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Abstract: This article is concerned with the non-linear interaction of homogeneous random ocean surface
waves. Under this umbrella, numerous kinetic equations have been derived to study the evolution
of the spectral action density, each employing slightly different assumptions. Using analytical and
numerical tools, and providing exact formulas, we demonstrate that the recently derived generalized
kinetic equation exhibits blow up in finite time for certain degenerate quartets of waves. This is
discussed in light of the assumptions made in the derivation, and this equation is contrasted with
other kinetic equations for the spectral action density.

Keywords: ocean-waves; non-linear interactions; kinetic equation

1. Introduction

The dominant non-linear effect on the propagation of surface gravity waves in deep water is due
to the resonant and almost resonant four-wave interactions discovered by Phillips [1]. This process of
four-wave interaction is succinctly described by the Zakharov equation [2] which is a deterministic
model accurate to third order in the wave steepness.

In the continuous case the Zakharov equation is written in terms of complex amplitudes B(k, t) as

∂B0

∂t
= −i

∫∫∫ ∞

−∞
T0,1,2,3 B∗1 B2B3 δ0+1−2−3 ei∆2,3

0,1t dk1dk2dk3. (1)

Here, and elsewhere, subscripts denote a wavenumber component, so Bi = B(ki, t).
The wavenumber resonance condition for quartets of waves is evident in the delta function
δ0+1−2−3 = δ(k0 + k1 − k2 − k3), while the frequency detuning ∆2,3

0,1 = ω0 + ω1 − ω2 − ω3 marks
the departure from exact resonance. The asterisk denotes complex conjugation, while the kernel
T0,1,2,3 = T(k0, k1, k2, k3) is given in Krasitskii [3], and throughout this article the dispersion relation
for deep water ω2 = g|k|, is used.

To describe averaged properties of a wave field, a statistical theory of wave evolution was
developed in the 1950s. This culminated in Hasselmann’s [4] derivation of what is often called the
kinetic equation for water waves, or the Hasselmann equation. This equation describes the time
evolution of the wave spectral density due to four-wave interactions in exact resonance.

The Hasselmann equation is derived under three basic premises that, in principle, pose limitations
on its applicability. These assumptions are (i) spatial homogeneity and weak non-Gaussianity of the
wave field, (ii) slow temporal evolution of the spectral density on a time-scale O(ε−4), for ε a typical
wave steepness, and (iii) an assumption of quasi-stationarity for the fourth order cumulants.
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One of the consequences of assumption (iii) is that near resonant interactions are ruled out in
Hasselmann’s equation. In the deterministic description, near resonant interactions are responsible for
the side-band instability of a uniform wave train. Stiassnie and Shemer [5] have further highlighted
the equal importance of nearly resonant and exactly resonant interactions for the Zakharov equation.
It is therefore desirable to include them in any statistical model.

The limitation imposed by quasi-stationarity was first studied in detail by Janssen [6], who derived
a more general form of Hasselmann’s equation. Janssen’s equation essentially modifies (iii) by assuming
the wave field to be strictly Gaussian at an arbitrary (but finite) initial time t0. This has the immediate
consequence that a Dirac delta function appearing in Hasselmann’s equation is smeared out into a time
dependent term involving the frequency detuning ∆2,3

0,1, thereby including near resonant interactions.
Although Janssen’s equation includes near-resonant interactions, which leads to a time evolution on
the time scale O(ε−2), it still uses a simplification that is justified under assumption (ii).

A simple physical example serves to demonstrate why it is advantageous to dispense with
assumption (ii). Assuming a wave of period T = 10 s and steepness ε = 0.1 leads to an evolution
time–scale t4 = T/ε4 ≈ 27.7 hours. To justify wave evolution under this paradigm, a sea-state must
remain spatially homogeneous on such a time-scale, which is clearly an idealization. On the other
hand, evolution on a faster time scale t2 = T/ε2, or 16.6 min in the physical example above, would be
a more suitable alternative.

A generalization of Janssen’s approach was presented by Annenkov and Shrira [7]. Their result,
called the generalized kinetic equation (GKE) is obtained as an intermediate step in the derivation
of the kinetic equation, before assumptions (ii) and (iii) are imposed. This results in an equation
valid on a fast time scale of order O(ε−2). The equation was further generalized by Gramstad and
Stiassnie [8], who also included higher order terms corresponding to the non-linear Stokes correction
in their so-called phase averaged equation (PAE). Recently Gramstad and Babanin implemented the
GKE, without Stokes’ correction, in the third generation wave model WAVEWATCH-III [9].

