 CE) it is also possible to compare results from the overall dataset with those obtained by the Archaeomedes (1992-1996) and Archaedyn (2005-2011) projects, which provide a micro-regional database based primarily on systematic field-walking survey from three areas, that again began in the 1980s – 1990s (PCR “Land Use in Narbonnaise during Roman times” and GDR 954, see Favory et al. 2012) : eastern Languedoc, Ardèche-Tricastin and Etang de Berre & Chaînon de la Nerthe (see fig 1: Archaeomedes Archaedyn survey areas). Only settlement remains were taken into account but, in addition to settlement-count, settlement-area information, based on the surface distribution of sherds and building material, was also available from these surveys, which therefore offer important additional information that other datasets do not. Furthermore, advanced
analysis and classification of the settlements based on various criteria, allow discussion in more detail of population inferences for the last millennium BCE (Archaeomedes 1998, Van der Leeuw et al. 2003, Nuninger et al. 2012) and the factors affecting them, such as the increasing impact of Mediterranean trade. Typo-chronological information provides a 100 year chronological resolution. These datasets, from areas between 100 and 1200 km² contain 27 to 1061 settlement entities with 133 to 3121 occupations for these later periods.

B Pollen

C Modern and fossil pollen datasets

Within a Mediterranean-wide synthesis, pollen count data from the European modern (Davis et al., 2013) and fossil pollen databases (EPD version: Oct. 2017; Leydet, 2007-2017) were combined with additional fossil records provided by a network of data contributors (e.g. Andrieu-Ponel et al., 2000 a & b) to compile a dataset spanning the whole Mediterranean. Descriptions of the methodological approaches developed and applied to these pollen datasets are provided in Woodbridge et al. (2018, in press) and Fyfe et al. (2018) along with detailed information on the pollen taxonomic harmonisation applied to allow comparisons between records. Pollen sequences with reliable chronologies (Giesecke et al., 2013) were selected for analysis and new sediment core chronologies were constructed for additional records using the ‘bacon’ R package (Blaauw & Christen, 2011). The pollen count data from each record were summed into 200-year time windows and analyses were applied to the entire Mediterranean region (1798 modern and 252 fossil records amounting to 6554 fossil sample time windows and modern surface samples) in order to identify key vegetation types. Analyses for a subset of 48 fossil records and 87 modern pollen sites are presented in this paper for southern France (see table II), which is split into the three biogeographic zones described above (coastal Mediterranean: 13 fossil and 13 modern sites, supra-Mediterranean: 20 fossil and 68 modern sites, and middle Rhône: 12 fossil and 6 modern sites).
Table II about here

C Data analysis

An unsupervised data-driven approach was applied to the entire Mediterranean pollen dataset to assign pollen samples, amalgamated into 200 year time windows, to vegetation cluster groups based on the similarity of their taxa assemblages, using Ward’s hierarchical agglomerative clustering method (Ward, 1963) within the ‘rioja’ R package (Juggins, 2015) (see Woodbridge et al., (in press) and Fyfe et al. (2018) for a detailed description of the cluster analysis approach developed). A phytosociological classification approach (Perez et al. 2015) was used to identify the frequent and abundant pollen taxa within each cluster group based on their median and interquartile range (IQR). Interpretive name descriptors were given to each vegetation cluster using phytosociological classification tables together with comparisons with other classification systems, land cover types defined by Corine remotely-sensed land cover maps (European Environment Agency, 2016) and the results of previous studies (see Woodbridge et al., in press). Pollen indicator groups were also used to summarise key changes in the datasets. This included calculating the average arboreal pollen sum (%AP): a sum of tree crop indicators OJC (Olea, Juglans, Castanea) (Mercuri et al., 2013a) (also combined with Vitis, OJCV); calculation of an anthropogenic pollen index (API: Artemisia, Centaurea, Cichorioideae and Plantago, cereals, Urtica and Trifolium type) (Mercuri et al., 2013b); a sum of pastoral indicators (Asteroideae, Cichorioideae, Cirsium-type, Galium-type, Ranunculaceae and Potentilla-type pollen) (adapted from Mazier et al., 2006); and a sum of Regional Human Activity Pollen Indicators, RHAPI (Secale, Cerealia undiff., Chenopodiaceae, Artemisia, Urtica dioica, Plantago lanceolata, Plantago media/major, Rumex spp., Rumex obtusifolius type and Rumex acteosos/acetosella) (Mazier et al. 2006, 2009). Vegetation cluster group changes were calculated as an average for all sites in the southern France case study region and each sub-region and plotted stratigraphically.

For the specific purpose of comparison with the pollen, the demographic proxies (SPD of radiocarbon dates, raw count, aoristic sum, and randomised start date) were further binned into 200-year time slices.
to match the time windows used in the analysis of pollen sequences. A Spearman’s Rank correlation matrix was calculated between the values of the human impact pollen indicators and the values of the archaeological demographic proxies in each time slice for the period 10,000 to 600 Cal yr BP. The rank correlations between the SPD of radiocarbon dates and all other proxies have been calculated for a shorter time span, between 10000 and 2400 Cal Yr BP, because after this time the radiocarbon dates lose their value as a demographic proxy, as discussed above.

A Results

B Demographic trends from archaeological data

C The « Tricastin-Valdain » test dataset (TVZ)

As described above, this intensively investigated area crossing BGZ I and II provides a basis for assessing the broader regional results. Fig. 2 shows the different archaeological indicators on the same temporal axis (SPD, buried sites and caves-rock shelters, raw count as site density per 50 years up to the Iron Age 2 phase). The SPD data have been excluded from this analysis after 2400 Cal Yr BP, when the raw site count (RC) data become the more reliable indicator of human population variation. A first increase is detectable around 8700 Cal Yr BP. A second sharper increase is identified c. 7450 Cal Yr BP, with two distinct maxima towards 7000-6700 and 6350-6200 Cal Yr BP. This period corresponds to the Early and Middle Neolithic (EMNT). A well-marked decrease is clearly identified in the SPD curves of surface and buried sites centred on 6600-6500 Cal Yr BP (fig. 2a, EMNT) and a second, less sharp, around 6000-5900 Cal Yr BP. A third increase is detectable jointly by the SPD and the RC analysis from 5900 Cal Yr BP with a double maximum around 5750 and 5500/5400. A decrease in the number of sites characterizes the end of this period. A fourth increase towards 5050 Cal Yr BP is seen clearly in the SPD curves of both surface and buried sites, indicating a shift into the floodplains. The fifth increase is particularly marked and common to all settlement markers from 4500 Cal Yr BP. The set of curves then fluctuates regularly up to 3300 Cal Yr BP, with maxima
(4100-3950 and 3700-3600 Cal Yr BP) and minima centred on 3800 then 3500-3400 Cal Yr BP, the latter a major decline marked by all indicators. The seventh increase corresponds to the entire Late Bronze Age (LBA, 3300-2700 Cal Yr BP) and shows a strong correlation between all archaeological markers. The very large number of buried sites in the floodplain suggests that surface sites under-represent the number of sites for this period. Furthermore, the density of sites per 50 year period in this phase is at least twice as high as in the late Neolithic, a pattern broadly matched by the buried site SPD, suggesting that the surface site SPD peak in this period is exaggerated compared to the LBA. The beginning of the Iron Age (2700-2600 Cal Yr BP) corresponds to a short, very marked fall, which all the settlement markers record simultaneously. The end of the Iron I and the beginning of the Iron II period show a new increase in the density of human settlement, concentrated in the hills, plateaux and floodplains. The number of sites identified is then lower than during the LBA, but the size of the hilltop sites (oppida) increases significantly, which our data do not take into account. From the Iron Age II, the raw count data is the only variable used to describe the Tricastin-Valdain settlement dynamic. A maximum centred on the high Roman Empire (150 sites) is followed by a slow decline until the 5th century CE (50 sites) and then a further abrupt decline until the 7th century CE (12 sites); a second maximum is centred on the High Middle Ages (12th-13th centuries CE; between 80-90 sites), with growth starting in the 10th century.

