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Nano Enhanced Surface Modification of Titanium Dental Implants for Improving 

Osseointegration and Biocompatibility 

Ranj Nadhim Jalal Salaie 

Abstract 

Dental implants are prone to bacterial colonisation and infection which subsequently 

cause dental implant failure. Coating the dental implant with an antibacterial agent and 

a biocompatible agent can inhibit the bacterial colonisation and infection without 

disturbing the biocompatibility of the implant. This study aimed to coat medical grade 

titanium alloy implants with silver and hydroxyapatite (HA) nanoparticles. The reason 

for using silver was to introduce antibacterial activity to the coated dental implants; 

and then using HA to preserve biocompatibility and manage the silver exposure of the 

primary human osteoblast cells. Medical grade titanium alloy discs measuring 15 mm 

in diameter were polished and silver plated to produce a uniform layer of silver 

nanoparticles on the surface. The electroplating method was followed by nano or micro 

HA deposition and curing at 500 °C to produce an HA coating and thereby achieving 

nano silver plus nano HA (Ag+nHA ), or nano silver plus micro HA (Ag+mHA), coatings 

on titanium alloy. The coating quality was assessed by electron microscopy. The 

bonding strength of the coating was investigated by the pull-off test and chemical 

stability in the cell culture media was studied by conducting dialysis and dissolution 

experiments. A series of experiments were conducted to investigate the 

biocompatibility of the coatings with primary human osteoblast cells over 7 days, cell 

health was assessed using biochemistry and microscopy. A differentiation experiment 

was conducted for 21 days to investigate the osteoblast cell mineralisation on the 

coatings and gene expression profile of the cells. Results showed that the specimens 

were successfully coated with nano silver and HA particles. The pull-off test showed 
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that the coatings had reasonable bonding strength to the substrate. Dialysis and 

dissolution experiments showed that the coatings were stable in the cell culture media 

despite some silver release from the coatings. The biocompatibility experiments 

showed that there was a consistent amount of silver release (1-2 mg L-1) from the 

silver containing specimens. The human primary osteoblast cells were healthier on 

Ag+nHA compared to Ag and Ag+mHA over 7 days. The differentiation experiment 

showed that there was a constant silver supply over 21 days from all silver containing 

coatings. Cell viability over 21 days was significantly higher in Ag+nHA compared to 

Ag and Ag+mHA (p < 0.05). Moreover, the cells were mineralised and produced Ca2+ 

and P in all the treatments. In conclusion, Ag+nHA was more biocompatible compared 

to Ag and Ag+mHA and can have a potential for clinical use. 
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1.1 Introduction  

 Dental implants are devices that are surgically inserted into the jawbone to enable the 

attachment of supragingival prosthesis such as single crowns, implant supported 

bridges, implant supported dentures (over dentures); and also maxillofacial 

reconstructions (Misch 2007). Dental implants are used as a replacement for missing 

teeth that have been lost due to dental caries, trauma, periodontal disease and 

developmental anomalies (Sykaras et al., 2000). The phenomenon of integration 

between the dental implant and the surrounding jaw bone is called osseointegration, 

which is defined as a direct structural and functional connection between ordered living 

bone and the surface of a load-carrying implant (Branemark et al., 2001). 

When the implant is installed, it must be stable inside the jawbone (primary 

stability); this consequently results in the formation of new bone around the implant 

(osseointegration). On the other hand, failure of the implant to obtain primary stability 

during insertion leads to the formation of fibrous encapsulation (fibrointegration) which 

results in dental implant failure (Lioubavina-Hack et al., 2006). Primary stability is 

achieved by the means of friction between the implant surface and the surrounding 

jawbone. However, the stability of the implant in the tissue may decrease in the first 

weeks as a result of compression necrosis in the neighbouring bone. The primary 

stability decreases with time at the benefit of secondary stability, which is attributed to 

the physiological bonding at the bone-implant interface. This period between primary 

and secondary stability can be the most vulnerable to the dental implant failure 

(Lavenus et al., 2010).  
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1.2 Biocompatibility of dental implant materials 

Titanium exhibits good biocompatibility, corrosion resistance and tensile strength, 

making it the most commonly used biomaterial for constructing dental implants 

(Albrektsson et al., 1981; McCracken, 1999; Ehrenfest et al., 2010; Özcan and 

Hämmerle, 2012). There are four grades of commercially pure titanium and two 

titanium alloys (Ti-6Al4V, Ti-6Al4VELI) that are used for biomedical applications. As a 

result of the excellent combination of biocompatibility, corrosion resistance and 

mechanical properties, Ti06Al4V which is medical grade titanium alloy, is the most 

commonly used for dental implant construction (Kuroda et al., 1998). Adding 

aluminium and vanadium in small quantities to Ti metal results in increased strength 

compared to the commercially pure titanium alone (Van Noort, 1987). Additionally, 

another advantage of titanium is the formation of oxide layer which spontaneously 

forms in the air and/or body fluids. Titanium comes in contact with the body via cells 

which interact with this oxide film (TiO2); it will also make the surface suitable for cell 

adhesion and makes the titanium highly corrosive resistant and less toxic (Elias, 2011).  

When a biomaterial is placed in the body, from the perspective of clinical safety, 

it should not cause any adverse effects on the surrounding tissues. A precise definition 

of biocompatibility is debated, but from the view point of immunity, biocompatibility is 

the ability of the material to stay in the same situation without influencing the host 

response (Williams, 2008). However, broadly there are three types of biomaterials: 

biotolerant materials such as gold and stainless steel, they are not rejected by the 

body and the tissue responds by the formation of fibrous capsule around them; bioinert 

materials such as titanium and titanium alloys that promote bone apposition from their 

surface resulting in contact osseointegration; and bioactive materials like 

hydroxyapatite (HA) and  tricalcium phosphate which induce ion exchange with the 
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surrounding tissue causing the formation of a chemical bond along the interface 

(Sykaras et al., 2000).  

 

1.3 Complications associated with dental implants 

Despite their wide use for replacing missing teeth, dental implants still face problems 

that limit their success in the long term for a patient. Dental implants have advantages 

over traditional dentures including durability, comfort and convenience for the patient. 

However, occasionally implants fail, and while the failure rates are modest (7%) (Chee 

and Jivraj, 2007), the prospect of further surgery is a concern for patients. Thus 

achieving success at the first attempt of implantation is preferable. The problems 

associated with dental implants generally arise from three main causes: Infection 

(Peri-implantitis); mechanical overload; and impaired healing (Hadi et al., 2011; Sakka 

and Coulthard, 2011). Peri-implantitis can be defined as an inflammatory process 

affecting the soft and hard tissues surrounding an osseointegrated implant resulting in 

rapid loss of supporting bone and associated with bleeding and suppuration (Lindhe 

and Meyle, 2008), while, peri-implant mucositis can be defined as a reversible 

inflammatory change of the peri-implant soft tissue without bone loss (Renvert et al., 

2008). Dental implant surfaces are highly susceptible to infection because of biofilm 

formation on the dental implant surface and an impaired host immune response due 

to the surgical trauma that damages nearby blood vessels (Zhao et al., 2009). The 

metabolic acid produced by the microbes in the somewhat anaerobic conditions of the 

wound, and the inflammatory response of the patient, can also prevent 

osseointegration (Zhao et al., 2009). Subsequently, the implant becomes loose, and/or 

for infection control, needs to be removed. 
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Bacteria adhere to the tooth and implant surfaces by the formation of a complex 

biofilm. The biofilm is a microbial-derived sessile community characterised by 

microbes that are irreversibly attached to a substratum and/or interface to each other, 

embedded in a matrix of extracellular polymeric substances produced by microbes 

(Subramani et al., 2009). The first stage of biofilm formation is the formation of a 

portentous layer on the surface of the implant (Gibbons & Houte, 1973).The portentous 

layer can act as a suitable base for subsequent biofilm formation. Bacterial cells 

embedded in the biofilm become more resistant to the host defence mechanisms as 

well as to antibiotics, compared to free-floating cells ( Prosser et al., 1987; Costerton 

et al., 1999). Consequently, in combination with poor blood supply to the tissues 

around the implant after surgery, peri-implantitis cannot be easily treated or prevented 

using systemic antibiotics. Alternative approaches include coating the dental implant 

surface with an antibacterial agent to prevent biofilm formation and subsequent 

bacterial infection (Zhao et al., 2009). However, biofilm formation is an essential step 

in osseointegration, and any anti-microbial coating should ideally be selective for 

pathogenic microbes. 

Bacteria are widespread in oral cavity; saliva contains 108 bacteria /ml along 

with proteins and glycoproteins that selectively bind to the surfaces of teeth, dental 

implant, restorations and prosthetic appliances (Subramani et al., 2009). Bacteria can 

adhere to the supra gingival part of the dental implant (i.e., the abutment and crown) 

to cause inflammation which consequently becomes peri-implantitis, and can 

ultimately lead to bone loss (Quirynen et al., 2002). There are microorganisms which 

are harmless and normally found in the oral flora. These include some lactobacillus 

species that help in digestion (Walter et al., 2008). However, others that are most 

commonly associated with peri-implantitis are the same as those that cause chronic 
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periodontitis some of them include Prevotella intermedia, Porphyromonas gingivalis, 

Actinobacillus actinomycetemcomitans, Bacterioides forsythus, Treponema denticola, 

Prevotella nigrescens, Peptostreptococcus micros, Fusobacterium nucleatum  

Staphylococcus spp. streptococcus spp. and Candida spp., early colonisers include 

Staphylococcus spp. and Streptococcus spp.  (Leonhardt et al., 1999; Norowski and 

Bumgardner, 2009; Mahesh et al., 2011, Besinis et al., 2017). 

 

1.4 Dental implant surface modifications for improving osseointegration 

As the implant surface is the first component to interact with the bone, several 

modifications have been done on the implant surface attempting to improve 

biocompatibility and osteoconductivity in order to enhance bone formation and 

subsequent biological fixation in the jaw bone (Coelho et al., 2009; Smeets et al., 2016). 

Surface treatments play a vital role in the success of dental implants. Modifying the 

dental implant surface enables the surface to enhance adhesion and differentiation of 

osteoblasts during the initial phase of osseointegration (Junker et a.,l 2009; Tomsia et 

al., 2011; Rupp et al., 2018). Dental implant surface topography can be classified into 

macro-, micro- and nanoscale topographies. The macro topography of an implant is 

based on its visible geometry (e.g; threads and tapered design). Combination of 

appropriate implant surface topography and adequate surgical technique while implant 

hole preparation can be considered as fundamental bases of clinical success of dental 

implants (Coelho et al., 2015). Recently, researchers have focused on micro- and 

nano- topographies (Besinis et al., 2015; Smeets et al., 2016).  

Albrektsson was the first to claim that the surface topography is important for 

osseointegration (Albrektsson et al., 1981). This idea attracted the attention of many 
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researchers (Le Guehennec et al., 2007; Tomsia et al., 2011). It is now accepted  that 

osseointegration and the primary stability of the implant can be enhanced by changing 

the surface topography (Albrektsson and Wennerberg, 2004). In dentistry, surface 

roughness has been classified into several categories: smooth surfaces have a value 

of less than 0.5 µm (height of the peaks), a minimally rough surface is 0.5 – 1 µm, 

moderately rough surface is 1-2 µm and rough surface is higher than 2 µm 

(Albrektsson and Wennerberg, 2004; Parekh et al., 2012). Moderately roughened 

surfaces are most commonly used in dental implants (Albrektsson & Wennerberg, 

2004). Studies have shown that the bone to implant contact can be increased by 

increasing implant surface roughness (Fischer et al., 2012). Researchers have 

demonstrated that obtaining topographic surface modification of dental implant 

surface (roughness value of 0.5 to 2 µm) can increase the bone to implant contact and 

also biomechanical interaction of the interface between them (Coelho et al., 2009). 

The response of cells to surface topography depends both on the cell type and the 

composition of the substrate. For example, fibroblast and epithelial cells adhere 

strongly to smooth surfaces. In contrast, osteoblasts proliferate better and collagen 

formation is greater on moderately rough surfaces (Wennerberg, 1998;Bachle and 

Kohal, 2004). Furthermore, increased surface roughness also induces fibrin clot 

stabilisation, which promotes direct growth of bone forming cells (Mendonca et al., 

2008). However, bacterial adhesion and biofilm formation is also easier to establish 

on rough surfaces compared to smooth ones (Subramani et al., 2009). Additionally, 

excessive roughness can be detrimental to the implant strength and also complicates 

implant removal when necessary (Tomsia et al., 2011). 

Dental implants had machined surfaces until early nineties; involving turning, 

milling, and/or polishing during the manufacturing process (Buser et al., 2012; 
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Esposito et al., 2014). Machining procedures which were considered as the gold 

standard for implant surface design, results in minimally rough surfaces of 0.4 – 0.8 

µm, which requires several months for osseointegration (Coelho et al., 2009). 

Machined surfaces allow bone cells to grow and mineralise to produce new bone; with 

typical healing times of 3 to 6 months depending on local factors such as bone quantity 

and quality (Abraham, 2014).  Researchers have tried various methods for surface 

modification; including acid etching, sandblasting, grit-blasting, anodizing, 

nanoparticles deposition, etc.  Some of these methods can enhance osseointegration 

by producing a rough surface that increases the surface area for bone contact and 

firm mechanical interlock, consequently improved implant stability (Romanos et al., 

2002; Ehrenfest et al., 2010). Besides increasing surface roughness, surface 

treatment also results in a higher friction coefficient and insertion torque than untreated 

implants, thus improving primary stability (Dos Santos et al., 2011).  

Common methods that are used for modifying the dental implant surface are: 

machining, acid etching, plasma spraying, grid blasting and anodization (Le 

Guehennec et al., 2007). Acid etching can be used for creating a clean and uniform 

surface finish which is free of contaminations (Liu et al., 2004). Acid etching treatment 

produces a surface with micro cavities with having defined edges. Usually a strong 

acid such as: hydrofluoric (HF), nitric (HNO3), and sulphuric (H2SO4), or a combination 

of these acids is commonly used to acid etch dental implant surfaces (Jemat et al., 

2015). Acid etching increases the metal surface roughness resulting in homogenous 

roughness (Guo et al., 2012). Moreover, etching the dental implant surface with 

various concentrations of H2SO4 significantly increased the surface roughness (Iwaya 

et al., 2008). This type of surface induces osteogenic cell retention and migration 

toward the implant surface (Cho and Park, 2003; Braceras et al., 2009; Al-Radha et 
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al., 2012). However, acid etching procedure can cause hydrogen embrittlement of the 

titanium leading to the creation of micro cracks on the surface of implant that may lead 

to enhanced corrosion or fatigue of the metal. It also makes the titanium brittle and 

more susceptible to fracture (Yokoyama et al., 2002).  

Titanium Plasma Spraying (TPS) is another method that is used for roughening 

dental implant surfaces. In this method titanium powders are injected into a plasma 

torch at high temperature forming a film about 30 µm thick (Le Guéhennec et al., 2007). 

Surface roughness value obtained by TPS is around 1.82 µm (Sykaras et al., 2000). 

The surface area of dental implants after TPS is approximately six times the initial 

surface area (Schroeder et al., 1981); depending on implant geometry, initial powder 

size, plasma temperature, and distance between the nozzle output and target (Coelho 

et al., 2009). Another frequently used method is grit- blasting in which hard ceramic 

particles are used to roughen the surface, and the degree of roughness is dependent 

on the size of particles used (Le Guehennec et al., 2007). Various particles are used 

for blasting the titanium surface such as aluminum dioxide, titanium dioxide and 

calcium phosphate (Sykaras et al., 2000). The grit-blasting technique significantly 

increases the surface roughness. Bacchelli and co-workers found that the surface 

roughness value after grit-blasting the surface of titanium with Al2O3 grit (250–500 µm) 

was 1.74 ± 0.12 µm (Bacchelli et al., 2009). Moreover, blasting dental implant surfaces 

with titanium oxide having 25 µm as an average particle size produces, 1-2 µm implant 

surface roughness (Le Guehennec et al., 2007). The disadvantage of this technique 

is the possibility of particles’ release or dislodgment into the surrounding tissue after 

implant insertion that can have a detrimental effect on osseointegration. Besides 

improving and enhancing the osseointegration process, grit-blasting can also 

accelerate bacterial adhesion on the implant surface. Al-Radha et al. (2012) found that 
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bacterial adhesion on implant surfaces blasted with ZrO2 particles is better compared 

to the control. A combination of grit-blasting followed by acid etching is also beneficial 

since it results in increasing total surface area of the implant, compared to machined 

surfaces. Additionally, any remnant particles that have been left after blasting 

procedure which are toxic to the cells can be removed by acid etching. Roughness 

values of 0.5 to 2 µm can be obtained with this dual surface treatment (Coelho et al., 

2009). Sandblast, Large-Grit, and Acid Etching (SLA) uses a strong acid to induce an 

erosion on surfaces that have been blasted with large-grit sand particles resulting in a 

formation of pits and cavities which increases the surface roughness hence improving 

tissue integration and cell proliferation (Zinger et al., 2004; Kim et al., 2008; Hung et 

al., 2013). 

Anodisation is another method that thickens the oxide layer to 1000 nm on 

titanium. Mechanical interlocking with the bone and biochemical bonding are improved 

due to the oxide layer on anodised titanium surfaces as well as higher clinical success 

as compared to machined implant surface of similar shapes (Parekh et al., 2012). 

However, this superior clinical performance is due to the change in chemical 

composition not the surface roughness, since, minimal rough surface is created after 

anodization, so comparisons are often made with minimally rough surface implants 

rather than moderately roughened implants. It can also change surface topography 

and physical properties (Wennerberg & Albrektsson, 2009).  

All of the surface treatments (modifications) above have several advantages 

but also possible drawbacks. The surface roughness is not biologically active in 

attracting bone cells, also, the treatments may not provide any antimicrobial properties 

to the surface, beyond the inherent chemistry of the material.  
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Coating the dental implant surface with osteoconductive and/or antibacterial 

agents might therefore be desirable. A wide range of biomaterials have been used as 

dental implant coatings, such as bioactive ceramics like HA. HAs have been used as 

bioactive ceramics that can adsorb more proteins, integrins as well as osteoblast 

precursor cells than commercially pure titanium (Woodard et al., 2007; Hasegawa et al., 

2016; smeets et al., 2016). HA itself has no inherent antibacterial properties (Kilpadi 

et al., 2001). Antimicrobials include inorganic agents like silver as a coating over the 

HA, as well as antibiotic incorporated HA. For the latter, HA has been loaded with 

antibiotics (amoxicillin or vancomycin), (Alt et al., 2006; Harris et al., 2006). But there 

are still technical limitations to this approach, antibiotic agents can be damaged by the 

high temperatures needed for the HA coating formation. Alternatively, significant 

amounts of antibiotic agent can be absorbed onto the surface of calcium phosphate, 

which then causes burst release of antibiotics (80-90% release) within the first 60 

minutes of implant placement (Radin et al., 1997). Coatings loaded with organic 

disinfectants such as chlorhexidine have also been tried; and shows antibacterial 

activity especially with Staphylococcus aureus (Campbell et al., 2000). However, 

chlorhexidine can be toxic to the osteoblast cells through the same toxicity mechanism 

to the bacterial cells (Harris et al., 2006; Zhao et al., 2009), and the disinfectant effect 

is very transient. 

 

1.5 Nano-enhanced surface modifications of the dental implant   

Recently, nanotechnology has opened a new scope of research in enhanced 

biomaterials. Nanotechnology can be defined as ‘using materials and structures with 

nanoscale dimensions, usually in the range of 1-100 nm’ (Handy and Shaw, 2007). 
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Nanoparticles are now playing a vital role in the field of biology and medicine as a 

result of their small size and targeted effects, as well as interacting with biomolecules 

(Navalakhe and Nandedkar, 2007). Products containing nanotechnology can be 

broadly classified into three major groups: either the material is made mainly of 

nanoparticles, or a commercial product is give a nano coating on the surface, or during 

manufacture nanoparticles may be incorporated into a traditional material such as a 

polymer (Handy and Shaw, 2007). The most common type of nanomaterials that are 

used in dental implants and other biomaterials are in the form of coatings (Tomsia et 

al., 2012). 

Positive results have been achieved with nanophase materials (ceramics and metals) 

regarding osteoblast cell adhesion, proliferation and calcium deposition as well as 

improved bioactivity and biocompatibility as compared to micro-meter scale grains. In 

addition, they possess better antibacterial activity than micro-meter sized grains 

(Engel et al., 2008; Hajipour et al., 2012). Combination of osteoconductive and 

antibacterial nanoparticle coating on the titanium dental implant might be an effective 

solution for the current problems of dental implants. For the antibacterial aspect, 

several nanomaterials have been used (Besinis et al., 2015). Samuel and 

Guggenbichler. (2004) incorporated silver nanoparticles in polymers like polyurethane 

and silicone used for catheters and found that a silver nano-impregnated catheter can 

exhibit excellent antimicrobial activity. Moreover, it has been found that nano Ag-Cu 

doping can potentially increase the corrosion resistance of dental amalgams (Chung 

et al., 2008). Another application of nanoparticles (HA) is to repair enamel mineral loss, 

since the building block of enamel is similar to 20 nm HA, and so the artificial material 

(nano HA) can adsorb to the tooth structure thereby suppressing secondary caries 

formation and preserving the hardness of the enamel (Li et al., 2008). Dental 



13 
 

composite incorporated quaternary ammonium polyethylenimine (PEI) nanoparticles 

have improved antibacterial activity on account of preventing biofilm formation (Beyth 

et al., 2006). Nanoparticles have superior antibacterial effects as compared to classic 

organic antibacterial agents (Hajipour et al., 2012). This is due the ability of 

nanoparticles to coat the surface giving a persistent antibacterial property. 

1.6 Antibacterial activity and biocompatibiltiy of silver nanoparticles 

Silver nanoparticles are known to have a strong antibacterial activity against a wide 

range of microorganisms (Morones et al., 2005; Besinis et al., 2015). However, the 

possible cytotoxic effects of silver nanoparticles can limit their use in biomedical fields 

(Ahamed et al., 2010). The exact mechanism of cellular and bacterial toxicity of silver 

nanoparticles is still being investigated, possibilities include the release of  free metal 

ions from the surface of the particle (dissolution), or oxidative stress by generation of 

reactive oxygen species (ROS) from the surface of particles (Besinis, et al., 2014; 

Reidy et al., 2013; Greulich et al., 2012). However, it is still unclear whether the toxic 

effect of silver nanoparticles is exerted by the particles themselves or by dissolution of 

silver ions (Albers et al., 2013). The mechanisms of free metal ion toxicity are well 

known for silver. Silver ions increase cellular permeability that can cause leakage of 

cellular contents, including the subsequent disruption of DNA replication. It also 

inhibits the Na+K+-ATPase to cause osmotic disturbances that lead to this leak 

(Marambio-Jones and Hoek, 2010). Theoretically, eukaryote cells might take up intact 

silver nanoparticles (e.g., by endocytosis) into  sub-cellular locations where there could 

be a localised release of a high concentration of silver ions which can bind to 

biomolecules and interacting with membrane-bound receptors (Reidy et al., 2013). 

Silver ions have a high affinity for thiol (-SH) groups that are available in proteins, 
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amino acids, etc., and conformational change due to silver binding can inactivate 

proteins. The latter may also be involved in bacterial inactivation (Liau et al., 1997). 

Indeed, the presence of some biomolecules can enhance silver dissolution in the 

biological medium (Gondikas et al., 2012; Loza et al., 2014). This subsequently results 

in increasing total silver concentration in the cell culture medium that might have toxic 

effects to the cell monolayer, depending on whether or not the ligand bound silver 

becomes bioavailable to the cells. Bioavailability is the proportion of a drug or other 

substance (metal) which enters the circulation (or cells) when introduced into the body 

and so is able to have an active effect. Silver ions can precipitate as an insoluble salt 

(silver chloride) in the presence of chloride in the culture media hence decreasing the 

toxicity (Greulich et al., 2011). 

Researchers have tried to solve the problem of infection by coating the dental 

implant surface with silver nanoparticles. Metal nanoparticles are frequently used in 

dentistry as an attempt to tackle bacterial infection (Melo et al., 2013). The interest is 

to replace the traditional micron-sized antimicrobial metal powders with their 

nanoscale counterparts (Besinis et al., 2015). This approach attempts to prevent 

bacterial biofilm formation and subsequent colonisation. For example, Juan and co-

workers found that a silver nanoparticle modified titanium surface had remarkable 

antibacterial and anti-adhesive activities against Staphylococcus aureus and 

Escherichia coli. (Juan et al., 2010). Moreover, Besinis et al. (2014) found that silver 

nanoparticles were more antibacterial to S. mutans than the traditional chlorhexidine 

disinfectant used in dentistry. 

Despite having positive antibacterial activity, the possibility of adverse effects 

of silver nanoparticles on human and other mammalian cells due to prolonged 

exposure at various concentration levels are still being elucidated (Asharani et al., 
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2008). Table 1.1 shows examples of the toxicity of silver nanoparticles on different 

mammalian cells.  
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Table 1.1 Examples of the toxic effect of silver nanoparticle on different mammalian cells  

Target cells 
Particle type and size 

Exposure 

concentration/time 
Key aspects Study 

Human osteoblast 
cells 

Silver nanoparticles used 

were in the form of a 

nanosilver colloidal 

dispersion with a nominal 

silver content of 10 wt.% 

in a stabilizing matrix. 

 

24h, 7days and 21 

days /  

10 mg g-1 

No silver nanoparticle-induced 

cytotoxicity against OB was 

detected after 24 h and 7 days. 

While, after 21 days a significant 

impairment of cell viability was 

observed 

(Pauksch et al., 

2014) 

Primary osteoblast 

cells 

Average size of silver 

nanoparticles was 50 

nm. Information about 

the type of particles are 

not given   

194.3, 

146.1 mg L-1 

for 72 hours 

Mean half maximal inhibitory 

concentration of silver 

nanoparticles was 194.3 mg L-1 

for cell viability and 146.1 mg L-1 

for cell differentiation. The molar 

concentration (mmol) of free Ag+ 

within the culture medium was 

0.063 for osteoblast viability and 

0.059 for osteoblast 

differentiation. 

(Albers et al., 

2013) 
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Human fibroblast 

cells 

Starch-coated silver 

nanoparticles were used. 

Average size of the 

particles were not given. 

25 and 50 mg L-1 for 

24, 48 and 72 hours 

For 25 mg L-1, the concentration 

of intracellular adenosine 

triphosphate (ATP) content of the 

cells was not different statistically 

within the control after day 1 and 

day 2. However, statistically 

significant difference was 

observed after 3 days. While for 

50mg L-1, ATP content started to 

decrease significantly from the 

second day.   

(Asharani et al., 

2009) 

Human hepatoma 

cells 

Size of silver 

nanoparticles were 7-10 

nm. They were stabilized 

with polyethylenimine.  

Higher than 1 mg L-1 

For 24 hours 

Up to 0.5 mg L-1 of silver 

nanoparticles causes increased 

cell viability for 120% as well as 

cell proliferation in relative to the 

unexposed control. however, 

exposure of more than 1.0 mg L-1 

of silver nanoaparticles exhibited 

significant cytotoxicity 

(Kawata et al., 

2009) 
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Primary liver cells 

(mouse) 

Spherical silver 
nanoparticles were used 
and the size range was 
7-20 nm. 

225 mg l-1 , 900 mg 

L-1 respectively for 24 

hours 

Quantification of AO/EB stained 

primary fibroblasts of unexposed 

cells was 98±1% while the 

number of cells which were 

exposure to 225 mg L-1 SNP, was  

71± 3% and 32 ± 2% cells were 

survived after exposure to 900 mg 

L-1.  

 

(Arora et al., 

2009) 

Human hepatoma 

cells  

Citrate capped silver 
nanoparticles (size not 
defined) 

1 and 10  
mg L-1  for 24 hours  

MTT assay showed that the cell 

viability after exposure to 1 mg L-1 

silver nanoparticles was 80% of 

unexposed control, while it was 

70% for 10 mg L-1. 

(Vrcek et al., 

2016) 
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The results in the previous table indicate that silver nanoparticles can be toxic 

to different cells at different concentrations. It is been shown that silver nanoparticles 

can be toxic to osteoblast cells at a certain dose and the toxic dose for inhibiting cell 

differentiation is smaller than that for cell viability. Additionally, with the increase of 

silver concentration and exposure time, fibroblast cell damage increases. The results 

also conclude that the toxic effects of silver nanoparticles increase with exposure time.  

The challenge when using silver nanoparticles in medicine and dentistry is to 

use silver nanoparticles at a condition which can kill the bacteria without having toxic 

effects to the cells. However, several experiments have been conducted proving that 

the minimum lethal dose of silver nanoparticles to bacterial and human cells is the 

same. For example, Greulich et al. (2012) argued that the lethal dose of silver 

nanoparticles to Staphylococcus aureus and human mesenchymal cells are at the 

same concentration (50 mg L-1). However,  Shrivastava et al. (2007) demonstrated 

that 25 mg L-1 was enough to kill gram negative bacteria. 