The two equations dealt with in what follows will be Janssen’s kinetic equation (henceforth JKE),
and the generalized kinetic equation (GKE) of Annenkov and Shrira. While some recent efforts have
been focused on the influence of inhomogeneities on the evolution of wave spectra, see Stuhlmeier and
Stiassnie [10], thereby dispensing with assumption (i) along lines first suggested by Crawford et al. [11],
it is important to put the homogeneous theory on sound footing. Thus, while JKE and GKE both
essentially use the spatial homogeneity and weak non-Gaussianity of the wave field, they are
differentiated by assumption (ii) on the slow evolution of the wave field. It will be shown that
this seemingly small difference has a significant effect on the qualitative behavior of the solutions.

Our main result is that some solutions of the generalized kinetic equation exhibit blow-up.
This means that the components of the spectrum tend to infinity in finite time. This raises a red flag
on the GKE, as the blow-up is possible for initial conditions that are physically legitimate. Moreover,
based only on the initial conditions we characterize when the blow-up occurs. One possible method to
circumvent blow-up, by means of phase-mixing, is also explored in the appendix. On the other hand
we show that solutions of the JKE always remain bounded, even in cases when there is blow-up in the
GKE. Surprisingly, away from blow-up, periodic and bounded solutions of the GKE are qualitatively
similar to those of the JKE.

2. Theoretical Background

Our starting point is the discrete version of Zakharov’s equation, which assumes that the complex
amplitudes can be written as

B(k, t) =
N

∑
j=1

Bj(t)δ(kj − k). (2)
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Substituting (2) into (1) yields the following system of ordinary differential equations for the
discrete complex amplitudes Bj

d
dt

Bj = −i ∑
m,n,p

Tj,m,n,p δ
n,p
j,m ei∆n,p

j,m t B∗mBnBp, (3)

where δ
n,p
j,m denotes the Kronecker delta

δ
n,p
j,m =

{
1 when kj + km = kn + kp,

0 otherwise.
(4)

Randomness is introduced by regarding the complex amplitudes as stochastic processes, where 〈·〉
is used to denote an ensemble average. Assuming that 〈Bj〉 = 0 the next quantities of interest are the
second-order moments, the pair correlators. Homogeneity, from assumption (i) above, imposes the
following constraint on the correlators

〈B∗i (t)Bj(t)〉 = Cj(t)δ
j
i . (5)

The set of functions Cj(t) form the wave-action spectrum and δ
j
i is the Kronecker delta.

The evolution equation for the wave action is found by multiplying (3) by B∗j and adding its
complex conjugate. The resulting equation is

d
dt

Cj = 2 ∑
m,n,p

Tj,m,n,p δ
n,p
j,m Im

[
ei∆n,p

j,m t〈B∗j B∗mBnBp〉
]

. (6)

Higher order averages, such as the one appearing on the right hand side of (6), can be decomposed
into products of lower order averages as follows

〈B∗j B∗mBnBp〉 = CjCm

(
δn

j δ
p
m + δ

p
j δn

m

)
+ κj,m,n,p, (7)

where κ is called the fourth-order cumulant. It is well known that all higher-order cumulants vanish
for a Gaussian distribution, thus κ indicates a deviation from Gaussianity.

Substituting (7) into (6), the evolution equation for the wave action becomes

d
dt

Cj = 2 ∑
m,n,p

Tj,m,n,p δ
n,p
j,m Im

[
ei∆n,p

j,m t
κj,m,n,p

]
. (8)

In order to find an equation for κ we differentiate the fourth order average as follows

d
dt
〈B∗j B∗mBnBp〉 = 〈

dB∗j
dt

B∗mBnBp〉+ 〈B∗j
dB∗m
dt

BnBp〉+ 〈B∗j B∗m
Bn

dt
Bp〉+ 〈B∗j B∗mBn

Bp

dt
〉, (9)

and use (3) in the right hand side of (9) to yield

d
dt
〈B∗j B∗mBnBp〉 = i ∑

u,v,w
Tj,u,v,w δv,w

j,u e−i∆v,w
j,u t 〈BuB∗v B∗wB∗mBnBp〉

+ i ∑
u,v,w

Tm,u,v,w δv,w
m,u e−i∆v,w

m,ut 〈B∗j BuB∗v B∗wBnBp〉

− i ∑
u,v,w

Tn,u,v,w δv,w
n,u ei∆v,w

n,u t 〈B∗j B∗mB∗uBvBwBp〉

− i ∑
u,v,w

Tp,u,v,w δv,w
p,u ei∆v,w

p,u t 〈B∗j B∗mBnB∗uBvBw〉.