The representativeness of the radiocarbon pattern can be assessed by means of a permutation test to see if the SPDs for surface and buried sites in the TVZ deviate from the 95% critical interval generated by permuting subsets of all the TVZ dates (fig 2b-c). The difference is not significant (p=0.153) though it is clear that c.3300-2700 Cal Yr BP the buried site line is at the very top of the 95% interval (and conversely for the surface sites) and would indeed be significantly different if a larger sample of buried site dates maintained the same pattern, because the 95% interval would be narrower. However, it seems that both surface and buried sites describe similar demographic trends throughout the Holocene.
C The three biogeographic zones

Fig 3 shows a logistic model fitted to the SPD data from southern France as a whole. The pattern is significantly different from that described by this logistic model, with positive departures between 10,000 and 8,500, 5000 and 4000 and between 1500 and 1000 Cal Yr BP, corresponding to periods when population was higher than expected, while there are shorter-lived negative departures indicating population declines, at c. 5500, 3500, 3000 and 2500 Cal Yr BP. Despite the overall consistency of shape in each of the regional time series, permutation tests (Fig 4a-c) also demonstrate that all three regions differ significantly from the overall pattern, implying certain localised dynamics at least until the 1st millennium BCE. BGZ I is the closest, with a positive departure between 5000 and 4000 Cal Yr BP. BGZ III, however, is almost completely different from the overall picture, being significantly lower until 4000 BP and significantly higher from 3500 Cal Yr BP. BGZ II shows a major negative departure in the later part of the period but by this time the radiocarbon data no longer give a valid picture of the trends. Fig 5 shows the radiocarbon and site-derived proxies (raw count, aoristic weight, randomised start date) together (the values of each proxy have been normalised on a scale between 0 and 1 in order to make them comparable) and it is apparent that from c. 2300 Cal Yr BP the site-derived proxies show an order of magnitude increase on what has gone before, which is not matched in the SPD, reflecting the much greater use of typo-chronological dating and increasing settlement density in the late Iron Age and Roman period.

Fig 3 about here

It is possible to obtain a general impression of the representativeness of the radiocarbon pattern for BGZ I and II by comparing it with the SPD for the Tricastin-Valdain area (the hatched area on the map, fig 1), by means of a permutation test, as above, though it is important to note that the TVZ covers only a relatively small part of the two zones and thus cannot be regarded as truly representative of the area as a whole. Nevertheless, with this caveat in mind, it can be seen that the TVZ curve generally falls within
the critical envelope for the combined zones (fig 4d). Discounting the difference in the last part of the sequence when radiocarbon is no longer the preferred dating method, the only area of marked difference occurs around 3000 Cal Yr BP, when it appears that Late Bronze Age sites are under-represented, presumably because more of them occur in floodplains, as we saw in the TVZ, and are less likely to be recovered in normal archaeological investigations.

Fig 4 about here

From the Early Holocene at ~10000 Cal Yr BP there is a steady increase of population until 7400 Cal Yr BP, which corresponds to the first real threshold in the site-count data (fig 5). The SPD shows a first increase in density in the karstic area (caves/rockshelters) and in the open-air sites around 7400 in BGZ II and 7200 Cal Yr BP in BGZ I, in correlation with the RC curve which really turns upwards at 7600 Cal Yr BP. Comparison of the cave-rock shelter SPD with the 95% MC envelope for SE France as a whole (fig 4c) shows that karst habitat predominates over open-air occupation from 10,000 to 6,300 Cal Yr BP, though it is possible that this also reflects better preservation and discovery probabilities in caves over this period. A second threshold appears to be crossed at 6300 Cal Yr BP (Early Chassean) in the open air sites in the three zones, correlated in BGZ I with the karst habitat. During the Late Chassean (5900-5600 Cal Yr BP), use of the karst habitat is greatly reduced, while the open-air occupation of BGZ II and III increases significantly. At the beginning of the late Neolithic, the open-air settlement (SPD) remains stable in BGZ I between 5600 and 5350 Cal Yr BP, before increasing strongly from 5300 BP, while in BGZ II and III it records a simultaneous decline in open air sites and caves/rock shelter (5600-5300 BP) at the Mid-Late Neolithic transition.

Fig 5 about here

Throughout the second part of the LN and the EBA, the SPD curves of the BGZ I and II show the same trend in open air sites, with a regular increase in density marked by a first jump at 4850 Cal Yr BP, followed by an absolute maximum of synchronous density between 4450-4250 Cal Yr BP (fig 5a...
and b). The high SPD in BGZ I from 5300 to 3900 Cal Yr BP may be exaggerated by research bias. Nevertheless, the RC value is also very high in BGZ I and II in this period, which therefore represents a true demographic maximum compared to the Early and Middle Neolithic (Fig.5). However, as noted above, the results from the TVZ suggest that it is exaggerated in comparison with the Late Bronze Age (3300-2700 Cal Yr BP). BGZ III, the Middle Rhone valley, which has similar taphonomic conditions to the TVZ, shows a similar SPD pattern, without a marked LN peak and above the overall 95% confidence interval from 3400 to 2700 Cal Yr BP (fig 4c and 5c). It appears that growth of settlement networks in the Late Bronze Age mainly occurs in the floodplains. The site-count curves of the three regions, especially BGZ II and III confirm the higher density of the Late Bronze Age population compared to the Late Neolithic, with a maximum centred on 2700 BP but they do not reflect the brief decline at the Bronze-Iron Age transition (2700 Cal Yr BP), identified only on the three SPD curves.

Fig 6 about here

From c. 2200 Cal Yr BP all the site-derived proxies rise very steeply to a new peak corresponding to the early Roman period before declining almost as steeply to a trough c. 1200 Cal Yr BP (Fig. 5). They then rise again to a peak at c.800-700 Cal Yr BP in BGZ III, not seen in BGZ I and II, where the later peak and decline are probably an artefact of the record. Fig 6a shows the number of occupations per period calculated as a percentage of the total number of occupations for the timespan from 2750 to 350 Cal Yr BP, for the eastern Languedoc survey micro-region, comparing the Archaeomedes-Archaedyn data with our data pattern for the micro-region (see Fig. 1 for the location and spatial extent of the archaeological survey). The two patterns are very similar but our data tend to over-represent the earlier periods and under-represent the early Roman and medieval periods. Both databases show the same minimum between 1400 and 1200 Cal Yr BP. However, if we compare the fluctuations in the cumulative area occupied calculated for the micro-region (Archaeomedes-Archaedyn project), as opposed to the number of occupations, we can see that they are much less marked (fig 6b), so the count figures are telling us about site dispersal and nucleation as well as about
overall density. Similar patterns are seen in the Ardèche-Tricastin and Etang de Berre micro-region survey areas when the Archaeomedes II and our datasets are compared (not shown), although the number of settlements in the latter dataset for these two micro areas is very small.

B Human impact on vegetation dynamics in Southern France

C Pollen results

The cluster analysis results indicate that during the early Holocene (since 11000 Cal Yr BP in the datasets presented here) the landscape of southern France was dominated by pine woods/forest (clusters 4.0 and 5.1) and mesic forest (cluster 8.4) (Fig. 7a). These clusters declined from around 8000 Cal Yr BP and were replaced by fir forest (cluster 7.0), coniferous forest (cluster 8.2), and deciduous oak woods (cluster 6.1), which initially increased from around 10000 Cal Yr BP. This was then followed by a gradual increase in 7.0 and 8.2, which, with the exception of cluster 6.1, peak around 6000 Cal Yr BP, followed by a gradual decline and replacement by beech woods (cluster 8.3) and alder woods (cluster 8.1) until 1500 Cal Yr BP. A more recent increase in deciduous oak parkland (cluster 6.2), pasture/wetland (cluster 3.0), and to a lesser extent, steppe parkland (1.3) and sclerophyllous parkland (1.1) is also evident, and in the modern landscape pine forest (cluster 4.0) and pine woods (cluster 5.1) increase in abundance.

