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ABSTRACT
This paper provides a qualitative review of different object
recognition techniques relevant for near-proximity Human-
Robot Interaction. These techniques are divided into three
categories: 2D correspondence, 3D correspondence and non-
vision based methods. For each technique an implementation
is chosen that is representative of the existing technology to
provide a broad review to assist in selecting an appropriate
method for tabletop object recognition manipulation. For each
of these techniques we give their strengths and weaknesses
based on defined criteria. We then discuss and provide recom-
mendations for each of them.
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INTRODUCTION

Context: Near Object Interaction
This paper takes a practical approach to survey the technical
landscape on the problem of small object identification and 6D
object localisation in a cluttered environment – a context often
termed as object recognition for tabletop manipulation. Our
approach is practical: we consider a typical interaction setup
(Fig. 1) where the robot needs to accurately and robustly iden-
tify and localise objects in order to manipulate them, commu-
nicate about them or reason on their geometric properties and
relations. Critically, the object recognition technique needs to
be suitable for actual experimental work, including field exper-
iments: it must be reasonably easy to deploy the system in a
range of dynamic human environments, without having to rely
on expensive or cumbersome physical sensors, or expensive
computation. We also take a short to medium horizon: not
all techniques we evaluate are commonly available yet, but
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all have the potential to be robust implementations in the near
future.

This paper tries to remedy a lack of information on deploy-
ment details in HRI contexts: many traditional assessments do
not report on practical considerations. We need to take into
account many different factors. For example, how robust is
the detection and pose recognition when there are frequent
changes to the environment, such as varying backgrounds or
changing lighting conditions.

Figure 1. A close proximity interaction setup, typically found in human-
robot interaction and cognitive robotics scenarios. Key scene character-
istics are usually constant: relatively small objects (e.g. largest side being
less than 10 cm), presence of occlusions, limited working space, and the
presence of both textured and texture-less objects.

In this paper we compare across three families of techniques.
The first is techniques that rely on 2D images, from which we
track a selection of points. Back projection on these points
allow the estimation of an object’s 6D position. The second
family of methods use 3D templates. 3D objects are compared
against a known point cloud to find the position and orienta-
tion of an object. The final family relies on techniques that
do not use traditional vision techniques, for example RFID
technology.

Surveys on Object Detection
As a cornerstone of many robotic applications, research on
object recognition and localisation has been reviewed in nu-
merous past literature surveys. These surveys typically focus
on one family of techniques or algorithms, typically using syn-
thetic datasets to quantitatively compare the performances of
the state of the art. We summarise hereafter the main findings
for each of the localisation techniques.
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Techniques based on 2D correspondences
When perceptual data consists of camera images, pre-stored
templates of objects are often matched against the incoming
video stream using 2D correspondence techniques. Li et al. [9]
conducted a survey of visual feature detection. In the review
they categorise these techniques based on the fundamental
principle by which they detect features, such as edge, blob
or corner detection. Feature detection methods vary in per-
formance based on the application context, but among them
feature based techniques such as A-KAZE, ORB and SURF
are popular in object recognition and tracking contexts [5].

Techniques based on 3D correspondences
The increased availability and popularity of 3D cameras has
driven the need for 3D object matching techniques. Diez et
al. [6] performed a qualitative review of 3D registration tech-
niques, in which a mapping is made between 3D images or
a 3D templates and an image. They specifically reviewed a
variety of detectors and descriptors for 3D registration. De-
scriptors and detectors attempt to minimise the number of
points required before using such brute force techniques to
perform accurate identification. Note that while these are used
to select salient points, they nearly always end up using itera-
tive closest point (ICP) algorithms, which find corresponding
points between a template and an unknown object. The more
points that are used, the more accurate the detection is, but
using more points has an exponential impact on computational
requirements.