It could be challenging to define the cytotoxic concentration of silver 

nanoparticles (or silver ion). Since the toxic effect of silver nanoparticles can be 

different in different cell lines, for example, Hela cells (epithelial adenocarcinoma cell 

line of the cervix) were more sensitive than HacaT Cells (immortal; non-cancerous 

human keratinocyte cell line) when exposed to silver nanoparticles for 72 hours at the 

same condition (Mukherjee et al., 2012). 

Moreover, the size of nanoparticles potentially affects their toxicity. For example, 

smaller particle sizes of silver are sometimes more toxic to the bacteria and cells due 

to the large number of atoms present on the surface that can interact with bacteria or 

induce higher amount of silver ion release (Marambio-Jones & Hoek, 2010). In cells, 

exposure to a 10 nm primary diameter size of silver nanoparticles for 24, 48 and 72 
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hours had greater apoptotic effect than 50 and 100 nm sizes (Kim et al., 2012). This 

is also the case for bacterial cells, as it was found that the 10 nm silver nanoparticles 

were the most effective against bacteria compared to larger sizes (Varren et al., 2007). 

Another factor is particle shape; the strongest antibacterial activities have been 

achieved with particles containing more facets such as triangular particles. This could 

be due to the larger atom densities on the facet that lead to the availability of more 

atoms for interaction (Morones et al., 2005; Pal et al., 2007; Marambio-Jones & Hoek, 

2010).  

Besides achieving promising antibacterial activity, coating nanoparticles on the 

surface of the titanium dental implant can potentially increase bone to implant 

integration since tissue responses and extracellular matrix formation are occurring at 

nanoscale level. Thereby, coating implants with nanoparticles of bioactive ceramics 

such as HA can promote cell adhesion and integration with the surrounding bone 

tissue (Tomsia et al., 2011). In dental implants, the non-physiological surface (TIO2) is 

exposed to a physiological environment. So a physiological transition can be 

established through generating a coating that mimics the composition of the living 

bone (Jonge et al., 2008). The chemical composition of HA is biocompatible and safe 

to the surrounding tissues, it is mainly composed of calcium phosphate which is 

bioactive material and resembles the mineral constituents of human bone. So by virtue 

of its chemical composition, traditional HA coated titanium can more rapidly 

incorporate with the living bone as compared to the uncoated titanium (Piattelli et al., 

1993). HA coating also acts as a barrier to reduce the release of metallic ions that can 

be toxic to the surrounding tissue, so HA coated Ti6Al4V is more resistant to corrosion 

than uncoated Ti6Al4V (Kwok et al., 2009). It could be argued so far that HA 

nanoparticles coating on silver nanoparticles can potentially reduce Ag induced toxicity, 
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as it was found that coating silver nanoparticles with other materials (e.g., carbon) that 

prevent direct contact between Ag and the cells, can reduce their cytotoxic effects 

(Samberg et al., 2010). Moreover, since HA is bioactive, ion-exchange between HA 

coated titanium and the surrounding body fluid leads to the formation of a carbonate 

apatite layer on the implant that is chemically equivalent to the mineral phase in bone. 

This inevitably results in enhanced healing process (De Jonge et al., 2008). Better 

long term clinical successes have been achieved using HA coated titanium dental 

implant as compared to uncoated titanium dental implant which is the result of superior 

initial rate of osseointegration (Le Guehennec et al., 2007).  HA has more ability to 

absorb cell attachment proteins, purified integrins and the whole osteoblast precursor 

cells than titanium. Thus, HA coated implants can have improved protein and cell 

adhesion as well as enhanced binding capacity as compared to uncoated titanium 

(Kilpadi et al., 2001). Shi and co-workers investigated the size-dependent effect of 

nanoparticles of HA and they found that nanoparticles with diameter of 20 nm was 

most effective in promoting osteoblast cell growth and preventing apoptosis (Shi et al., 

2009).  

There are two fundamental approaches to the synthesis of Ag-HA composites 

on medical grade Ti alloy. The first involves growing a layer of biocompatible material 

on the surface of the alloy, for example micron-scale HA (Hung et al., 2013), or a 

material with topography that promotes osteoblast adhesion such as TiO2 nanotubes 

(Lee et al., 2015). Then, this biocompatible layer is covered with silver nanoparticles 

(e.g., by reduction of a silver solution, Gunputh et al., 2018). Having the silver as the 

uppermost layer, in theory, offers a biocidal advantage. Any dissolved silver released 

from the coating will be directly toxic to microbes. In the case of silver nanoparticles, 

both metal dissolution from the particles and direct contact of the particles with 
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microbes can be toxic (Reidy et al., 2013; Besinis et al., 2014a; b). However, there 

remains a problem in that the osteoblast cells have limited access to their preferred 

substrate (i.e., the HA) underneath the silver layer. 

The alternative approach is to coat the Ti alloy with silver, and then add a layer 

of biocompatible HA. The silver coating is typically achieved by electroplating and 

depending on the silver solutions, voltage and temperature used; silver nanoparticles 

may be grown on the surface (Besinis et al., 2017). Then either a micron- or nano-HA 

can be added as a final coating. Crucially, provided the HA coating has some porosity 

(i.e., spaces in between the HA particles), then the antibacterial properties of the silver 

layer is retained.  For example, Besinis et al. (2017) found that nano silver and nano 

HA coating on titanium dental implants had a significantly better antibacterial activity 

against Streptococcus sanguis than uncoated titanium. 
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1.7 Hypothesis 

The failure of dental implants arising from bacterial infection remains a concern. 

Nanotechnology offers the potential to improve implant success. Silver is a profound 

antibacterial agent that can provide antibacterial activity of the implant surface, HA is 

a biocompatible agent that can mask silver toxicity to the human primary osteoblast 

cells and preserve the biocompatibility of the coated dental implant. The hypothesis of 

this study is that coating the dental implant surface with nano silver and nano HA would 

provide antibacterial activity whilst maintaining the biocompatibility of the implant 

surface with human primary osteoblast cells, and that these properties may be 

enhanced at the nanoscale.  

 

1.8 Aim and objectives 

The aim of this study was to investigate the biocompatibility of silver and HA 

nanoparticle coating on medical grade titanium dental implants. The specific objectives 

were: 

1- To successfully coat the medical grade titanium discs with silver and HA 

coatings. 

2- To investigate the stability of nano-coatings in cell culture medium by 

conducting the dialysis experiment to measure the release of dissolved silver. 

3- To investigate the bonding strength of the coatings by conducting mechanical 

pull-off test. 

4-  To demonstrate the biocompatibility of silver nanoparticle coating on medical 

grade titanium to osteoblast cells. This was determined in cultured osteoblasts 
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with a range of toxicological endpoints including LDH release and the Alamar 

blue assay for cell viability. 

5- To investigate the effect of silver nanoparticle coating on medical grade titanium 

on osteoblast cell activity and functioning. This was performed by measuring 

alkaline phosphatase (ALP) enzyme activity in the external media and the cell 

homogenate. 

6- To investigate the effect of silver nanoparticles on cell electrolyte 

concentrations and Na+ K+-ATPase activity (osmotic health of the cells), as it is 

known that silver interferes with Na+ and K+ pump. 

7- To measure the long-term silver release to the external media. This is to ensure 

continous supply of antibacterial silver. 

8- To study the differentiation and mineralisation of human primary osteoblast 

cells on the coatings. This was achived by measuing Ca2+ and P in the cell 

homogenate after 21 days, also conducting the mRNA expression study on 

osteoblast differentiation and mineralisation genes (e.g; ALP, osteocalcin and 

RUNX-2) using quantitative real time PCR (qPCR).  
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2.1 Introduction 

Several methods have been tried to produce an osteoconductive and antibacterial 

coatings on the surface of titanium dental implants. In particular, silver has been 

introduced to the surface of implant made of titanium and its alloys to enhance their 

antibacterial activity. Several techniques have been used to produce a silver layer on 

titanium dental implants. For example, (Ewald et al., 2006) used physical vapour 

deposition (PVD) to produce a silver coating of approximately 2 µm in thickness on a 

titanium substrate. Moreover, silver has been ion implanted into the titanium and Ti-

Al-Nb alloy to improve antibacterial characteristics, wear performance and corrosion 

resistance (Wan et al., 2007). Moreover, TiO2 nanotubes have been grown on the 

surface of titanium implants and then the layer is covered by silver nanoparticles using 

chemical reduction of a silver solution (Gunputh et al., 2018). 

Several different methods have been used to produce silver and HA coatings. 

However, trying a new coating method could be effective in producing a novel nano-

sized coating on the surface of titanium. Silver nanoparticles can be coated on titanium 

dental implants by an electroplating method. According to this method sliver ions 

dissolve from the anode and reduces on the titanium substrate which has been 

connected to the cathode. The silver coating produced can have effective antibacterial 

characteristics. In addition to silver particles and silver nitrate, Spadaro et al. (1974) 

found that silver generated from the anode electrode can inhibit bacterial growth. On 

the other hand, HA nanoparticles can be coated on a silver layer using sintering 

method at a temperature which is below the melting point of silver. The former can 

improve biocompatibility and promote osseointegration process. 

The bioavailability of silver nanoparticles in different biological media can vary 

as a result of the ionic strength of silver, high affinity of silver and -SH groups and 
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ability to form poorly soluble silver chloride salt. This can occur typically in complex 

biological media as they contain oxidising species, glucose, chloride and proteins 

which affects the release of silver ions from silver nanoparticles  (Zook et al., 2011; 

Loza et al., 2014).  

It has been found in literature that complexation of silver ions can occur as a 

result of presence of organic molecules which thereby accelerate the dissolution. 

However, selenide-containing compounds (eg; cysteine) can cover the particle surface 

and prevent the dissolution. For example, Loza et al. (2014) found that silver ion 

release from silver nanoparticles was blocked in the presence 1 g L-1 cysteine. 

Dissolution of silver nanoparticles in cell culture media (DMEM) is higher as compared 

to the inorganic salt solutions (Zook et al., 2011). This might be due to the 

complexation of silver nanoparticles with the proteins and other components in the cell 

culture media. Silver ions tend to bind to chloride and produce a silver chloride which 

is a poorly soluble salt (Greulich et al., 2011). In the present thesis, the effect of 

different cell culture medium on silver dissolution from coated titanium discs was 

investigated.  The results of this study demonstrated the amount of dissolved silver in 

each cell culture medium. Therefore, the most suitable cell culture medium which 

induced minimum silver dissolution was identified and used for the biocompatibility 

and mineralisation experiments. 

One of the limitations of using biochemical assays in the presence of 

nanoparticles is the possible interference that might occur between components of the 

assay and the nanoparticles. Nanoparticles in general have been found to interfere 

with lactate dehydrogenase (LDH) assay components (Han et al., 2011). Silver 

nanoparticles in particular have also been found to interfere with LDH assay. Oh et al. 

(2014) found that silver nanoparticles can adsorb the LDH enzyme which in turn leads 
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to under estimation of the actual LDH level. Reactive oxygen species that are 

produced by silver nanoparticles inside the cell are also able to inactivate LDH. Silver 

nanoparticles can attract proteins to form a layer on the surface of the particle known 

as a protein corona (Hellstrand et al., 2009). In any biochemical assays that 

incorporate silver nanoparticles with proteins, silver interference with the assay 

components should be tested prior to the experiment. 

The aim of this chapter was to successfully coat the titanium discs with silver 

and HA particles and investigate the bonding strength of the coatings to the titanium 

alloy surface as well as the stability of these coatings in different cell culture media. A 

secondary aim was to investigate the interference of silver nanoparticles with 

biochemical assays used in the biocompatibility and mineralization experiments. 

 

2.2 Materials and methods 

2.2.1 Preparation of titanium discs  

Grade five titanium alloy Ti6Al4V (ASTM Grade 5) measuring 15 mm in diameter and 

1 to 1.5 mm thickness were prepared by laser cutting; method for preparing the discs 

is based on Besinis et al. (2017). All discs were polished with (800-1200 grade) sand 

papers using a rotary instrument (Grinder-Polisher, Buehler, UK Ltd, Coventry, 

England). Six and one µm diamond solutions (Diamond solution, Kemet International 

Ltd, Parkwood Trading Estate, Maidstone, Kent ME15 9NJ UK) were used for the final 

polish. Discs were subsequently cleaned with alkaline solution (20 g L-1 of NaOH and 

Na2CO3 solution) in an ultrasonic bath of distilled water (Metason 129T, Struers). 

Further cleaning with 5% HCl solution was carried out for 3-5mins. 
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2.2.2 Silver electroplating 

Electroplating is a process that uses electrical current to reduce dissolved metal 

cations so that they form a coherent metal coating on an electrode. Electroplating is 

used for coating a metal with a thin layer of another metal. The metal to be coated is 

connected to cathode (positive side) and the coating metal to the anode (negative side) 

of the DC power. Both metals are put in a chemical solution (electrolyte) which allows 

an electric current to flow. The electroplating method was derived from Besinis et al., 

2017. Briefly, the clean titanium discs were hung on silver or platinum wires connected 

to the cathode of a voltage supply, while the silver plating source consisting of a fine 

silver sheet (1 mm thickness, 50 mm x 100 mm, Cooksongold Ltd, UK) comprised the 

anode. The disc and silver sheet were immersed in an electrolyte containing (0.2 M 

AgNO3, 4 M succinimide and 0.5 M KOH, Sigma Aldrich, UK) at 40 OC and the voltage 

was adjusted to 1 V and left for 3 minutes. The resulting silver plated discs were 

washed with distilled water to remove the electrolyte.  

 

2.2.3 Hydroxyapatite coating using a sintering technique 

The HA nanoparticles solution was purchased from (Fluidinova, Rua Eng. Frederico 

Ulrich 2650, 4470-605 Maia, Portugal); while a 15 % wt/v dispersion of HA 

microparticles was prepared by adding 15 g of HA powder (Fluidinova, Rua Eng. 

Frederico Ulrich 2650, 4470-605 Maia, Portugal) to 100 ml of Milli-Q water (18.2 MΩ), 

the solution was then vortexed for 10 minutes. The silver plated discs were individually 

placed in the wells of 24 well microplates (flat-bottom, sterile, polystyrene microplates, 

Greiner 662160, Bio-One Ltd., UK) and then 20 μl of the appropriate HA dispersion 
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(nano- or micro- particles) were deposited to the top of surface of the discs and 

distributed evenly with a pipette. The discs were left in an incubator at 37 ºC to dry for 

48 hours. Finally, the specimens were transferred to porcelain dishes and placed in a 

programmable furnace for sintering (Carbolite, ELF 11/14, UK). The rate of 

temperature increase in the furnace was 10 ºC/min until 500 ºC was achieved. This 

final temperature was maintained for 10 minutes. These heating rates and 

temperatures were selected following the method describes by Besinis et al., 2017. 

Subsequently, the now HA and Ag coated discs were left in the furnace to cool down 

to room temperature.  

 

2.2.4 Surface roughness measurements of the specimens 

The surface roughness values were measured using the method previously descibed 

by Besinis et al. (2017). In brief, measurements were taken using an Olympus LEXT 

Confocal Microscope OLS 3000, with a total magnification of 50× and an optical zoom 

of 1×. Gaussian filters were applied to the profiles with a cut-off wavelength value of 

85.2 µm. Surface roughness was measured at three different locations in each of 3 

replicates from each treatment. Following the surface roughness values, the 

topographical investigations were performed by taking 3D images using an Olympus 

LEXT Confocal Microscope OLS 3000. 

  



31 
 

2.2.5 Investigating surface morphology by scanning electron microscopy (SEM) 

and energy dispersive spectroscopy (EDS) analysis 

 The silver plated,  as well as the nano- and micro- HA- coated discs were examined 

under SEM mode (JEOL / JSM-7001F, with an Oxford Instruments INCA X-ray 

analysis system attached) to confirm the presence, quality, and composition of the 

coatings. At least one disc of each type from each batch of discs prepared were 

examined (n = 3 discs/treatment). Detective energy was 15 KeV at a working distance 

of 10 mm. A thin layer of Chromium was sputter coated on the specimens to increase 

conductivity and therefore the resolution for imaging. Moreover, qualitative and 

quantitative metal analysis were carried out on at least one disc of each type from 

each batch of discs prepared (n = 3 discs/treatment) using Energy Dispersive 

Spectroscopy (EDS, spot size, 10 μm; accelerating voltage, 15 kV; working distance, 

10 mm). The, data and spectra analysis were performed using the Aztec 2.2 software 

supplied with the instrument. 

 

2.2.6 Investigating the particle size of nHA and mHA by transmission electron 

microscopy (TEM) 

The HA primary particle size in nHA and mHA solutions which were used to coat the 

specimens was investigated using transmission electron microscopy (TEM, JEOL-

1200EX II). The solutions were prepared as described earlier in section 2.2.3, they 

were diluted with Milli-Q water by factor 2000 (nHA) and 1000 (mHA) to decrease the 

concentration of the dispersion to approximately 100 mg L-1 (Besinis et al., 2014). This 

enables better visualisation of particles and facilitates measuring dimensions to 
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accurately work out the primary particle size. Image J software (version 1.49) was 

used to determine primary particle sizes manually.  

 

2.2.7 Investigating the stability of the coatings in cell culture medium by dialysis 

experiment  

The stability of silver nanoparticles coating may be affected by the cell culture medium 

since organic molecules are able to enhance silver dissolution in the ionic form. The 

dialysis method was based on Handy et al. (1989). A dialysis experiment was 

performed to investigate the effect of standard cell culture medium which is Dulbeco’s 

modified eagle medium (DMEM) supplemented with 10% foetal bovine serum (FBS) 

(Fisher scientific UK) and 1% of penicillin-streptomycin (Life Technology), on the 

dissolution of silver nanoparticles coating on titanium. The cumulative amount of silver 

ion was measured from the dialysis tubing and from the external media in the beaker. 

All the beakers were acid washed in a 5% nitric acid bath for 24 hours before the 

experiment in order to remove any particles or ions that may have been stuck on the 

walls of the beaker from previous use.  The final stock solution was DMEM 

supplemented with 10% FBS and 1% antibiotic and antimicotic. The control to cell 

culture medium in this experiment was Milli-Q deionised ultrapure water. In this 

experiment, there were four experimental groups: blank, silver plated discs, silver 

plated+nHA discs and silver plated+mHA discs, x3 beakers (250 ml) for each group 

(triplicate) all were put in Milli-Q water (control) and cell culture medium. The discs 

were put in cellulose dialysis bags (product code: D9777, cellulose membrane with 

molecular weight cut off at 12,000 Da, pore size < 2 nm, Sigma-Aldrich Ltd, Dorset, 

UK). The pore size allows ions to permeate the dialysis membrane but not particles. 

The bags were closed tightly from the bottom by making knots that did not allow the 
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solution to leak from the bag. then the discs were put in the bags and finally 4 ml of 

solution added to the bag and then the open end was secured with a mediclip (to 

prevent leakage) in a position which is just 1 cm above the level of solution so as not 

to compress the solution. Finally, another knot was made at the top above the mediclip. 

The bags were hung from stands using a nylon thread which were knotted to the stand 

tightly, and then the bags were put into the 250 ml beakers containing 246 ml stock 

solution, magnetic stirrers were put in all beakers and the experiment was run under 

stirring (RO 15P power, Ika-Werke GmbH & Co. KG, Staufen, Germany). Once the 

bags were placed in the beakers, 5 ml sample from the media were taken, 4 ml as a 

zero time point sample and 1 ml for measuring the pH. This was followed by series of 

5 ml samples from the beakers at 30 min, 1, 2, 3, 4, 6, 8 and 24 hours. The pH was 

measured at each time point and one extra beaker with a stock solution was used just 

to monitor the temperature of the media. 

 

2.2.8 Dissolution of silver nanoparticles in different cell culture medium 

The results showed that there were some silver dissolution in the standard cell culture 

medium (DMEM+10%FBS+1%antimicrobial), to better investigate the cause of 

dissolution, this experiment used Ag+nHA discs in cell culture medium with different 

concentration of FBS to study the effect of the FBS in culture medium on dissolution 

of silver ions. And also the Physiological saline (modified Kerb’s ringer) was compared 

with DMEM to see its effect on silver dissolution. Another medium which is human 

osteoblast cell culture medium (HOB) was used as an experimental group. The control 

of this experiment was (DMEM+10%FBS and 1% antimicrobial) with the disc. While 

(DMEM+10%FBS and 1%antimicrobial) without the disc and (Physiological 
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saline+10%FBS+1% antimicrobial) as well as (HOB+1%antimicrobial) without discs 

were used as blanks. The experimental groups were DMEM+ 5%FBS and 1% 

antibiotic, DMEM+ 1%antibiotic, (75% DMEM + 25% Physiological saline) + 10%FBS 

+ 1%antimicrobial, (50% DMEM + 50% Physiological saline) + 10%FBS + 

1%antimicrobial, Physiological saline + 10%FBS + 1% antimicrobial and HOB + 

1%antimicrobial. Composition of physiological saline is shown in Table 2.1. All the 

experimental groups were in triplicates. The experiment was run under sterile 

condition, samples (discs) were sterilised by gamma radiation (radiation dose 36.42-

40.72 kGy for 10 hours) and were placed in 24 well-microplates. Subsequently, 0.6 ml 

of cell culture medium was added to each well and the plates were incubated for 72 

hours in 5% CO2 / 95% air incubator (HETO-HOLTEN Cell House 170) maintained at 

37 ͦ C. The media were replaced every day with a fresh media and the concentration 

of silver ions was measured in the stock media with ICP-MS (ICP-MS, X Series 2, 

Thermo Scientific, Hemel Hempstead, UK) after acidification with 20 µl of 100% nitric 

acid. After 3 days, the samples were washed with Milli-Q water and coated with a thin 

layer of chromium then visualised under SEM to investigate the effect of FBS on 

physical stability of the coatings.  
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Table 2.1. Components of modified kerbs ringer solution (physiological saline) 

Chemicals Concentration (mmol) 

Sodium chloride  (NaCl) 118 

Potassium chloride (KCl) 3 

Magnesium sulfate pentahydrate (MgSO4.5H2O) 1 

Calcium chloride (CaCl2) 2 

Bicarbonate buffer (NaHCO3) 25 

Potassium dihydrogen phosphate (KH2PO4) 1.2 

Glucose 10 

 

2.2.9 Pull-off test 

Pull off test is a quantitative method of characterising the adhesion between a 

coating and a specific substrate. In this study, the adhesion between the coatings and 

the titanium was tested. Square titanium alloy specimens (31 x 31 mm) were used. 

The control in this experiment was uncoated titanium disc, treatments were silver 

plated titanium (Ag), silver plated plus HA nanoparticles (Ag+nHA) and silver plated 

plus HA micropartilces (Ag+mHA), 6 replicates were used in the test. The protocol was 

derived from Gombos and Summerscales, (2016) according to ISO standard (EN ISO 

4624:2016). Six specimens were tested on each occasion, to ensure proper alignment 

while fixing the specimens during the test, an alignment tool was used which prevents 

misalignment and can hold 6 specimens together (Figure 2.1).  
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Figure 2.1. Composition of the alignment tool, note the specimen between two 

counter dollies. 

The procedure started by roughening the uncoated side of the specimen using sand 

paper (D-56-746, grit size 120, 116 µm particle size, Wolfcraft GmbH, Kempenich, 

Germany) to increase the mechanical keying of the adhesive. Aluminium faced 

cylindrical test “dollies`” were prepared, each dolly was prepared to have a round 20 

mm diameter surface on one side, 12 mm thickness, and M10 thread on the other side 

(bottom). The dolly’s face was machined perpendicular to its axis and their surface 

sandblasted in a Guyson Super 6 Blast cleaner Cabinet (serial no. 68668, Guyson 

International Ltd. Otley, Yorkshire, England) with brown alumina blast abrasive media 

(Guyson NFK 100 Brown Saftigrit CSS12 issue 8) for 5 seconds. Thereafter, the 

dollies were sonicated with acetone in ultrasonic bath (Struers, Metason 120T) for 5 

min to remove any debris from the dollies that can affect the adhesive bonding.  The 

dollies were then positioned in the alignment tool to check the assembly, sufficient 

amount of an adhesive (DEVCON home, 2 Ton epoxy resin) was prepared by mixing 

the two components (Resin and Hardener) together at a 1:1 ratio. A thin film of the 

Specimen 
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adhesive was applied to the lower dollies, then the specimen was placed on the 

surface of lower dolly and a thin film of adhesive was applied to the surface of upper 

dollies and then the counter dollies were assembled by securing the upper plate of the 

alignment tool to the lower plate. At this step, the upper dolly was glued to the coating 

surface and the lower dolly was glued to the other side of the titanium alloy substrate 

(Figure 2.1). The test apparatus was left over night to allow the adhesive to set. After 

24 hours, the cured adhesive around the circumference of the dollies was removed 

using a cutter (DeFelsko PosiTest Pull-Off Adhesion Tester cutting tool with 20 mm 

inner diameter), this step prevented increased bonding surface area which will 

introduce an error to the tensile strength measurements. The dollies were extended 

using a 60 mm long and 16 mm diameter steel adapter with M10 metric internal thread 

on both sides which could then be easily installed in Instron type 500.625 M2 16 grips 

for the pull-off test permitting a longer gripping surface. An Instron 5582 (system ID: 

5582J7466, S1-16754) universal test frame with a ±100 kN load cell (cat.no. 2525-

801, ser.no. UK195) was used for the test setting a 1 N preload and a test speed of 

0.5 mm min-1.  

The test ends in “failure”; during the test, the tensile strength at which the 

coating fails was measured. The force required pulling the dolly off or the force the 

dolly withstands yields the tensile strength in Newton per square millimetre or mega 

Pascals (MPa). Breaking strength is the maximum load the specimen (coating) 

sustains during the test. Failure will occur along the weakest plane within the system 

comprised of the dolly, adhesive, coating system, and substrate, and will be exposed 

by the fracture surface. The software used for the test is Bluehill version 2.33. 

Stress/strain curves are shown in Appendix 2, Figure 1. After the test, the specimens 
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were kept clean and ready for S.E.M. and EDS analysis to examine the surface of the 

coating to check the surface topography after coating failure. 

 

2.2.10 Silver interference with lactate dehydrogenase assay 

LDH is an enzyme which is normally found in the cytoplasm of animal cells and is 

implicated as a biomarker of cell injury. The basis of this assay in the current 

experiment is that osteoblast cells contain LDH, while cell culture media normally does 

not. The presence of LDH in the culture media is therefore interpreted as a leakage of 

LDH enzyme from the cells through a compromised cell membrane. LDH activity was 

measured every day in the external media, and after 7 days in the cell homogenate. 

The method followed Campbell et al. (1999) who used 100 µl of sample added to the 

reacting mixture (2800 µl of 6 mmol L-1 sodium pyruvate in 50 mmol L-1 phosphate 

buffer at PH 7.4, plus 100 µl of 6 mmol L-1 NADH solution), mixed directly in a 3 ml 

cuvette and the change in absorbance is measured over 2 minutes at 340 nm (Jenway 

7315 spectrophotometer).  

Silver nanoparticles can interfer with components of biochemical assays, so it is 

mandatory to test the possible interference of the nanoparticles used in the 

experiments and the assays used. An interference test was conducted by soaking a 

silver coated titanium disc (Ag+nHA) in cell culture media (DMEM + 10%FBS + 

1%antibiotics) for 24 hours. Then the media was removed and used for the 

interference test. In the actual test, the positive control was the LDH enzyme in 

phosphate buffer and the negative control was the buffer without LDH enzyme, the 

treatment group was the LDH enzyme and phosphate buffer with 25% cell culture 

medium (containing silver ions). The effect of silver ions on LDH activity was then 

investigated.  
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2.2.11 Silver interference with protein assay 

The Bicinchoninic assay (BCA) is one of the colorimetric kits that offer speed and 

convenience for routine protein measurements. The method works by reducing copper 

ions by peptide bonds in the protein in alkaline conditions. The produced Cu ion binds 

to the dye, bicinchoninic acid, and this will result in a colour change of the dye from 

green to purple. The procedure used 10 μl of each sample (cell homogenate or bovine 

serum albumin BSA) into a 96-well microplate with 200 μl of fresh colour reagent, the 

plate was then mixed thoroughly on a shaker for few seconds then covered and 

incubated in 37 ͦC for 30 minutes. Absorbances of the samples were read at 592 nm 

(VersaMax, molecular devices, Berkshire, UK). To plot a calibration curve, the protein 

assay standards (bovine serum albumin) were diluted with phosphate buffer saline 

(Phosphate buffer tablet from Sigma Aldrich) dissolved in 100 ml of ultrapure deionized 

water, pH 7.4) to give the final protein concentrations of 2, 1.6, 1.2, 0.8, 0.2, 0.1 and 0 

(no added BSA) mg L-1). 