Fig 7 about here

When split into the three biogeographic zones regional dissimilarities are evident with regard to the dominant vegetation types and their trajectories of change. The coastal Mediterranean area (BGZ I; fig 7b) shows greater abundance of deciduous oak woods (cluster 6.1), the first appearance of deciduous oak parkland (cluster 6.2) (from 7000 Cal Yr BP) and pasture/wetland (cluster 3.0) from 9500 BP, well before the beginning of the Neolithic. Fir forest (cluster 7.0) is not represented in this region and conifer forest (8.2) and beech woods (8.3) are barely represented (Fig. 7b). The supra-
The Mediterranean region (BGZ II; fig 8a) shows the same patterns of vegetation change as the combined record for southern France, which is not surprising as there are a greater number of pollen sites in this region resulting in BGZ II having a greater overall influence on the patterns observed with fir forest (cluster 7.0) well represented throughout the mid-Holocene and less mesic forest (cluster 8.4) in the early Holocene (Fig. 7a). BGZ III (middle Rhône valley; fig 8b) is the most distinctive region, with less diversity in vegetation cluster groups overall (Fig. 7d). This may be reflective of the vegetation structure of this region, but is also the result of the fewer smaller number of pollen sites in BGZ III, which means there is less overall diversity captured by the datasets. The early Holocene is dominated by mesic forest (8.4), which declines around 7000 Cal Yr BP and is replaced by fir forest (7.0), then alder woods (8.1) and beech woods (8.3) from 4500 BP. Finally, it is replaced by deciduous oak parkland (6.2) from 2000 Cal Yr BP and pasture/wetland (3.0) since 1400 Cal Yr BP. Pine steppe (cluster 5.2), deciduous oak parkland (6.2) and coniferous forest (cluster 8.2) are abundant in the modern landscape.

Each vegetation cluster is distinctive but the same pollen taxa can be found in multiple clusters, within different distinct assemblages. As an additional useful assessment of major changes in the vegetation patterns over time, indicator groups have been calculated using pollen percentage data for each region (fig 89). Some of these represent pollen groups associated with human land use, such as pastoral indicators, which increased from around 2500 Cal Yr BP for all regions combined. The anthropogenic pollen index (API) steadily increases from 5500 Cal Yr BP with a marked rise around 2000 BP. The OJC index also increases after 2500 Cal Yr BP, which may indicate increasing human impacts since this time. The AP% (arboreal pollen %) declines steadily from 4500 Cal Yr BP with a more marked decrease from 2500 Cal Yr BP. The increasing OJC index during this time illustrates the changing composition of arboreal pollen. When split into separate regions (fig 9b) similar patterns are shown in the Mediterranean coastal area (BGZ I) to the record for all regions combined, although they are slightly more noisy, which results from the smaller number of sites in the sub-regions. The supra-
Mediterranean region (BGZ II) shows similar overall patterns although the API and pastoral
indicators indicate an earlier peak around Cal Yr 8000 BP, and then steadily increase from around
4000 Cal Yr BP. The OJC index increases from 2500 Cal Yr BP with a recent decline in the last 400
years in both the supra-Mediterranean and middle Rhône regions (BGZ II and III) whereas OJC
remains high until the modern period in the coastal Mediterranean region (BGZ I).

Fig 9 about here

B Correlation between inferred population and pollen-based indices

Tables III-VI show the Spearman’s correlation between the pollen-based indices of human impact and
the demographic proxies for southeastern France as a whole and for each of the biogeographic zones
(see fig 9 for a visual comparison). The correlations with the radiocarbon record only cover the period
up to 2400 Cal Yr BP because after that date it is no longer a satisfactory demographic proxy. All the
different demographic proxies are highly correlated with one another and also have generally high
negative correlations with the AP values. The different human impact proxies are all quite strongly
positively correlated with one another, again as one would expect. For southern France as a whole the
highest correlations with the demographic proxies are shown by the OJC and RHAPI values. This also
true for BGZ I, with RHAPI higher than OJC. In BGZ III there are equally high correlations between
the demographic proxies and OJC and RHAPI, though the former is less obvious visually (fig 89b).
BGZ II, however, is different. Here the correlations between RHAPI and the population proxies are
weak, and in two of the four cases not significant. The correlations with OJC remain high, especially
for the transformed site count data (aoristic weights and random start dates), which cover the whole of
the chronological range, suggesting that for this zone the tree crops are especially important.

Tables III-VI about here

B Palaeoclimate
Ideally, the long-term record of human demography in south-eastern France could be compared against the record of regional climate variations as an alternative potential driver of land cover change. However, this is made more difficult because of a lack of palaeoclimate data within the region. There are reconstructions of climate from pollen evidence in Mediterranean France (e.g. Jalut et al., 2009; Guiot and Kaniewski 2015; Azuara et al., 2015; Peyron et al., 2017) and also from fluvial environments (Bravard et al. 1997), but these data cannot then be used to establish the consequences for land cover without circular reasoning. For this reason, southern France is the only case study region in this special issue for which a hydro-climate reconstruction has not been possible (see Finné et al., this volume). Instead, we make a brief summary here of the available climate records in south-eastern France and adjacent regions, other than from palynology and fluvial geomorphology.

The Grotte de Clamouse, west of Montpellier and lying at 75 m a.s.l., has a speleothem stable isotope record spanning the whole Holocene (McDermott et al., 1999). $\delta^{18}O$ shows a narrow range of isotopic variation between -4.5 and -5.5 ‰ during the last 11,000 years, with minimum values between 4000 and 1600 Cal yr BP. $\delta^{13}C$ displays a much larger range (-7.5 to -11 ‰) over this time, with progressive isotopic depletion prior to ~2000 Cal yr BP, followed by a reversal of this trend in the last two millennia. The authors inferred that for $\delta^{18}O$, temperature rather than precipitation was the main climatic control, while for $\delta^{13}C$ changes in vegetation and soil carbon must have been key controls. In the Alpes de Haute Provence, Lac Petit has been studied for pollen, diatoms and geochemistry (Cartier et al., 2015). This small lake near to the upper tree line shows an important regime shift at ~4000 Cal yr BP, which the authors inferred was triggered by the 4.2 ka BP abrupt climate event.

The 4.2 ka climate event is also clearly evident in the speleothem stable isotope record from Renella cave in northwest Italy (Drysdale et al., 2006). In the western French pre-Alps and extreme southern Jura (BGZIII), transgressive lake levels around 3500 and 2750 Cal yr BP (Cerin-Bourget) favoured the abandonment of lake-dwelling sites during the Middle Bronze Age and at the end of the Late Bronze Age (Magny et al. 2009), simultaneously with increasing soil erosion, flood frequency and torrential river activity showing increased connectivity with the upper basins (Arnaud et al. 2005;
Simmoneau et al. 2013; Berger 2015). The lake-level data of Cerin indicate high water levels at 8200/8000, 7500/7200, 6500/6000, 5600/4800, 4200, 3900 and 2700/2200 Cal. BP (Magny et al. 2011). The Paladru lake shore records transgressive phases around 2600/2500 and 1600 Cal. BP, and 3 important regressive phases around 3000-2800, 1500-1200 and 1050-900 AD during the Medieval Climate Anomaly (Brochier et al. 2007). Other climate reconstructions for south-eastern France have relied on more distant correlations, for example, with the North Atlantic Bond cycles (e.g. Azuara et al., 2015). However, by definition this assumes that climate in this region was controlled primarily by Atlantic-sourced precipitation, rather than southern moisture sources linked to western Mediterranean sea-surface temperatures (SSTs), such as Cévenol storms. Alkenone-based SSTs from shallow marine core KSGC-31 in the Gulf of Lions show a decline of ~3°C between 5500 and 1500 Cal yr BP, with a partial reversal in the last millennium (fig 9a; Jalali et al., 2016). Analysis of n-alkanes in the same core show an increase in chain lengths during the course of the Holocene, which has been interpreted as indicating an increasing moisture deficit in the River Rhône catchment (fig 9a; Jalali et al., 2017). This would have been linked to drier climatic conditions and/or changes in vegetation cover and evapo-transpiration, with notable shifts to drier conditions at 5000 and at 3000 Cal yr BP. This appears rather similar to the hydro-climatic trend found in southern and eastern parts of the Mediterranean (Finné et al., this volume). In summary, apart from the short-lived dry period at around 4200 Cal yr BP, current palaeoclimate data from south-eastern France do not show clear, replicated trends that would allow a direct, within-region comparison with pollen-based land cover in the same way as for archaeologically-inferred population.