Non vision-based techniques
Many other reviews also focus on technologies not relying on
visual perception. RFID can be used for coarse localisation,
and has been shown to have an accuracy of a few centimetres
[13]. The techniques used in their review are meant for local-
isation within a room, while our focus is on techniques that
work on the scale of under a metre, for example localising
objects on a tabletop. But reduced distance holds potential for
increased accuracy, as objects are nearer to the RFID readers.
Mautz [10] conducted a wide survey of a number of indoor
positioning techniques for a range of applications. Most of the
techniques reviewed are localisation for navigation, and are
not practical for use in a tabletop situation. However, among
the suitable methods identified for the accuracy we require for
tabletop recognition was magnetic technology, which is able
to reach millimetre levels of precision. Hostettler et al. [8]
look at using Anoto positioning technology to localise a robot.
They concluded that using a printed pattern that they are able
to position a robot with high accuracy and with robustness to
lighting and occlusion conditions, the technology was only
restricted by the size and quality of the sheets that could be
printed with the pattern.

Approach and Methodology
We compare a number of existing implementations of a wide
range of techniques for object and pose detection. We chose a
selection of implementations based on availability, ability to
process in real-time and that could be considered representa-
tive of that technology. Each of these methods was compared
against the following criteria:

1. Degrees of Freedom: The degrees of freedom that the
method is able to measure (position and/or orientation).

2. Detection Stability: How stable was the method of detec-
tion. Would an object be lost even if nothing was happening,
or were false positives generated.

3. Rotation Invariance: Is the method able to track the object
when it is rotated.

4. Distance Invariance: How much does the distance of the
object affect the tracking for that method.

5. Environment Interference: Is the method able to cope
with changes to the background and lighting.

6. Occlusion: Can the method detect objects that are being
partially occluded by other objects from the perspective of
the robot.

7. Practical Use: Any additional notes such as extra equip-
ment required that may affect the usability of the system in
an experiment.

Each method is briefly described. A table of results provides a
side by side comparison of each implementation. Finally we
discuss and provide recommendations on each method.

ASSESSMENT OF OBJECT DETECTION METHODS
Here we briefly describe each method we evaluated and their
main weaknesses. Table 1 provides a summary of our results.

3D pose estimation from 2D images
These techniques use a standard 2D cameras. From this, image
features are extracted that can be used to identify the object.
These features can then be used to provide a 3D position by
back projecting the 2D points to 3D reference points, using
algorithms like ‘perspective-n-point’(PnP) [7].

Fiducial markers
Fiducial markers look similar to 2D barcodes that can be
printed out or displayed on a screen for detection. Several
libraries provide 6D tracking of such markers, like the chilitags
library [4].

Figure 2. Object with a fiducial marker, which allows it to be identified
and tracked.

The tags are highly susceptible to occlusion, a small amount
is enough to lose tracking. The markers require a flat surface
to work, on irregularly shaped objects we get around this by
attaching cubes (fig. 2).

Feature tracking
Three feature tracking methods were tested using the imple-
mentations provided by OpenCV1; SURF [2], A-KAZE [1]
and ORB [12]. In each case an image is used as a target for the
feature detection. These methods are classed as blob detection,
1http://opencv.org/
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Method Degrees of Freedom Sta. RInv. DInv. Env. Occ. Practical Use

2D w/ PnP

Fiducial Markers 6D Very High Very High High Very High Very Low Markers on flat surfaces
A-KAZE 6D Moderate Very High Low Low Moderate

ORB 6D Moderate Very High Low Low Moderate
SURF 6D Moderate Moderate Moderate Low Moderate

Template Matching 6D Very High High High Low Moderate
Deep Learning (Faster R-CNN) Planar High Very High Very High Very High High High Training Requirement

Depth Mapping

ORK 6D Very Low High High High Moderate RGB-D Camera
Realsense SDK 6D High High High High Moderate RGB-D Camera

Non-Vision Based

GaussSense Planar w/ Rotation Low Very High Very High Very High Very High Sensor Board
ePawn Planar w/ Rotation Very High Very High Very High Very High Very High Sensor Board

Table 1. Table showing a summary of the different object detection methods and their performance based on the criteria defined in section 1.3. Sta.:
Detection Stability. RInv.: Rotation Invariance. DInv.: Distance Invariance. Env. Environment Interference. Occ.: Occlusion

which look for areas of pixels that are similar to each other but
contrast their surroundings.