Silver and BCA kit interference was tested. In this experiment, silver nanoparticles 

(5mg L-1 and 50 mg L-1) in Milli-Q water were prepared. The control was the protein 

assay standard without silver nanoparticles and the treatments were the protein assay 

standard with 5 mg L-1 silver nanoparticles and 50 mg L-1 silver nanoparticles, simply, 

the final test solution was 0.5 ml BSA and 0.5 ml of silver solution (5 or 50 mg L-1). The 

absorbance was read at 592 nm and the effect of silver nanoparticles on the standard 

curve was determined. BCA standard curve is shown in Appendix 2, Figure 2. 

 



40 
 

2.2.12 Trace metal analysis 

The concentration of released silver from the coatings was measured by ICP-MS (X 

Series 2, Thermo Scientific, Hemel Hempstead, UK). Sample prepration for ICP-MS 

was started by acidifing the stock samples with 70% nitric acid so as to prevent 

nanoparticle agglomeration and sticking to the glass/tube walls. For the dialysis 

experiment, 0.1 ml of 70% nitric acid was added to the samples and for the dissolution 

experiment 0.02 ml of 70% nitric acid was added to the samples. A series of standards 

were prepared containing 0, 20, 50 and 100 µg L-1 silver, the test samples were diluted 

until the concentration of silver ranged from 0-100 µg L-1 so as to closely match the 

standards.  

 

2.2.13 Statistical analysis  

Data are presented as mean ± S.E.M and most of the data were analysed using 

Statgraphics software version 16, the difference between the treatment and the control 

as well as between treatments were analysed using (one way ANOVA, Tukey test). 

While two way ANOVA was used to investigate if there was a time effect. The curves 

obtained from the dialysis experiment were fitted using (SigmaPlot 12.0 Systat 

Software, Inc). All statistical analysis used a 95% confidence limit, so that p values < 

0.05 were considered statistically significant. 
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 2.3 Results 

2.3.1 Investigating the primary particle sizes of nHA and mHA by transmission 

electron microscopy TEM 

The primary particle sizes of Ag and HA particles were investigated, to ensure that the 

particles were in the expected size range. The results of TEM confirmed that the 

primary particle size of nHA and mHA was 23.90±1.49 nm and 4.72±0.38 µm, 

respectively. SEM images of silver nanoparticles showed that their average size was 

111.58±14.99 nm (Figure 2.2).  

 

Figure 2.2. TEM images of HA nanoparticles (A) and microparticles (B) showing their 

primary particle size which is (25.95 nm in length and 13.59 nm in width) and 4 µm 

respectively. (C) SEM image of electroplated silver nanoparticles showing the primary 

particle size which is 111 nm. (D and E) are the primary particle size distribution of 

nHA stock solution (particle length and width respectively), (F) is the primary particle 

size distribution of mHA stock solution.  
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2.3.2 Surface roughness measurements of the specimens 

The surface roughness values are shown in Table 2.2. No significant difference was 

observed between uncoated polished titanium and silver plated titanium (Ag). Applying 

HA nanoparticles caused increased surface roughness by almost 0.7 µm as compared 

to unpolished titanium and silver plated titanium. While HA micro particles caused 

even more increase in the roughness value which was measured as 2.17 ± 0.18 µm. 

Table 2.2. Surface roughness values of the titanium discs. 

Specimens Roughness value (µm) 

Uncoated polished titanium  0.23 ± 0.01 a 

Ag plated titanium 0.32 ± 0.01 a  

Ag+nHA coated titanium 0.94 ± 0.19 b 

Ag+mHA coated titanium 2.17 ± 0.18 c 

Data are mean ± S.E.M (n = 3), different letters mean statistically significant difference 

within each other, one way ANOVA (p < 0.05). 

 

2.3.3 Investigating quality of the coatings using SEM and EDS 

Scanning electron microscopy images showed that coatings were successfully applied 

onto the discs (Figure 2.3). The silver coated titanium disc showed a uniform layer of 

silver at the nano scale (Figure 2.3 A). The Ag+nHA samples were also coated 

uniformly with densely packed layer of HA nanoparticles (Figure 2.3 C), although some 

cracks occurred which probably arose from the sintering process. The micron scale 
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HA particles were successfully coated onto the silver coated titanium discs without 

cracking (Figure 2.3 E).  

EDS analysis (Figure 2.4) confirmed the expected surface composition of the 

discs. The surface composition of silver coated samples was mainly silver (78%), 

followed by oxygen (16%), and titanium (3%). Moreover, the surface of Ag+nHA 

samples were mostly composed of calcium (31.2%) followed by phosphorous (13.8%) 

and silver (8.9%); confirming that most of the silver was covered by the layer of nano 

HA. In contrast, in the Ag+mHA discs the surface had more silver (28.6%), and slightly 

less calcium (22.6%) and phosphorous (9.8%). For the micron scale HA the large 

particles enabled gaps between the particles where the silver coating could be 

observed.  
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Figure 2.3. SEM images of coated titanium discs; (A) x 250 (100 µm) and (B) x 10 K 

(1 µm) of the silver plated titanium alloy. Note the particles are at nano scale and fully 

covering the titanium surface. (C) x 500 (10 µm) and (D) x 1.0 K (10 µm) are Ag+nHA 

surfaces. Note the nHA particles have successfully produced an even coating on the 

silver plated titanium. (E) (x 1.0 K (10 µm) and (F) x 3.0 K (1 µm) of the Ag+mHA discs. 

The mHA particles have successfully been coated on the substrate. 
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Figure 2.4. EDS spectra of coated titanium discs: (A) silver plated titanium, (B) Ag+nHA, (C) Ag+mHA showing the percentage of the 

elements composing the surface structure of the coated titanium discs. Arrows are showing the area on which the analysis was made.
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2.3.4 Investigating the stability of the coatings in cell culture medium (DMEM + 

10%FBS + 1%animicrobial) by dialysis 

Dialysis was conducted to investigate the stability of the coatings in DMEM cell culture 

medium. The results showed that  silver concentration in beakers was higher in Milli-

Q than cell culture medium (Figure 2.5 and 2.6). It was found that the highest silver 

concentration in beakers over 24 hours was from Ag+mHA samples in Milli-Q water 

which was around 18 ppb (Figure 2.6), whereas the highest value measured from cell 

culture medium was from Ag+mHA samples that released around 2.5 ppm silver over 

the same time period. Silver concentration released from all specimens to the beakers 

was increasing gradually over 24 hours. Although silver release from Ag+mHA in Milli-

Q was decreased in the first 4 hours then started to increase again. Ag+mHA samples 

released significantly higher silver as compared to Ag+nHA and Ag coated samples in 

both cell culture medium and Milli-Q water (p < 0.05). Specimens in the cell culture 

medium released significantly more silver as compared to the ones in Milli-Q in the 

dialysis bag (Figure 2.7). Silver concentration in dialysis bags released from Ag+mHA 

in cell culture medium was 11 ppm, while it was only 4 ppm in Ag+nHA samples and 

1 ppm for Ag coated samples. However, silver concentration released from all 

specimens was lower in Milli-Q water in comparison to the cell culture medium. Ag 

coated samples released significantly less silver than Ag+mHA and Ag+nHA both in 

dialysis bags and inside the beakers in both test groups. Futhermore, pH values of the 

media during the experiment is shown in Appendix 1, Table 1. 
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Figure 2.5. Cumulative amount of silver ion release (ppb) from discs to the external 

media in the beakers (n = 3). External media was either ultrapure water (Milli-Q) (A) 

or cell culture medium (DMEM) (B).Curves were fitted using SigmaPlot 13 (Systat 

Software, Inc.) applying the legal binding one site saturation (rectangular hyperbole 

function). Abbreviations refer to the type of sample in a specific media.  
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Figure 2.6. Concentration of silver ion release (ppb) from discs to the external media 

in the beakers (n = 3). External media was either ultrapure water (Milli-Q) (A) or cell 

culture medium (DMEM) (B). Curves were fitted using SigmaPlot 13 (Systat Software, 

Inc.) applying the legal binding one site saturation (rectangular hyperbole function). 

Abbreviations refer to the type of sample in a specific media. 

 

A 
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Figure 2.7. Concentration of silver (mg L-1) in 4 ml solution in dialysis bags after 24 

hours. Error bars represent S.E.M (n = 3). Asterisk means statistically significant 

difference between the treatment (DMEM) and control (Milli-Q) groups. Different letters 

between bars mean statistically significant difference within each media. (one way 

ANOVA, p < 0.05). 

 

2.3.5 Dissolution of silver nanoparticles in different cell culture medium 

 Ag+nHA discs were soaked in different cell culture medium and silver concentration 

was measured after 24, 48 and 72 hours of incubation. The results in Table 2.3 reveal 

that DMEM + 10%FBS + 1%antimicrobial (Control) caused significantly higher silver 

dissolution (18.83±2.38 mg L-1) at day 1 as compared to other groups (p < 0.05). 

(75%DMEM+25%physiological saline) + 10%FBS and (50%DMEM+50%physiological 

saline) + 10%FBS were not significantly different at all-time points. However, DMEM 

without FBS caused significantly less silver dissolution at all-time points as compared 
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to other groups (except blanks). (Physiological saline + 10% FBS) and (HOB) caused 

significantly less silver dissolution than other groups containing DMEM and FBS at 

day 1, values were 4.77±0.96 mg L-1 and 4.70±0.54 mg L-1 respectively. At day 2 and 

3, silver concentration in (Physiological saline + 10% FBS) was significantly higher 

than other groups (7.04 ± 0.46 mg L-1) and (2.67± 0.45 mg L1) respectively. SEM 

images of the samples after the experiment showed that coatings were physically 

intact and FBS did not have an effect on the physical stability (Figure 2.8). 
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Table 2.3. The total amount of silver release from Ag+nHA discs to the external media 

after 72 hours of incubation 

Treatment Day1 Day 2 Day 3 

mg L-1 

DMEM+10%FBS 
Without disc (blank 1) < 0.03 A  < 0.03 A  < 0.03 A  

Physiological saline+10%FBS 
without disc (blank 2) < 0.03 A  < 0.03 A  < 0.03 A  

HOB without disc (Blank 3) 
< 0.03 A  < 0.03 A  < 0.03 A  

DMEM + 10%FBS (Control) 
18.83 ± 2.38 E  2.61 ± 0.52 C # 1.75 ± 0.11 B # 

DMEM (without FBS)   
0.07 ± 0.003 B  0.19 ± 0.04  B  0.17 ± 0.04 E  

(75% DMEM + 25%physiological 
saline) + 10%FBS  10.82 ± 0.6 D  2.59 ± 0.29 C # 1.80 ± 0.07 B # 

(50% DMEM + 50%physiological 
saline) + 10%FBS 10.85 ± 1.1 D  2.67 ± 0.38 C #  1.92 ±  0.17 B # 

 
Physiological saline + 10% FBS 4.77 ± 0.96 C  7.04 ± 0.46  D  2.67 ± 0.45  C * 

HOB  4.70 ± 0.54 C  1.68 ± 0.08  C #  0.96 ± 0.01 D # 

Data are expressed as mean ± S.E.M (n = 3). Different capital letters within each 

column indicate statistically significant difference, asterisk (*) means significant 

difference within the previous time point while (#) mean significant difference within 

day 1 (one way ANOVA, p < 0.05). Two way ANOVA showed that there was a time, 

as well as treatment effects (p < 0.05). All the treatment groups were supplemented with 

1% antibiotics. 
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Figure 2.8. SEM images of Ag+nHA coated samples after soaking in cell culture media 

for 72 hours: (A) DMEM with FBS (B) DMEM without FBS, it can be noticed that the 

presence of FBS has not induced a physical damage to the coatings. 

 

2.3.6 Pull-off test  

Results showed that the adhesive strength of the control (epoxy resin) was at least 

22.36 ± 1.43 MPa. The bonding strength of the silver nanocoating to the titanium alloy 

substrate (silver plated titanium; Ag) was 7.96 ±1.96 MPa (Table 2.4). EDS analysis 

suggested coating failure. EDS spectra obtained from the tested area after the pull-off 

test showed that more than 80% of the total surface consisted of titanium, which 

suggests that the silver nanocoating was removed (Figure 2.9). Bonding strength for 

the Ag+nHA specimens was at least 7.85 ± 1.31 MPa. As SEM and EDS analysis 

suggest, failure occurred between the adhesive and the coating and not between the 

coating and the titanium alloy substrate. SEM and EDS results of the specimen surface 

after the test showed that the coating was intact and not detached after conducting the 

pull off test. It could be noticed in (Figure 2.10) that the surface topography of the 



53 
 

tested and untested area was similar and mainly consisted of calcium and 

phosphorous. Similarly, the adhesive strength of the Ag+mHA coatings was higher 

than 20.52 ± 1.75 MPa. At that stress, the coating did not detach but failure occurred 

between the adhesive and the coating. SEM and EDS analysis confirmed that the 

composition of the tested and untested areas was similar (Figure 2.11). 

 

Table 2.4. Bonding strength of the test coatings on the titanium alloy surface 

Treatments True stress (MPa) 

Ti 22.36 ± 1.43 a 

Ag 7.96 ± 1.96 b 

Ag+nHA 7.85 ± 1.31 b 

Ag+mHA 20.52 ± 1.75 a 

Stress values (MPa) at which failure occurred. Data are mean ± S.E.M. Different letters 

indicate a significant difference with each other, one way ANOVA (p < 0.05). 
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Figure 2.9. EDS spectra of Ag after the pull-off test, Note the difference between the 

tested and untested area, the tested area is composed mainly of titanium which means 

that the Ag layer has been detached after the test.  
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Figure 2.10. EDS spectra of Ag+nHA after the pull-off test. The composition of tested 

and untested area is similar indicating that the coating is intact and not detached after 

the test. 
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Figure 2.11. EDS spectra of Ag+mHA after the pull-off test. The composition of tested 

and untested area is similar indicating that the coating is intact and not detached after 

the test.  

2.3.6 Silver interference with lactate dehydrogenase assay 

Interference of silver with components of LDH assay was tested, the key finding was 

that silver ions dissolved from the coating to the external media did not significantly 
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interfere with components of LDH assay in the experimental conditions here. However, 

silver ions caused slightly higher absorbance than the positive control. So the total 

LDH activity was 0.005 higher than the positive control, although the difference was 

not statistically significant (Figure 2.12). 

 

 

Figure 2.12. Silver interference with LDH assay, positive control is pure LDH enzyme 

in assay reagent and (Ag in the media) is same as the positive control but with cell 

culture media containing Ag. Data are expressed as mean ± S.E.M (n = 3), different 

letters indicate a statistically significant difference, one way ANOVA (p < 0.05). 

 

2.3.7 Silver interference with protein assay 

Silver nanoparticles were dissolved in Milli-Q water in concentrations of 5 and 50 mg 

L-1. Then they were “spiked” with protein assay standards to check the interference of 

silver nanoparticles with the assay components. The results showed that the 

absorbance value of silver nanoparticles was slightly higher than the standard. 5 mg 

L-1 silver nanoparticles caused slightly higher absorbance than 50 mg L-1 (Figure 2.13). 
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This means that silver nanoparticles can cause a slight interference with a BCA protein 

assay kit. 

 

 

Figure 2.13. Silver nanoparticle interference with protein assay standard curve (BCA 

kit). ( ) is the standard curve of the BCA kit, ( ) is the standard curve with 5 mg L-1 

silver nanoparticles and ( ) is the standard curve with 50 mg L-1 silver nanoparticles. 

 

2.4 Discussion 

In this study, medical grade titanium alloy was successfully coated with an even and 

dense coverage of silver nanoparticles that were spontaneously formed in the 

electroplating conditions used here. Subsequently, the Ag-NP coated alloy was 

decorated with either a layer of nHA or mHA. In the case of the mHA, the gaps between 

the spherical particles meant that the underlying silver layer was partly visible, less so 

for the nHA. In terms of coating stability in cell culture medium, key findings showed 
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that the coatings were stable in cell culture medium although some silver dissolution 

was found which can be explained by the presence of FBS in the cell culture medium. 

Bonding strength of the coatings is > 7 MPa, this is clinically acceptable since 

maximum force needed to insert implant is 0.05 MPa. Furthermore, in contrast to what 

is known about silver interference with LDH and protein assay components, the results 

showed that silver nanoparticles do not significantly interfere with those assay 

components.   

 

2.4.1 Roughness values of the specimens 

Titanium discs were coated with silver nanoparticles by electroplating method and HA 

nano and micro particles by sintering method. The particles produced a rougher 

surface than titanium (Table 2.2), values obtained (0.2 to 2 µm) are considered to be 

a moderately rough surface. The roughness values here are also consistent with 

previous reports (Besinis et al., 2017). The particles produced a rougher surface than 

titanium, value resembles those results of (Bagno and Di Bello, 2004) who found that 

surface roughness of medical grade titanium discs after polishing was 0.23 ± 0.01. It 

also agrees with (Giavaresi et al., 2003) who measured 0.20 ± 0.01 µm as a surface 

roughness value of polished titanium surface.  

Bacterial colonisation can be directly influenced by the degree of surface 

roughness, the rougher the surface the higher the risk of bacterial colonisation 

(Morgan & Wilson, 2001).  The results suggest that the roughness values of the 

treatments are not appreciably different in terms of the probability of bacterial 

colonization. Le Guéhennec et al. (2007) found that the surface roughness value of 

lower than 2 µm is less likely to increase the risk of bacterial colonisation. Moreover, 
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coating the surface of titanium with HA particles increased the surface roughness by 

four times (nHA) and eight times (mHA), respectively, as compared to uncoated 

polished titanium, however, they are still less than 2 µm so they are not more prone to 

bacterial colonisation than the polished titanium.  This result more or less corroborates 

with Giavaresi et al. (2003) who observed that coating titanium surface with HA can 

significantly increase the surface roughness value as compared to polished surfaces. 

Nevertheless, it disagrees with (Borsari et al., 2005) who found that deposition of  

further HA coating on the titanium surface can lead to decreased surface roughness.  

 

2.4.2 Investigating quality of the coatings using SEM and EDS 

Coating quality was assessed by SEM and EDS after application of the nanoparticles 

on their titanium substrate. The findings of figure 2.3 and 2.4 revealed that silver 

electroplating was successful and consistent with the previous work (Besinis et la., 

2017) forming a dense covering of silver nanoparticles of approximately 100 nm. They 

also revealed that silver ions were successfully reduced on titanium forming a uniform 

layer of silver nanoparticles on the surface. This could be explained by the fact that 

electroplating method can dissolve ions from the silver source reducing them on 

titanium substrate on which they form nanoparticles. This finding corroborates with Li 

et al. (2010) who managed to produce silver nanoparticles on Au@SiO2 core/shell 

nanomaterial by an electroplating method in AgNO3 bath.   

HA coatings were successfully applied to the silver plated titanium discs (Figure 

2.3). For both the Ag+mHA and Ag+nHA the coatings showed densely packed 

particles of the relevant HA on the surface, but there were some notable differences 

between the nano and micron forms of HA. Firstly, the relatively large and spherical 
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micro HA particles formed a continuous layer, but inevitably, the geometry of the 

material enabled gaps in between particles, which allowed some silver release. 

Besinis et al. (2017) also observed this morphology. In contrast, for the more rod-like 

nano HA the gaps in the material was reduced. However, some cracks were observed 

on the surface of Ag+nHA coated discs (Figure 2.3).  Weng and Baptista. (1999), 

applied HA on medical grade five titanium by sintering technique; they found that 

heating treatment can lead to a better development of HA but also produce cracks on 

the surface of the coating. Cracking of HA after heating was also noticed by Liu et al. 

(2002) who applied HA on stainless steel by sintering process; a relatively dense 

coating was produced but also some degree of micro cracking was observed. The 

formation of cracks after the sintering process can be due to the difference in thermal 

expansion of HA and titanium, respectively (Jarernboon et al., 2009). Another 

explanation is the possibility of HA shrinkage during the drying process which 

subsequently results in the formation of cracks on the final surface (Mahé et al., 2008). 

HA microparticles produced an even coating on the titanium substrate (Figure 2.3 E). 

It can be observed that the particle sizes are at the micro scale level. No cracks were 

observed on the surface and this is because microparticles did not produce a densely 

packed layer like nanoparticles, they rather produced an even coating but with 

noticeable gaps between the particles (Figure 2.3 E). However, the coatings were as 

expected and could be used for clinically relevant experiments.  

 

2.4.3 Investigating the stability of the coatings in cell culture medium by dialysis 

experiment 

Some local release of Ag was found which is desirable for bacterial killing in the first 

hours after surgery, the required dose of dissolved silver is around 0.2 mg L-1 with 
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S.mutans (Besinis et al., 2017). Dialysis experiment was conducted to study the effect 

of cell culture medium on the coating stability. The results showed that silver 

dissolution was higher in cell culture medium (DMEM + 10%FBS + 1%animicrobial) 

as compared to the Milli-Q (Figure 2.7). The cause of silver dissolution might be  due 

to the high affinity of silver with the –SH group on amino acids that is present in the 

cell culture medium which causes silver dissolution but later “mop up” the released 

silver. Freshly made silver nanoparticles show some dissolution that is simply driven 

by an outward diffusion gradient (as observed in Milli-Q water). In the cell culture media, 

the dissolution gradient can be maintained by the rapid removal of dissolved Ag+ from 

the media. The explanation is that silver ions form insoluble silver chloride from the 

high concentration of Cl- in the cell culture media (Besinis et al., 2014). Moreover, 

silver ions avidly bind to –SH groups which are available in amino acid chain of 

proteins. Silver dissolution from Ag+mHA discs was higher than Ag plated and 

Ag+nHA discs. The reason behind this could be due to the presence of gaps between 

HA micro particles that can facilitate silver ion release as compared to Ag+nHA discs 

in which the HA layer is densely packed on the silver layer. Moreover, EDS analysis 

of samples showed that 28.6% of the surface of Ag+mHA discs was composed of 

silver, whereas only 8.9% of the surface of Ag+nHA was composed of silver (Figure 

2.4). Ag+mHA and Ag+nHA discs released more silver ions than Ag plated discs. This 

might be due to the heating process required during HA application process. The 

explanation is that heating process can produce silver oxide which facilitates silver ion 

dissolution, (Pal et al., 1997) found that the presence of oxygen is essential for 

conversion of silver particle to silver ion. 

  The concentration of released silver from the discs to the cell culture medium 

in dialysis bags was significantly higher than in Milli-Q water in all treatment groups. 
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The explanation is that cell culture medium contains components that can dissolve 

silver ions from the surface of nanoparticles on the discs. This result supports the 

conclusion drawn by Loza et al., 2014 who found that the presence of organic 

molecules in the cell culture medium can accelerate silver ion dissolution which is due 

to forming a complexation of silver ions. In contrast, silver concentration in beakers 

was higher in Milli-Q water than in cell culture medium over 24 hours. The latter can 

have three possible explanations; either silver particles had not been dissolved or 

released silver ions but they had physically detached from the surface and 

accumulated in the dialysis bag as the bag is only permeable to the ions, or silver was 

dissolved to ionic form and the ions aggregated to one another or had bound to 

chloride ions and produced a poorly soluble silver chloride salt. Another explanation 

is that the dissolved silver ions had attached to the proteins in cell culture medium 

forming a protein corona that cannot pass the membrane. The most likely explanation 

is that the silver ions had attached to the chloride ions and produced a poorly soluble 

salt which is not able to pass the membrane. To some extent, it was difficult to measure 

the exact amount of silver concentration in the beaker, this is because a tiny amount 

of silver cannot be easily detected by ICP-MS. It could be noticed that silver release 

from Ag+mHA samples in Milli-Q water in the beaker was 8 ppb initially, and then it 

decreased gradually over 4 hours then increased again after 24 hour. Since Milli-Q 

water is not expected to contain components which might at some point interfer with 

silver ion and biasing the actual silver measurement, so the gradual decrease in silver 

concentration could be due to silver disappearance as a result of possible silver 

adherence to the glass. In the current study, silver concentration in the beakers was 

gradually increased over 24 hours in all treatment groups. This finding disagrees with 
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Kittler et al., 2010 who reported that the diffusion of silver ion out of the dialysis tube 

is very fast at the beginning then slows down after few hours.  

2.4.4 Dissolution of silver nanoparticles in different cell culture medium 

To further investigate the effect of cell culture medium and its components on silver 

stability and chemical dissolution and to follow up with the results of dialysis 

experiment, another experiment was conducted using different biological media with 

different components. The difference between this experiment and the dialysis is that 

this experiment was run in 24-well micro plates for three days in an incubator. The 

results showed that the cause of high silver dissolution in cell culture medium was the 

presence of FBS (Table 2.3). The presence of 10% FBS in DMEM caused almost 200 

fold more silver release than DMEM without FBS. FBS is a very heterogenous colloid 

with many different macromolecules including several large proteins, so a precise 

ligand-based explanation for the effect of serum on silver nanoparticle dissolution 

cannot be derived. However, other studies have demonstrated that the presence of 

FBS can accelerate the dissolution of nanoparticles. For example, Shi and co-workers. 

(2012) found that presence of FBS can cause 17.7% and 0.35% dissolution of Zno 

and TiO2 nanoparticles, respectively, while only 12.3% and 0.02% dissolution was 

found in the absence of FBS. Silver release in (DMEM without FBS) was significantly 

lower than all other groups at all time points. The reason behind this could be the 

presence of cysteine in DMEM which can prevent silver ion dissolution from the 

surface of particles. Loza et al., 2014 found that cysteine has a clearly inhibiting effect 

with almost no dissolution of the silver nanoparticles. Silver release in (75% DMEM + 

25% physiological saline) + 10% FBS and (50% DMEM + 50% physiological saline) + 

10% FBS was lower than the control (DMEM + 10% FBS) at day 1 but not significantly 

different at day 2 and 3. This indicates that diluting DMEM with physiological saline (at 
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the same FBS concentration) can only cause a decrease in silver release after 24 

hours. This finding might be due to the presence of high amount of glucose in 

physiological saline. Loza et al., 2014 reported that the presence of reducing sugars 

(glucose) can slow down but not prevent the dissolution of silver nanoparticles.  

From the clinical point of view, preconditioning the implants surface with the cell culture 

medium ensures that any excess silver is washed away and any fragments lost, so 

only the durable surface of the implant remains, hence rapid silver dissolution inside 

the socket can be avoided. This can minimise the immediate cell death by a silver 

“shock” which might occur in the case of massive silver dissolution. 

 

2.4.5 Pull-off test 

Since dental implants are screw shaped devices that are mechanically installed into 

the jawbone, so for any dental implant coating, the adhesion between the coating and 

the substrate must carefully be addressed. In this study, the bonding strength between 

the silver and titanium was approximately 7 MPa; EDS showed that the coating was 

detached after the test indicating that the failure has occurred between the silver 

coating and titanium resulting in detachment of the coating. while the bonding strength 

between the hybrid coating and the substrate in Ag+nHA and Ag+mHA was higher 

than that of Ag. This is due to the heating step required to process the HA coating 

which can lead to a diffusion adhesion between the substrate and the metal coating 

that subsequently results in a better adhesion between the coating and the substrate 

(J.R. Davis, 2001). From a clinical point of view, maximum loading torque that can be 

applied during implant insertion without damaging the surrounding bone is 0.05 MPa 

(Maluf et al., 2015). The force which is applied on the coatings during implant insertion 



66 
 

is called shear force, according to Budynas and Nisbett. (2008), shear force is 0.6 of 

the tensile strength. Thus, the tensile strength that is required to break the coating is 

higher than the maximum force applied during implant insertion. Therefore, the 

coatings possess an acceptable mechanical adhesion with the substrate. Similar 

studies have been conducted testing the adhesion between the HA and titanium, for 

example, Tsui et al. (1998) tested the bonding strength of the plasma sprayed HA 

coating on titanium, it was found that adhesion between HA and substrate after heat 

treatment at 1 hour 600 °C for was 15 MPa. Moreover, Liu et al. (2002) coated the 

stainless steel substrate with HA deposits using water-based sol-gel technique 

followed by annealing in air at 500 °C, the adhesion between the coating and the 

substrate was tested and found to be higher than 20 MPa. Kwok et al. (2009) found 

that the adhesion between spherical HA coating of medical grade titanium discs is 

10.7 MPa.  

 

2.4.6 Silver interference with lactate dehydrogenase and protein assays 

In the current study, silver ions released from silver coated discs to the cell culture 

media did not seem to interfere with LDH assay components (Figure 2.12). This result 

disagrees with Gliga et al. (2014) which incubated silver nanoparticles (particle size 

10 nm) with the cell lysate and detected LDH after 0, 4 and 24 hours. The reduction in 

LDH enzyme activity was pronounced which indicates that silver nanoparticles can 

interfere with LDH assay. It has been found recently that incompatibility of LDH assay 

for silver nanoparticle toxicity may be due to: (1) silver nanoparticles can adsorb LDH 

enzyme which in turn leads to under estimation of the actual LDH level; (2) reactive 

oxygen species (ROS) that are produced by silver nanoparticles inside the cell are 
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able to inactivate LDH (Oh et al., 2014). Silver interference with LDH assay can be 

different with different cells, particle chemistry and the form of which silver contacts 

with LDH enzyme or assay components. In the current study, the form of silver that 

possibly contacted with LDH enzyme and components of the assay was ionic.  