A Discussion: Socio-Environmental trajectories from the Early to the Late Holocene

The reading of the various demographic proxy curves identifies a tendency from 7500 Cal Yr BP for consistent increase in the number of sites and archaeological ^14^C dates (at least until 4400 BP), before a long intermediate depression. Globally, despite differences in the size of the archaeological population, we observe a clear synchronism between demographic trends in the three sub-regions of southern France, including the TVZ dataset between 10,000 and 500 Cal Yr BP. The correlation
appears even more robust from 2200 to 1000 BP. In the following paragraphs we present a socio-environmental reading of the data in terms of successive thresholds from the beginning of Neolithisation (threshold 1: 7400 Cal Yr BP) until the medieval period (threshold 7: 1000 Cal Yr BP) (fig 89).

The thresholds generally correspond to a significant increase in the various population indicators. They can appear suddenly (for example 1, 2 or 6) or represent the starting point of a lasting trend towards a growth in the number of occupations which can culminate 1 or 2 centuries after, especially after periods of partial withdrawal or reorganization. Their appearance is much more visible in the SPD until the end of the Neolithic. In most cases these thresholds correspond to rapid changes in at least one of the main agropastoral indicators, to a decline in tree cover or/and to the development of a cluster associated with a characteristic landscape management. In the Late Holocene, thresholds 6 and 7 show a much clearer correlation with more anthropogenic reactive landscapes. Short periods of occupation depression are identified between these successive thresholds. They can be very short (a century) or more long-lasting, as in the Bronze Age or early medieval period (fig.2 and 89). They correspond to fast and significant decreases of the raw count and its derivatives, synchronous or not with the SPD.

B Threshold 1: 7400 Cal Yr BP

The main growth thresholds are found in each of the 3 biogeographic units (Fig. 89), from the plains to the foothills of the Mediterranean mountains, around 7500/7400 BP (Early Neolithic Cardial).

Simultaneous impacts on vegetation are not observed before 7000 Cal Yr BP in BGZ 1 (API, RHAPI) which corresponds to the full agropastoral development of the Epicardial (with the complete Neolithic toolkit) and the appearance of the first real villages from Languedoc to the Middle Rhone Valley (Guilaine, Manen 2005, Perrin et al. 2014, Berger 2015). BGZ I clearly records this first agropastoral impact from 7250 Cal Yr BP with two main peaks of API-RHAPI, associated with a slow decrease of the AP sum (fig 89). The supramediterranean zone (BGZ II) does not see any particular anthropic
impact, whereas a sharp recession of the forest cover (AP sum) in the MRV (BGZ III), centred on 7500 Cal Yr BP, curiously does not appear associated with any anthropogenic markers. This signal could then be associated with the abrupt climatic change that peaks between 7600-7300 Cal Yr BP in the region (Berger et al., 2016) and whose effects on the central-European vegetation are proven (Davis et al. 2003).

B Threshold 2: 6500/6300 Cal Yr BP

This increase in settlement density corresponds to the Chassean period, with two SPD peaks in BGZ II-III and the TVZ dataset corresponding respectively to its early (6300 Cal Yr BP) and late (5800/5700 Cal Yr BP) phases (fig 89). In Languedoc and in the MRV, the density of sites and the presence of vast open-air sites on Quaternary terraces show the dynamism of this period. Archaeological, zoological, botanical and geoarchaeological data illustrate a rather pastoral culture (Beeching et al. 2000, Bréhard et al. 2010); caves are mainly used as stabling areas for ovicaprid herds (Brochier et al. 1999, Thibault 2005, Argant et al., 1991). Between 6500-6300 Cal Yr BP, the first forest clearings are identified in BGZ I and II (AP sum) with an increase in RHAPI, and again around 5800 Cal Yr BP in BGZ I. At the southern regional scale, steppe parklands and pasture/wetland areas appear. These regional vegetation tendencies confirm the Chassean system of landscape management, associated with a dehesa-like landscape, which permitted a sustainable use of the resources for nearly a millennium (Delhon et al. 2008).

C The post-Middle Neolithic occupation depression : 5550/5400-5300 Cal Yr BP

The low number of known sites at the final Chassean-Late Neolithic transition 1 (5550-5300 Cal Yr BP), seen in the RSD and SPD curves of BGZ II-III, supports past interpretations of a regional demographic decline during a period that is still poorly defined culturally (Beeching 2002, Lemercier 2007). Few pollen indicators reflect this possible cultural withdrawal in the three BGZs, but all
anthropic markers are low and deciduous oak woods seem to recover after a decline during the
Chassean period. The API and RHAPI are at their minimum (fig. 89).

B Threshold 3: 5300 Cal Yr BP

This corresponds to the first abrupt settlement increase of the Late Neolithic (5300 Cal Yr BP), seen
in all demographic markers in BGZ I and II, and with a slight delay in the TVZ dataset (fig 2; 5050
Cal Yr BP). It is associated with the growth of the Ferrières, Fraischamp and Couronnien groups from
3300/3200 BCE in the Provencal, Languedoc and Rhône domains. It is not seen in BGZ III, whose
dynamics at this time are related to those of the more central-European regions. In BGZ I, API, OJC
and *Olea* increase from 5300 BP. In BGZ II, most anthropic indicators increase simultaneously from
5250 BP (OJC, API, RHAPI) and in BGZ III despite a sharp and significant fall in AP sum, centred
on 5500 BP, the anthropic indices are restricted (fig. 89).

B Threshold 4: 4850 Cal Yr BP

This continues the increase from threshold 3 showing an impressive maximum of sites (RC) and 14C
dates (SPD). Languedoc, the Gulf of Lions coastline and Provence (BGZ I) form a hot spot of human
settlement during the 5th millennium BP indicating probable population growth in geographic sectors
little occupied until then (limestone scrubland, mountain) (Carozza et al. 2005, Loison et al. 2008,
Lemercier 2007). The most significant evidence is the increase in large enclosed settlements in plains
and coastal areas during the Late Neolithic II (4750 Cal Yr BP) and III (until 4250/4150 Cal Yr BP).
The onset of this human pressure on the landscape corresponds to a period of consolidation (4450–
4250 Cal Yr BP), an important segmentation of space, and the development of specialisation
strategies, e.g. in copper metallurgy (Carozza et al. 2005, 2015). Concentrated phases of occupation in
the hilly areas involve repeated impacts on vegetation (perceived in AP sum, OJC, OJCV, API, and
RHAPI of the three BGZs). The deciduous oak forest cluster culminates towards 4500-4300 BP and
confirms the human forcing in the hilly areas and the influence of pastoralism. At the same time, there is a rapid decline of subalpine fir stands in favour of alder and beech woods.

C The post-Neolithic multi-century occupation depression : 4300/4000-3300/3200 Cal Yr BP

The abrupt reversal of the AW, RSD and especially the RC curve just after 4400/4300 Cal Yr BP in BGZ I and II is impressive, with a two-thirds decrease in RC site density (fig 5); it is seen slightly later in the SPD. The TVZ data illustrate at the same time (around 4250 Cal Yr BP) the abandonment of the sites of the local Bell Beaker culture and an archaeological hiatus of about a century until the emergence of the Early Bronze Age (EBA) around 4150 Cal Yr BP (Berger et al. 2007, Carozza et al. 2015). Here the SPD and buried sites curves confirm the simultaneity of the phenomenon (fig. 2).

This regional trend reversal may be linked to the 4.2 ka BP abrupt climate change detected in the lakes and fluvial archives at the regional scale (Magny et al. 2011, Arnaud et al. 2007, Berger 2015). The SPD and RC/RSD indicators reveal that the abandonment does not continue beyond 4100-4000 Cal Yr BP in the three BGZs nor in the TVZ, where a reoccupation of the floodplains is associated with villages and groups of storage pits on excavated sites (Berger et al. 2007). Compared with the Bell Beaker/Fontbouisse maximum, the number of EBA 1 settlements is low. This period is considered as a reorganisation phase around 4100–3850 Cal Yr BP (Carozza et al. 2015, Vital et al. 2012). The attraction of intermediate areas (Auvergne medium-elevation mountains), and of high mountains (Pyrenees, northern and southern Alps) causes a reorganisation of settlement around pastoral and hunting activities (Marguet et al. 2008; Walsh et al. 2006) or mining (Bailly-Maitre et al. 2008). This regional reorganisation could have had an impact on the soil and vegetation cover in partially abandoned low alluvial plains and northern Mediterranean coastal areas.