(10)
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To close what would otherwise be an infinite hierarchy of equations we invoke the weak
non-Gaussianity assumption. Akin to (7), one may decompose the sixth order averages in (10) into
products of lower order averages and cumulants, as detailed in Lvov et al [12]. The terms are then
ordered with respect to the small parameter ε; Cj = O(ε2) and κj,m,n,p = o(ε4), as in Gramstad and
Stiassnie [8]. Therefore, up to order O(ε4), the decomposition of the averages is

〈B∗j B∗mB∗nBpBuBv〉 = CjCmCn

(
δ

p
j (δ

u
mδv

n + δv
mδu

n) + δu
j (δ

v
mδ

p
n + δ

p
mδv

n) + δv
j (δ

u
mδ

p
n + δ

p
mδu

n)
)

. (11)

Differentiating (7) with respect to t and using Equation (10) together with (11) for the sixth-order terms
we reach the following equation for κ, valid up to order O(ε4)

d
dt

κj,m,n,p = 2iTj,m,n,p δ
n,p
j,m e−i∆n,p

j,m t [CnCp(Cj + Cm)− CjCm(Cn + Cp)
]

. (12)

Equations (8) and (12) form the discrete version of the generalized kinetic equation first derived
by Annenkov and Shrira [7] for a continuous wavenumber spectrum. Later, Gramstad and Stiassnie [8]
derived their phase-averaged equation, by extending (11) to include terms up toO(ε6). Our focus shall
remain on the GKE, rather than the higher order extension.

The GKE contains both Janssen’s and Hasselmann’s kinetic equations. To derive Janssen’s result
we set κj,m,n,p(0) = 0 and integrate Equation (12) from 0 to t, yielding

κj,m,n,p = 2iTj,m,n,p

∫ t

0
e−i∆n,p

j,ms [CnCp(Cj + Cm)− CjCn(Cm + Cp)
]

ds. (13)

Now we use assumption (ii). We assume that
[
CnCp(Cj + Cm)− CjCn(Cm + Cp)

]
varies slowly

in time and we extract it out of the integral to obtain

κj,m,n,p = −2Tj,m,n,p
[
CnCp(Cj + Cm)− CjCn(Cm + Cp)

]
(

e−i∆n,p
j,m t − 1

)
∆n,p

j,m
. (14)

Substituting (14) into (8) yields a single equation for C:

d
dt

Cj = 4 ∑
m,n,p

T2
j,m,n,p δ

n,p
j,m
[
CnCp(Cj + Cm)− CjCn(Cm + Cp)

] sin
(

∆n,p
j,mt
)

∆n,p
j,m

. (15)

Equation (15) is the discrete version of Janssen’s kinetic equation (denoted JKE), originally derived in
continuous form by Janssen [6].

To elucidate the difference between the JKE (15) and the GKE (8) and (12), it is instructive
to consider simple cases with few waves. The fundamental interaction in deep water is between
quartets of waves, and the simplest such case consists of three distinct wavenumbers forming a
degenerate quartet.

3. Formulation for a Degenerate Quartet

A degenerate quartet of waves consists of a discrete wave spectrum of the form

B(k, t) = Ba(t)δ(ka − k) + Bb(t)δ(kb − k) + Bc(t)δ(kc − k), (16)

where the wave-vectors ka, kb and kc satisfy the relation

2ka = kb + kc. (17)
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The JKE and GKE thus describe the time evolution of the wave action Cj = 〈|Bj|2〉, for j = a, b, c.
For the GKE (8) and (12), taking all sums over only the three indices a, b and c yields, with the
Kronecker delta function (17), the system of coupled ordinary differential equations

d
dt

Ca = 4Ta,a,b,c Im
[
ei∆b,c

a,atκa,a,b,c

]
, (18)

d
dt

Cb = −2Ta,a,b,c Im
[
ei∆b,c

a,atκa,a,b,c

]
, (19)

d
dt

Cc = −2Ta,a,b,c Im
[
ei∆b,c

a,atκa,a,b,c

]
, (20)

d
dt

κa,a,b,c = 2iTa,a,b,ce−i∆b,c
a,at
[
2CaCbCc − C2

a (Cb + Cc)
]

. (21)

Likewise, the JKE (15) reduces to the following system of equations for the discrete wave action
spectrum (16)

d
dt

Ca = 16T2
a,a,b,c

[
CaCbCc −

1
2

C2
a(Cb + Cc)

]
sin(∆b,c

a,at)

∆b,c
a,a

, (22)

d
dt

Cb = −8T2
a,a,b,c

[
CaCbCc −

1
2

C2
a(Cb + Cc)

]
sin(∆b,c

a,at)

∆b,c
a,a

, (23)

d
dt

Cc = −8T2
a,a,b,c

[
CaCbCc −

1
2

C2
a(Cb + Cc)

]
sin(∆b,c

a,at)

∆b,c
a,a

. (24)

4. Analytic Solution for the GKE

In this section we study the initial value problem associated with the system of equations (18)–(21).
We begin by defining an auxiliary real function Z(t) as the solution to the initial value problem

dZ
dt

= Im
[
ei∆tκ

]
, (25)

with Z(0) = 0. All subsequent calculations are based on the degenerate quartet, so we will omit
subscripts and denote ∆ = ∆b,c

a,a, κ = κa,a,b,c and T = Ta,a,b,c where there is no risk of confusion.
In terms of Z, Equation (18)–(20) simplify to

d
dt

Ca = −2
d
dt

Cb = −2
d
dt

Cb = 4T
d
dt

Z. (26)

Denoting the initial values by Ca(0) = ρa, Cb(0) = ρb and Cc(0) = ρc and integrating in time we find
an expression for Cj in terms of Z:

Ca(t) = ρa + 4TZ, (27)

Cb(t) = ρb − 2TZ, (28)

Cc(t) = ρc − 2TZ. (29)

Our goal is to find an equation that determines Z(t). To this end we define a further auxiliary
real function

W = Re
[
ei∆tκ

]
. (30)

Differentiating in time and using (21) yields

d
dt

W = −∆ Im
[
ei∆tκ

]
+ Re

[
4iT

[
CaCbCc −

1
2

C2
a (Cb + Cc)

]]
= −∆

d
dt

Z, (31)
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which becomes, after integration,
W = Re [κ0]− ∆Z, (32)

where κ(0) = κ0. Taking the time derivative of (25) yields

d2Z
dt2 = ∆W + 4T

[
CaCbCc −

1
2

C2
a(Cb + Cc)

]
. (33)

Now we use Equations (27)–(29) to express the right hand side of (33) in terms of Z. The resulting
equation has the form

d2Z
dt2 = P3(Z) = b0 + b1Z + b2Z2 + b3Z3, (34)

where the coefficients of P3 are:

b0 = ∆ Re [κ0] + 4T
[

ρaρbρc −
1
2

ρ2
a(ρb + ρc)

]
, (35)

b1 = −∆2 + 4T2
[
4ρbρc − 6ρaρb − 6ρaρc + 2ρ2

a

]
, (36)

b2 = 4T3 [20ρa − 16ρb − 16ρc] , (37)

b3 = 192T4. (38)

We multiply both sides of (34) by dZ/dt and integrate(
dZ
dt

)2
= 2

∫ t

0
P3(Z)

d
dt

Zdt = 2
∫ Z

0
P3(z)dz, (39)

obtaining a non-linear first order differential equation for Z(
dZ
dt

)2
= P4(Z) = c0 + c1Z + c2Z2 + c3Z3 + c4Z4. (40)

The coefficients of P4 are:

c0 = (Im [κ0])
2 , (41)

c1 = 2b0, (42)

c2 = b1, (43)

c3 =
2
3

b2, (44)

c4 =
1
2

b3. (45)

4.1. Analytical Solution for Z

We assume that κ0 is real, so that 0 is always a root of P4 (see (41)) and we are able to factor P4 as

P4(Z) = ZQ3(Z), (46)

where Q3(Z) is a cubic polynomial of the form

Q3(Z) = c1 + c2Z + c3Z2 + c4Z3 (47)

with coefficients given by (42)–(45) (note that the JKE is derived assuming κ0 = 0 (see (13)), and for
a consistent comparison this initial condition is used in all subsequent examples).
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It is known that the nature of the roots of a third order polynomial is determined by the sign of
the following discriminant

D = 18c4c3c2c1 − 4c3
3c1 + c2

3c2
2 − 4c4c3

2 − 27c2
4c2

1. (48)

If D > 0 then all non-zero roots of P4 are real and distinct. If D = 0 then P4 has a multiple non-zero
real root. If D < 0 then P4 has two real roots and two complex conjugate roots. We refer to [13] for
a detailed exposition about the discriminant of a cubic polynomial, and formula (48). Knowing the
roots of P3 allows us to find exact formulas for the solution of (40).

4.1.1. Case D > 0

In all cases of interest, when D > 0, the roots of P4 can be written from largest to smallest as
Z4 > Z3 = 0 > Z2 > Z1. Therefore the solution of (40) can be found by inverting the integral

t =
∫ Z

0

dz√
P4(z)

= −
∫ 0

Z

dz√
P4(z)

=
∫ Z

Z2

dz√
P4(z)

−
∫ 0

Z2

dz√
P4(z)

, (49)

by applying formulas (254.00) of Byrd and Friedman [14]. Let

K2 =
Z2(Z4 − Z1)

Z1(Z4 − Z2)
, (50)

be the modulus of the Jacobian elliptic functions sn, cn and dn. Also let

γ =
2√

−(Z4 − Z2)Z1
, (51)

sin(φ) =

√
Z1(Z− Z3)

Z3(Z− Z1)
. (52)

Then
sn−1(sin(φ), K) = sn−1(1, K) + c1/2

4
t
γ
= u, (53)

where sn−1 is the inverse of sn. In term of u the inverse of (49) is

Z =
Z2Z1(sn2(u, K)− 1)

Z2 sn2(u, K)− Z1
, (54)

We point out that the denominator of (54) never vanishes because Z1/Z2 > 1 whereas | sn2(u, K)| ≤ 1.
Finally we compute the value of sn(u, K) by means of addition formulas for elliptic functions. The
resulting expression is

sn(u, K) =
cn(c1/2

4 t/γ, K)dn(c1/2
4 t/γ, K)