The possibility of silver interference with the protein assay components by the 

formation of what is called “protein corona” must always be excluded in the studies 

that use silver nanoparticles with the protein assay. In the current study, slight 

interference was reported which caused slightly increased absorbance in groups that 

contain silver particles as compared to the standard curve, there was not a detectable 

difference at the beginning, but a slight difference was noticed with an increase in the 

protein concentration as shown in Figure 2.13. The increase in the absorbance might 

be due to the light absorption by silver particles at the same wave length used in the 

assay. 

 

2.4.7 Conclusions 

Silver and HA nano and micro particles were successfully coated on medical grade 

titanium discs. The HA nanoparticles were at nano-scale and produced an even 

coating on silver plated titanium with the presence of some expected cracks on the 

surface. The coating stayed intact when treated with cell culture medium after 72 hours; 

no physical damage was noticed on the surface of coatings when examined under 

SEM after 72 hours treatment with cell culture media. However, some silver dissolution 

in the ionic form was noticed especially with DMEM+10%FBS+1%antimicrobial. FBS 

was found to be the cause of silver release from the specimens to the external media. 

Sintering process which was required for HA deposition was found to cause an 
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increased silver dissolution as silver release was higher in Ag+mHA and Ag+nHA 

discs as compared to the silver plated ones. Coatings showed a desirable bonding 

strength with the substrate which is clinically acceptable in terms of coatings stability 

upon implant placement. The dissolved silver ions surprisingly did not interfer with LDH 

assay components when tested. The coatings were deemed ready for the 

biocompatibility experiments, although some limitations such as a rapid dissolution of 

silver ions in the media can create obstacles, but with careful design this problem can 

be overcome. 
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3.1 Introduction  

The concept of retaining artificial teeth with the so-called surgically installed titanium 

dental implants is becoming widely accepted among dentists and patients. This is due 

to several advantages such as: improved appearance, speech, self-esteem, durability, 

comfort and convenience. However, although the incidence rate is low in most 

surgeries, the surface of dental implants can be subject to bacterial colonisation and 

infection with subsequent implant failure. To overcome this problem, coating the 

implant surface with an antibacterial agent can be effective. Besinis et al. (2014) found 

that metal nano particles (eg., silver) can have potential antibacterial activity against 

oral pathogens. Coating dental implants with silver nanoparticles may therefore be 

effective at preventing bacterial colonisation on the surface. Taking into account the 

clinical safety requirements of low human toxicity and biocompatibility with human 

tissue one issue that arises with using silver nanoparticles as antimicrobial agents, is 

whether the dose of silver which is required to kill the bacteria can have detrimental 

effects on osteoblast cells in the vicinity of the dental implant surface.  

There are various factors that can affect silver toxicity including particle size, shape, 

chemical composition, solubility, (see Chapter One). Concerns include the ability of 

silver nanoparticles to interfere with mitochondrial function as well as compromising 

the integrity of cell membranes (Carlson et al., 2008). In addition, it is still uncertain 

whether the toxic effect of silver nanoparticles belongs to the particles itself or the 

dissolved silver ions from it (Albers et al., 2013). However, in some circumstances 

silver ion release inside cells may occur. Singh et al. (2012) argued in favour of the 

intracellular presence of silver ions released from silver particles which had been 

trafficked into the cytoplasm. Nano sized silver particles may also release significantly 
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more ions than micro sized particles, possibly due to high surface area to volume ratio 

(Hajipour et al., 2012). 

The biocompatibility of nano silver coating on titanium to human primary 

osteoblast cells should be tested before use of the materials in clinical practice, as the 

human primary osteoblast cells are in direct contact with dental implants inside the 

jaw. In order to decrease the potential toxic effect of silver nanoparticles on the 

osteoblasts, the surface can be coated with another material on top of the silver layer. 

For examples, Samberg et al. (2010) reported that carbon-coated silver nanoparticles 

were significantly less toxic to keratocytes than uncoated particles. Since HA particles 

resemble the inorganic constituent of the living bone, coating the silver layer with HA 

nanoparticles may decrease the contact toxicity of the silver and also enhance 

osseointegration. HA is regarded as a biocompatible and osteoconductive material 

(Woodard et al., 2007). Nano scale HA has been found to have positive effects in 

promoting osteoblast cell adhesion to the surface, proliferation and calcium deposition 

as well as improved bioactivity and biocompatibility as compared to micro-meter scale 

grains (Shi et al., 2009). Consequently, the hypothesis in this chapter is that coating 

the dental implant surface with silver and HA nanoparticles may potentially decrease 

the incidence of peri-implant infection without impairing peri-implant osteoblast cells. 

The aims of the chapter are to investigate the biocompatibility of the coatings with 

rapidly growing human primary osteoblast cells and to determine the effect of 

dissolved silver on cell health and electrolyte balance.  
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3.2 Materials and methods  

3.2.1 Cell Culture 

The experiment was performed using primary human osteoblast cells (Hob) obtained 

from ECACC (European Collection of Cell cultures) which were cultured in 75 cm2 

flasks (Sterilin, Newport, UK) with vented caps containing 15 mL of DMEM (Dulbecco’s 

Modified Eagle’s medium) with L-Glutamine, 10 % foetal bovine serum (FBS), and 1 % 

penicillin-streptomycin (100 IU Penicillin- 100 μg/ml Streptomycin) purchased from 

Invitrogen. The media were changed whenever needed as indicated by the quantity of 

dead cells (every 4 days roughly). Growing cells were sub-cultured into new flasks 

when the confluence reached 80-85%. For the latter, the media was removed first and 

the cells were washed twice with phosphate buffer saline, D-PBS, (Fischer scientific, 

without added calcium and magnesium), then trypsinised with 2 ml of 0.25% trypsin 

and EDTA and re-suspended in fresh culture medium, then counted with a 

haemocytometer; trypan blue dye was used to check the cell viabiltiy. The cells were 

maintained at 37 °C in an incubator with a humidified atmosphere of 5 % CO2 and 95 % 

air. Cells used in the present experiment were at Passage 12 and 13. 

 

3.2.2 Sample (titanium disc) preparation 

Titanium samples were prepared according to the protocol being discussed in Chapter 

2. For this experiment, 9 samples of each group were prepared and sterilised via 

gamma (radiation dose 36.42-40.72 kGy for 10 hours). The samples were pre-treated 

with the cell culture medium for 2 days to get rid of the rapidly dissolved silver ions 

that could have toxic effects on the cells.  
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3.2.3 Experimental design 

The purpose of this experiment was to investigate the biocompatibility of primary 

human osteoblast cells (Hob) that were in direct contact with a titanium alloy surface 

coated with silver nanoparticles and HA. The experiment was done in 24 well-

microplates, and the microplate was the unit of replication in the experimental design 

(n = 6 plates/treatment). 12000 cells/well were used in this experiment, (20000 cells/ml 

and 0.6 ml of media was added to each well), (Frandsen et al., 2014). Controls 

included a reference consisting of cells plus the culture media, but without the alloy 

disc, which will be referred as a reference control; and uncoated titanium disc plus 

cells and media (Ti). The treatment groups were silver plated titanium plus media and 

cells (Ag), silver plated plus nano HA coated titanium plus media and cells (Ag+nHA) 

and silver plated plus micro HA coated titanium plus media and cells (Ag+mHA). The 

cells were incubated with the appropriate treatment or control for 7 days in 95% air 

and 5% CO2 incubator and the cell culture medium was replaced on days 1, 4 and 7 

with fresh media. 

After 7 days of incubation, the cells were washed with 2 ml washing buffer (300 mmol 

L-1 sucrose, 0.1 mmol L-1 EDTA, 20 mmol L-1 HEPES buffered to pH 7.4 with few drops 

of trizma base) and then 1 ml of a lysis buffer (the same as the washing buffer above, 

except hypotonic with a sucrose concentration of 30 mmol L-1, and containing 0.001 % 

of Triton-X 100 (Sigma Aldrich). The subsequent detatched/lysed cells in the lysis 

buffer were homogenised for 10 to 15 minutes to ensure the complete detachment of 

the cells from the surface. The crudely homogenised cells were used for biochemical 

assays, the determination of protein content of the cells and also to determine the 

silver and electrolytes concentration (see below). The stock cell culture medium was 

also used for biochemical assays (LDH and ALP) and also to measure the 
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concentration of Ag and electrolytes (Ca2+, Na+ and K+) by inductively coupled plasma 

- optical emission spectrometry (ICP-OES, iCAP 7400 RADIAL, Hemel Hempstead, 

UK). The experiment was repeated again with the same design and treatment groups 

as above (n = 3). For the latter, the cells were fixed after 7 days and investigated under 

SEM for morphology (see below).  

 

3.2.4 Biochemical assays 

3.2.4.1 Alkaline Phosphatase 

ALP, optimum pH 9-10, is a protein found in organisms from bacteria to humans. It 

can be found in all body tissues and is particularly high in the liver, bile ducts, and 

bone. ALP is a biomarker which is widely recognized as a measure of osteoblast 

activity, differentiation and mineralization (Sabokbar et al., 1994). ALP activity can be 

easily measured using a colourimetric assay at 405 nm. The assay is based on the 

hydrolysis of para-Nitrophenylphosphate (pNPP) which is colourless to slightly yellow 

substrate which respresents p-Nitrophenol (PNP) in the presence of ALP enzyme 

giving a distinct yellow colour detectable at 405 nm. The progress of the enzyme 

catalysed reaction can be followed kinetically by measuring the change in absorbance 

at 405 nm over time. 

ALP activity was measured in the external culture media on each day of the experiment 

and also in the cell homogenates at the end of the experiment (7 days) to determine 

evidence of biological functionality in the cells. For the cell homogenates, 30 µl of 

sample were added to 96 well micro plates, after that, 105 µl of glycine buffer were 

added. Finally, 145 µl pNPP were added to the wells with multi-channel pipettes, then 

the plate was shaken twice and read immediately in a plate reader (VersaMax, 
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molecular devices, Berkshire, UK) for 300 seconds at 405 nm at room temperature. 

For the blank, glycine was added (instead of the sample) to the assay reaction mixture. 

The reagents were 100mM glycine buffer in Milli-Q ultrapure water (18.2 MΩ), 500µM 

pNPP (Acros organics) dissolved in glycine buffer and ALP (Sigma Aldrich) in glycine 

buffer. ALP activity curve is shown in Appendix 2, Figure 3. 

3.2.4.2 Lactate dehydrogenase 

LDH is an enzyme which is normally found in the cytoplasm of animal cells and has 

been implicated in cell biology/toxicology as a biomarker of cell injury. The basis of 

this assay in the current experiment is that osteoblast cells contain LDH, while cell 

culture media normally does not. The presence of LDH in the culture media is therefore 

interpreted as a release of LDH enzyme from the cells through a compromised cell 

membrane. LDH activity was measured every day in the external media, and after 7 

days in the cell homogenate. The method followed Campbell et al. (1999) who used 

100 µl of sample added to the reacting mixture (2800 µl of 6 mmol L-1 sodium pyruvate 

in 50 mmol L-1 phosphate buffer at PH 7.4, plus 100 µl of 6 mmol L-1 NADH solution), 

mixed directly in a 3 ml cuvette and the change in absorbance was measured over 2 

minutes at 340 nm (Jenway 7315 spectrophotometer). LDH activity was expressed as 

IU mg L-1 (μmol min-1 ml-1) for the media and μmol min-1 mg-1 cell protein for the cell 

homogenate. LDH activity curve is shown in Appendix 2, Figure 4. 

 

3.2.4.3 Protein assay 

Crudely homogenised cultured cells contain fairly high amount of proteins. Several 

commercially available colorimetric kits are available which could be used to measure 

the protein content of samples. The Bicinchoninic assay (BCA) (MC155208, Pierce, 
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Rockford, USA) is one of the colorimetric kits that offer speed and convenience for 

routine protein measurements. The method works by reducing copper ions by peptide 

bonds in the protein in alkaline conditions. The produced Cu ions bind to the 

bicinchoninic acid and this will result in a colour change of the dye. The procedure 

used 10 μl of each sample (cell homogenate or bovine serum albumin) into a 96-well 

microplate with 200 μl of fresh colour reagent, the plate was then mixed thoroughly on 

a shaker for few seconds then covered and incubated in 37 ͦC for 30 minutes. 

Absorbance of the samples were read at 592 nm (VersaMax, molecular devices, 

Berkshire, UK). To plot a calibration curve, the protein assay standards (bovine serum 

albumin) were diluted with phosphate buffer saline (phosphate buffer tablet (Sigma 

Aldrich) was dissolved in 100 ml of ultrapure deionised water) to give final protein 

concentrations of 2, 1.6, 1.2, 0.8, 0.2, 0.1 and 0 mg L-1. 

 

3.2.5 Metal and electrolyte analysis 

Concentration of silver (Ag), sodium (Na+), calcium (Ca2+) and potassium (K+) were 

determined both in homogenised cells at 7 days and in media after 1, 4 and 7 days. 

The purpose of measuring silver in the media was to investigate the amount of silver 

released from the coatings. Measuring the silver concentration in the cell homogenate 

was performed to determine the amount of silver which have been released from the 

coating but subsequently trapped/associated with the cell monolayer. The electrolyte 

composition of the cell homogenates were also measured with respect to osmotic 

health. For metal and electrolyte analysis, 400 µl of the external media from each 

sample were acidified with 20 µl of 70% nitric acid. For the cell homogenate, 800 µl 

from each sample were taken and acid digested with 1 ml of 70% nitric acid and left 
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overnight for complete acid digestion. Ag, Na+, K+ and Ca2+ of each sample were 

determined using ICP-OES. The concentration of silver was expressed as mg L-1, 

whereas the concentrations of Na+, K+ and Ca2+ were expressed as mmol L-1.  

3.2.6 Investigation of osteoblast morphology by Scanning Electron Microscope 

SEM was used to visualise the morphology of cells which have been grown on the 

discs over 7 days. Cells were fixed with 1 ml of 2.5% glutaraldehyde in sodium 

cacodylate buffer. Then cells were immersed in a series of different concentrations of 

ethanol (30, 50, 70, 95 and 100%) to dehydrate the cells. For further dryness, the cells 

were immersed in 50% of ethanol - 50% hexamethyldisilazane (HMDS) solution for 30 

min then in 100% of HMDS for 60 minutes. The specimens were removed from the 

HMDS and left in a fume cupboard to dry overnight.  

 

3.2.7. Protein adsorption test 

Results of this study showed that there was significantly higher protein on the 

specimens compared to the reference control. This was argued to be an adsorbed 

protein from the external media. To confirm this, protein adsorption test was conducted 

by adding the cell free media to the discs for 7 days and then measuring the adsorbed 

protein. 

 

3.2.7.1 Sample preparation  

Medical grade titanium discs were used for this experiment. The specimens were 

polished and silver plated then coated with nano HA and micro HA, finally, they were 

sterilised by gamma radiation (Chapter 2). 
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3.2.7.2 Experimental design 

The experiment was conducted in 24 well micro plates, n = 3 and the micro plate was 

the unit of replication. Control of the experiment was uncoated titanium (Ti), treatments 

were silver plated titanium (Ag), silver plated plus nano HA (Ag+nHA), silver plated 

plus micro HA (Ag+mHA). All the specimens were treated with the cell culture medium 

for 2 days prior to the experiment. At the experiment, cell free culture medium (DMEM 

+ 10%FBS + 1%antimicrbial) was added to the discs for 7 days, media was changed 

at day 1, 4, and 7. At the end of the experiment, the specimens were washed with 2 

ml washing buffer (300 mmol L-1 sucrose, 0.1 mmol L-1 EDTA, 20 mmol L-1 HEPES 

buffered to 7.4 with few drops of trizma base) and then 1 ml of a lysis buffer (the same 

as the washing buffer above, except hypotonic with a sucrose concentration of 30 

mmol L-1, and containing  0.001 % of Triton-X 100 (Sigma Aldrich). The lysis buffer 

was left on the discs for 15 minutes (same as the experiment above) and then removed 

to conduct the protein assay. Basically, the experimental condition was exactly the 

same as the biocompatibility experiment above but without cells. Protein assay was 

performed for the samples using exactly the same method as described earlier in this 

chapter. 

 

3.2.8 Statistical analysis 

All data are expressed as mean ± S.E.M. data were analysed using Statgraphics 16, 

out layers were removed using Box and Whisker plot, then the data were subjected to 

normality test. To investigate the treatment effect, the values were subjected to an 

analysis of variance (ANOVA) using the Tukey test to analyse the difference, for non-
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parametric data, Kruskal Wallis test was used and the differences were determined 

using Box and Whisker plot. To investigate the time dependent changes, two way 

ANOVA was used. Values of p < 0.05 were considered as significant difference. 
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3.3 Results 

3.3.1 Silver release to the external media and exposure to the cell monolayer 

Results showed that there was a constant silver ion release from the Ag+nHA to the 

external media over 7 days, silver release was lower in Ag+nHA than Ag and Ag+mHA 

samples (Table 3.1), silver exposure to the cell homogenate was also confirmed 

(Table 3.1). Silver concentration in the external media showed significantly higher 

values (one way ANOVA, p < 0.05) in Ag group as compared to other groups in all 

time points. It was also noticed that silver concentration was steadily increased over 7 

days in Ag, Ag+nHA and Ag+mHA groups. However, time points did not significantly 

affect silver release in Ag+nHA, while it can be noticed that time has a significant effect 

on silver release in both Ag and Ag+mHA groups (Table 3.1). 

Table 3.1. Concentration of silver in the external media over 7 days and in the cell 

homogenate at the end of the experiment 

Treatment Day 1 Day 4 Day 7 Homogenate 

Silver (mg L-1) 
Reference control 

Ti 

Ag 

Ag+nHA 

Ag+mHA 

0.10 ± 0.00 b 

0.16 ± 0.06 b 

1.12 ± 0.08 a 

0.98 ± 0.26 a 

0.60 ± 0.03 ab 

0.06 ± 0.00 c * 

0.06 ± 0.02 c 

2.14 ± 0.08 a * 

1.07 ± 0.22 b 

1.37 ± 0.08 b * 

0.01 ± 0.00 c *# 

0.01 ± 0.00 c # 

2.09 ± 0.11 a # 

1.19 ± 0.20 b 

1.16 ± 0.18 b # 

8.01 ± 0.40 

6.21 ± 1.20 

5.19 ± 1.89 

6.91 ± 3.61 

19.38 ± 7.37 

Data are expressed as mean ± S.E.M, (n = 6), different letters within the column 

indicate a significant difference, asterisk means significant different with the previous 

time point and (#) means a significant difference with day 1 (one way ANOVA, or 

Kruskal Wallis test, p < 0.05). 
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3.3.2 Cell health and morphology on the coatings 

Cell morphology at the end of the experiment is shown (Figure 3.1). SEM images of 

the cells after 7 days on uncoated titanium discs (Ti) showed that they were confluent, 

attached to each other and with normal morphology (stellate appearance with 

extensive filopodia). There was no evidence of cell membrane damage or loss of cell 

volume. Cells grown on the Ag+nHA discs showed the same features as on the 

titanium alloy control, except the cell density was lower. It was difficult to find healthy 

cells on the Ag+mHA coating, but some cellular debris and protein substances were 

found. Moreover, only a few surviving cells were found on silver-coated surface without 

added HA. The cells were stellate with extensive filopodia, but because they were 

sparse no cell to cell contact was observed. 

Cell health was also assessed biochemically in the cell homogenates. The ALP 

activity in the cells was low, as expected, since it is mainly induced later in cell 

differentiation (Figure 3.2). However, Ag+mHA measured higher ALP activity 

compared to others but the difference was not significant. There were time-dependent 

changes in the media ALP activity in all treatments except in reference control and 

Ag+mHA which did not show any significant difference over 7 days (Table 3.2). 

Consequently, the LDH enzyme activity in the cell homogenate was higher in the cells 

grown on culture plates without any alloy discs, followed by the Ti, then the silver-

coated groups (Figure 3.3). LDH activity in the cell culture medium was highest in the 

reference control on Day 1 but the difference with others was not significant. In Day 4, 

the highest value was recorded in Ag group which was significantly higher than other 

groups and also than the group itself in the previous time point (Day 1), (Table 3.3). 

The protein content of the cell homogenate showed that the cell growth was better on 

Ti alloy than just on the culture plate, regardless of the type of coating on the alloy 
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(Figure 3.4). The major electrolytes were also measured in the cell homogenates 

(Table 3.4). The Na+ concentration in the homogenates was higher in all treatments 

grown on Ti alloy compared to the culture plate surface. There were no changes in 

homogenate K+ concentration. However, the Ca2+ concentration in Ag+nHA and 

Ag+mHA treatments were significantly higher than any of the other groups (Table 3.4). 
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Figure 3.1. SEM images showing the morphology of primary osteoblast cells grown on different surfaces over 7 days. (A) 24-well 

microplates (x 200); (B) uncoated titanium disc (x 200); (C)  silver plated titanium (x 200); (D) Ag+nHA (x 200); (E) Ag+mHA (x 200). 

The cells exhibited a stellate shape with extensive filopodia. There was more cell covernge on the Ag+nHA compared to the Ag and 

Ag+mHA treatments, but less than the reference control and Ti. All the scale bars are 100 µm.
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Table 3.2. ALP enzyme activity in the cell culture media over 7 days  

Treatment Day 1 Day 4 Day 7 

ALP (nmol min-1 ml-1) 

Reference control  0.057 ± 0.019  0.054 ± 0.011 b 0.057 ± 0.019 a 

Ti 0.041 ± 0.018  0.023 ± 0.040 b * 0.040 ± 0.014 a * 

Ag 0.054 ± 0.017  0.071 ± 0.026 a * 0.047 ± 0.016 a * 

Ag+ nHA < 0.004 0.074 ± 0.001 a 0.052 ± 0.003 a * 

Ag+ mHA < 0.004 < 0.004 0.026 ± 0.001 b  

Data are expressed as mean ± S.E.M (n = 6). Different capital letters within each 

column indicate statistically significant difference, asterisk (*) means significant 

difference within the previous time point while (#) mean significant difference within 

day 1 (Kruskal wallis test, p < 0.05). 
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Figure 3.2. ALP enzyme activity in the cell homogenate after 7 days. Data are 

expressed as mean ± S.E.M (n = 6). Statistical analysis (Kruskal Wallis test, p < 0.05) 

showed no significant differences between groups. 

Table 3.3. LDH enzyme activity in the cell culture media 

Treatment Day 1 Day 4 Day 7 

LDH (nmol min-1 ml-1) 

Reference control  1.95 ± 1.01  0.84 ± 0.45 b 0.89 ± 0.26 a 

Ti 0.66 ± 0.53  0.63 ± 0.21 b 0.87 ± 0.27 a 

Ag 0.66 ± 0.31  2.64 ± 1.12 a * 0.47 ± 0.16 a * 

Ag+nHA 1.87 ± 1.46  0.47 ± 0.08 * 0.44 ± 0.20 a  # 

Ag+mHA 0.66 ± 0.20  0.60 ± 0.14  0.18 ± 0.13 b * # 

Data are expressed as mean ± S.E.M (n = 6). Different capital letters within each 

column indicate statistically significant difference, asterisk (*) means significant 

difference within the previous time point while (#) mean significant difference within 

day 1 (Kruskal Wallis test, p < 0.05). Detection limit is 0.004 nmol min-1 ml-1. 
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Figure 3.3. LDH enzyme activity in the cell homogenate after 7 days. Data is expressed 

as mean ± S.E.M (n = 6). Different letters with bars indicate Statistical significant 

difference between the groups (Kruskal Wallis test, p < 0.05). 

 

 

Figure 3.4. Protein content of the cell homogenate after 7 days exposure. Data are 

expressed as mean ± S.E.M (n = 6). Different letters within bars indicate statistically 

different from each other (one way ANOVA, p < 0.05). 
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Table 3.4. Total concentration of electrolytes (Ca2+, Na+ and K+) in cell homogenate.  

Treatment Ca2+ Na+ K+ 

mmol L-1 

Reference 
control 

0.01 ± 0.00 b 0.10 ± 0.01 b 0.02 ± 0.00 b 

Ti 0.11 ± 0.02 b 1.10 ± 0.18 a 0.09 ± 0.01 a 

Ag 0.09 ± 0.02 b 1.21 ± 0.12 a 0.10 ± 0.02 a 

Ag+nHA 0.30 ± 0.01 a 1.04 ± 0.24 a 0.13 ± 0.04 a 

Ag+mHA 0.42 ± 0.09 a 0.75 ± 0.13 ab 0.05 ± 0.00 ab 

Data are expressed as mean ± S.E.M (n = 6). Different letter within the column 

indicate significant difference (one way ANOVA, p < 0.05). 

 

3.3.3 Changes of electrolytes in the cell culture media over the coatings 

Concentration of electrolytes (Ca2+, Na+ and K+) was measured in the cell homogenate 

and the external media over 7 days. Ca2+ values in the external media in Ag+nHA and 

Ag+mHA were significantly lower than other groups in (one way ANOVA, p < 0.05). 

While in Day 4, Ag+nHA showed a significantly lower value than others. Time points 

did not have an effect on Ca2+ in all groups except Ag+mHA which showed a significant 

difference at all time points (Table 3.5). 

  Na+ level in the external media in Day 1 did not show any significant difference 

between groups. While the value significantly decreased in Day 4 in Ag, Ag+nHA and 



88 
 

Ag+mHA groups. The level continued to decrease in Ag and Ag+mHA groups while 

Ag+nHA showed an increase in Day 7 (Table 3.5).  

Regarding the K+ level, a gradual decrease over 7 days was noticed in 

reference control and Ti (Table 3.3), however, other groups showed an increase in K+ 

level over 7 days. To compare the groups with each other, the Ti showed highest value 

in Day 1, while the reference control measured highest K+ in the following time points. 

Lowest K+ value in all time points was measured in Ag+nHA which was significantly 

lower (one way ANOVA, p < 0.05) than other groups (except Ag+mHA in day 7). 
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Table 3.5. Concentration of Na+, K+ and Ca2+ in the external media over 7 days. 

Element Treatment Day 1 Day 4 Day 7 

mmol L-1 

 
 

Na+ 

Reference  control 

Ti 

Ag 

Ag+nHA 

Ag+mHA 

143.08 ± 1.89 a 

143.90 ± 7.31 a 

138.59 ± 1.51 a 

137.23 ± 4.57 a 

145.97 ± 3.89 a 

158.75±14.37 a 

131.90±1.76 ab 

122.70±3.70 b* 

113.10±6.66 b* 

124.58±2.26 b* 

139.68 ± 3.85 a 

129.27 ± 3.24 ab 

120.31 ± 1.55 b# 

126.74 ± 1.69 ab 

120.81 ± 2.13 b# 

 
 

K+ 

Reference control 

Ti 

Ag 

Ag+nHA 

Ag+mHA 

6.48 ± 0.13 ab 

6.92 ± 0.20 a 

6.41 ± 0.05 ab 

6.24 ± 2.54 b 

6.68 ± 0.14 ab 

7.23±2.95 a 

5.96±0.10 ab* 

5.53±0.16 ab* 

4.87±0.50 b* 

5.69±0.10 ab* 

6.35 ± 0.19 a 

5.83 ± 0.14 ab# 

5.44 ± 0.05 b# 

5.78 ± 0.07 ab 

5.48 ± 0.08 b# 

 
 

Ca2+ 

Reference  control 

Ti 

Ag 

Ag+nHA 

Ag+mHA 

1.88 ± 0.02 a 

2.15 ± 0.17 a 

1.93 ± 0.05 a 

0.76 ± 0.04 c 

1.41 ± 0.06 b 

2.20 ± 0.18 a 

1.89 ± 0.02 ab 

1.76 ± 0.04 bc 

0.67 ± 0.08 d 

1.45 ± 0.03 c 

2.01 ± 0.06 a 

1.87 ± 0.04 a 

1.78 ± 0.06 a 

0.74 ± 0.05 b 

1.02 ± 0.14 b*# 

Data are expressed as mean ± S.E.M (n = 6). Different letters within the column indicate significant difference from each other. 