All the data signal a long slow decrease of demographic indicators until shortly after 3500 Cal Yr BP, when the trend reverses, to peak during the LBA around 3200/3000 Cal Yr BP (SPD curve) and a little later around 2900/2700 Cal Yr BP (RC and AW curves). This long post-Neolithic quasi-millennial demographic depression has been discussed in the MRV, where more detailed information
reveals a succession of drops in human impact with rhythms of 1 to 2 centuries, with a maximum
decrease during the Middle Bronze Age (fig. 2, Berger et al. 2007). The occupation of karstic
caves/rockshelters then increases in the Northern Alps (Marguet et al. 2008), in the canyons of the
is not very visible in the synthetic pollen diagrams (slight recovery of deciduous oak and coniferous
wood and especially beech woods in BGZ III, and corresponds to a synchronous drop in
anthropogenic indicators in BGZ II between 4000-3700 Cal Yr BP). Locally, strong reafforestation
has been repeatedly identified between the EBA 2 and the beginning of the Late Bronze Age (LBA;

B Threshold 5: 3300 Cal Yr BP

This demographic pressure rises from 3300, but culminates during the Bronze Final IIb phase (3100-
3000 Cal Yr BP) (fig 5), associated with the concentration of large villages of several hectares in the
MRV floodplains (Billaud 1999) and a significant increase in occupied surface areas, even compared
to BFIIIB, whose absolute number of sites is nevertheless higher (Berger 2015). The distribution of
Bronze Final IIIB sites in all the landscape units of the MRV, associated with the presence of groups
of storage pits, shows the degree of human pressure on soils at this time (Berger et al., 2007). From
the north of BGZ III to the coastal Mediterranean (BGZ I) the BFIIB and BFIIIB periods are
associated with increased settlement density (Treffort 2005, Lachenal 2012). This period does not
record a real vegetation change before 3000 Cal Yr BP where at the regional scale cluster C1, C4 and
C7 indicators appear and the API and RHAPI increase (figs 7-9-8). Cluster 8 (pasture/wetland)
increases from 3200 Cal Yr BP and the AP sum decreases from 3000 Cal Yr BP. In BGZ I, the main
impact is centred on 3000-2700 Cal Yr BP (peak of API-RHAPI, followed by peaks of *Olea*, OJC,
and OJCV), as in BGZ II, with a clear decrease in the AP sum.
Archaeobotanical macroremains testify to the existence of fairly permanent and intensive agriculture at this time (Bouby 2010). In BGZ III, the agropastoral impact is identified earlier, from 3400/3300 Cal Yr BP (API, RPI, OJC, AP sum (fig 89), in good agreement with the demographic data and with the settlement and economic dynamics to the north (Franche-Comté), which indicate a restart of the anthropic pressure at the end of the middle Bronze Age (Pétrequin and Weller 2007).

B Threshold 6: 2200 Cal Yr BP

The most important peak in occupation density begins around 2150 Cal Yr BP, and culminates 1950-1850 Cal Yr BP (fig 89) (Van der Leeuw et al. 2003, 2005, Favory et Fiches 1994, Archaeomedes 1998). The site densities decrease from the 2nd century CE and continue slowly downwards until a brief respite in this trend in the c. 1700-1500 Cal Yr BP well identified by the AW curve in BGZ I and II, in the TVZ, and by a new dynamism in Languedoc’s agrarian habitat (fig. 6). Decline continues more abruptly from 1500 Cal Yr BP to reach a minimum settlement density c. 1100 Cal Yr BP). As noted above, comparison with the results for the period 2750 4350 Cal Yr BP from the Archaeomedes and Archaedyn micro-regional survey areas within BGZ I shows that they match well while tending to over-estimate the earlier periods and underestimate the Roman peak.

The work carried out as part of the Archaeomedes project showed that variations in the number of sites (fig 6a) were strongly linked to changes in land use patterns. For the period from 2750 to 350 Cal Yr BP, the cumulative area occupied by the sites (fig 6b) shows a much more regular demographic growth trend. The peak effects, around 2500 BP (identified in the micregional curve) but especially between 1950 and 1850 BP are linked to an explosion in the number of small dwellings and outbuildings that were later abandoned, reflecting a restructuring of the settlement system at a time when population was growing slowly (Brun and Congès 1996, Archaeomedes 1998, Van der Leeuw et al. 2003, 2005, Schneider et al. 2007, Raynaud 2003, Favory et al. 2011). This widespread phenomenon (Bertoncello et al. 2012) is closely related to the region’s incorporation into the Roman Empire, which had a profound impact on settlement patterns and landscapes resulting from the
unprecedented economic development of Mediterranean exchanges. This involved new forms of production including commercial agriculture, as well as new consumption patterns (Archaeomedes 1998, Garcia and Isoardi 2010, Durand & Leveau 2004.), not simply population increase.

Human impact is evident in the simultaneous development of a majority of anthropic pollen clusters (figs. 7- and 89) from 2250-2200 Cal Yr BP, which appear mostly continuously from this time onwards (sclerophyllous parkland, steppe parkland, pasture/wetland, deciduous oak parklands, Olea, OJC, OJCV, API and RHAPI). Then we observe the rapid decrease of deciduous oak woods (around 1500 Cal Yr BP), an abrupt clearing of the alder woods (centred on 2000 Cal Yr BP) related to the exploitation of gallery forests and wetlands, and the disappearance of fir woods (figs. 7-8). The spread of hydraulic systems then ensures the drainage of a large part of the Rhône wetlands, allowing the expansion of cultivated land and the intensification of crops and fodder (Berger 2015, Bernigaud et al., 2014). These signatures reveal, at the scale of the large Roman province of Gallia Narbonensis, a commercial agricultural exploitation (vineyards and orchards) which affects all the bioclimatic zones up to the mid-mountains and results in an unprecedented scale of human land use (Berger and Bravard 2012, Leveau 1998). Quantitative sediment budget studies (Notebaert and Berger 2014) document a major peak in sedimentation (see Walsh et al. this volume).

C The Early medieval settlement depression : 1300-1200 Cal Yr BP

The second rupture observed occurs c. 1300-1200 Cal Yr BP after a slow spatial reorganization of the settlement system from 1600 Cal Yr BP, from a floodplain distribution to a concentration on hills and plateaus in the MRV and BGZ III (Berger et al. 2007). This depression is well recorded in all regions (BGZ I to III, TVZ; fig. 2 and 5) by the AW, RSD and the RC curves. However, it is important to remember that these records only have a 200 year resolution. The SPD curves suggest a much shorter-lived dip of around a century, in keeping with the arguments of Schneider et al. (2007) that the early Medieval period was a dynamic one, with the exception of a century of abandonment from c.1300-1200 BP. This likely population decline associated with regional population restructuring, albeit
probably short-lived, is reflected in pollen records, mainly in BGZ I and III, where API, RHAPI and LPI indicators strongly decrease while AP sum clearly marks a reforestation phase in BGZ I (fig. 89b), lasting a century in the pollen record from Palavas, for example (Azuara et al. 2015). The dynamics of pollen assemblages are clearly different in BGZ II, where the AP sum continue to decrease, associated with a clear maximum in API and RHAPI indicators. A reorganization of the settlements during the early Medieval period towards the plateaus and hills and the middle mountain could explain these signatures (Schneider 2004, 2007, Argant and Cubizolles 2005, Doyen et al. 2013, Berger 2015).

B Threshold 7 : 1000 Cal Yr BP and later

From the 10th century, i.e. shortly before 1000 Cal Yr BP, there was a new momentum marked by an increase in the number of sites. In the BGZ III region, the growth in the number of sites is relatively short since it falls shortly after 1000 BP, around the 12th century CE. In the other two regions, this decline is not visible, although it is well recorded in the Archaeomedes micro-regional curves for the most coastal areas (Favory et al. 1999). Only the curves of the micro-regions north of BGZI or at the BGZII interface show the same signal with continuous growth. Despite a much smaller number of sites at this time than around 1950-1850 BP, micro-regional studies demonstrate that the overall area occupied by the sites is comparatively almost at the same level (Favory et al. 1999). In Languedoc, the typological analysis of the sites also shows for this period, a replacement of the small and medium size occupations by larger and potentially more long-lasting ones. Therefore, as the trajectory for the cumulative occupied area shows (fig 6b), the observed decrease in the number of sites compared to previous periods, especially antiquity, is not a sign of a demographic decline. In fact, it marks the affirmation of the medieval hierarchy and networks underpinned by a much more regular territorial meshwork (Archaeomedes 1998).