1− K2 sn2(c1/2
4 t/γ, K)

. (55)

The solution of (40), given by (54), is a bounded and periodic function of time with period

T =
2γ sn−1(1, K)

c1/2
4

=
2γ

c1/2
4

K(K), (56)

where K is the complete elliptic integral of the first kind. The qualitative behavior of the solution is
shown in the left panel of Figure 1. The function Z(t) oscillates back and forth between the roots Z2

and Z3 of the polynomial, starting from the initial value Z3 = 0.
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Figure 1. Schematic representation of the polynomial P4. The red region (dashed line) represents the
range of the function Z(t). The yellow dot is the initial condition Z(0) = 0. Left panel: P4 has four real
roots, D > 0. Right panel: P4 has two real roots and two complex roots, D ≤ 0.

4.1.2. Case D ≤ 0

In this case let Z3, Z∗3 , Z1 = 0 < Z2 be the roots of P4. Notice that D < 0 if and only if Im[Z3] 6= 0
and D = 0 if and only if Im[Z3] = 0. In either case the solution of (40) is found by inverting the integral

t =
∫ Z

0

dz√
P4(z)

. (57)

The value of (57) is found by applying formulas (260.00) of Byrd and Friedman [14]. Let

K2 =
(|Z3|+ |Z2 + Z3|)2 − Z2

2
4|Z3||Z2 + Z3|

, (58)

be the elliptic modulus and define the parameters

γ =
1√

|Z3||Z2 + Z3|
, (59)

cos(φ) =
(|Z3| − |Z2 + Z3|)Z− Z2|Z3|
(|Z3|+ |Z2 + Z3|)Z− Z2|Z3|

. (60)

Then
cn−1(cos(φ), K) = −c1/2

4
t
γ
= u. (61)

We invert this relation to find Z as a function of t

Z =
Z2|Z3|(1− cn(u, K))

(|Z3| − |Z2 + Z3|)− (|Z3|+ |Z2 + Z3|) cn(u, K)
. (62)
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In this case we expect the solution to blow up when the denominator of (62) vanishes. The critical
time T∞ when this happens is

T∞ =
γ

c1/2
4

cn−1
(
|Z3| − |Z2 + Z3|
|Z3|+ |Z2 + Z3|

, K
)

. (63)

In the right panel of Figure 1 we show a schematic representation of the blow-up in terms of the
roots of the quartic polynomial. The function Z(t), initially at the root Z1 = 0, tends towards −∞ as t
goes from 0 to T∞.

5. Analytic Solution of JKE

Our analysis for the JKE follows the steps of the previous section. First we reduce the three
coupled Equations (22)–(24) to a single equation for a new auxiliary function. To this end, let z(t) be
the solution of the initial value problem

dz
dt

= 4T
[

CaCbCc −
1
2

C2
a(Cb + Cc)

]
sin(∆t)

∆
, (64)

with z(0) = 0. The relationship between z and C is given by (27)–(29), as in Section 4. This is substituted
into the right-hand side of (64) to obtain the following equation for z

dz
dt

= P3(z)
sin(∆t)

∆
, (65)

where P3(z) is a third order polynomial

P3(z) = d0 + d1z + d2z2 + d3z3, (66)

with coefficients

d0 = 4T
[

ρaρbρc −
1
2

ρ2
a(ρb + ρc)

]
, (67)

d1 = 4T2
[
4ρbρc − 6ρaρb − 6ρaρc + 2ρ2

a

]
, (68)

d2 = 4T3 [20ρa − 16ρb − 16ρc] , (69)

d3 = 192T4. (70)

Let λ1 < λ2 < λ3 be the roots of P3. Notice that z(t) = λi, for i = 1, 2, 3, satisfies Equation (65).
Moreover if λ2 < 0 < λ3, then for all time t, λ2 < z(t) < λ3. The subsequent analysis will be
restricted to those cases encountered for physically relevant initial conditions—namely where P3 has
two negative roots and one positive root.

We integrate Equation (65) to obtain(
z− λ1

λ1

)γ1
(

z− λ2

λ2

)γ2
(

λ3 − z
λ3

)γ3

= exp
[

d3

∆2 (1− cos(∆t))
]

, (71)

with exponents

γ1 =
1

(λ1 − λ2)(λ1 − λ3)
> 0, (72)

γ2 =
1

(λ2 − λ1)(λ2 − λ3)
< 0, (73)

γ3 =
1

(λ3 − λ1)(λ3 − λ2)
> 0. (74)
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Equation (71) defines z(t) implicitly. Nevertheless it shows that z(t) has period T = 2π/∆.
In case of exact resonance we take the limit as ∆→ 0, obtaining(

z− λ1

λ1

)γ1
(

z− λ2

λ2

)γ2
(

λ3 − z
λ3

)γ3

= exp
[

d3

2
t2
]

. (75)

This shows that in exact resonance conditions the solution is no longer periodic, but instead
converges to the root λ2.