All three of these methods struggle with changing back-
grounds, and did not handle varying distances well. Besides,
computing the backprojection to obtain a 6D pose is gener-
ally difficult: as feature trackers select by themselves which
features they choose to match, they are not known in advance.
This makes it difficult to apply a PnP transformation to recom-
pute 6D coordinates.

Template matching
Template matching, while a relatively old technique, was also
considered; we tested using the implementation from OpenCV.
An image is used as the target for template matching. This
target image is then compared pixel by pixel against an image,
and the strongest match is returned as a bounding box.

Multiple target images will be required per object to provide
proper 6D pose estimation. Its greatest weakness is to varying
backgrounds.

Deep Learning
Deep learning relies on the training of a neural network on
a dataset of pictures. Here we used Faster R-CNN [11] to
test Deep Learning. We used a pre-trained network2 that was
trained on the PASCAL VOC 2007 image dataset.

The network was unable to detect iconic versions of objects
it had been trained on (fig. 3), so training would be required
on the specific objects to be used as part of the experimental
setup.

This method only provides bounding boxes of the objects, but
these cannot be compared against a known object (an object
could be small but near the camera or large but far away and
we would be unable to determine the exact dimensions). This
makes it difficult to provide a 6D estimation.

3D pose estimation from 3D sensor data
In recent years RGB-D cameras, which return 3D scene data
in addition to a 2D image, have been widely used in HRI. The
Microsoft Kinect technology or the Intel Realsense technol-
ogy have proven particularly popular. Here we evaluate their
2https://github.com/smallcorgi/Faster-RCNN_TF

Figure 3. Images showing two pictures of cows, on the left a real cow that
is detected by Faster R-CNN trained on the PASCAL VOC 2007 dataset,
on the right an iconic toy cow that is missed.

software in the context of object localisation and pose reading.
The techniques that we look do not require more than a tablet
or laptop to process the data.

Planar segmentation and iterative fitting
We evaluated “Tabletop” from the Object Recognition Kitchen
(ORK)3 implemented using ROS. Tabletop uses planar seg-
mentation to separate the surface of a table and segment ob-
jects that are on top. These objects are then compared to a
database containing meshes of known objects using simple it-
erative fitting (related to ICP[3]). This method performed well
with different object rotations and scales, and was unaffected
by a change in background. However this method generated
too many false positives to be considered a stable option for
close proximity human-robot interaction scenarios.

Intel Realsense tracking
In the Intel Realsense SDK4, Object Tracking (C++) for the
SR300 was used. This method relies on having a 3D mesh of
the object, which it then used for matching. During our inves-
tigation we were unable to determine the exact method used
by the Intel SDK as it has not been published (see discussion
section). Objects were sometimes lost for no apparent reason
and would need to be moved for them to be recognised again.
This technique is able to handle a small amount of occlusion.
3http://wg-perception.github.io/object_recognition_core/index.html
4http://www.intel.co.uk/content/www/uk/en/architecture-and-
technology/realsense-overview.html
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Non-Vision Based Techniques
This section details methods that do not rely on the use of
cameras, but instead the use of additional equipment.

Magnetic Field sensors
Magnetic Field sensors use one or more Hall effect sensors
to read the position and orientation of a magnetic tag. We
evaluated the GaussSense5 solution, a small and affordable
magnet sensor with a high degree of sensitivity. It is able to
measure orientation and measures up to 3-4cm away from the
sensor. It does however only cover a very small area. Many
sensors would be required to cover a larger, the price may then
become a consideration, with a 16x16cm board costing $350.
GaussSense also requires the use of an Arduino to process the
data received. However to distinguish between different tags
requires an NFC tag.