During this period and for BGZ1, the local pastoral indicators and the anthropological index (API) are at their highest level while the OJC index increases strongly. This signal is perfectly consistent with
the idea of a settlement reorganisation and the consolidation of the agrarian exploitation around
certain places that are more regularly dispersed (Fovet 2004. As observed by Durand and Leveau
(2004), ‘The growth in farming in the 8th - 9th C, resting on a demographic increase combined with
intensive land clearance episodes, owes much to the preceding centuries: the change resides more in
the intensification than in the introduction of new features.’

A Conclusion

This paper has traced the various trajectories of population and vegetation change in Mediterranean
southern France over the course of the Holocene by comparing and contrasting a range of different
proxies. Earlier microregional survey and excavation projects have made it possible to assess and
confirm the relative representativeness of the radiocarbon SPD and site-count data for the region as a
whole and generally support the broader regional patterns (though it has not been possible to include
site-size data). The results indicate a pattern of population fluctuations, revealed in greater detail in
the SPD proxy but also evident in the site-count data for the TVZ dataset, for which it was possible to
create and apply finer typo-chronological subdivisions.

There is a strong correlation between the population proxies and the various land cover indicators of
human impact. This includes the SPD proxy, even though the correlations for this are based only on
the period up to 2400 Cal Yr BP, but the values are generally lower than for the transformed site
count-data (AW and RSD), confirming the greater human impact in the later periods that is clearly
seen in fig. 89.

In contrast to many other Mediterranean regions, data on climate fluctuations independent of the land-
cover proxies presented in this paper are currently lacking for southern France. Consequently, at
present we are not in a position to assess climatic impacts on the changing vegetation patterns or on
the size of the human population through an effect on the agricultural resources that sustained them,
from evidence available within the study region. On the other hand, it is clear that at least from 2500
Cal Yr BP we cannot explain patterns of population and land cover in purely local terms. They result from the incorporation of southern France into much larger Mediterranean-wide trade systems and the restructuring of the landscape that this involved.

A Acknowledgements

This work is the result of a workshop held in Mallorca in September 2017 under the umbrella of the Leverhulme Trust funded project “Changing the Face of the Mediterranean: Land Cover and Population Since the Advent of Farming” (Grant Ref. RPG-2015-031), a Plymouth-UCL collaboration. Pollen data were extracted from the European Pollen Database (EPD; http://www.europeanpollendatabase.net/) and amalgamated from the work of data contributors. The EPD community is gratefully acknowledged and gratitude is given to Michelle Leydet (the EPD manager), and many data contributors who have made a valuable contribution to this research. We also thank A. Beeching, J.L. Brochier and F. Ferber for their communication of unpublished radiocarbon series from the Chassean period, and C. Baudouin for her pollen database of the Rhone delta. Finally, we are grateful to Joan Estrany and the University of the Balearic Islands for hosting the Mallorca workshop.

References

Argant, J. and Cubizolles, H., 2005. L'évolution holocène de la végétation des Monts de la Madeleine, du Forez, du Livradois et du Pilat (Massif Central oriental, France): l'apport d'une nouvelle série

Berger, J.F., Delhon, C., Magnin, F., Bonté, S., Peyric, D., Thiébault, S., Guibert, R., and Beeching, A., 2016. A fluvial record of the mid-Holocene rapid climatic changes in the middle Rhone valley (Espeluche-Lalo, France) and of their impact on Late Mesolithic and Early Neolithic societies. Quaternary Science Reviews 136, 66-84.

http://mc.manuscriptcentral.com/holocene

Davis, B.A.S., Brewer, S., Stevenson, A.C., Guiot, J., and Data Contributors 2003. The temperature of Europe during the Holocene reconstructed from pollen data. *Quaternary Science Reviews* 22, 1701–1716

http://mc.manuscriptcentral.com/holocene

Besancon, Dialogues d’histoire ancienne, 730: 205-212.

Peyron O., Combourieu-Nebout N., Brayshaw D., Goring S., Andrieu-Ponel V., Desprat S., Fletcher W., Gambin B., Loakim C., Joannin S., Kotthoff U., Kouli K., Montade V., Pross J., Sadori L.,

Walsh et al. this volume

http://mc.manuscriptcentral.com/holocene
Fig 1 Map of the southern France study area showing the location of the pollen samples (numbers correspond to those in table 2) and the archaeological sites. The boundaries of the Tricastin-Valdain settlement survey area (TVZ), the broader TVZ area that includes radiocarbon dates from recent rescue excavations and the three Archaeomedes II – ArchaeDyn survey areas are also shown: Eastern Languedoc: Archaeomedes II - ArchaeDyn, 1996-2012, archaeological data: C. Raynaud, F. Favory, L. Nuninger, M.-J. Ouriachi, E. Fovet; Ardèche & Tricastin: Archaeomedes II 1996-1998, archaeological data: J. Goury, C. Jung; Etang de Berre & Chaînon de la Nerthe: Archaeomedes II 1996-1998, archaeological data: F. Trément, F. Gâteau.

293x206mm (299 x 299 DPI)
Fig 2a) Summed radiocarbon probabilities and site count data for the Tricastin-Valdain area. Dashed lines correspond to significant thresholds. EMNT: Early-Middle Neolithic Transition, ELC: Early-Late Chassean transition, LNT: Late Neolithic 1 period, NBT: Neolithic-Bronze transition, MBA: Middle Bronze Age period, BIT: Bronze-First Iron Age Transition (8th c. BC), DA: Dark Age period. The bar chart represents the raw count of all archaeological sites divided by half-centuries to standardise the number of sites for the longest cultural phases (2/4 centuries), except for the historical periods where the continuity of occupation is proven at the 50 year scale; 2b) SPD of unnormalised calibrated radiocarbon dates from non-buried sites from the TVZ compared with a 95% Monte Carlo critical envelope for all TVZ sites produced via permutation of subset dates; 2c) SPD of buried sites from the TVZ compared with the same critical envelope.

208x245mm (300 x 300 DPI)
Fig 3 Summed probability distribution of unnormalised calibrated radiocarbon dates from the southern France region as a whole vs. a fitted logistic null model (95% confidence grey envelope). Pink and blue shed bands indicate chronological ranges within which the observed SPD deviates positively and negatively respectively from the null model.

254x127mm (300 x 300 DPI)
Fig 4 Summed probabilities of subsets of unnormalised calibrated radiocarbon dates compared with relevant 95% Monte Carlo critical envelopes produced via permutation of subset dates; a) BGZ I; b) BGZ II; c) BGZ III, all against the overall southern France pattern; d) The TVZ against BGZ I and II e) Cave and rockshelter sites against overall southern France.

120x153mm (300 x 300 DPI)
Fig 5 All demographic proxies; a) BGZ I; b) BGZ II; c) BGZ III. Normalised value on a scale between 0 and 1.

236x170mm (300 x 300 DPI)
Fig 6a) Site count data for the Eastern Languedoc intensive survey area, comparing the percentage of occupations in each 100 year phase from the Archaeomedes-Archaedyn surveys with the percentage from the same area in the Leverhulme project database; 6b) Site count data for the Eastern Languedoc intensive survey area, comparing the percentage of occupations in each 100 year phase with the percentage of the total area occupied. All data from the Archaeomedes-Archaedyn surveys.
Fig 7 Pollen-inferred vegetation cluster groups and demographic proxies; a) Southern France all regions combined b) BGZ I. Time windows for later periods where the SPD is no longer a reliable proxy are shown in white.
Fig 8 Pollen-inferred vegetation cluster groups and demographic proxies; a) BGZ II; b) BGZ III. Time windows for later periods where the SPD is no longer a reliable proxy are shown in white.
Fig 9 a) Pollen indicator groups, two climate records from shallow marine core KSGC-31 in the Gulf of Lions (data from Jalali et al. 2016, 2017), and demographic proxies showing thresholds and depression phases mentioned in the text for Southern France all regions combined; b) Pollen indicator groups and demographic proxies showing thresholds and depression phases mentioned in the text for the three sub-regions. Time windows for later periods where the SPD is no longer a reliable proxy are shown in white.