In the examples presented below, rather than solving Equation (71) for z(t) we integrate the
system of Equations (22)–(24) directly using MATLAB’s ode15s solver with absolute and relative
tolerances set to 10−14.

6. List of Examples

In the following examples we consider three waves of the form ka = k0(1, 0), kb = k0(1 + p, q)
and kc = k0(1− p,−q) and, following Stuhlmeier and Stiassnie [10], we assume that the initial complex
amplitudes are independent, Gaussian random variables, written as

Bj(0) = β je
iφj , (76)

where the real amplitudes β j are Rayleigh distributed and the phases φj are uniformly distributed over
the interval [0, 2π).

Under these assumptions we have

Cj(0) = 〈|Bj(0)|2〉 = 〈β2
j 〉 =

4
π
〈β j〉2, (77)

and we relate the average value of β j to the wave amplitude by

〈β j〉 =
πε j

|kj|

√
πg
2ωj

, so that Cj = 2gπ2
ε2

j

|kj|2ωj
, (78)

where ε j are the wave slopes. Finally we set κa,a,b,c(0) = 0, in order to have consistent initial conditions
with which to compare GKE and JKE. In all calculations we take k0 = 1 m−1, g = 9.81 m s−2 and the
period of the wave ka is Ta = 2π/

√
gk0 ≈ 2.01 s.

We shall consider four particular initial conditions below. In cases a and b we initially assume
that the waves are collinear (q = 0) and fix the steepness εa = 0.15 of the wave ka. Then we take
ε = εb = εc to be the steepness of the waves kb and kc. In cases c and d the wave slopes are fixed
εa = 0.15, εb = 0.05 and εc = 0 and we explore the nature of the solutions in the (p, q)-plane. Notice
that q 6= 0 implies a two-dimensional disturbance. We recall that while solutions to the JKE are periodic,
the behavior of the GKE is determined by the initial conditions via the discriminant D given in (48).
To visualize how wave slope and wavenumber impact the solutions of the GKE, the sign of D is plotted
in Figure 2. It establishes when the solutions remain bounded (D > 0) or tend to infinity in finite
time (D ≤ 0).
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Figure 2. Plot of the discriminant (48) for varying initial conditions. The solid lines correspond to D = 0,
and the region they enclose about the origin is where D < 0, and solutions of the GKE will diverge.
The outer region is where D > 0 and solutions of the GKE are periodic and bounded. Left panel:
collinear waves, with varying p and ε. Case a has (p = 0.05, ε = 0.01) and case b has (p = 0.2, ε = 0.01).
Right panel: fixed wave slopes, with varying p and q. Case c has (p = 0.16, q = 0.05) and case d has
(p = 0.32, q = 0.05). The dashed line shows the waves that are in exact resonance 2ωa = ωb + ωc.

The four cases a–d marked in Figure 2 are studied numerically, and the relevant parameters for
these cases are summarized in Table 1.

Table 1. Degenerate quartets studied numerically for time-evolution.

Wave Numbers Steepness Nature of Solution Detuning

case p q εa εb εc GKE JKE ∆
b,c
a,a (s−1)

a 0.05 0 0.15 0.01 0.01 blow-up periodic 0.002

b 0.2 0 0.15 0.01 0.01 periodic periodic 0.0317

c 0.16 0.05 0.15 0.05 0 blow-up periodic 0.0161

d 0.32 0.05 0.15 0.05 0 periodic periodic 0.0781

7. Comparison between GKE and JKE—Blow Up

We compare the solutions of the GKE with those of the JKE for cases a and c (see Table 1), shown as
triangles in Figure 2. Figure 3 shows the time evolution of case a. In the upper panel we see the solution
of the GKE that tends to infinity as time approaches T∞ = 100.02 s, see (63). The solution becomes
physically meaningless as Cb and Cc become negative, prior to the critical time. On the other hand
the solution of the JKE, on the lower panel of Figure 3 remains bounded, and is periodic with period
T = 3207.19 s. Adopting the notation tn = (2π/ωa)/εn

a for the time scales we see that the blow-up
occurs at O(t2). The corresponding evolution for the JKE looks initially similar, but settles down to
near equipartition of wave action, before eventually exhibiting periodicity on a time scale O(t4).

The time evolution for case c is shown in Figure 4. The upper panel shows blow-up for the
solution of the GKE. The critical time is T∞ = 89.80 s. This non-physical behavior is similar to case a
(above) and occurs on the same time scale O(t2).
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Figure 3. Time evolution of Ca in blue (solid), Cb in yellow (circles) and Cc in red (asterisks) for
(p = 0.05, ε = 0.01). Upper panel: Solution of the GKE. The blow-up time is T∞ = 100.02 s. Lower
panel: Solution of the JKE. The period is T = 3207.19 s. The time t is in seconds.