Asterisk (*) means significant difference within the previous time point while (#) mean significant difference within day 1 (one way 

ANOVA, p < 0.05). Two way ANOVA showed that there were both time and treatment effect on Ag, Ca2+, Na+ and K+ concentration.
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3.3.4 Protein adsorption test 

Results showed that the amount of protein was ranging from 0.02 to 0.07 mg ml-1 

(Figure 3.5). The differences between the groups were not significant (Kruskal Wallis 

test, p > 0.05).  

 

Figure 3.5. Concentration of protein on the specimens after 7 days exposure to the 

cell free culture medium. Data are mean ± S.E.M, (n = 3), there was no significant 

difference between the treatments (Kruskal Wallis test, p > 0.05). 

3.4 Discussion   

Clinical demand on dental implants is growing over the last few years, possibly due to 

the several advantages over traditional tooth/teeth replacements. Researchers have 

always tried to modify the implant surface so that to improve antibacterial activity and 

biocompatibility. For any new material to be used in clinical practice, there are serval 

tests that must be performed to confirm the biocompatibility with the surrounding living 

cells. Silver nanoparticles coating on titanium dental implants can effectively inhibit 

bacterial growth on the surface of the implant, however, concerns are increasing 

regarding the cytotoxic side effects of ionic silver and silver nanoparticles (Foldbjerg 
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et al., 2009; Ahamed et al., 2010).  Results of the present study demonstrated that 

Ag+nHA can allow osteoblast cell survival and growth but with lower density and 

confluency as uncoated titanium discs. Furthermore, Ag and Ag+mHA were less 

biocompatible than Ag+nHA. This result can be elucidated by the fact that HA 

nanoparticles can allow for more osteoblast cell growth and proliferation than micro-

sized particles (Shi et al., 2009). Although HA is more biocompatible than titanium and 

rough surfaces can perform better than smooth surfaces in enhancing osteoblast cell 

proliferation (Bachle et al., 2004), so the reason of  less confluent cells on Ag+nHA 

than those on titanium can be due to the presence to free silver ions that to some 

extent had detrimental effects on cell proliferation. 

 

3.4.1 Effect of the coatings on cell morphology and growth  

Cells were allowed to grow and spread for 7 days. SEM images revealed that 

reference control and Ti cells were healthy, confluent and looked as exprected, cells 

on Ag+nHA were healthy and contacting with each other without having a noticeable 

membrane rupture (Figure 3.1). From the osseointegration point of view, cells were 

well attached to the nHA layer, however, they were less confluent than the control but 

more confluent than Ag and Ag+mHA, cell shrinkage was observed on Ag and 

Ag+mHA but not on Ag+nHA this finding indicates that silver causes cell shrinkage but 

cells on Ag+nHA were healthier. This indicates that the surface topography and 

chemistry of Ag+nHA was appropriate for the cells to survive and grow better than Ag 

and Ag+mHA, this is the first study to compare between nan HA and micro HA in terms 

of cell growth and morphology. In addition, cell health was investigated metabolically, 

there was no adverse anaerobic metabolism and not significant cell membrane rupture 
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as LDH in the media was low, the dissolved silver did not seem to induce a significant 

toxicity to the cells (Table 3.3, Figure 3.3). There was no evidence of change in cell 

volume and osmotic stress as the Na+ and K+ were not damaged. This result was also 

validated by Kawata et al. (2009) who found that more than 1 mg L-1 of silver for 24 

hours had cytotoxic effects against Human hepatoma cells. However, another study 

found that minimum concentration of released silver to kill osteoblast cells was 5.1 mg 

L-1 (Albers et al., 2013). The latter disagrees with the results of this study, as it was 

found here study that silver release was less than 5 mg L-1 in both Ag and Ag+mHA 

and the dissolved silver ions were probably toxic to the primary osteoblast cells. The 

converse results can clarify the fact that not only released silver ions (or particles 

themselves) can have impact on cell viability; the surface chemistry and whether silver 

nanoparticles were coated or not, can also affect the cell viability. In the current study, 

there was no significant difference in the silver release to the external media in Ag, 

Ag+nHA as well as Ag+nHA (Table 3.1). Nonetheless, Ag+nHA exhibited more 

biocompatibility than others, the presence of HA nanoparticles which prevented the 

direct contact between the cells and the silver layer could be the reason of a better 

biocompatibility demonstrated by Ag+nHA. This result supports Samberg et al. (2010) 

who found that coated silver particles exhibit less cytotoxicity than the bare ones. It 

also supports the fact that HA nanoparticles are more biocompatible than HA micro 

particles. 

ALP assay was performed to investigate the activity and function of osteoblast 

cells. The high ALP enzyme in the external media indicates that cells are active 

metabolically and they are growing and also high ALP enzyme in the cell homogenate 

indicates that there were a high number of surviving cells in the monolayer before 

homogenization. In the current study, ALP activity in external media was as low as it 
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was close to the background levels of the instrument (Table 3.2). This result shows 

that 7 days is not enough for 12000 cells/well to produce detectable ALP enzyme. 

However, values in the cell homogenate were also close to the background level which 

can also be the result of low quantity of cells resulting in undetectable ALP enzyme.  

Regarding LDH activity, values in the external media was close to the 

background levels of the machine (Table 3.3) which means that membrane integrity 

of the cells was intact and LDH was not released out of the cells. This can give a 

conclusion that cells were surviving during the experimental period. Same results were 

found in the homogenate indicating that quantity of the cells was not enough to 

produce measurable LDH activity. Protein assay results of the cell homogenate 

revealed that the protein density was significantly higher in all treatment groups as 

compared to the reference control (Figure 3.4). This result indicates that the cells were 

surviving on all discs, however, SEM images do not agree with this finding as it was 

shown that no cells were surviving on Ag+mHA and only few were surviving on Ag 

group. It could be argued that high protein content in Ag+mHA and Ag groups might 

be the result of the formation of a protein layer on the coating coming from FBS in the 

culture media. Hellstrand et al. (2009) demonstrated the attraction of proteins by silver 

nanoparticles resulting in the formation of a protein corona on the particles. 

  

3.4.2 Total silver release from the coatings and possible effects on the 

electrolyte balance 

 Silver and electrolytes were measured in the external media over 7 days (Table 3.1 

and Table 3.5) and in the cell homogenate (Table 3.4). The results showed that the 

concentration of Ca2+ in the external media was lower in Ag+nHA and Ag+mHA than 

other groups over 7 days, this might be the result of chemical reaction between calcium 
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in the media and hydroxide ions present in the HA which results in the formation of 

calcium hydroxide Ca(OH)2. This finding was also supported by (Harding, Rashid et 

al., 2005) who demonstrated that the surface of HA is able to adsorb Ca2+. The 

concentration of Ca2+ in the cell homogenate indicated that there was significantly 

higher Ca in Ag+nHA and Ag+mHA than other groups. There are two explanations for 

this finding, either Ca2+ ions were released from the coating and settled in the cell 

monolayer, or it might be due to homogenisation which can result in detaching HA 

particles from the surface.  

Silver release to the external media was significantly increasing over 7 days in 

Ag and Ag+mHA, while silver release from Ag+nHA was constant and not significantly 

different over 7 days. This result indicates that Ag+nHA can release a constant amount 

of silver for a long time which could be sufficient to retain antibacterial activity without 

having any adverse effects to the cells. Moreover, as the sintering process results in 

higher silver release due to the formation of silver oxide (see the discussion in chapter 

2). Therefore, the explanation of the lower silver release in Ag+nHA and Ag+mHA as 

compared to Ag might be due to the sintering process which was mandatory during 

HA application that has probably caused higher silver release in Ag+nHA and 

Ag+mHA during the disc pre-treatment with the cell culture media prior to the 

experiment.        

Furthermore, it was noticed in the cell homogenate that the concentration of 

Na+ and K+   (normalised to protein) was lower in Ag+mHA as compared to others. This 

could be due to the presence of high amount of silver in the cells which is known to 

block Na+, K+ -ATPase membrane bound transport system (Hussain et al., 1994). 

Silver can prevent Na+ and K+ entry from the media to the cells, also results in normal 
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outward movement of Na+ and K+ ions from the cells which leads to slowly depleting 

the cell of Na+ and K+.  

3.4.3 Conclusions   

The aim of this study was to determine the biocompatibility of silver plated discs (Ag, 

Ag+nHA and Ag+mHA) with human primary osteoblast cells. Ag+nHA was more 

biocompatible than Ag and Ag+mHA. Comparing to the control, there were more cells 

on uncoated titanium compared to Ag+nHA. Moreover, silver release in this study was 

less than that of dissolution experiment (chapter 2.3.5), which is due to the disc pre-

treatment with the cell culture media for 2 days prior to the experiment. HA 

nanoparticles in Ag+nHA, enhanced osteoblast cell viability and growth compared to 

Ag and Ag+mHA. Furthermore, there were some experimental challenges in this study; 

there was difficulty in detecting cellular enzymes (LDH and ALP) because of using low 

number of cells initially which resulted in limited enzyme production. Thus, it is useful 

to increase the number of cells initially to produce high amount of enzymes and better 

interpret the results. In addition, it was found that protein adsorption from the media to 

the specimens were masking the actual protein content of the cells, so it is not 

recommended to normalise enzyme activity and electrolyte concentration in the cell 

homogenate per amount of proteins in the cell homogenate.     
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4.1 Introduction 

The release of dissolved silver from silver-containing materials used in medical 

implants can potentially be beneficial as a biocide for infection control immediately 

after surgery. However, dissolved silver can also be toxic to mammalian cells. The 

target organs for dissolved silver include the liver and kidney in rodents and humans. 

In rats, the lethal dose (LD50) is around 400 mg kg-1 body weight of silver nitrate 

(Tamimi et al., 1998). In humans, there is no lethal concentration value of silver, but 

the lethal toxic dose rate of silver is estimated to be higher than 0.5 µg/kg of body 

weight/day (Hadrup and Lam. 2014). 

The toxicity of dissolved silver is dependent on the exposure concentration and 

time (i.e., the total dose), but also on the chemistry of the cell culture medium; and 

how it alters bioavailability, the type of cells used, and the cell density in the culture 

system (i.e., the dose delivered per cell). For example, for silver nitrate, 5 mg L-1 

AgNO3 in cell culture media (DMEM + 10%FBS + 1% antibiotic) was found to induce 

significantly more LDH leak to the external media compared to unexposed controls in 

human fibroblast cells after 24 hours (Meran et al., 2013). For silver nanoparticles, it 

is unclear what the dose metric should be, but on a mass concentration basis, Ahamed 

et al. (2010) found that the tolerance of different cell lines to silver varied, even though 

the cells were exposed to similar amount of silver. For example, the PC-12 cell line in 

a supplemented RPMI-1640 media and exposed to 50 mg L-1 of silver nanoparticles 

(15 nm in size) showed significantly reduced mitochondrial function and dopamine 

level after 24 hours (Hussain et al., 2006). While, Meran et al. (2018) showed that 

exposure to 50 mg L-1 of silver nanoparticles (size not defined) did not induce a 

significant damage to the human fibroblast cell morphology and there was no 

appreciable leak of LDH release after 24 hours exposure.  
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The mechanisms of dissolved silver toxicity are partly understood. For silver 

salts (or silver coatings made by electroplating), the silver may dissolve to yield the 

Ag+ ion. The free silver ion can bind to –SH groups on proteins and enzymes (Yang et 

al., 2011). Ag+ ions inhibit the Na+ K+-ATPase especially (Hussain et al., 1994) and 

also interferes with Na homeostasis. Dissolved silver can also cause oxidative stress 

when enzymes involved in defence against reactive oxygen species are damaged 

(Carlson et al., 2008).  In body fluid or culture medium where high concentrations of 

Cl- ions are present, the Ag rapidly forms a poorly soluble silver chloride complex which 

is less bioavailable (Hansen et al., 2015). So the bioavailability of Ag depends on the 

presence of Cl- ions, -SH groups on proteins and other organic molecules. However, 

for cultured cells on silver plated discs, it is unclear whether the cell damage is caused 

by direct contact toxicity between the cells and the silver layer, or if it is indirect via the 

release of dissolved silver into the media. Results of the previous experiments (chapter 

2 and 3) showed that there was a constant silver dissolution from the coatings into the 

external media. Moreover, there was a silver toxicity which led to a significant loss of 

cells and an inability of the cells to proliferate, especially on Ag and Ag+mHA surfaces.  

The aim of this experiment was to investigate the toxicity of silver released from the 

silver plated titanium implants to human primary osteoblast cells; and also to 

investigate the effect of cell culture medium on bioavailability of dissolved silver. The 

specific objectives were to expose the silver coated specimens (without cells present) 

to the cell culture medium (DMEM + 10FBS + 1% antimicrobial) so as to condition the 

media with dissolved silver from silver plated titanium discs; and then transfer the 

conditioned media to the growing cells in culture plates. A second objective was to 

measure the dissolved silver uptake by the cell monolayer, and the total silver release 

to the external media. Then finally, to study the toxic effect of dissolved silver on the 
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cells by measuring the LDH release, protein content of the cells and also examining 

the cells in situ under the microscope after exposure. 

  

4.2 Materials and methods 

4.2.1 Cell culture  

Human primary osteoblast cells were cultured in DMEM plus 10% FBS and 1% 

antimicrobials (antibiotic and antimycotic). The culture conditions were the same as 

described in Chapter 3. Cells at passage 7 and 8 were used for this experiment. 

 

4.2.2 Experimental design 

The control for the experiment was untreated cells in normal culture media (hereafter 

termed the ‘reference control’). The treatments were cells exposed to media from silver 

plated titanium discs (Ag), silver plated titanium disc plus nano HA (Ag+nHA), and 

silver plated titanium discs plus micro HA (Ag+mHA). All the discs, as prepared for the 

treatments above, were sterilised by gamma radiation prior to the experiment (see 

chapter 2). The discs without any cells were then covered with 1 ml of cell culture 

medium (DMEM , supplemented with 10% FBS and 1% antimicrobial) and incubated 

in 5% CO2 with 95% air  in an incubator  at 37 °C (HETO-HOLTEN cell house 170) for 

2 days, then the media was discarded and the discs were ready for the actual 

experiment. This step enabled the removal of any rapidly exchangeable silver from the 

coatings that might damage the cells (see Chapter 2).   

The experiment was run in 24 well microplates (n = 6 plates/treatment). The 

microplate was the unit of replicate in the experiment and the experiment was run on 
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two separate occasions with different batches of the cells, and each run was triplicated 

(x3 plates/treatment/run). The cells were grown directly on cell culture dishes and in 

parallel, the discs were incubated with culture media without the cells for this initial 

part of the experiment. Breifly, while the discs were incubating in the cell culture 

medium, at the same time, cells were grown in a second series of plates (n = 6 

plates/treatment, seeded with 30,000 cells/well). To initiate exposure of the cells, the 

now conditioned media from the incubation of the discs was added to the cell cultures. 

The media for the cells were replaced by the conditioned medium from the discs on 

days 1, 4 and 7 (Figure 4.1). Samples of the conditioned media were collected before 

adding it to the cells (termed ‘before exposure’) and then after exposing the cells to it 

for fixed durations (termed ‘after exposure’). The silver concentration in the 

conditioned media was measure before and after the exposure using ICP-MS. The 

media (after exposure) was also analysed for Na+, Ca2+ and K+ using ICP-OES, as 

well as for LDH and ALP activities. The media was sampled from cell growing plates 

at days, 1, 4 and 7. At the end of the experiment, the cell were photographed in situ 

under the light microscope (OLYMPUS, CK30-F200) using (Galaxy s6 camera) to 

examine the cell morphology and confluence of the dishes. Then, the cells were 

washed with 2 ml of washing buffer (300 mmol L-1 sucrose, 0.1 mmol L-1 EDTA, 20 

mmol L-1 HEPES buffered to 7.4 with few drops of Trizma base) and then 1 ml of a 

lysis buffer [the same as the washing buffer above, except hypotonic with a sucrose 

concentration of 30 mmol L-1, and containing 0.001 % of Triton-X 100 (Sigma Aldrich) 

to lyse the cells.  The resulting cell homogenate was analysed for total protein content, 

and LDH and ALP activities. The concentration of total Ag, Na+, Ca2+ and K+ were also 

measured by ICP-MS or ICP-OES as appropriate. 
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 4.2.3 Lactate dehydrogenase and alkaline phosphatase enzyme activity   

LDH and ALP enzyme activities were measured in the cell culture medium and the cell 

homogenate. For the former, 100 µl of the sample was added to 2800 µl assay 

reagents in a 1 ml cuvette and absorbance was read at 320 nm wavelength. For the 

later, 30 µl of sample was added to 250 µl assay reagent in 96 well microplates and 

the absorbance was read at 405 nm. The procedures are described in detail in Chapter 

3. 

 

4.2.4 Protein assay 

The protein assay was conducted to measure the protein content of the cell 

homogenate to normalise the LDH and ALP activity, as well as allowing the metal or 

electrolyte analysis to be expressed per mg of protein. Briefly, 10 µl of the sample was 

added to 200 µl assay reagents and then the absorbance measured at 592 nm. The 

protocol is discussed in Chapter 3. 

 

4.2.5 Metal and electrolyte analysis 

The total silver concentration in the external media and the cell homogenate was 

measured using by ICP-MS (X series, 0475, UK). The Na+, K+ and Ca2+ concentrations 

in the external media and the cell homogenate was also determined using ICP-OES 

(iCAP 7400 RADIAL, Hemel Hempstead, UK). The procedure is exactly the same as 

described in Chapter 3. 
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4.2.6 Statistics 

Statgraphics version 16 was used for the statistical analysis. All data were subjected 

Box and Whisker plot to remove the outliers, if present. Standard skewness and 

standard kurtosis were used to determine whether the data were normally distributed. 

For the data which were normally distributed, data were subjected to one way analysis 

of variance (ANOVA) for treatment or time-effects within treatment, followed by 

Tukey’s multiple range test to determine the locations of any significant differences. 

For non-parametric data, the Kruskal Wallis test was used and significant differences 

were found using Box and Whisker plot.  However, for multifactor analysis (treatment 

x time), a two way ANOVA was used. The default 95% confidence interval was used 

for all statistical analysis. All data are expressed as mean ± S.E.M.



103 
 

 

Figure 4.1. The experimental design, the approach to the experiment involved seeding the cells in one culture plate and treating the 

samples with the cell free culture medium in another plate. Note the time points on which the conditioned media was exposed to the 

cells.
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4.3 Results 

4.3.1 Release of silver to the external media 

Silver release to the external media was assessed by measuring the total silver in the 

media by ICP-MS before and after additions to the cells. The silver concentration in 

the media of the reference control was close to the detection limit, as expected (Table 

4.1). All the treatments containing added silver, were significantly higher than the 

reference control (one way ANOVA, p < 0.05). Silver release from all the silver plated 

discs to the external media (conditioned media before exposure) was approximately 1 

mg L-1. No significant difference was found between the groups and/or between the 

time points in those treatments that contained silver (Table 4.1). Cumulative silver 

release over 7 days was approximately 3 mg L-1 in all treatments (Figure 4.2), and no 

statistically significant difference was located between the treatments (one way 

ANOVA, p < 0.05). 

Silver concentration in the external media (after exposure) was lower than 1.4 mg L-1 

in all time points. Release of Ag into the media gradually increased over 7 days and it 

was significantly higher at day 7 compared to day 4 and day 1 (one way ANOVA, p < 

0.05). There was no significant difference in silver release from Ag+nHA over 7 days, 

however, silver release in Ag+mHA was significantly lower in day 1 compared to others 

(one way ANOVA, p < 0.05) , then significantly increased in day 4 and 7 (Table 4.1). 

Since there was two factors affecting the silver release (treatment and time), a two 

way analysis of variance (ANOVA) was performed and showed that both factors have 

a significant effect on silver release.  
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Table 4.1. Total silver concentration in the conditioned media (mg L-1) before and after adding the media to the cells. 

Treatment Day 1 

      (before)                          (After) 

Day 4 

       (before)                          (After) 

Day 7 

       (before)                         (After) 

Reference control   0.009 ± 0.006 C  0.012 ± 0.004 B  0.008 ± 0.005 B 

Ag 0.783 ± 0.037 z A 0.669 ± 0.082 z A 0.779  ± 0.071 z A 0.738 ± 0.078 z A 1.667 ± 0.049 y A 1.374 ± 0.123 y A 

Ag+nHA 1.335 ± 0.334 Za 1.017 ± 0.305 zA 0.678 ± 0.058 zAB  0.871 ± 0.11 xA 1.169 ± 0.074 z A 1.105 ± 0.153 z A 

Ag+mHA 0.705 ± 0.071 zyA 0.406 ± 0.074  z B 0.490 ±  0.053 zB 

 

0.674 ± 0.048 zyA 1.282 ± 0.085 y A 1.002 ± 0.196 y A 

 Data are mean ± S.E.M. (n = 6). Different capital letters within the column indicate significant difference between treatments, while 

different small letters within the row indicate a significant difference between time points within treatment. One way ANOVA, p value 

< 0.05. Two way ANOVA showed that there is time and treatment effect on silver release (p < 0.05). Reference control only shows 

(after) values as it was not pre-conditioned with silver to have (before) values.
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Figure 4.2. Cumulative silver release from the discs to the external media over 7 days 

(A) before exposure (B) after exposure. Data are mean ± S.E.M, different letters 

between the time points of the same treatment indicate a significant difference, while 

different small letters between the treatments in the same time point indicate a 

significant difference (one way ANOVA, p < 0.05). 
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4.3.2 Cell health and morphology after 7 days exposure 

The cells were examined under the light microscope after 7 days (Figure 4.3). The 

osteoblasts were confluent and appeared healthy in all treatments, with no obvious 

signs of membrane damage or cell swelling. In addition, there was no significant 

difference (one way ANOVA, p > 0.05) in protein content between the treatments 

(Figure 4.4). Although the silver exposure was confirmed in the cell homogenate, there 

was not an appreciable LDH leak to the external media (Table 4.2) and there was no 

significant difference (one way ANOVA, p > 0.05) in the LDH activity in the cell 

homogenate between the reference control and the others (Figure 4.5). ALP activity 

was close to the background level in both cell culture medium and cell homogenate 

(Table 4.3, Figure 4.6). The concentration of silver in the cell homogenates was lower 

than 0.1 µg mg protein-1 in all groups, indicating that only small fraction of the silver 

was accumulated in the cells (Figure 4.7). The cell homogenate from the Ag+mHA 

treatment showed a trend of higher silver concentrations (0.08 ± 0.01 µg mg-1 protein), 

relative to the Ag and Ag+nHA treatments which were 0.07 ± 0.01 µg mg-1 protein and 

0.05 ± 0.01 µg mg-1  protein, respectively. However, this trend was not statistically 

significantly (Figure 4.7).In the cell homogenate, Na+ concentration was significantly 

higher in reference control compared to other groups (one way ANOVA, p < 0.05), 

while there was not a significant difference between the groups regarding Ca+ and K+ 

level (Figure 4.7). 
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Figure 4.3. Microscopical images of the osteoblast cells after 7 days exposure to silver. 

(A) reference control (B) Ag (C) Ag+nHA (D) Ag+mHA. Note the cells are healthy and 

confluent, they are attached to each other without a noticeable membrane. 

 

4.3.3. Protein content, ALP and LDH activity 

The BCA method was used to measure the cellular protein content after 7 days growth. 

There was no significant difference between the treatments (Figure 4.4). Protein 

content showed a trend of being higher in the homogenates of the reference control 

cells, measuring 0.14 mg mL-1 and the lowest values in the homogenates from the 

Ag+nHA treatment measuring 0.126 mg mL-1, although this was not statistically 

significant (Figure 4.4). The LDH activity assay worked as expected. In the cell 

homogenate, the activity was around 0.05 µmol min-1 mg protein-1 in all treatments 
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and the control (Figure 4.5). There was not a significant difference between the control 

and the treatments, nor between the treatments (Kurskal wallis, p > 0.05). This 

indicates that the cells were not leaking an appreciable amount of LDH into the 

external media (Table 4.2). 

ALP activity was measured as a functional biomarker of bone cells, given the 

importance of ALP activity in bone formation. As expected for immature cells, a small 

background of ALP activity was detected with values being slightly higher than the 

detection limit in the cell homogenates (Figure 4.6); but no treatment effect was 

observed. The ALP activity in the external media was also low but above the detection 

limit (Table 4.3).  

 

Figure 4.4. Protein content of the cell homogenates after 7 days. Data are mean ± 

S.E.M., (n = 6). Unlabelled means there was no significant difference between the 

treatments (one way ANOVA, p > 0.05). 
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Figure 4.5. LDH enzyme activity in the cell homogenates after 7 days. Data are 

mean ± S.E.M., (n = 6). Unlabelled means there was no significant difference 

between the treatments (Kruskal Wallis test, p > 0.05). 

 

Figure 4.6. ALP enzyme activity in the cell homogenates after 7 days. Data are mean 

± S.E.M., (n = 6). Unlabelled means there was no significant difference between the 

treatments (Kruskal Wallis test, p > 0.05). 
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Table 4.2. LDH enzyme activity in the external media over 7 days. 

Treatment Day 1 Day 4 Day 7 

LDH (nmol min-1 ml-1) 

Reference control 0.343 ± 0.198 0.317 ± 0.158 0.582 ± 0.291 

Ag 0.449 ± 0.206 0.925 ± 0.383 0.899 ± 0.546 

Ag+nHA 0.476 ± 0.224 3.201 ± 2.037 0.608 ± 0.341 

Ag+mHA 0.185 ± 0.132 0.476 ± 0.312 0.793 ± 0.332 

Data are mean ± S.E.M, (n = 6). There were no significant difference between the 

treatments and treatments with the control, also no time effect (Kruskal Wallis test, p 

> 0.05), Detection limit was 0.549 nmol min-1 ml-1. No label means no significant 

difference.  

 

Table 4.3. ALP activity in the external media over 7 days. 

Treatment Day 1 Day 4 Day 7 

ALP (nmol min-1 mL-1) 

Reference control 0.155 ± 0.043  0.209 ± 0.070  0.055 ± 0.026 

Ag 0.092 ± 0.023  0.093 ± 0.025 0.066 ± 0.029 

Ag+nHA 0.035 ± 0.011  0.053 ± 0.008  0.007 ± 0.003 

Ag+mHA 0.064 ± 0.021  0.059 ± 0.020  0.006 ± 0.001 

Data are mean ± S.E.M, (n = 6). There were no significant difference between the 

treatments and treatments with the control, also no time effect (Kruskal Wallis test, p 

> 0.05).  Detection limit was 0.004 nmol min-1 ml-1. 

 



112 
 

4.3.4 Concentration of Na+, K+ and Ca2+ in the external media  

Concentration of Na+, K+ and Ca2+ was measured in the external media over 7 days. 

Results showed that there was a significant reduction in Ca2+ concentration in all time 

points in Ag+nHA compared to the reference control (Table 4.4), (one way ANOVA, p 

< 0.05). Moreover, calcium concentrations in all groups was significantly higher in day 

4 and 7 compared to day 1 (one way ANOVA, p < 0.05). The Na+ concentration in the 

external media gradually increased over 7 days, however, the differences were not 

statistically significant (one way ANOVA, p < 0.05). Potassium level in the external 

media was also slightly increased in all groups, but the differences were not 

statistically significant (Table 4.4).  
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Table 4.4. Concentration of Ca2+, Na+ and K+ in the external media over 7 days. 