209x234mm (300 x 300 DPI)
Table I. Cultural chronology of southern France in the Holocene.

<table>
<thead>
<tr>
<th>Period</th>
<th>Absolute dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sauveterian Mesolithic</td>
<td>9700 – 6700/6600 BCE</td>
</tr>
<tr>
<td>Castelnovian Mesolithic</td>
<td>6700/6600 – 5600/5500 BCE</td>
</tr>
<tr>
<td>Early Neolithic - Impressa</td>
<td>5900/5800 – 5600 BCE</td>
</tr>
<tr>
<td>Early Neolithic – Cardial/ Epicardial</td>
<td>5600/5500 – 4800 BCE</td>
</tr>
<tr>
<td>Early to Middle Neolithic transition</td>
<td>4800-4600 BCE</td>
</tr>
<tr>
<td>Middle Neolithic–Prechassean (Fagien/St Uze)</td>
<td>4600 – 4400 BCE</td>
</tr>
<tr>
<td>Middle Neolithic–Early Chassean</td>
<td>4400 - 4000 BCE</td>
</tr>
<tr>
<td>Middle Neolithic–Late/ Tardi Chassean</td>
<td>4000 – 3600/3400 BCE</td>
</tr>
<tr>
<td>Late Neolithic I–St Ponien/Ferrières/Couronnien/Verasien</td>
<td>3500/3400 – 3100/2900 BCE</td>
</tr>
<tr>
<td>Late Neolithic II-Verazien II/Fontbousiès/Rhône-Ouvèze</td>
<td>3000/2900 – 2500/2400 BCE</td>
</tr>
<tr>
<td>Late Neolithic III-Rhodano-Provencal Bell Beaker</td>
<td>2500 – 2200/2150 BCE</td>
</tr>
<tr>
<td>Early Bronze Age I/ceramics with barbed decor</td>
<td>2150 – 1900 BCE</td>
</tr>
<tr>
<td>Early Bronze Age II</td>
<td>1900 – 1700 BCE</td>
</tr>
<tr>
<td>Early Bronze Age III</td>
<td>1700 – 1600/1550 BCE</td>
</tr>
<tr>
<td>Middle Bronze Age I</td>
<td>1600/1550 – 1450 BCE</td>
</tr>
<tr>
<td>Middle Bronze Age II-II</td>
<td>1450 - 1350 BCE</td>
</tr>
<tr>
<td>Late Bronze Age I</td>
<td>1350 – 1200 BCE</td>
</tr>
<tr>
<td>Late Bronze Age II-a</td>
<td>1200 – 1150 BCE</td>
</tr>
<tr>
<td>Late Bronze Age II-b</td>
<td>1150 – 1050/1025 BCE</td>
</tr>
<tr>
<td>Late Bronze Age III-a</td>
<td>1050/1025 – 900 BCE</td>
</tr>
<tr>
<td>Late Bronze Age III-b</td>
<td>900 – 800/750 BCE</td>
</tr>
<tr>
<td>Iron Age I</td>
<td>750-500 BCE</td>
</tr>
<tr>
<td>Iron Age II–Early la Tène</td>
<td>500 – 300 BCE</td>
</tr>
<tr>
<td>Iron Age II–Middle la Tène</td>
<td>300 – 200 BCE</td>
</tr>
<tr>
<td>Iron Age II – Late la Tène</td>
<td>200 – 121 BCE</td>
</tr>
<tr>
<td>Roman – High Empire</td>
<td>121 BCE – 300 CE</td>
</tr>
<tr>
<td>Roman – Low Empire</td>
<td>300 CE – 458/493 CE</td>
</tr>
<tr>
<td>Early Middle Age</td>
<td>493 – 900 CE</td>
</tr>
<tr>
<td>Central Middle Age</td>
<td>900 – 1300 CE</td>
</tr>
<tr>
<td>Upper Middle Age</td>
<td>1300-1492 CE</td>
</tr>
</tbody>
</table>

Table II Southern France: fossil pollen sites.

<table>
<thead>
<tr>
<th>Code</th>
<th>Site name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Sub-region</th>
<th>Elevation</th>
<th>Contributor</th>
<th>Site information</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAUXTC1</td>
<td>Marais de Baux1</td>
<td>43.69778</td>
<td>4.780278</td>
<td>1</td>
<td>0</td>
<td>Andrieu-Ponel</td>
<td>endoreic depression</td>
<td>Andrieu-Ponel et al. (2000) Vegetation History and Archaeobotany: 9, 71.</td>
</tr>
<tr>
<td>BAUXTC2</td>
<td>Marais de Baux2</td>
<td>43.69778</td>
<td>4.780278</td>
<td>1</td>
<td>0</td>
<td>Andrieu-Ponel</td>
<td>endoreic depression</td>
<td>Andrieu-Ponel et al. (2000) Vegetation History and Archaeobotany: 9, 71.</td>
</tr>
<tr>
<td>DESPORT</td>
<td>Desport</td>
<td>43.636901</td>
<td>4.137408</td>
<td>1</td>
<td>2</td>
<td>Guillon-Berger</td>
<td>Delta of Vidourle river, agricultural area</td>
<td>Blanchemanche et al., Unpublished intermediary report of ARMILIT ANR, 2006, 1p</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------</td>
<td>----------</td>
<td>----------</td>
<td>----</td>
<td>----</td>
<td>--------</td>
<td>--------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>PITON</td>
<td>Piton</td>
<td>43.68333333</td>
<td>4.62361111</td>
<td>1</td>
<td>5</td>
<td>Baudouin</td>
<td>alluvial delta</td>
<td>Arnaud-Fasetta et al. (2005) Zeitschrift für Geomorphologie: 49, 455-484.</td>
</tr>
<tr>
<td>LLONG1</td>
<td>Lac Long Inférieur</td>
<td>44.057778</td>
<td>7.45</td>
<td>2</td>
<td>2114</td>
<td>EPD</td>
<td>lake with marginal fen</td>
<td>de Beaulieu (1977) Contribution pollenanalytique à l’histoire tardiglaciaire et Holocène de la végétation des Alpes méridionales françaises. Ph.D. Dissertation. Université d’Aix-Marseille, Marseille, France.</td>
</tr>
</tbody>
</table>

http://mc.manuscriptcentral.com/holocene
<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elev.</th>
<th>Database</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PELL79C2</td>
<td>Pelléautier</td>
<td>44.522222</td>
<td>6.183333</td>
<td>975</td>
<td>EPD</td>
<td>nowadays a lake due to a dam</td>
<td>de Beaulieu (1977) Contribution pollenanalytique à l’histoire tardiglaciaire et Holocène de la végétation des Alpes méridionales françaises. Ph.D. Dissertation. Université d’Aix-Marseille, Marseille, France.</td>
</tr>
<tr>
<td>VALPROV2</td>
<td>Vallon de Provence</td>
<td>44.391111</td>
<td>6.404167</td>
<td>2</td>
<td>EPD</td>
<td>low marsh with</td>
<td>de Beaulieu (1977) Contribution pollenanalytique à l’histoire tardiglaciaire et Holocène de la végétation des Alpes</td>
</tr>
<tr>
<td>Site Code</td>
<td>Site Name</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Depth</td>
<td>Type</td>
<td>Ref.</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>CZE1</td>
<td>Marais de Charauze</td>
<td>45.368333</td>
<td>5.566944</td>
<td>3</td>
<td>EPD</td>
<td>marsh</td>
<td>Argant, Jaqueline (2010): Pollen profile CZE1, Marais de Charauze, France. European Pollen Database (EPD), PANGAEA, https://doi.org/10.1594/PANGAEA.738766</td>
</tr>
<tr>
<td>LORAS84</td>
<td>Loras</td>
<td>45.666389</td>
<td>5.243333</td>
<td>3</td>
<td>EPD</td>
<td>lake</td>
<td>Clerc, Jeanine (2010): Pollen profile LORAS84, Loras, France. European Pollen Database (EPD), PANGAEA, https://doi.org/10.1594/PANGAEA.739484</td>
</tr>
</tbody>
</table>
Table III. Matrix of Spearman’s Rank Correlation Coefficients (R-values) between the pollen indicator groups and the demographic proxies for the period 10,000-600 Cal Yr BP (to 2400 Cal Yr BP for 14C SPD) in Southern France.