Case c
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Figure 4. Time evolution of Ca in blue, Cb in yellow and Cc in red for (p = 0.16, q = 0.05). Upper panel:
Solution of the GKE. The blow-up time is T∞ = 89.80 s. Lower panel: Solution of the JKE. The period is
T = 390.19 s. The time t is in seconds.

On the lower panel we have the solution of the JKE. The system also reaches a state where the
energy among the three wavenumbers is similar, at a time of O(t2), and is periodic and bounded with
a period T = 390.19 s which is of order O(t3).
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According to Hasselmann’s kinetic equation the time evolution of the wave action depends only
on exact resonant waves. With the settings of cases c and d it is possible to have triads that are in exact
resonance. The dashed line on the right panel of Figure 2 shows such triads. According to the GKE the
time evolution of exact resonant triads blows up.

8. Comparison between GKE and JKE—Bounded Solutions

Having studied cases with D < 0, it is instructive to compare the solutions of the GKE with those
of the JKE for the cases b and d where both are periodic and bounded. These cases are depicted by
squares (p = 0.2, ε = 0.01) and (p = 0.32, q = 0.05) in Figure 2.

Figure 5 shows the time evolution for case b. The upper panel shows the solution of the GKE
with period T = 192.51 s, see (56), while the lower panel shows the solution of the JKE with a period
of T = 198.07 s. In both cases the period of the solution is O(t2) and the qualitative behavior of both
solutions is rather similar.

In Figure 5 one can see behavior similar to the stochastic Fermi-Pasta-Ulam recurrence
(FPU recurrence), which is usually related to the long time behavior of the deterministic Benjamin-Feir
instability. Details of the FPU recurrence can be found in Stiassnie and Kroszynski [15]. For stochastic
recurrence derived from the Alber equation see Stiassnie, Regev and Agnon [16].

Case b
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Figure 5. Time evolution of Ca in blue (solid), Cb in yellow (circles) and Cc in red (asterisks) for
(p = 0.2, ε = 0.01). Upper panel: Solution of the GKE. The period is T = 192.51 s. Lower panel:
Solution of the JKE. The period is T = 198.07 s. The time t is in seconds.

Case d, depicted in Figure 6, shows considerable similarity between the solutions of the GKE and
solutions of the JKE. The periods are T = 94.22 s for the GKE and T = 80.42 s for JKE, both of O(t2).
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Case d
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Figure 6. Time evolution of Ca in blue (solid), Cb in yellow (circles) and Cc in red (asterisks) for
(p = 0.32, q = 0.05). Upper panel: Solution of the GKE. The period is T = 94.22 s. Lower panel:
Solution of the JKE. The period is T = 80.42 s. The time t is in seconds.

9. Discussion and Concluding Remarks

9.1. Time Scales

In Hasselmann’s kinetic equation it is assumed that the wave field evolves on the slow time scale
O(t4), and only exactly resonant quartets are taken into account. In all of the examples presented here
the degenerated quartet of waves is in near resonance, as indicated by the value of the detuning ∆b,c

a,a
in Table 1. According to the exactly resonant kinetic theory there should be no temporal evolution for
such initial data, which in turn is consistent with the assumption that the wave field can be described
entirely on the slow t4 scale.

As pointed out by Janssen, the solutions of the JKE (15) capture changes that happen on the much
faster time-scale t2. Indeed, all of our simulations show an initial monotonic evolution on this t2 scale.
Nevertheless the period T = 2π/∆, with ∆ given in Table 1, is of O(t4) for case a, O(t3) for case c and
O(t2) for cases b and d.

9.2. Assumption (i), Weak Non-Gaussianity

Both the GKE and the JKE are derived using the ordering assumption, in Equation (7),
that Cj = O(ε2) and κ = o(ε4), where ε is a typical wave steepness. In order to verify this assumption
we compute the following ratio

δ =

max
0≤t≤1000

|κa,a,b,c|

C2
a(0)

, (79)

in all the examples presented here.
The results are summarized in Table 2. Note that εa = 0.15 and that for all cases δ = O(εa).

Hence the computed results support the ordering of the cumulants in terms of ε.
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Table 2. Values of δ = max
0≤t≤1000

|κa,a,b,c(t)|/C2
a (0) for computed solutions to the GKE and JKE in the

four cases a–d.

GKE JKE

case a blow up 0.2516
case b 0.2268 0.2478
case c blow up 0.2097
case d 0.1142 0.1460

9.3. Assumption (ii), Slow Temporal Evolution

The key difference between the JKE and GKE is assumption (ii), that CaCbCc − C2
a(Cb + Cc)/2

varies slowly compared with exp(i∆b,c
a,at). In fact, our numerical simulations with the JKE show that

in cases a and c the period of CaCbCc − C2
a(Cb + Cc)/2 is of the order of O(t4) and O(t3) respectively,

although there are some rapid changes on the scale O(t2).
In cases b and d CaCbCc − C2

a(Cb + Cc)/2 has variations on the O(t2) scale, which is also the time
scale of their period. Note that the solution of the JKE has the same period as the oscillatory term ei∆b,c

a,at,
see formula (71). This contradicts assumption (ii) for the JKE. Nevertheless, the surprising agreement
between the GKE and the JKE in cases b and d suggests that the approximation may be valid, but it is
not clear at this stage how it could be justified.