NFC solutions
Several NFC sensors a can be combined into an NFC array,
allowing for detection over a larger area. We evaluated the
ePawn6 mat, an NFC sensor board covering a 32x32cm area.
The ePawn mat, using a 2D matrix of sensors, can locate a tag
with millimetre accuracy. Using two tags in an object allows
the calculation of orientation in the plane of an object. Tags
themselves are 2cm in diameter so would be able to fit on
or inside small objects. Tags only really work well while in
contact with the mat. The prototype we evaluated currently
costs e1400.

DISCUSSION AND RECOMMENDATIONS
Of all the 2D vision based techniques fiducial markers were
probably the most reliable. However its sensitivity to occlu-
sion means it is unsuitable for a study where the objects are
frequently moved around by hand and placed behind other
objects. Another challenge is often the attachment of fiducial
markers onto objects: curved or irregular objects often prove
challenging to attach the markers to. However, fiducial mark-
ers might bring benefits not offered by other technologies: the
ease of displaying fiducial markers on a screen, or printing
out markers, and the high accuracy it can provide, means that
it is suitable for calibrating multiple cameras quickly in an
experimental setup.

The feature tracking methods (A-KAZE, ORB and SURF) all
have issues with dynamic backgrounds, which is an issue when
the camera is not static or when subjects in the interaction are
in view. It should be noted that the objects being used for
this assessment were all relatively simple toys, which lacked
rich texture. These methods may perform better on other,
more textured, objects, but it may still require combining these
methods with other algorithms to get a truly robust detection
system.

Template matching, while relatively old, was among the most
robust of the 2D methods. To provide a 6D pose estimation
however this method will require a lot of templates to compare
against. Therefore this method will not scale well with mul-
tiple objects. It may be better to use this method to increase

5http://gausstoys.com/
6http://epawn.fr/

the stability of other techniques where it could be used for
foreground selection.

The Faster-RCNN that we tested can only provide a bounding
box for our objects, this means we cannot get a full 6D pose
estimation with this technique alone. However its reliability
means that it could be very useful as a foreground selection
technique to be used in a pipeline with other methods. Recent
research looks into using a CNN that is able to handle 3D pose
estimation [14], but it is unlikely that a training set for specific
experimental requirements exist as these networks are only
just emerging. The process of generating the required training
data and then training the network is a process that potentially
requires months of work before being usable in an experiment.

The implementation of tabletop in ORK provided too many
false positives to be feasible for use in our future studies.
However we only tried one camera, the Intel SR300. Other
hardware or updates to software drivers may increase perfor-
mance. By making use of the planar segmentation part of
the process it would be possible to subtract the background
for use in other detection methods, causing this to no longer
be an issue for those methods which struggle with varying
backgrounds.

The Intel Realsense SDK performed better with a lot higher
stability compared to ORK. However the issue where it would
sometimes lose an object while not common is still enough
to cause issues in a study. This however is probably the best
method available if it is a requirement to track objects while
they are being moved. We were unable to find the exact tech-
nique that Intel Realsense used, as it has not been published,
but due to its performance it was still included in this review.
It appears to identify contours in the object before we assume
using ICP to match these points to the points of objects stored
in the database.

None of the vision based techniques were fully capable of
performing the required level of object recognition in a prac-
tical tabletop setting. However a pipeline of techniques has
the potential to overcome the weaknesses that are shown with
just a single method. For instance the 2D techniques could
be used to provide a bounding box and classification of the
object, allowing a 3D technique to provide precision depth
and pose information.

The GaussSense magnetic sensor performs well when tracking
a single object. However an NFC module is required to be
able to distinguish between multiple objects. For this reason it
would be recommended to just use an NFC sensor when using
multiple objects.

The ePawn NFC mat is probably the best method reviewed
here for use in object recognition with tabletop manipulation.
Its downside is that it cannot provide full 6D pose estimation,
and the need for additional sensor equipment in the form of
a RFID matrix. It is however suitable for many cases where
objects need to be tracked, and potential interactions can be
shaped around this limitation. NFC also has an advantage of
being a known and reliable technique, as it used widely in
contactless technology, such as debit cards and key fobs.
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