<table>
<thead>
<tr>
<th></th>
<th>AP sum</th>
<th>OJC</th>
<th>API</th>
<th>Local Pastoral</th>
<th>RHAPI</th>
<th>Sites count</th>
<th>Aoristic sum</th>
<th>Random</th>
<th>14C SPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP sum</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OJC</td>
<td>-0.76</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API</td>
<td>-0.78</td>
<td>0.62</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Pastoral</td>
<td>-0.68</td>
<td>0.55</td>
<td>0.86</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHAPI</td>
<td>-0.92</td>
<td>0.72</td>
<td>0.79</td>
<td>0.65</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sites count</td>
<td>-0.56</td>
<td>0.71</td>
<td>0.29</td>
<td>0.33</td>
<td>0.56</td>
<td>1</td>
<td>0.88</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aoristic sum</td>
<td>-0.77</td>
<td>0.86</td>
<td>0.58</td>
<td>0.56</td>
<td>0.78</td>
<td>0.88</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>-0.78</td>
<td>0.84</td>
<td>0.63</td>
<td>0.61</td>
<td>0.81</td>
<td>0.81</td>
<td>0.98</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14C SPD</td>
<td>-0.45</td>
<td>0.74</td>
<td>0.14</td>
<td>0.20</td>
<td>0.47</td>
<td>0.82</td>
<td>0.91</td>
<td>0.87</td>
<td>1</td>
</tr>
</tbody>
</table>

Statistically significant values in bold (p<0.05).
Table IV. Matrix of Spearman's Rank Correlation Coefficients (R-values) between the pollen indicator groups and the demographic proxies for the period 10,000-600 Cal Yr BP (to 2400 Cal Yr BP for 14C SPD) in BGZ I.

<table>
<thead>
<tr>
<th></th>
<th>AP sum</th>
<th>OJC</th>
<th>API</th>
<th>Local Pastoral</th>
<th>RHAPI</th>
<th>Sites count</th>
<th>Aoristic sum</th>
<th>Random</th>
<th>14C SPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP sum</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OJC</td>
<td>-0.44</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API</td>
<td>-0.43</td>
<td>0.56</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Pastoral</td>
<td>-0.53</td>
<td>0.43</td>
<td>0.86</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHAPI</td>
<td>-0.67</td>
<td>0.56</td>
<td>0.55</td>
<td>0.54</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sites count</td>
<td>-0.4</td>
<td>0.46</td>
<td>0.35</td>
<td>0.31</td>
<td>0.72</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aoristic sum</td>
<td>-0.57</td>
<td>0.67</td>
<td>0.58</td>
<td>0.54</td>
<td>0.88</td>
<td>0.86</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>-0.56</td>
<td>0.65</td>
<td>0.6</td>
<td>0.58</td>
<td>0.86</td>
<td>0.8</td>
<td>0.98</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14C SPD</td>
<td>-0.08</td>
<td>0.49</td>
<td>0.35</td>
<td>0.16</td>
<td>0.70</td>
<td>0.82</td>
<td>0.88</td>
<td>0.86</td>
<td>1</td>
</tr>
</tbody>
</table>

Statistically significant values in bold (p<0.05).
Table V. Matrix of Spearman’s Rank Correlation Coefficients (R-values) between the pollen indicator groups and the demographic proxies for the period 10,000-600 Cal Yr BP (to 2400 Cal Yr BP for 14C SPD) in BGZ II.

<table>
<thead>
<tr>
<th></th>
<th>AP sum</th>
<th>OJC</th>
<th>API</th>
<th>Local Pastoral</th>
<th>RHAPI</th>
<th>Sites count</th>
<th>Aoristic sum</th>
<th>Random</th>
<th>14 C SPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP sum</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OJC</td>
<td>-0.69</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API</td>
<td>-0.63</td>
<td>0.49</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Pastoral</td>
<td>-0.5</td>
<td>0.43</td>
<td>0.64</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHAPI</td>
<td>-0.7</td>
<td>0.43</td>
<td>0.84</td>
<td>0.42</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sites count</td>
<td>-0.48</td>
<td>0.68</td>
<td>0.16</td>
<td>0.36</td>
<td>0.1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aoristic sum</td>
<td>-0.69</td>
<td>0.81</td>
<td>0.35</td>
<td>0.42</td>
<td>0.3</td>
<td>0.9</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>-0.69</td>
<td>0.82</td>
<td>0.4</td>
<td>0.4</td>
<td>0.32</td>
<td>0.84</td>
<td>0.98</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14 C SPD</td>
<td>-0.35</td>
<td>0.60</td>
<td>-0.23</td>
<td>0.26</td>
<td>-0.30</td>
<td>0.79</td>
<td>0.81</td>
<td>0.78</td>
<td>1</td>
</tr>
</tbody>
</table>

Statistically significant values in bold (p<0.05).
Table VI. Matrix of Spearman’s Rank Correlation Coefficients (R-values) between the pollen indicator groups and the demographic proxies for the period 10,000-600 Cal Yr BP (to 2400 Cal Yr BP for ^{14}C SPD) in BGZ III.

<table>
<thead>
<tr>
<th></th>
<th>AP sum</th>
<th>OJC</th>
<th>API</th>
<th>Local Pastoral</th>
<th>RHAPI</th>
<th>Sites count</th>
<th>Aoristic sum</th>
<th>Random</th>
<th>^{14}C SPD</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP sum</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OJC</td>
<td>-0.71</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>API</td>
<td>-0.67</td>
<td>0.72</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local Pastoral</td>
<td>-0.66</td>
<td>0.58</td>
<td>0.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RHAPI</td>
<td>-0.68</td>
<td>0.75</td>
<td>0.94</td>
<td>0.6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sites count</td>
<td>-0.79</td>
<td>0.82</td>
<td>0.67</td>
<td>0.65</td>
<td>0.67</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aoristic sum</td>
<td>-0.79</td>
<td>0.82</td>
<td>0.75</td>
<td>0.72</td>
<td>0.76</td>
<td>0.95</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random</td>
<td>-0.76</td>
<td>0.8</td>
<td>0.77</td>
<td>0.73</td>
<td>0.78</td>
<td>0.9</td>
<td>0.98</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>^{14}C SPD</td>
<td>-0.65</td>
<td>0.6</td>
<td>0.56</td>
<td>0.62</td>
<td>0.60</td>
<td>0.87</td>
<td>0.95</td>
<td>0.94</td>
<td>1</td>
</tr>
</tbody>
</table>

Statistically significant values in bold (p<0.05).
Supplemental material 1

Radiocarbon dates

Radiocarbon dates from archaeological sites were compiled from existing online databases and electronic and print. A total of 3,507 uncalibrated radiocarbon dates from 1,056 sites have been collected. Below the sources from which the radiocarbon dates have been collected.

Databases/Datasets

BANADORA. Banque Nationale de Données Radiocarbone pour l'Europe et le Proche Orient, Centre de Datation par le Radiocarbone, CNRS Lyon:
http://www.arar.mom.fr/banadora/

EUROEVOL. Manning, K; Timpson, A; Colledge, S; Crema, E; Shennan, S; (2015) The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset: http://discovery.ucl.ac.uk/1469811/

ORAU. Oxford Radiocarbon Accelerator Unit online database: https://c14.arch.ox.ac.uk/databases.html

The 14CARHU (RadioCARbon dates of Helsinki University): https://www.oasisnorth.org/carhu.html

References

For Peer Review

http://mc.manuscriptcentral.com/holocene
Gailledrat, E., Poupet, P., and Jallet, F. « Mailhac – Le Traversant », ADLFI.
Archéologie de la France - Informations [En ligne], Languedoc-Roussillon, mis en ligne le 01 mars 2004, consulté le 04 juin 2018. URL:
http://journals.openedition.org/adlf/12025

Archaeological settlement data

Archaeological settlement data sites were compiled from the series of archaeological reports Bilan Scientifique Regional published by the Direction Régional des Affaires Culturelles (DRAC). A total of 2,944 archaeological sites and 4,974 occupation phases have been collected from 45 reports published between 2001 and 2015. Below the sources from which the archaeological sites have been collected in the regions of Languedoc-Roussillon, Provence-Alpes-Côte d'Azur, and Rhône-Alpes.

Online sources