Element Treatment Day 1 Day 4 Day 7 

mmol L-1 

 
 

Ca2 

 

Reference control 

Ag 

Ag+nHA 

Ag+mHA 

1.15 ± 0.12 a 
0.76 ± 0.18 b 
0.64 ± 0.05 b 
1.18 ± 0.08 a 

1.83 ± 0.07 a * 

2.01 ± 0.07 a * 

1.11 ± 0.07 b * 

1.78 ± 0.09 a * 

1.72 ± 0.09 a 

1.97 ± 0.15 a 

0.85 ± 0.13 b 

1.59 ± 0.20 a 

 
 

Na+ 

 

Reference control 

Ag 

Ag+nHA 

Ag+mHA 

140.75 ± 4.17 
115.51 ± 13.24 
121.91 ± 2.30 
123.65 ± 2.50 

159.81 ± 9.08 
146.58 ± 4.75 
146.39 ± 7.90 
160.78 ± 3.12 

148.10 ± 2.42 
137.67 ± 11.30 
132.04 ± 14.58 
141.53 ± 13.86 

 
 

K+ 

 

Reference control 

Ag 

Ag+nHA 

Ag+mHA 

6.23 ± 0.14 
5.53 ± 0.62 
5.80 ± 0.10 
5.89 ± 0.10 

7.25 ± 0.39 
7.12 ± 0.22 
7.09 ± 0.40 
7.70 ± 0.15  

6.64 ± 0.09 
6.62 ± 0.52 
6.35 ± 0.68 
6.80 ± 0.66 

Data are mean ± S.E.M (n = 6). Different letters within the row indicate statistically significant difference from each other, asterisk 

indicates a significant difference from the previous time point (one way ANOVA p <0.05). Unlabelled means no significant 

difference. Two-way ANOVA showed that there was a significant time and treatment effect on Ca2+ concentration. 
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Figure 4.7. Concentration of (A) silver, (B) Ca2+, (C) Na+, and (D) K+, after 7 days in the cell homogenate. Data are mean ± S.E.M, (n 

= 6) different letters indicate significant difference with each other (one way ANOVA, p < 0.05). Unlabelled means no significant 

difference between the treatments.
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4.4 Discussion 

In this study, the potential toxicity of dissolved silver in conditioned media derived from 

silver coated titanium discs was explored. The experimental approach exposed human 

primary osteoblast cells to the conditioned media so that any direct toxicity of silver 

could be identified, and separated from any contact toxicity associated with cells grown 

directly onto the silver-coated titanium alloy discs (Chapter 3). The Silver release into 

the conditioned media was demonstrated, with a consistent concentration of silver of 

around 1 mg L-1 from the discs over 7 days. Cumulative silver release over 7 days was 

around 3 mg L-1. This amount of silver over 7 days is acceptable, since it is still higher 

than the required antibacterial dose which is around 0.2 ppm (Besinis et al., 2017). All 

the treatment groups (except reference control) released almost the same amount of 

silver to the external media. However, when osteoblasts were exposed to this 

conditioned media, there was no evidence of adverse cell morphology compared to 

the reference control. The control cells showed healthy, confluent cells with normal 

morphology and a negligible background of silver in the cells throughout the 

experiment. After 7 days exposure to the relevant conditioned media, regardless of 

the type of silver treatment, the cells accumulated a small amount of total silver. 

However, the cells showed the same protein concentrations as the reference control, 

and with no evidence of LDH release into the external media. Taken together, these 

data suggest that silver exposure via conditioned media from silver-coated discs is of 

negligible toxicity to osteoblasts in the conditions used here. 
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4.4.1 Physiochemical properties of the conditioned media  

The silver plated titanium discs were treated with the cell culture medium 2 days prior 

to the experiment. This was to get rid of any excess silver from the manufacturing 

process of the new discs and any associated fast dissolving silver that might have a 

significant toxic effects on the cells. Subsequently, the discs were placed in culture 

media for a further seven days. In this experiment, silver release from the discs was 

consistent and remained at around 1 mg L-1 over 7 days. This steady, slower release 

of silver indicates that the fast dissolving silver had been removed in the initial media 

washing steps, and further leaching of silver slowed due to the presence of FBS and 

other macromolecules in the culture media that would likely form a protein corona on 

the surface on initial contact with the discs. The significance of this step for 

experimental design was to prevent false positives in the results of in vitro toxicity 

tests, and from drawing a conclusion that the material is hazardous when it is not. So 

it is highly recommended to immerse implants in the cell culture medium used to pre-

condition the specimens in this study (DMEM + 10%FBS + 1%antibiotic) to remove 

the excess silver and provide a protein corona on the surface. There were also some 

other physical effects of the disc surface on the electrolyte composition of the media. 

Calcium concentration in the external media showed a significant reduction in Ag+nHA 

compared to others (Table 4.4). This is best explained by adsorption phenomena. The 

Ag+nHA, which is made of the nano HA layer on titanium, likely was able to absorb 

Ca2+ leading to the formation of Ca(OH)2. This phenomena is well-known and 

previously reported for HA-containing materials (Harding et al., 2005; Besinis et al., 

2017). 
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4.4.2. Absence of silver toxicity to osteoblasts from conditioned media 

There was no substantial appearance of LDH activity overtime in the external media, 

and this confirms that there was negligible damage to the cell membranes to release 

LDH. In the cell homogenate, there was no significant differences in the LDH activity 

between the reference control and the other treatments. This observation reveals that 

the cells were not using anaerobic metabolism and had no need to induce high 

amounts of LDH activity. LDH is primarily induced in low oxygen conditions where 

lactate is fermented for ATP generation (Heiden et al., 2009). Therefore, the absence 

of increased LDH activity in the cell homogenate may imply the cells were not requiring 

to use anaerobic metabolism, this is expected since the media was bubbled with 95% 

air. Moreover, the absence of increased LDH also suggests that mitochondria were 

working normally for an aerobic metabolism. Alternative explanations such as; Ag 

inhibiting LDH and preventing an inducible activity are excluded because it was found 

that dissolved silver from the discs does not significantly inhibit or induce LDH activity 

(see Chapter 2). Moreover, cell growth in terms of the protein content of the cell 

homogenates was unaffected, and the cells remained viable and attached over 7 days 

exposure to silver. Together, these observations suggest that cells were healthy and 

biocompatible with the surfaces over 7 days in the conditions used here. This result is 

consistent with the finding of Meran et al. (2018) who measured 1.04 ± 0.22 mg L-1 of 

total silver after conditioning the media (DMEM) with 5 mg L-1 silver nanoparticles (size 

not known) and found that silver did not induce a significant toxicity to the confluent 

primary human fibroblast cells after 24 hour exposure, as there was no appreciable 

LDH release to the media and also cell morphology was not altered. However, Albers 

et al. (2011) found that the lC50 value of osteoblast viability after 72 hours was 0.063 

mM (6.80 mg L-1) silver ions dissolved from silver nanoparticles (size 50 nm) in alpha-
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MEM supplemented with 10% FBS. Since 10% of the IC50 is regarded as sublethal 

and the silver release in the current study was close to 10% of silver release measured 

by Albers et al. (2011), so the amount of silver release in the current study can be 

regardred as sublethal. Moreover, Hadi et al. (2014) was unable to find attached viable 

cells after exposure to 10.99 mg L-1 dissolved silver from the silver coated titanium 

disc after 3 days; also, LDH activity in the homogenate was significantly less than the 

control. The difference in the results can be explained by that fact that several factors 

are affecting toxicity including cells type and seeding density before the exposure, 

experiment duration and silver (metal) chemistry. Moreover, it is challenging to 

compare different toxicological experiments, this is because not all the studies have 

measured the silver release to the cell culture medium. In this case it will not be 

possible to correlate the cell survival and the silver dose. 

ALP activity was low in the cell homogenate and the external media, this is 

because the osteoblast cells were at an early stage of growth and immature cells do 

not produce large amounts of ALP. ALP activity values of the cell homogenate 

resembles Rawadi et al. (2003) who observed that the ALP activity in the osteoblast 

cell homogenate after 3 days culture was less than 1 nmol min-1 mg protein-1.  

The silver was detected in the cell homogenate (Figure 4.7) and also in the 

external media (Table 4.1), however, no significant toxicity was observed. This finding 

suggests that the silver was not bioavailable inside the cells. This is likely due to the 

presence of metal binding proteins (-SH groups) and also high amount of chloride 

inside the cells (or the media) leading to insoluble silver chloride formation. It could be 

argued that the silver forms insoluble chloride complexes in chloride containing 

solutions (Ha and Payer., 2011). The concentration of Cl- in DMEM is higher than 100 

mmol, in this study, around 1 mg L-1 (0.0092 mmol) silver release was detected which 
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is far lower than the concentration of Cl- in DMEM. Thus, it is highly likely that the 

presence of high amount of chloride in the cell culture media has turned all the silver 

into silver chloride particles as seen in Besinis et al. (2014). In addition, high amount 

of proteins and other organic molecules in the media have mopped up silver as a result 

of high affinity between silver and –SH groups present in proteins.  Therefore, there is 

plenty of buffering capacity in the media compared to 1 mg L-1 of silver, thus, it is very 

unlikely that any free silver ions are in the cytoplasm of the cells. This has resulted in 

a small fraction of silver in/on the cells confirming low bioavailability and hence low 

toxicity. 

Silver is also known as an ionoregulatory toxicant that inhibits the Na+ K+-

ATPase in cells (Hussain et al., 1994). The K+ concentration in the cell homogenates 

did not show any significant difference between the groups; and this might be expected 

given the ample K+ content of mammalian cells to mask any small changes.  However, 

the Na+ content of the cell homogenates from the reference control was significantly 

higher than Ag, Ag+nHA and Ag+mHA (Figure 4.7). A likely explanation is that the 

normal outward leak of Na+ down the electrochemical gradient was occurring, but 

silver-dependent inhibition of the Na+ pump was preventing the intracellular Na+ from 

being replenished; thus slowly depleting the cells of Na+. Values of Na+ and K+ in the 

cell homogenate resemble those described by Gitrowski et al. (2014) who measured 

Na+ and k+ level in the cell homogenate of Caco-2 intestinal cells after exposure to 

TiO2 nanoparticles. Moreover, the values were similar to Hadi et al. (2014) who found 

that the concentration of Na+ in the cell homogenate of primary human osteoblast cells 

after 3 days growth was around 1 mmol L-1. 
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4.4.3. Conclusions and clinical perspective 

Silver was released from the discs to the external media over 7 days, the dissolved 

silver was higher than the required antibacterial dose. Silver did not induce a 

significant toxic effect to the human primary osteoblast cells and no significant damage 

to the cells was observed. Moreover, since wound healing of freshly installed dental 

implant requires several days after surgery, the first few days of implant placement is 

vulnerable for bacterial colonisation and infection. Thus, an antibacterial silver release 

from the implant during this first period is crucial and can potentially prevent the 

incidence of infection. However, for any new dental material to be used in clinics, there 

are some criteria which need to be met prior to clinical use: the material must be better 

than the existing one, also biocompatibility is crucial to ensure the safety of material 

to the patient. This experiment showed that the antibacterial released silver is 

biocompatible with human primary osteoblast cells. Furthermore, it is highly 

recommended to immerse the silver coated dental implants in cell culture medium so 

as to get rid of the excess silver which might disturb the biocompatibility of the dental 

implant material. 

 

 

 

 

 

 



121 
 

 

 

 

 

 

Chapter 5 

Biocompatibility of the Silver and 

Hydroxyapatite Nanoparticle Coating 

on Titanium Dental Implants with 

Primary Human Osteoblast Cells 

 

 

 

 

 



122 
 

5.1 Introduction 

Designing biocompatibility experiments usually requires some optimisation and often 

pilot studies prior to the main experiments. This may be to resolve practical issues 

such as the logistics of sampling as well as range finding on the appropriate doses or 

time scales. Issues arise including the initial cell number or density, the biomaterials 

to use and their most appropriate controls, the size of any such material specimens, 

the ability to measure the amount of released enzyme or other endpoints from the cells 

and deciding which cell viability assay to choose are crucial. Conducting experiments 

with nanomaterials has a number of extra practical challenges compared to 

experiments with soluble chemicals. For example, Goss et al. (2011) have found that 

engineered nanomaterials can interfere with the LDH assay and colorimetric dyes 

used in colour endpoint-style assays (e.g., the MTT assay), (Kroll et al., 2012; Ong et 

al., 2014; Selck et al., 2016). Moreover, there can be difficulty in detecting the total 

metal from metal nanoparticles in tissue or cell homogenates, due to analyte losses 

during digestion protocols and/or subsequent measurement methods. For example, 

Shaw et al. (2013) experienced difficulties in determining TiO2 nanoparticles in fish gut 

homogenate and reported on the necessary adaptations of analytical procedures to 

achieve reliable results.  

In the first biocompatibility study (Chapter 3), there were only 12,000 cells at 

the beginning of the experiment. The reason for choosing this cell density was to study 

the cells in a log phase, where the cells were still dividing until confluence was reached 

on the discs. However, there were some experimental difficulties that created 

uncertainty and limited the interpretation of the data. For example, it was difficult to 

measure LDH activity in the external media and the cell homogenate, this is due to the 

low number of cells at the beginning which resulted in an insufficient enzyme 
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production to precisely determine the cell health. In addition, it was unclear whether 

the toxicity was caused by the released silver to the external media, or if it was from 

the direct contact with the surface of the disc. Moreover, the influence of surface 

geometry of the biomaterial specimens to the cell health was not well understood, so 

it was necessary to better elucidate this with additional control experiments.  

The aim of this study was to address the biocompatibility of silver and HA 

coatings with human primary osteoblast cells, it was repeating the experiment in 

Chapter 3, but with more cells, extra controls and also extra endpoints to assess the 

cell viability. Critically, this experiment intended to use confluent cells compared to the 

still rapidly dividing cells (i.e., still growing to reach confluence) used in Chapter 3. It 

could be argued that confluent cells are resting, and less vulnerable to insult than a 

cell culture that is actively dividing. Thus, the objectives in this current chapter were to 

use a higher number of cells at the beginning of the experiment to ensure confluence, 

but also to achieve enough biomass for reliable biochemical measurements at the start 

of the experiment and throughout. Moreover, it was difficult to assess the cell viability 

in the previous study with reliance on the LDH assay (Chapter 3), and so, the Alamar 

blue assay was also used to assess the cell viability. The Alamar blue assay is 

frequently used to assess the metabolism and proliferation of cells (O’Brien et al., 

2000), and has also been used for exposures to nanomaterials (Ong et al., 2011). 

Another objective was to add two more controls to the experimental deign, so that the 

effect of surface geometry on cell viability and activity could be explored. The controls 

were nano HA coating on titanium and micro HA coating on titanium. 
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5.2 Materials and methods 

5.2.1 Cell culture  

Primary Human osteoblast cells were used in this experiment. The cell culture 

conditions for growing the stock of cells were the same as in Chapter 3. Cells at 

passage 8 and 9 were used in this experiment. 

 

5.2.2 Experimental design 

This experiment was conducted to investigate the biocompatibility of the various 

coatings (see below) with a confluent culture of human primary osteoblast cells. The 

experiment was carried out in 24 well-microplates, and the microplate was the unit of 

replication in this experiment (n = 6 plates/treatment). The experimental design 

included osteoblast cells grown on the microplate directly without any alloy disc; 

hereafter referred to as the ‘reference control’. Other treatments were: uncoated 

titanium discs plus cells and media (referred to as ‘Ti’ hereafter); titanium discs coated 

with nano HA plus media and cells (nHA); titanium coated discs with micro HA plus 

media and cells (mHA). A series of discs were also prepared by silver plating to create 

a silver layer on the surface of titanium. The silver treatment groups included: silver-

coated titanium discs plus media and cells (referred to as ‘Ag’ hereafter), Ag plus nano 

HA coated titanium plus media and cells (Ag+nHA) and Ag plus mHA coated titanium 

plus media and cells (Ag+mHA). All the discs (without any cells) were pre-treated with 

the cell culture medium and incubated in 95% air and 5% CO2 incubator (HETO-

HOLTEN Cell House 170) at 37 oC for 48 hours to allow stabilisation of the biocorona 

on the surface of the coating and to wash out any labile fraction of silver arising from 

the manufacture of the composites. The discs were then seeded with 30000 cells/ 
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each well. To achieve this cell density, the cells were suspended in the culture media 

in a ratio of 50000 cells/ml, and then 0.6 ml of the media (30000 cells) was added to 

each well to set up the experiment. The experiment was then conducted for 7 days 

exactly as described in Chapter 3, except that the Alamar blue assay was also 

conducted to assess cell viability. For the latter, Alamar blue was added to the media 

on day 1, 4 and 7 (see below). 

 

5.2.3 Biochemical assays 

ALP and LDH enzyme activity assays were performed on samples of the cell culture 

medium at each time point (days 1, 4 and 7) and also in the cell homogenates after 7 

days. For LDH activity, briefly, 100 µl of the test sample was added to 2800 µl LDH 

assay reagent in a cuvette and then the absorbance was measured at 340 nm 

wavelength. For the ALP activity, the sample volume was 30 µl and the test reagent 

volume was 250 µl. The assay was conducted in 96 well microplates and the 

absorbance was measured at 405 nm wavelength. The procedure and instruments 

used are exactly the same as explained in detail in Chapter 3. 

 

5.2.4 Alamar blue assay 

Cell viability and mitochondrial function was assessed using an Alamar blue assay. 

The Alamar blue assay is based on an indicator dye incorporating an oxidation-

reduction (REDOX) indicator. Alamar blue in oxidised form is blue in colour, the colour 

reduces and changes to red as a result of metabolic activity and cell growth. The 

Alamar blue assay was carried out at each time point (days 1, 4 and 7). An adequate 

volume of the alamar blue dye (purchased from abD serotec) equal to 10% of the cell 
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culture medium in the well was aseptically added to each well and the cells were 

incubated for 6 hours. After that, 200 µl of the cell culture medium (with the alamar 

blue dye) in each well was transferred to 96 well plates and then the absorbance was 

measured at 600 nm wavelength using a plate reader (VersaMax, molecular devices, 

Berkshire, UK). The technique is not destructive sampling, as the cells were fed with 

fresh media after transferring the existing media (with the dye) to 96 well plates for 

absorbance reading. As the dye is sensitive to light, the procedure was followed in a 

dark room. Cell viability of the treatments were normalised with the untreated control 

cells. Cell viability of the treatments was expressed as a percentage viability of the 

reference control. 

 

5.2.5 Concentration of Ag, Na+, K+, Ca2+ and P in the external media and the cell 

homogenate 

The concentration of Ag and the electrolytes was measured in the external media at 

each time point and in the cell homogenate at the end of experiment, using ICP-OES 

(iCAP 7400 RADIAL, Hemel Hempstead, UK). The volumes of samples collected and 

the procedure for sample preparation and analysis were exactly as described in 

Chapter 3. 

 

5.2.6 Investigating the cell morphology using the scanning electron microscopy 

A separate run of the experiment (a triplicate / treatment) having a micro plate as a 

unit of replication was conducted to assess the cell morphology after 7 days, cell 

attachment, confluence and membrane integrity were examined under SEM at the end 
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of experiment. The procedure of cell fixation, dehydration and imaging technique was 

the same as described in Chapter 3.  

5.2.7 Statistical analysis 

Statgraphics version 16 was used for the statistical analysis. All data are expressed 

as mean ± S.E.M. Data were subjected the Box and Whisker plots to check for the 

presence of out layers, which were then excluded from the data. Standard skewness 

and kurtosis were performed to check the normality of the data. Normally distributed 

data were subjected to one way Analysis of Variance (ANOVA) and Tukey’s test was 

used to locate the difference. Two way ANOVA was also used to investigate the time 

and treatment effect. In the case of non-parametric data, the Kruskal-Wallis test was 

used and the differences were located using Box and Whisker plot with notches. Any 

difference having a P value < 0.05 was considered statistically significant. 
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5.3 Results 

5.3.1 Silver release to the external media 

Results of this study showed that there was a consistent silver release (around 2 mg 

L-1) from the silver coated titanium discs to the external media (Table 5.1). Cell 

exposure to the silver was also confirmed by the concentration of silver in the cell 

homogenates, which was around 0.4 mg L-1 (Table 5.1). In the external media, silver 

showed a significantly lower concentration in the reference control (as expected); and 

in the Ti, nHA and mHA compared to other treatments in all the time points (one way 

ANOVA, p < 0.05). The silver concentration in Ag, Ag+nHA and Ag+mHA increased 

in day 4 and 7; with the highest silver release was from Ag+mHA treatment at day 4 

(7.002 ± 2.375 mg L-1), (Table 5.1). There were no significant differences between the 

silver coated groups (Ag, Ag+nHA and Ag+mHA) in any time points, also, no 

significant difference was observed between  time points of the same treatment (one 

way ANOVA, P <0.05) (Table 5.1). Two way ANOVA showed that both factors (time 

and treatment) have a significant effect on silver release (p < 0.05). 
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Table 5.1. Concentration of silver in the external media over 7 days and in the cell homogenate at the end of the experiment. 

Treatments Day 1 Day 4 Day 7 Homogenate 

Concentration of silver (mg L-1) 

 

Reference control 

Ti 

Ag 

Ag+nHA 

Ag+mHA 

nHA 

mHA 

       0.057 ± 0.009 b 

0.092 ± 0.013 b 

2.508 ± 0.419 a 

2.851 ± 0543 a 

2.039 ± 0.527 a 

0.150 ± 0.019 b 

0.290 ± 0.173 b 

0.093 ± 0.009 b 

0.073 ± 0.017 b 

3.552 ± 0.226 a 

3.480 ± 0.640 a 

7.002 ± 2.375 a 

0.244 ± 0.60 b 

0.167 ± 0.021 b 

0.080 ± 0.007 b 

0.079 ± 0.014 b 

4.044 ± 0.527 a 

2.608 ± 0.553 a 

3.841 ± 0.617 a 

0.276 ± 0.037 b 

0.138 ± 0.012 b 

 

       0.068 ± 0.017 b 

0.038 ± 0.008 b 

0.517 ± 0.125 a 

0.455 ± 0.169 a 

0.299 ± 0.072 a 

0.075 ± 0.011 b 

0.049 ± 0.008 b 

Data are mean ± S.E.M, (n = 6). Different letters within the column indicate a significant difference (one way ANOVA, or Kruskal 

Wallis test, p < 0.05). 
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5.3.2 Assessing the cell viability and morphology 

Osteoblast cells were examined under SEM after 7 days of the experiment (Figure 

5.1). Images showed that the cells grown on the titanium, alloy discs without any HA 

or silver (Ti) were attached to the substrate and covered most of the surface (Figure 

5.1A). The Ti-treated cells also appeared healthy without any noticeable membrane 

rupture. The cells from this treatment were confluent, contacted to each other 

(confluent), and there were no visible signs of cellular shrinkage. Cells grown on nHA 

and mHA treatments were also confluent, and appeared attached to the substrate and 

with each other. There was no visual evidence of membrane damage in these latter 

cells. The level of confluence was higher in nHA compared to mHA (Figure 5.1E and 

F). In contrast, cells grown on the Ag coated Ti alloy discs were sparser. However, the 

cells that were present did not show overt pathology with the absence of membrane 

blebs on the cell membrane or rupture of the membrane. The cells still showed the 

typical extending filopodia of osteoblasts, although shrinkage was noticed in some 

cells (Figure 5.1B). The cells grown on the Ag+nHA discs were almost 90% confluent, 

and appeared to be attached to the surface and to each other. There were no 

noticeable signs of cell membrane damage and no noticeable evidence of cell 

shrinkage (Figure 5.1C). Cells on the Ag+mHA discs exhibited similar characteristics 

with those grown on Ag. The cells from the Ag+mHA treatment were the most sparse, 

and with poor contact with each other despite having filopodia (Figure 5.1D). There 

was noticeable cell shrinkage, but there was no morphological evidence of cell 

membrane damage.  

  The Alamar blue assay was used to assess cell viability at days 1, 4 and 7 

(Figure 5.2). Results of the Ti treatment for the alamar blue assay were entirely 

consistent with the morphology on the SEM images (Figure 5.1). The Ti control 
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showed around 100% viability at all time points (Figure 5.2).  Cell viability in the nHA 

treatment was higher than 80%, and not significantly different from the Ti or silver 

plated groups (one way ANOVA, p <0.05). Cell viability on the mHA treatment was not  

significantly different from the Ti treatment at day 1 or day 4, but it was significantly 

lower than the Ti treatment at day 7 (one way ANOVA, p <0.05, Figure 5.2). However, 

cell viability in Ag group was approximately 65% in day 1 and 4, but it was less than 

60% at day 7, however, the differences were not significant (Figure 5.2). Cell viability 

in Ag+nHA treatment was approximately 70% at all time points and with no significant 

differences between the time points (one way ANOVA, p < 0.05). In contrast, there 

was a slight trend of decreased cell viability over time in Ag+mHA treatment, although 

this was not statistically significant. Nonetheless, the cell viability at day 7 in the 

Ag+mHA treatment was less than 60% of the reference control (Figure 5.2) which was 

significantly less than Ti (one way ANOVA, p < 0.05).  

Regarding the cell electrolyte balance, there were no evidence of disturbances 

that would lead to the cell shrinkage or cell swelling and membrane rupture due to the 

change in salt concentrations (Figure 5.3). There was no significant difference in the 

Na+ concentration between the Ti, Ag, Ag+nHA and Ag+mHA treatments (one way 

ANOVA, p < 0.05). However, the concentration of Na+ in the cell homogenate was 

significantly lower in the reference control compared to all other treatments (one way 

ANOVA, p < 0.05). The Na+ concentration was 0.47 ± 0.1 mmol L-1 in the reference 

control, while it was around 1.5 mmol L-1 in all the other treatments (Figure 5.3). There 

was no significant difference in K+ concentration between the treatments (one way 

ANOVA, p < 0.05), and values were around 0.4 mmol L-1 (Figure 5.3). 
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Figure 5.1. SEM images of human primary osteoblast cells grown on titanium discs after 7 days. (A) uncoated Ti, (B) Ag, (C) Ag+nHA, 

(D) Ag+mHA, (E) nHA, (F) mHA. Arrows show the cells grown on the surface. Note the membrane integrity, cell confluence and 

attachment with each other. Also, note the apparent cell shrinkage on Ag and Ag+mHA. All magnifications and scale bars are x200 

and 100 µm respectively. 
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Figure 5.2. Cell viability over 7 days using an alamar blue assay. Data are mean ± 

S.E.M, (n = 6). Different letters between the treatments within the same time point 

indicate a significant difference (one way ANOVA, p < 0.05). There was not a 

significant difference between the time points of any group. 
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Figure 5.3. Concentration of (A) Na+, (B) K+, (C) Ca2+ and (D) P, in the cell homogenate. Data are mean ± S.E.M, (n = 6). Different 

letters between the bars indicate a significant difference with each other (one way  ANOVA, p < 0.05). Unlabelled means there is no 

significant difference.
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5.3.3 Alkaline phosphatase and lactate dehydrogenase enzyme activity  

The ALP assay worked as expected (see the positive control curve in Appendix 2, 

Figure 3), however, very low enzyme activity was detected in both the cell homogenate 

and the external media (Figure 5.4 and Table 5.2). No significant differences between 

the treatments were observed (Kruskal Wallis test, p < 0.05), two way ANOVA showed 

that there was time effects on ALP activity in the media (p < 0.05, Table 5.2). Values 

for the cell homogenates were around 0.01 nmol min-1 ml-1, while they were around 

0.1 nmol min-1 ml-1 in the external media (Figure 5.4 and Table 5.2).  LDH enzyme 

activity was assessed in both cell homogenate after 7 days and cell culture medium at 

days 1, 4 and 7. The assay worked as expected, and LDH activity was detected in the 

cell homogenate in all treatment groups (Figure 5.5). Results showed that there was 

no significant difference in LDH activity between the treatments (Kruskal Wallis test, p 

< 0.05), with LDH activity being between 2 – 5 nmol min-1 ml-1 in all groups (Figure 

5.5). In the cell culture medium, the LDH leak to the external media was 2 nmols or 

less, but within that, there was some small, but statistically significant effects (Kruskal 

Wallis test, p < 0.05, Table 5.3). Two way ANOVA showed that there was both time 

and treatment effects on LDH activity in the media (p < 0.05, Table 5.3). 
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Figure 5.4. ALP enzyme activity in the cell homogenate at the end of the experiment 

(day 7). Data are mean ± S.E.M, (n = 6). There were no statistically significant 

difference between the groups (Kurskal Wallis test, p > 0.05). Unlabelled means there 

is no significant difference. 

 

Figure 5.5. LDH enzyme activity in the cell homogenate at the end of the experiment 

(day 7). Data are mean ± S.E.M, (n = 6). There were no statistically significant 

difference between the groups (Kurskal Wallis test, p > 0.05). Unlabelled means there 

is no significant difference. 
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Table 5.2. ALP enzyme activity in the external media over 7 days. 

Treatments Day 1 Day4 Day7 

ALP enzyme activity (nmol min-1 ml-1) 

Reference control  0.071 ± 0.027 b 0.092 ± 0.023 0.120 ± 0.030 

Ti 0.092 ± 0.023 b 0.087 ± 0.019 0.113 ± 0.036 

Ag 0.067 ± 0.022 b 0.064 ± 0.022 0.115 ± 0.028 

Ag+nHA 0.070 ± 0.017 b 0.069 ± 0.023 0.066 ± 0.021 

Ag+mHA 0.075 ± 0.022 b 0.082 ± 0.018 0.082 ± 0.034 

nHA 0.065 ± 0.016 b 0.048 ± 0.016 0.059 ± 0.017 

mHA 0.252 ± 0.217 a 0.080 ± 0.021 * < 0.004 

Data are mean ± S.E.M, (n = 6). Different letters within the column indicate a significant 

difference. An asterisk indicates a significant difference with the previous time point, 

(one way ANOVA or Kruskal-Wallis test, p < 0.05). Unlabelled means there is no 

significant difference. The detection limit was 0.004 (nmol min-1 ml-1). 
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Table 5.3. LDH enzyme activity in the external media over 7 days. 