9.4. Numerical Computations

As mentioned in Section 5, Equation (71) was not used to compute solutions of the JKE because
it is practically simpler to integrate the JKE numerically. However, for case c, (71) was used as
a consistency check.

We used the numerical solution for Ca, Cb and Cc and through relations (27)–(29) obtained z(t) as

z(t) =
Ca − 2Cb − 2Cc

12Ta,a,b,c (ρa − 2ρb − 2ρc)
, (80)

which was used to compute both sides of (71). We subsequently measured the relative error at each
time step, and found it always to be below 2.91× 10−6.

For the GKE the exact formulas (54) and (62) can be used directly to obtain the time evolution
of the system. However, for completeness’ sake, we also considered a direct numerical integration
of (18)–(21) using MATLAB ode15s as before. For the bounded cases b and d we obtained a relative
error between the exact and the numerical solutions below 2.8× 10−8 and 6.1× 10−10 at each time
step from 0 to 1000 s, respectively. For the unbounded cases a and c we measured the difference at
each time step between 0 and t f = T∞ − 1 s, which exhibited a relative error of 1.9× 10−8 for case a
and 2.8× 10−9 for case c.

We also ran numerical simulations with the GKE including the Stokes correction term of Gramstad
and Stiassnie, see [8]. Note that the GKE with the Stokes corrections still blows-up, with a blow-up
time similar to that shown in Figures 3 and 4.

9.5. Conclusions

At this stage blow-up in the GKE seems unavoidable, although it has hitherto not been reported
in studies applying the GKE to wave-fields with many modes. For degenerate quartets and given
initial data, the roots of the polynomial P4 determine the nature of the solutions of the GKE, but there
is no clear physical distinction, in terms of wave slope or wave number, that would enable one to
distinguish bounded cases from those which blow-up. It seems further study is warranted before
a clear successor to Hasselmann’s kinetic equation, which incorporates near-resonant interactions, can
be identified.
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Appendix A

A possible mechanism to circumvent blow-up for solutions to the GKE lies in the phase-mixing
approach developed by Gramstad and Stiassnie [8], and further employed by Gramstad and
Babanin [9]. This essentially consists in finding piece-wise solutions of the GKE.

The time interval is divided into smaller subintervals of the form t0 < t1 < . . . < t f and the
solution is found by solving GKE on every interval with initial values ρj = Cj(ti) and κj,m,n,p(ti) = 0,
effectively re-imposing the quasi-stationarity assumption (iii) at various points in the time evolution.
The resulting piece-wise solution is continuous for Cj and discontinuous for κ.

We use the phase-mixing to overcome blow-up as follows: we divide the time interval of our
simulations into 0 < t1 < t f = 1000 s where t1 is the earliest time that one of the wave action terms
becomes zero. Then we reset the value of κa,a,b,c(t1) to zero and solve the GKE using new initial
conditions Cj(t1). This reinitialization of the cumulant can be justified for vanishing Cj. If Cj = 0 at
time t1, the underlying random variable Bj(t1) must vanish as well, which implies that any higher
order moment involving Bj must also vanish. It then follows from the definition of κ, Equation (7),
that κa,a,b,c(t1) = 0.

In cases a and c only one reinitialization is needed to obtain bounded solutions, as shown in
Figures A1 and A2. Subsequent to the phase-mixing at t1 the solutions are bounded and periodic with
periods T = 502.3 s and T = 536.3 s respectively, both within the time scale O(t3).
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Figure A1. Upper panel: Solution of the GKE showing Ca in blue, Cb in yellow (circles) and Cc in red
(asterisks) for case a (p = 0.05, ε = 0.01), extended by phase-mixing at time t1 = 72.38 s. Lower panel:
Time evolution of κa,a,b,c. The real part of κa,a,b,c is shown in blue and the imaginary part of κa,a,b,c in red
(asterisks). In all cases, solid lines denote the solution before phase-mixing, dashed lines subsequent to
phase mixing. The time t is in seconds.
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Case c
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Figure A2. Upper panel: Solution of the GKE showing Ca in blue, Cb in yellow (circles) and Cc in red
(asterisks) for case c (p = 0.16, q = 0.05), extended by phase-mixing at time t1 = 56.66 s. Lower panel:
Time evolution of κa,a,b,c. The real part of κa,a,b,c is shown in blue and the imaginary part of κa,a,b,c in red
(asterisks). In all cases, solid lines denote the solution before phase-mixing, dashed lines subsequent to
phase mixing. The time t is in seconds.
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