Treatments Day 1 Day4 Day7 

LDH enzyme activity (nmol min-1 ml-1) 

Reference control < 0.549 1.058 ± 0.660 b * 0.661 ± 0.374 b * 

Ti 1.005 ± 0.440  < 0.549 * 0.687 ±0.319 b * 

Ag 0.634 ±0.357  1.005 ± 0.829  b * 2.883 ± 1.182 a * 

Ag+nHA < 0.549 0.687 ± 0.190  b *  2.328 ± 0.597 a  

Ag+mHA 1.216 ± 0.748 1.534 ± 0.722 b 2.566 ± 1.495 a 

nHA 1.190 ± 0.586 0.793 ± 0.439 b 1.666 ± 0.793 ab 

mHA 0.714 ± 0.255 3.809 ± 1.593 a * 1.746 ± 0.150 ab 

Data are mean ± S.E.M. (n = 6). Different letters within the column indicate a significant 

difference between treatments and within time point. An asterisk shows a significant 

difference with the previous time point (one way ANOVA or Kruskal-Wallis test, p < 

0.05). Unlabelled means there is no significant difference. The detection limit was 

0.549 nmol min-1 ml-1. 

 

5.3.4 Concentration of Na+, K+, Ca2+ and P in the external media 

The concentration of electrolytes was measured in the external media over 7 days. 

Generally, electrolytes in the media did not show significant changes (Table 5.4). Na+ 

and K+ concentrations in the external media were stable and neither the time points 

nor the treatments showed any statistically significant changes (one way ANOVA, p < 

0.05). The values for Na+ concentration were higher than 100 mmol L-1, as expected, 

while K+ concentrations were around 8 mmol L-1. The Ca2+ concentrations remained 

around 1-2 mmol L-1 regardless of treatment. However, there were some statistical 

differences in the latter (one way ANOVA, p < 0.05). The Ca2+ concentration was 
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significantly lower in Ag+nHA and nHA compared to others in all time points (one way 

ANOVA, p < 0.05), (Table 5.4). P in the external media showed values of around 1 

mmol L-1 in all treatments, and the P concentration in the media was significantly lower 

in the HA coated groups compared to all the others (one way ANOVA, p < 0.05,Table 

5.4). Moreover, nHA exhibited a significantly lower P concentration in the media 

compared to all the other treatments; Ag+nHA, Ag+mHA and mHA also showed a 

significant reductions in P concentration compared to the others, except the nHA 

treatment (one way ANOVA, p < 0.05).  Two way ANOVA showed that there was both 

time and treatment effect on Ca2+ and P concentration (p < 0.05, Table 5.4). 
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Table 5.4. Concentration Na+, K+, Ca2+ and P measured by ICP-OES in the external 

media over 7 days.  

Element Treatment Day 1 Day 4 Day 7 

mmol L-1 

 
 

Na+ 

Reference control 
Ti 
Ag 

Ag+nHA 
Ag+mHA 

nHA 
mHA 

128.59 ± 3.48 
153.51 ± 9.15 
158.91 ± 9.63 
155.77 ± 9.79 

171.59 ± 19.37 
156.03 ± 9.37 
149.32 ± 8.64 

163.69 ± 11.18 
179.83 ± 15.19 
163.73 ± 21.42 
167.27 ± 12.28 
209.98 ± 34.36 
171.53 ± 21.86 
171.08 ± 9.42 

174.17 ± 8.58 
168.35 ± 8.38 

154.32 ± 10.15 
152.80 ± 4.82 
160.52 ± 9.58 
151.58 ± 9.73 

165.79 ± 14.33 

 
 

K+ 

Reference control 
Ti 
Ag 

Ag+nHA 
Ag+mHA 

nHA 
mHA 

6.04 ± 0.16 
7.17 ± 0.50 
7.57 ± 0.60 
7.52 ± 0.44 
8.17 ± 1.03 
7.36 ± 0.55 
6.96 ± 0.52 

7.63 ± 0.55 
8.34 ± 0.73  
7.73 ± 1.04 
7.99 ± 0.53 
9.70 ± 1.65 
7.92 ± 0.99 
7.95 ± 0.49 

8.02 ± 0.40 
7.73 ± 0.39 
7.08 ± 0.48 
7.09 ± 0.18 
7.38 ± 0.45 
7.09 ± 0.49 
7.50 ± 0.66 

 
 
 

Ca2+ 

Reference control 
Ti 
Ag 

Ag+nHA 
Ag+mHA 

nHA 
mHA 

1.88 ± 0.04 a 
2.00± 0.06 a 
2.00 ± 0.04 a 
0.72 ± 0.06 c 
1.61 ± 0.19 ab 
0.86 ± 0.04 c 
1.44 ± 0.09 b 

2.11 ± 0.06 a 
2.28 ± 0.09 a 
2.09 ± 0.20 a 
0.68 ± 0.05 b 
1.14 ± 0.18 b 
0.87 ± 0.16 b 
1.78 ± 0.04 a 

2.34 ± 0.13 a 
2.28 ± 0.10 a 
2.02 ± 0.06 ab 
0.75 ± 0.06 c 
1.53 ± 0.15 b 
0.92 ± 0.15 c 
1.84 ± 0.08 ab 

 
 
 

P 

Reference control 

Ti 

Ag 

Ag+nHA 

Ag+mHA 

nHA 

mHA 

1.33 ± 0.08 a 
1.36 ± 0.10 a 
1.43 ± 0.09 a 
0.78 ± 0.09 bc 
1.15 ± 0.08 ab 
0.62 ± 0.03 c 
1.07 ± 0.11 ab 

1.46 ± 0.06 ab 
1.42 ± 0.10 ab 
1.32 ± 0.09 abc 
0.56 ± 0.03 bc 
1.79 ± 0.52 a 
0.48 ± 0.05 c 

1.13 ± 0.07 abc 

1.65 ± 0.18 a 
1.54 ± 0.16 a 
1.35 ± 0.08 ab 
0.55 ± 0.04 c 
1.02 ± 0.11 bc 
0.60 ± 0.03 c 
0.95 ± 0.10 bc 

Data are mean ± S.E.M (n = 6). Different letters within the column in each element 

indicate a significant difference (one way ANOVA or Kruskal-Wallis test, p < 0.05). 

Unlabelled means there is no significant difference. 
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5.4 Discussion 

Dental implants like any other biomaterial require thorough investigations before being 

introduced to patients. The first tier of biocompatibility experiments are usually 

conducted in vitro using human primary cells. However, there are some 

methodological challenges regarding the experimental design, the types of controls, 

cell density, and the endpoints measured which need to be thoroughly addressed. In 

this study, 30,000 cells were used at the beginning. It was found that the cell viability 

was more than 95% in the Ti treatment over 7 days and this was not significantly 

different from the other treatments without added silver (the nHA and mHA controls). 

Also, cells were confluent, attached to each other, and showed no signs of membrane 

rupture in these controls without silver (Figure 5.1). Where silver was present, the 

silver release to the external media was constant and there was silver exposure in the 

cell monolayer after 7 days (Table 5.1). Cells did not experience shrinkage on Ti, nHA, 

mHA and Ag+nHA, but there was a noticeable shrinkage in cells covering Ag and 

Ag+mHA (Figure 5.1). Despite having a slight shrinkage in some treatments, there 

was not a devastating cell mortality (i.e., complete loss of cells) since cell viability was 

above 60%, or much higher in all treatments (Figure 5.2). Biochemistry and electrolyte 

balance also confirmed that there was no significant damage to the cells as no (or only 

little) LDH leakage was measured in the external media (Table 5.3), and the Na+ and 

K+ pump in the homogenates or media were unaffected.  

 

5.4.1 Effect of silver release and the silver coated surface on cell viability 

Total silver release from the coatings into the cell culture media and the cell 

homogenate was measured by ICP-OES. In the various controls without added silver, 
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the silver concentration was at a background concentration, and significantly lower 

than silver coated groups, as expected (Table 5.1). In contrast, the release of silver 

from the silver plated treatments (Ag, Ag+nHA and Ag+mHA) was around 2 mg L-1 at 

day 1. Notably, the, alamar blue showed that the cell viability in Ag+nHA and Ag+mHA 

at day 1 was around 70% which was slightly lower than nHA and mHA, but the 

differences were not significant (Figure 2). This indicates that 2 mg L-1 silver did not 

induce a significant toxicity to human primary osteoblast cells compared to controls 

having similar surface geometry (nHA and mHA). In addition, silver exposure to the 

cell homogenate after 7 days was also confirmed. The absence of toxicity in the 

presence of silver can be explained by the fact that the presence of high Cl- in the cell 

culture medium can take up the dissolved silver and form poorly soluble silver chloride. 

Moreover, the proteins available in the cell culture medium can mask the toxicity of 

dissolved silver through silver ion binding to –SH group in proteins (Besinis et al., 2014; 

Hansen et al., 2015). Similar studies have been conducted looking at the 

biocompatibility of silver coating on titanium. Mei et al. (2014) tested the cell viability 

after exposure to 1 mg L-1 of released silver from silver incorporated in titania 

nanotubes. MTT cell viability assay showed no significant toxicity to human fibroblast 

and epithelial cells (in DMEM + 10%FBS) after growing on the silver coating over 7 

days. 

The role of surface chemistry and geometry of crystals on the surface must not 

be neglected, this is because osteoblasts are known to prefer moderately rough 

surfaces compared to smooth ones, also, prefer surfaces that are chemically 

composed of calcium and phosphorus (Wennerberg 1998; Jonge et al., 2008). The 

SEM images showed that cells on the nHA surface (whether from Ag+nHA or nHA 

group) have a better cell-to-cell attachment and confluence compared to those on 
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micro HA coated specimens (Figure 5.1). This can be explained by the fact that nano 

HA resembles the mineral constituent of the living bone and the size enhances 

osteoblast cell attachment and growth (Wang et al., 2007; Mendoca et al., 2008). 

While micro HA, consists of large particles that might interfere with cell-to-cell contact; 

thus despite having filopodia, these latter cells cannot attach with each other easily. 

Moreover, it was found that the presence of silver causes cell shrinkage (Figure 5.1), 

for example, cells on Ag+mHA showed a significant shrinkage while this phenomenon 

was not observed on Ag+nHA. This result corroborates Tian et al. (2016) who 

observed human bone marrow stem cell shrinkage after 3 days growth on silver 

nanoparticle-doped HA coating on titanium. Furthermore, Gunputh et al. (2018) 

observed similar finding after culturing primary human osteoblast cells on silver coated 

titanium nanotubes, SEM images showed a cell shrinkage and poor cell-to-cell 

attachment on silver coated specimens compared to uncoated titanium. The 

explanation is that the HA particles on the surface of Ag+mHA are sparse, so most of 

the cells were adhered to the silver layer rather than the HA layer. While the surface 

of Ag+nHA mainly consists of nano Ha particles fused to each other, so cells in the 

later were attached to the HA layer. The explanation of cell shrinkage belongs to the 

fact that the silver is known to interfere with Na+ K+-ATPase. As a result of this, the 

concentration of electrolytes inside the cell becomes less than the external media, this 

may lead to the cellular water loss and shrinkage. 

LDH enzyme activity in the external media was low in all treatments (Table 5.3), 

and this indicates that the cells were intact over 7 days, with no appreciable leak. 

There was some LDH activity detected in the homogenates (Figure 5.5), and at a 

background activity suggesting no induction of LDH activity arising from anaerobic 

metabolism (see Chapters 3 and 4). ALP enzyme activity was low and close to the 
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detection limit in both cell culture median and the cell homogenate (Table 5.2, Figure 

5.4). However, this finding is expected since the ALP activity starts at a later stage of 

the cell differentiation process (Yamaguchi et al., 2000) and was the same finding as 

observed in the previous chapters (Chapters 3 and 4).  

Electrolytes were measured in the cell homogenate to assess the osmotic 

health of the cells. There was no obvious changes in the electrolyte concentrations in 

the homogenates that would infer osmotic distress or cell lysis. The Na+ concentration 

was significantly lower in the reference control compared to the others (Figure 5.3). 

Similar results have been found in previous experiments (Chapter 3), where the Na+ 

level in the homogenate was significantly lower in the reference control. This finding 

could be explained by the Na+ being adsorbed from the media to the surface of the 

discs along with the adsorbed proteins in the media. Furthermore, no difference was 

found between Ti and others (except reference control), this may be explained by two 

facts; either the silver has not caused any change in the electrolyte balance of the 

cells, or the adsorbed Na+ from the media might have masked the Na+ content of the 

cells. K+ level in the cell homogenate did not show significant alteration, this result 

shows that the cellular osmotic swelling and membrane rupture due to the presence 

of silver were not likely. Ca2+ and P level in the cell homogenate were higher in HA 

coated discs compared to others as expected, this is due to the Ca2+ and P adsorption 

from the media to the coating surface (see Chapter 4).  

 

5.4.2 Effects of the coatings on DMEM media  

The level of Na+ and K+ in the media remained constant over time and there was no 

significant difference between the treatments, this is because the excessive Na+ and 
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K+ in DMEM cell culture medium that masks Na+ and K+ fluxes from the cells. This 

result is comparable with Hadi et al. (2014) and Meran et al. (2013) who exposed 

primary human osteoblast and fibroblast cells, respectively, to silver nanoparticles in 

DMEM+10%FBS media and found quite similar Na+ and K+ concentration in the 

external media. In contrast, the Ca+ and P in the external media from treatments 

having HA coated discs were significantly lower compared to all the others. This can 

be explained by the fact that the -OH group in the HA coatings can attract Ca+ and P+ 

from the external media to form calcium hydroxide Ca(OH)2 on the coating surface 

(Harding et al., 2005). This results agrees with the finding of Besinis et al. (2017) who 

tested antibacterial activity of silver coated titanium and found that Ca+ and P in the 

physiological saline (Kerbs ringer) adsorb to the HA surface, so in turn, the Ca+ and P 

level in the media in HA coated groups were significantly reduced.  

 

5.4.3 Conclusions and clinical significances 

The use of new materials to coat dental implants require a series of experiments to 

confirm the compatibility with the surrounding tissues, the experiments start with 

testing the compatibility with the cultured cells (in vitro) and finally to clinical trials on 

humans. Moreover, designing the biocompatibility experiments (especially with 

nanomaterials) require some optimisations. This current study showed that culturing 

high number of cells initially could give better results to more clearly and confidently 

identify biocompatibility compared to using low number of cells. In addition, having 

more than one material control can give a clearer idea on the effect of surface 

geometry on the cells. Regarding the biocompatibility, this experiment showed that 

Ag+nHA is biocompatible with human primary osteoblast cells after 7 days, so it is 
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recommended to use Ag+nHA in favour in Ag+mHA in clinics. In addition, the released 

silver was higher than the antibacterial concentration, thus, the benefit for the patients 

is preventing (decreasing) the incidence of peri-implantitis without impairing 

osseointegration process. This finding can create a path for this coating to be used in 

dental clinics to decrease the incidence of early dental implant failure hence saving 

the dentist and the patient from recurrent dental visits. However, more experiments 

are needed to be conducted to ensure the ability of the cells to differentiate and 

mineralise on the coating surface.  
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Studying the Differentiation, Mineralisation and 

Gene Expression of Primary Human Osteoblast 

Cells Cultured on Silver and Hydroxyapatite 
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6.1 Introduction 

The primary stability of dental implant arises from the mechanical bond between the 

implant and the jawbone immediately after implant placement. A few weeks after 

implant placement, peri-implant bone resorption occurs and at the same time 

osteoblast cells adhere to the implant surface; they then proliferate and differentiate 

to produce new bone around the implant. This is called ossoeintegration or secondary 

stability (Romanos and Johansson, 2005; Natali et al., 2009). Thus, the strategy for 

biocompatibility testing to ensure the safety of any dental implant material or coating 

must include studies that demonstrate osteoblast differentiation, and the associated 

mineralisation process that produce calcified mineral phases. For it is the latter 

processes that inform on successful implantation. Osteoblast cell differentiation can 

be tracked by using targeted gene expression measurements. For example, 

osteoblast cell differentiation is mediated by an essential transcription factor protein 

called RUNX-2 (Ducy et al., 1997). RUNX-2 is an important gene in regulating the 

skeletal development of numerous mammalian organisms (Kirkham and Cartmell, 

2007). Osteocalcin is an osteoblast cell specific gene which is most expressed during 

osteoblast cell differentiation and calcium deposition to the extra cellular matrix (Ducy 

and Kartensy, 1995; Masaki et al., 2005). The expression of osteocalcin peaks in both 

extra cellular matrix synthesis and mineralisation. Moreover, ALP is also an important 

osteoblast cell differentiation marker because it is essentially involved in extra cellular 

matrix mineralisation (Hessle et al., 2002; Rawadi et al., 2003). ALP hydrolyses 

pyrophosphate to produces inorganic phosphate and promote matrix mineralisation 

(Orimo, 2014). Medical grade titanium alloy is regarded as a biocompatible material 

which allows osteoblast cell growth and differentiation on the surface (Marinucci et al., 

2005; Olivares-Navarrete et al., 2010).  
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Some studies have been conducted to investigate the effect of dental implant 

surface topography on osteoblast gene expression and cell differentiation. For 

example, Tîlmaciu et al. (2015) found that silver-containing phosphate monolayer 

coatings on titanium did not interfere with osteoblast cell differentiation or gene 

expression, as ALP, osteocalcin and RUNX2 gene expression were not significantly 

different from an uncoated Ti substrate control. Moreover, Schneider et al. (2003) 

concluded that implant surface roughness was an abiotic factor involved in altering the 

expression of osteogenic regulatory genes. This was through finding that Cbfa1 gene 

expression (which regulates osteoblast cell differentiation and mineralisation) is 

enhanced in osteoblast cells grown on roughened titanium implant surfaces compared 

to grooved ones. Yang et al. (2015) investigated the influence of HA surface 

topography on osteogenic differentiation of human osteoblast cells and found that 

osteogenic differentiation and gene expression was enhanced on an HA layer. While 

much research has been conducted on the effect of titanium, HA and their surface 

topography on human primary osteoblast (or osteoblast-like) cell differentiation and 

gene expression; there are not many studies concerning the osteoblast cell 

differentiation on composites (coatings) with a biocide added, such as silver. The effect 

of the silver on cell differentiation and gene expression is poorly understood.  In 

addition, cell differentiation on nano silver and nano HA coating compared to nano 

silver and micro HA coating still needs to be further investigated to study the effect of 

dissolved silver on cell differentiation and mineralisation.  

In the previous chapters, the biocompatibility of nano silver and nano HA 

coating on titanium dental implants has been demonstrated. However, the ability of 

the silver-coated specimens to release a constant supply of an antibacterial dissolved 

silver without interfering with the mineralisation process needs to be investigated. This 
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is to ensure that the coating provides a long-term antibacterial activity without 

distracting the osseointegration process around the coated dental implant inside the 

jawbone. The aim of this study was to investigate the ability of primary human 

osteoblast cells to differentiate and mineralise on silver and HA coatings, layered onto 

the Ti alloy used for titanium dental implants. The study also aimed to explore the 

effects of silver released from the coatings on osteoblast cell gene expression. The 

specific objectives included to assess the cell viability and silver release over 21 days, 

and then examining the cells under SEM and performing an EDS analysis to confirm 

mineralisation. Moreover, to study the osmotic status of the cells and silver exposure 

to the cell monolayer after 21 days, also to study the expression of osteoblast cell 

differentiation genes to investigate the contribution of silver to gene expression. 

 

6.2 Materials and methods 

6.2.1 Cell culture  

Human primary osteoblast cells were cultured in DMEM + 10% FBS + 1% antimicrobial 

and the culture conditions were the same as described in Chapter 3. Cells on passage 

4 and 5 were used for this experiment. 

 

6.2.2 Experimental design 

This experiment was conducted to investigate the effect of the coatings on cell 

differentiation, mineralisation and gene expression after 21 days. The experiment was 

conducted in 24-well microplates, and the study design included two separate runs of 

the experiment, each with its own triplicate (n = 6). The first triplicated run was 
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assigned for the gene expression study (n = 3), the second run for the cell 

homogenisation and subsequent biochemistry (n = 3). All specimens were pre-treated 

with DMEM + 10%FBS + 1% antimicrobials for 2 days prior to the experiment. For 

sample sterilisation, the same protocol was followed as described in Chapter 2. In the 

actual experiment, initially, 30,000 cells were added to each well. This was achieved 

by adding 50000 cells/ml initially from the stock cultures and then 0.6 ml of media was 

added to each well to give a final cell density of 3 x 104 cells/well. The microplate was 

the unit of replication in the study design with all treatments and controls on each plate. 

The cell culture medium used for the experiments was DMEM + 10% FBS + 1% 

antimicrobials, as in the previous chapters. However on day 7 of the experiment, the 

media was also supplemented with 50 mg L-1 ascorbic acid, 7 mM β-glycerol 

phosphate and 10 nM dexamethasone (all purchased from Sigma–Aldrich) to induce 

cell differentiation and mineralisation (Langenbach and Handschel, 2013). However, 

the differentiation supplements were not added to the negative control on day 7. 

The negative control in this experiment was undifferentiated cells grown on 

culture dishes. Other treatments included: differentiated cells (reference control), 

uncoated titanium (Ti), silver plated titanium (Ag), silver plated and HA nanoparticles 

(Ag+nHA), and silver plated plus HA microparticles (Ag+mHA). The media was 

sampled at days 1, 4, 7, 10, 13, 16, 19 and 21. The media collected at each time point 

were used to measure the total concentration of Ag, Ca2+, P, Na+ and K+ using ICP-

OES (iCAP 7400 RADIAL, Hemel Hempstead, UK) and also to measure LDH and ALP 

enzyme activities in the media on days 1, 7 and 21 (n = 6). The Alamar blue assay 

was used to investigate the cell viability in all time points (n = 6). 

On day 21, the first triplicate was used for gene expression after mRNA 

extraction, the later was destructive sampling. While in the second triplicate, the cell 
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were homogenised using the same procedure as described in chapter 3 section 3.2.3, 

then the samples were immediately analysed for biochemistry and measured for Ag, 

Ca2+, P, Na+ and K+ using ICP-OES (iCAP 7400 RADIAL, Hemel Hempstead, UK). 

Another run of the experiment was conducted (n = 3) and specified for SEM and EDS 

analysis of the cells after 21 days growth on the specimens (destructive sampling). 

6.2.3 Alamar blue assay 

The alamar blue assay was carried out to follow the cell viability on days 1, 4, 7, 10, 

13, 16, 19 and 21. The protocol was exactly the same as described in chapter 5, and 

the volume of cells used was also the same (30,000 cells/well).  

 

6.2.4 Enzyme activity assays 

ALP and LDH activities were determined in both the cell homogenates after 21 days, 

and the cell culture medium on day 1, 7, and 21. For LDH activity, briefly, 100 µl of the 

sample was added to 2800 µl test reagents and the change in absorbance was taken 

kinetically at 340 nm wavelength. For ALP, 30 µl of the test sample was added to 250 

µl of the assay reagent and the absorbance measured kinetically at 405 nm. The assay 

protocols are fully described in Chapter 3. 

 

6.2.5 Silver and electrolyte balance  

Total Ag, Ca2+, P, Na+ and K+ were determined by ICP-OES in both the cell 

homogenates after 21 days (n = 3), and the cell culture medium on days 1, 4, 7, 10, 

13, 16, 19 and 21 (n = 6). This served to measure the release of apparent dissolved 

silver from the discs and also the silver accumulated in/on the cell monolayer. Calcium 
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and P were measured to check whether the cells had mineralised and produced 

mineralised nodules. Na+ and K+ were measured to determine the osmotic status of 

the cells. The procedures for sample preparation and acidification are described in 

Chapter 3. 

 

 6.2.6 Studying the cell morphology using SEM and EDS 

After 21 days, a triplicate of each group was subjected to dehydration and fixation 

procedure (chapter 3) to be prepared for SEM and EDS. The point of interest in using 

SEM and EDS was to examine the cell confluence, contact with each other through 

extending filopodia, and also the membrane integrity through examining the presence 

of membrane blebs and rupture. EDS was performed to confirm that any apparent 

mineral mass observed was mineralised tissue composed of calcium and phosphorus. 

 

6.2.7 RNA extraction  

Messenger ribonucleic acid (mRNA) was extracted from the cells after 21 days and 

the mRNA was then converted to cDNA to study the expression of the particular gene 

of interest. The procedure for RNA extraction followed a QIAGEN protocol for RNA 

extraction (RNeasy Mini Kit, cat. nos. 74104 and 74106). The protocol started with 

adding 10 µl β-mercaptethanol to 1 ml of buffer ‘RLT’; to prepare the lysis buffer, then 

350 µl RLT lysis buffer were added to each well and then vortexed for 3 minutes. This 

step was to lyse and homogenise the cells. The cell lysate was transferred to RNase-

free Eppendorf tubes and centrifuged for 3 min at maximum speed. After that, 1 

volume of 70% alcohol was added to each tube and then 700 µl of the sample 

(including any precipitate) was transferred to an RNeasy Mini spin column placed in a 



154 
 

2 ml collection tube then centrifuged for 15 seconds ≥ 8000 x g. Alcohol was used to 

force the precipitation of RNA out of solution. After that, buffer ‘RW1’ was added to the 

spin column and centrifuged for 15 second at ≥ 8000 x g.  The RW1 buffer is a washing 

buffer containing guanidine salt and ethanol, and it is used to remove biomolecules 

such as carbohydrates, proteins, fatty acids. After adding the ‘RW1’ buffer, bufffer 

‘RPE’ was added to the spin column and then centrifuged for 15 second at ≥ 8000 x 

g. Buffer RPE is a mild washing buffer which is used to remove traces of salts left in 

the column due to buffers used previously in the procedure. 

Finally, the RNeasy spin column was placed in a new 1.5 ml collection tube and 

then 30 µl RNase-free water was added directly to the spin column membrane then 

centrifuged for 1 min at ≥ 8000 x g to elute the RNA. The ‘Nano drop’ instrument 

(Thermo Scientific NanoDrop, 2000) was used to calculate the RNA content of each 

sample. For the latter, 1 µl of RNA in an RNase free water was placed on the sensor 

of the device and then the amount of RNA was directly measured. 

 

6.2.8 Studying the gene expression using quantitative real time polymerase 

chain reaction (qPCR) 

Gene expression was studied to investigate the effect of the coatings on osteoblast 

functional genes. The house keeping gene in this study was β-actin and target genes 

were for ALP, osteocalcin, Runt-related transcription factor 2 (RUNX-2) and interleukin 

(IL-6), primer sequences are shown in (Table 6.1). ALP, osteocalcin and RUNX-2 were 

selected because they are expressed during osteoblast cell differentiation and 

mineralisation. IL-6 was selected to check for the presence of inflammation in the cells. 

The RT-PCR was conducted in 384 well plates (n = 3 samples (extracted RNA) per 

each treatment) and a duplicate of each sample were used. The concentration of RNA 
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in each sample was 10 ng µl-1 RNA in RNase free water, and the volume of the sample 

was 30 µl. The volumes of reagents are listed in (Table 6.2) and the total reaction 

volume was 10 μl. Target genes were normalised to the house keeping gene (β-actin) 

to calculate the fold change. Data were processed by working out the change in CT 

value (∆CT) between target gene and the house keeping gene of each sample in each 

treatment, and then ∆∆CT was calculated between the tested samples (treatments) 

and the negative control. Finally, the ∆∆CT values were subjected to (2^-∆∆CT) to 

calculate the fold change of the target gene. 

 

Table 6.1. Genetic sequence of the primers used in this study  

ALP (Forward) 5-GAC AAT CGG AAT GAG CCC ACG C.3 

ALP (Reverse) 5-GTA CTT ATC CCG CGC CTT CA CAC-3 

Osteocalcin (Forward)  5-AGC CCA CGC GTC GAG AGT CCA-3 

Osteocalcin (Reverse) 5-GCC GTA GAA GCG CCG ATA GG-3 

RUNX-2 (Forward) 5-TGC CCG GCC AGC CAG GTC CAG A-3 

RUNX-2 (Reverse) 5-ACC CGC CAT GAC AGT ACC CAC AGT-3 

IL-6 (Forward) 5-AGT TGC CTT CTT GGG ACT GA-3 

IL-6 (Reverse) 5-GAC AAT CGG AAT GAG AGA AC-3 

β-Actin (Forward) 5-CCC AAG GCC AAC CGC GAG AAG ATG-3 

β-Actin (Reverse) 5-GTC CCG GCC AGC CAG GTC CAG A-3 
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Table 6.2. Components and volume of the reaction mixture used in qPCR 

Component Volume in reaction 

QuantiNova SYBR Green RT-PCR Master 

Mix 10 

5 μl 

QN ROX Reference Dye 0.5 μl 

QN SYBR Green RT-Mix 0.1 μl 

10x primer mix 1 μl (0.5 μl forward primer, 0.5 μl reverse 

primer 

Sample (RNA) 1 μl 

RNase-Free Water 2.4 µl 

 

The RT-PCR process was carried out following the QuantiNova SYBR green RT-PCR 

kit using (Quant Studio 12K Flex Real-Time PCR System, Thermo Fisher 

SCIENTIFIC) instrument; the RT-PCR process started with reverse transcription for 

10 minutes at 50 °C to activate reverse transcription, then PCR initial activation step 

for 2 min at 95 °C.  Later, two-step cycling started; the first step was denaturation for 

5 seconds at 95 °C and then a combined annealing/extension step for 10 seconds at 

60 °C, and finally a melting curve analysis step. 

  

6.2.9 Statistical analysis 

All data are presented as mean ± S.E.M and analysed using Statgraphics version 16. 

Data were subjected to the normality test to check whether that data are normally 

distributed. To remove any outlying values, Box and Whisker plots were used. 

Difference between the treatments, or between the time points of the same treatment, 
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were evaluated using one-way analysis of variance (ANOVA, then Tukey’s test). For 

data which were not normally distributed, the Kruskal Wallis test was used, and 

significant differences were located using Box and Whisker plots. Two-way analysis 

of variance was used to evaluate the combined time and treatment effect. All statistical 

analysis used a 95% confidence limit, p values < 0.05 were considered statistically 

significant. 
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6.3 Results 

6.3.1 Silver release to the external media and exposure to the cell monolayer 

Concentration of total silver in the external media and the cell homogenate were 

measured over 21 days using ICP-OES. Table 6.3 shows that there was a significantly 

lower silver concentration in the media from the negative control, reference control 

and Ti compared to the other treatments (one way ANOVA, p < 0.05). The background 

values for total silver in the media were around 0.03 mg L-1 or less. Moreover, the Ag, 

Ag+nHA and Ag+mHA showed similar amounts of silver release over time; with the 

values being around 1 mg L-1  at day 1, then increased to around 2 mg L-1 at day 4, 

and then gradually decreased over time to reach to approximately 0.3 mg L-1 on day 

21. The difference between day 21 and day 1 was significant for Ag, Ag+nHA and 

Ag+mHA (one way ANOVA, p < 0.05, Table 6.3). Two way ANOVA showed that there 

were both treatment and time effects on Ag release (p < 0.05, Table 6.3). Silver 

exposure to the cell monolayer was confirmed by measuring the total silver in the 

homogenates. The concentration of silver in the homogenates from the negative 

control, reference control and Ti were significantly lower than Ag, Ag+nHA and 

Ag+mHA. Also, the total silver in the Ag treatment was significantly higher than the 

Ag+nHA or Ag+mHA treatments (one way ANOVA, p < 0.05, Table 6.3).  
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Table 6.3. Concentration of Ag in the external media over 21 days 

Treatment   Day 1 Day 4 Day 7 Day 10  Day 13 Day 16 Day 19 Day 21 Homogenate 

 mg L-1 

Negative 

control  

0.06 ± 0.01 

B 

0.08 ± 0.01 

B 

 0.08 ± 0.01 

 B 

  0.04 ± 0.01 

  B 

  0.09 ± 0.01 

  B 

0.06 ± 0.01 

B 

0.07 ± 0.01 

B 

0.07 ± 0.01 

B 

0.03 ± 0.02 

C 

Reference 

control 

0.03 ±   0.01 

B 

0.04 ± 0.01 

B 

0.08 ± 0.01 

B 

  0.07 ± 0.01 

  B 

  0.06 ± 0.01 

  B 

0.03 ± 0.01 

B 

0.02 ± 0.01 

B 

0.01 ± 0.01 

B 

0.01 ± 0.00 

C 

Ti 0.02 ± 0.01 

B 

0.02 ± 0.01 

B 

0.04 ± 0.01 

B 

0.04 ± 0.01 

B 

0.03 ± 0.01 

B 

0.02 ± 0.01 

B 

0.01 ± 0.00 

B 

0.01 ± 0.00 

B 

0.24 ± 0.12 

C 

Ag 0.86 ± 0.11 

Ay 

2.34 ± 0.49 

Ax 

1.69 ± 0.32 

Ax 

1.33 ± 0.22 

Ax 

1.02 ± 0.25  

Ax 

0.68 ± 0.09 

Ay 

0.64 ± 0.17 

Ay 

0.37 ± 0.10 

Az 

44.81 ± 20.5 

A 

Ag+nHA 1.04 ± 0.30 

Ax 

2.08 ± 0.54 

Ax 

1.61 ± 0.85 

Ax 

1.08 ± 0.30 

Ax 

0.91 ± 0.25  

Ax 

0.52 ± 0.11 

Ay 

0.52 ± 0.18 

Ay 

0.26 ± 0.05 

Ay 

13.50 ± 2.21 

B 

Ag+mHA  0.70 ± 0.16 

Axy 

1.51 ± 0.31 

Ax 

1.26 ± 0.24 

Ax 

1.27 ± 0.09 

Ax 

1.03 ± 0.06  

Ax 

0.50 ± 0.11 

Ay 

0.46 ± 0.07 

Ay 

0.25 ± 0.05 

Ay 

13.08 ± 5.97 

B 

Data are expressed as mean ± S.E.M. (n = 6). Different capital letters within the column indicate a significant difference between 

material types, while different small letters within the row indicates a statistically significant time-effect within treatment. One way 

ANOVA or Kruskal-Wallis test (p < 0.05) were used for treatment or time-effects.
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6.3.2 Cell health, morphology and mineralisation assessment over 21 days 

SEM images showed cells on Ti and also Ag+nHA were confluent, attached to each 

other, having an intact membrane, while cells on Ag and Ag+mHA were less confluent 

and there was a slight noticeable shrinkage but with an intact cell membrane and also 

cell to cell attachment (Figure 6.1). Light microscopy images of the negative control 

and the reference control showed confluent cells, well attached to each other and 

having an intact cell membranes. The difference was the presence of some orange/red 

deposits of the cell monolayer in the reference control (Figure 6.1). EDS showed that 

the cell on the specimens in all treatments were mineralised and produced calcium 

and phosphorus after 21 days (Figure 6.2). 

Cell viability was assessed using the alamar blue assay. Table 6.4, shows that 

and there was no statistically significant change in cell viability over time in the 

reference control (Kruskal Wallis test, p = 0.968) and Ti (one way ANOVA, p = 0.141). 

Cell viability in the Ag+nHA treatment increased over time, and at day 21 the cell 

viability was significantly higher than earlier time points (one way ANOVA, p < 0.05), 

(Table 6.4).  For the Ag and Ag+mHA treatments, the cell viability showed a trend of 

steadily decreasing values (not always statistically significant) over time. Two way 

ANOVA showed that there were both time and treatments effect of cell viability (p < 

0.05). 

The electrolyte composition of the homogenates were measured to access the osmotic 

health of the cells. The Na+ concentration in the cell homogenate was significantly 

lower in the negative and reference control compared to all the other treatments (one 

way ANOVA, p < 0.05) measuring less than 0.5 mmol L-1 in the negative and reference 

control (Figure 6.3). Moreover, the Ag+mHA treatment was significantly lower than the 

Ti (one way ANOVA, p < 0.05) measuring 1 and 2.5 mmol L-1 respectively. Moreover, 
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Ag and Ag+nHA were not significantly different from Ti. The concentration of K+ in the 

reference control was not significantly different from the Ti treatment (one way 

ANOVA, p = 0.0004), with both measuring around 0.5 mmol L-1 (Figure 6.3). However, 

K+ concentration in the homogenate was significantly lower in the Ag+mHA treatment 

compared to all others (one way ANOVA, p < 0.05), measuring around 0.3 mmol L-1 

(Figure 6.3). Ca+ concentrations in the cell homogenates was significantly lower in the 

negative control compared to the others (Kruskal Wallis test, p = 0.014), (Figure 6.5). 

Concentration of P, was also significantly lower in the negative control compared to 

test samples (Kruskal Wallis test, p = 0.022), (Figure 6.3).  
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Figure 6.1. (A) and (B) light microscopic image of primary human osteoblast cells after 21 days growth in negative control and 

reference control respectively, (Scale bar is 10 µm, magnification is x50. Note the arrows pointing to orange/red deposits in image 

(B) which is argued to be mineral deposits. Other are SEM images of differentiated primary human osteoblast cells on (C) Ti, (D) Ag, 

(E) Ag+nHA, and (F) Ag+mHA. Note the confluence of the cells and their attachment to each other. Magnifications are x100 and the 

scale bars are 100 µm. 
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Figure 6.2. EDS spectra showing the composition of calcified masses produced by human primary osteoblast cells cultured on (A): 

Ti, (B): Ag, (C): Ag+nHA and (D): Ag+mHA. Arrows are pointing to the calcified mass from which the composition is been confirmed 

by EDS. It can be noticed that the composition of the calcified masses is mainly Ca and P. The presence of a high amount of Au is 

because the specimens were coated with gold to make the surface conductive. The negative control and reference control were not 

included because it was not possible to perform EDS spectra for the cells grown on culture dishes. 
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Figure 6.3. Concentration of Na+ (A), K+ (B), Ca2+ (C) and P (D) in the cell homogenate after 21 days. Data are mean ± S.E.M, (n = 

3). Different letters indicate a significant difference between treatments (one way ANOVA or Kruskal Wallis, p < 0.05). No label means 

no significant difference between treatments.
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Table 6.4. Percentage cell viability relative to the negative control determined by Alamar blue assay over 21 days 

Treatments Day 1  Day 4  Day 7 Day 10 Day 13 Day 16 Day 19  Day 21 

Reference 

control  

 104.6 ± 9.6  

A a 

 96.6 ± 3.8  

A a 

 102.1 ± 10.1 

 A a 

 90.2 ± 6.1  

AB a 

 87.7 ± 12.1  

AB a 

 79.4 ± 16.1  

B a 

 92.0 ± 12.8  

A a 

 84.1 ± 17.8  

AB a 

Ti 97.4 ± 7.2 

 AB a  

 75.1 ± 4.8 

 B ab 

 75.4 ± 7.6  

B ab 

73.3 ± 11.1  

AB ab 

 73.9 ± 15.1  

AB ab 

 54.6 ± 7.4  

B b 

 69.3 ± 12.0  

AB b 

 60.5 ± 8.1  

B b 

Ag  75.5 ± 6.9  

C a  

 45.6 ± 0.8 C 

ab 

 49.6 ± 8.9  

C ab 

64.3 ± 10.5  

BC ab 

 63.1 ± 14.5  

BC ab 

 39.2 ± 3.2  

B b 

 61.4 ± 12.6  

AB ab 

 67.7 ± 17.4  

B ab 

Ag+nHA 83.8 ± 6.7  

ABC bcd 

 56.4 ± 6.1  

C d 

 74.7 ± 9.6  

B cd 

82.9 ±10.5  

AB bcd 

 87.2 ± 7.1  

AB bcd 

 115.7 ± 5.2  

A ab 

 90.3 ± 7.0  

A abc 

 123.6 ± 4.9  

A a 

Ag+mHA 80.5 ± 5.0   

BC a 

48.3 ± 6.6  

C ab 

44.1 ± 7.4  

C b 

42.9 ± 7.4  

C ab 

43.5 ± 5.7  

C b 

47.8 ± 12.3  

B b 

51.0 ± 9.1  

B b 

62.5 ± 13.1  

B ab 

 Data are mean ± S.E.M, (n = 6). Different small letters within the raw indicate a significant difference, while different capital letters 

within the column indicate a significant difference, one way ANOVA or Kruskal Wallis, (p < 0.05).  
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6.3.3 Alkaline phosphatase and lactate dehydrogenase enzyme activities 

ALP activity was also measured in the cell homogenates and the external media. 

There was detectable ALP activity in the cell homogenate, but without any significant 

difference between the treatments (Kruskal Wallis, p > 0.676). There was also a trace 

amount of ALP detected in the cell culture media, but values were less than 0.1 nmol 

min-1 ml-1 (Figure 6.4 and Table 6.5). LDH enzyme activity was also measured in the 

external media and the cell homogenate. Figure 6.5 shows that there was a detectable 

LDH activity in the cell homogenate in all groups.  However, there was no significant 

difference between them (one way ANOVA, p = 0.428). In the external media, there 

was also detectable LDH activity, but no significant difference was located between 

the groups (Kruskal Wallis, p > 0.05). Values for LDH activity in the external media 

were less than 10 nmol min-1 ml-1 (Table 6.6).  

 

Figure 6.4. ALP enzyme activity in the cell homogenate after 21 days. Data are 

represented as mean ± S.E.M, (n = 3) there were no significant differences between 

the groups (Kruskal Wallis test, p = 0.676). 
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Figure 6.5. LDH in the cell homogenate after 21 days. Data are represented as mean 

± S.E.M, (n = 3) there were no significant differences between the groups (one way 

ANOVA, p = 0.428). 

Table 6.5. ALP enzyme activity in the external media over 21 days 

Treatment Day 1 Day 7 Day 21 

ALP activity (nmol min-1 ml-1) 

  Negative control                 < 0.004                  0.032 ± 0.007                    < 0.004 

Reference control 0.101 ± 0.009 0.039 ± 0.011 0.045 ± 0.003 

Ti 0.103 ± 0.022 0.029 ± 0.007           < 0.004 

Ag 0.054 ± 0.021 0.036 ± 0.004 0.025 ± 0.001 

Ag+nHA 0.057 ± 0.004 0.026 ± 0.007 0.023 ± 0.001 

Ag+mHA 0.068 ± 0.004 0.034 ± 0.004 0.026 ± 0.001 

Data are mean ± S.E.M, (n = 6). There were no significant differences between the 

treatments or between the time point within the same treatment (Kruskal Wallis test, p 

> 0.05). 
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Table 6.6. LDH enzyme activity in the external media over 21 days. 

Treatments Day 1 Day 7 Day 21 

 LDH activity (nmol min-1 ml-1) 

    Negative control             9.02 ± 8.67                   1.42 ± 0.94                  0.92 ± 0.56 

Reference control  9.07 ± 6.86 2.43 ± 1.16 3.22 ± 2.45 

Ti 3.21 ± 1.91 0.74 ± 0.22 1.69 ± 0.75 

Ag 9.97 ± 3.44 1.29 ± 0.45 0.95 ± 0.34 

Ag+nHA 3.26 ± 1.52 0.74 ± 0.10 1.26 ± 0.64 

Ag+mHA 1.93 ± 0.81 0.95 ± 0.22 1.26 ± 0.45 

Data are mean ± S.E.M, (n = 6) there are no significant differences between the groups 

or between the time points of the same group (Kruskal Wallis test, p > 0.05). 

 

6.3.4. Concentration of electrolytes in the cell culture media 

Concentration of Na+ in the media was around 60 mmol L-1 on day 1 in all treatments, 

but then the values slightly increased over time (Table 6.7). Moreover, the 

concentration of K+ remained constant at around 5.5 mmol L-1 in all treatments at all 

time points, without any statistically significant differences (one way ANOVA, p < 0.05, 

Table 6.8). Two way ANOVA showed that there was no time effect on Na+ and K+, just 

treatment effect (P <0.05). However, the Ca2+ concentration in the media was 

significantly higher in the negative control, reference control, Ti and Ag treatments 

compared to the Ag+nHA and Ag+mHA treatments (one way ANOVA, p < 0.05).  

Values for Ca2+ concentration were between 0.2 to 2 mmol L-1 in all treatments. Ca2+ 

concentrations in the Ag+nHA treatment gradually decreased over time and the mean 

value at day 7 was significantly different from that at day 1 (one way ANOVA, p <0.05, 

Table 6.9). P concentrations in the media were also significantly higher in the negative 
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control, reference control, Ti and Ag treatments compared to the Ag+nHA and 

Ag+mHA treatments (one way ANOVA, p < 0.05). The values for all treatments were 

between 1 to 6 mmol L-1. However, from day 16 and onward, there were no significant 

differences between the treatments (one way ANOVA, p > 0.05, Table 6.10).  
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Table 6.7. Concentration of Na+ in the external media over 21 days.  

Treatment Day 1 Day 4 Day 7 Day 10  Day 13 Day 16 Day 19 Day 21 

mmol L-1 

Negative control                   180.09 ±         167.05 ±              206.70 ±            140.50 ±               142.70 ±         143.96 ±            139.55 ±                   161.32  ± 
                                                   8.66 A           9.18 A                 8.29 A               3.89 A                   5.68 A             2.08 A               13.88 A                     9.87 A 

Reference control 

64.090 ± 
1.602 By 

85.678 ± 
11.479 Bxy 

101.673 
±5.754 Bx  

100.450 
±11.355 Bxy 

80.319 ± 
8.392 Bxy 

79.980 ± 
15.626 Bx 

95.922 ± 
3.063 Bx 

77.976 ± 
9.663 Bx 

Ti 

70.034 ± 
9.187 By 

88.071 ± 
8.898 Bxy 

95.336 ± 
6.105 Bx 

102.188 ± 
12.459 Bxy 

86.979 ± 
8.825 Bxy 

96.697 ± 
2.725 Bx 

77.316 ± 
15.485 Bx 

82.450 ± 
2.973 Bx  

Ag 

59.383 ± 
1.041 By 

84.451 ± 
8.318 Bxy 

110.325 ± 
23.290 Bx 

94.091 ± 
12.254 Bxy 

77.543 ± 
12.989 Bxy 

89.262 ± 
3.513 Bx 

86.558 ± 
2.713 Bx 

77.566 ± 
2.055 Bx 

Ag+nHA 

58.495 ± 
1.086 By 

86.779 ± 
8.946 Bxy 

83.811 ± 
5.897 Bxy 

100.045 ± 
11.178 Bxy 

86.426 ± 
11.728 Bxy 

89.618 ± 
3.420 Bx 

82.215 ± 
1.920 Bx 

73.455 ± 
5.352 Bxy 

Ag+mHA  

59.282 ± 
1.162 By 

82.798 ± 
14.385 Bxy 

91.835 ± 
6.075 Bxy 

100.421 ± 
11.903 Bx 

94.734 ± 
12.239 Bxy 

91.563 ± 
2.855 Bxy 

84.615 ± 
1.063 Bxy 

76.732 ± 
4.076 Bxy 

Data are expressed as mean ± S.E.M, (n = 6). Different capital letters within the column indicate a significant difference, while different 

small letters within the row locates a significant difference. One way ANOVA or Kruskal Wallis test (p < 0.05). Unlabelled means no 

significant difference. 
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Table 6.8. Concentration of K+ in the external media over 21 days. 

Treatment Day 1 Day 4 Day 7 Day 10  Day 13 Day 16 Day 19 Day 21 

mmol L-1 

 

Negative control 8.72 ±  
0.39 

8.28 ±  
0.52 

9.17 ± 
0.29 

6.17 ± 
0.17 

5.64 ± 
0.37 

6.38 ± 
0.12 

6.26 ± 
0.74 

7.53 ± 
0.39 

 

Reference control  6.071 ± 
0.226 

5.900 ± 
0.453 

7.200 ± 
0.534  

6.732 ± 
0.131 

4.892 ± 
0.484 

4.544 ± 
0.949 

6.904 ± 
0.281 

5.145 ± 
0.711 

Ti 

6.288 ± 
0.458 xy 

6.397 ± 
0.236 xy 

6.616 ± 
0.435 xy 

7.200 ± 
0.288 x 

5.264 ± 
0.258 y 

5.864 ± 
0.249 xy 

5.115 ± 
1.045 xy 

5.499 ± 
0.153 xy 

Ag 

5.783 ± 
0.103 

6.029 ± 
0.286 

7.373 ± 
0.928 

6.307 ± 
0.132 

4.546 ± 
0.920 

5.344 ± 
0.207 

6.255 ± 
0.197 

4.957 ± 
0.314 

Ag+nHA 

5.683 ± 
0.087 y 

6.367 ± 
0.494 xy 

    6.071  
± 0.509 xy 

6.392  ± 
0.095 x 

5.565 ± 
0.065 y 

5.335 ± 
0.172 y 

5.641 ± 
0.184 xy 

4.798 ± 
0.532 y 

Ag+mHA  

5.616 ± 
0.236 xy  

5.296 ± 
0.568 xy  

6.488 ± 
0.404 xy  

6.737 ± 
0.197 x 

5.881 ± 
0.116 y 

5.412 ± 
0.253 y 

5.757 ± 
0.150 y 

5.048 ± 
0.353 y  

Data are expressed as mean ± S.E.M, (n = 6). Different capital letters within the column indicate a significant difference, while different 

small letters within the row locates a significant difference. One way ANOVA or Kruskal-Wallis test (p < 0.05). Unlabelled means no 

significant difference. 
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Table 6.9. Concentration of Ca2+ in the external media over 21 days. 

Treatment Day 1 Day 4 Day 7 Day 10  Day 13 Day 16 Day 19 Day 21 

mmol L-1 

 

Negative control 
2.12 ±  
0.05 A 

1.95 ± 
0.14 A 

2.10 ± 
0.28 A 

1.93 ± 
0.05 A 

1.40 ± 
0.07 A 

2.24 ± 
0.06 A 

1.93 ± 
0.03 A 

2.32 ± 
0.19 A 

 

Reference control 
1.937 ± 0.070 A 

x 
1.836 ± 0.138  

A xy 
1.892 ± 0.091 

A xy 
1.455 ± 0.020 

A xy 
1.175 ± 0.128 

A z 
1.100 ± 0.214 

A z 
1.264 ± 0.161 

A yz 
0.878 ± 0.195 

A z 
Ti 

1.965 ± 0.172 A 
x 

1.917 ± 0.132 
A x 

1.782 ± 0.065 
A x 

1.566 ± 0.065 
A x 

0.667 ± 0.043 
A y 

0.803 ± 0.141 
A y 

0.542 ± 0.110 
B y 

0.825 ± 0.062 
A y 

Ag 

1.728 ± 0.035 A 

x 
1.856 ± 0.096 

A x 
1.955 ± 0.345 

A x 
1.412 ± 0.050 

A y 
0.795 ± 0.173 

A yz 
0.772 ± 0.128 

A z 
0.685 ± 0.042 

B z 
0.837 ± 0.040 

A z 
Ag+nHA 

0.730 ± 0.072  
B wx 

0.686 ± 0.077  
B xy 

0.324 ± 0.028 
B y 

0.353 ±0.017 
B yz 

0.345 ± 0.038 
B yz 

0.300 ± 0.043 
B yz 

0.338 ± 0.068 
C z 

0.388 ± 0.079 
B yz 

Ag+mHA  

0.970 ± 0.153 
xy B 

0.737 ± 0.109 
B xy 

0.532 ± 0.072 
B xy 

0.537 ± 0.060 
B y 

0.667 ± 0.050 
A x 

0.649 ± 0.038  
AB xy 

0.661 ± 0.014 
B x 

0.857 ± 0.07 A 

x 

Data are expressed as mean ± S.E.M, (n = 6). Different capital letters within the column indicate a significant difference, while different 

small letters within the row locates a significant difference. One way ANOVA or Kruskal-Wallis test (p < 0.05). Unlabelled means no 

significant difference. 
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Table 6.10. Concentration of P in the external media over 21 days. 

Treatment Day 1 Day 4 Day 7 Day 10  Day 13 Day 16 Day 19 Day 21 

mmol L-1 

 

Negative control  1.53 ± 0.06 
A 

2.27 ± 0.77  
A 

6.61 ± 1.40  
A 

1.53 ± 0.06  
A 

3.71 ± 1.17  
A 

2.32 ± 0.71 
A 

3.43 ± 0.99 
A 

2.01 ± 0.09 
A 

 

 

Reference control  
1.328 ± 

0.033 A y 
0.969 ± 0.169 

A y 
4.677 ± 1.577 

A xy 
4.596 ± 1.021 

A x 
3.890 ± 0.815 

A x 
2.176 ± 0.807 

A xy 
2.288 ± 0.689 

A xy 
2.457 ± 0.745 

A xy 
Ti 

1.473 ± 
0.177 A y 

0.846 ± 0.204 
A y 

4.036 ± 1.421 
A xy 

4.372 ± 1.279 
A xy 

5.869 ± 0.808 
B x 

2.321 ± 0.364 
A xy 

1.486 ± 0.548 
A xy 

3.500 ± 0.404 
A xy 

Ag 

1.469 ± 
0.103 A z 

1.026 ± 0.135 
A z 

4.217 ± 0.139 
A xyz  

4.230 ± 0.854 
A xyz  

5.464 ± 1.231 
B x 

1.993 ± 0.322 
A yz 

1.971 ± 0.478 
A yz 

3.858 ± 0.536 
A y 

Ag+nHA 

0.864 ± 
0.068 B yz 

0.451 ± 0.058 
B z 

3.273 ± 0.980 
B  xy 

3.988 ± 0.881 
B x 

5.055 ± 0.647 
B x 

2.142 ± 0.353 
A xyz 

2.406 ± 0.453 
A xyz 

3.923 ± 0.490 
A x 

Ag+mHA  

0.786 ± 
0.172 B y  

0.490 ± 0.066 
B y  

3.672 ± 1.066 
B wxy 

4.217 ± 0.891 
B wx  

5.322 ± 0.716  
Bw 

1.877 ± 0.276 
A x 

2.520 ± 0.486 
A x  

2.977 ± 0.668 
A wx 

Data are expressed as mean ± S.E.M, (n = 6). Different capital letters within the column indicate a significant difference, while different 

small letters within the row locates a significant difference. One way ANOVA or Kruskal-Wallis test (p < 0.05). Unlabelled means no 

significant difference.
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6.3.5 Gene expression study 

Quantitative real time PCR was performed at the end of the experiment to study the 

mRNA of the functional genes in the osteoblasts that related to the cell differentiation 

and mineralisation processes. The values were fold changes relative to the negative 

control. The results showed that the expression of β-actin was constant between the 

treatments, however, Ag and Ag+mHA showed significantly less expression compared 

to others. The mRNA expression in ALP in the reference control was increased 

approximately 1 fold relative to the negative control. However, the fold change in other 

treatments were less than 1 relative to the negative control (Figure 6.6). The 

expression of mRNA in ALP was significantly higher in the reference control compared 

to the Ti, Ag and Ag+mHA treatment (one way ANOVA, p = 0.03), however, there was 

no significant change between and reference control and Ag+nHA (Figure 6.6). 

Regarding osteocalcin, the mRNA expression was measurable in all samples in 

reference control and Ag+nHA, but it was measurable in only 1 sample in Ti, Ag and 

Ag+mHA, other samples were undetermined. There was no significant difference 

between the reference control and Ag+nHA (one way ANOVA, p > 0.05), values of 

osteocalcin mRNA expression were approximately 1-2 fold change relative to the 

negative control (Figure 6.6). Expression of RUNX-2 gene worked in all treatments, 

but there was no significant difference between the treatments (one way ANOVA, p = 

0.57), the values were around 1.5 – 2.5 fold change relative to the negative control. 

There was no IL-6 expression in any of the treatments as the threshold cycle (CT) 

values were undetermined.     
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Figure 6.6. Fold changes in the expression of mRNA for ALP (A), osteocalcin (B) and RUNX-2 (C) in cultured human osteoblasts 

grown on; culture dishes (reference control), Ti, Ag, Ag+nHA and Ag+mHA. Data are mean ± S.E.M, (n = 3). Different letters indicate 

a significant difference between treatments (one way ANOVA, p < 0.05). Unlabelled indicates no statistically significant differences 

between the treatments was observed.
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6.4 Discussion   

In this study, differentiation and mineralisation of human primary human osteoblast 

cells on nano silver and nano HA coating of titanium dental implants were investigated. 

The results showed that the reference control cells were differentiated and mineralised 

after 21 days, and there was noticeable calcified masses on the cell monolayer under 

the microscope (Figure 6.1). Also, Ca2+ and P in the reference control was significantly 

higher than the negative control indicating extracellular matrix mineralisation. 

Moreover, EDS reports showed that osteoblast cells on Ti, Ag, Ag+nHA and Ag+mHA 

were calcified and showed increased calcium and phosphorus presence. Molecular 

investigations on the gene expression showed that there was an mRNA expression of 

osteoblast cell differentiation genes (ALP, osteocalcin and RUNX-2) in all treatments 

(Figure 6.6). There was a consistent release of silver from the silver plated titanium 

discs to the external media measuring around 1 mg L-1 at the beginning of the 

experiment and 0.3 mg L-1 on day 21. This confirms that the amount of released silver 

over 21 days was above the antibacterial dose which is around 0.2 mg L-1 (Besinis et 

al., 2017). In addition to the release of silver to the media, the measured silver 

concentrations in the cell homogenates confirmed silver exposure to the cell 

monolayer; but without inducing toxicity to the cells as measured by normal cell 

morphology, electrolyte composition and the presence of normal LDH and ALP 

enzyme activities.  

 

6.4.1 Long term silver release and cell viability 

Released silver was measured in the external media over 21 days. The Alamar blue 

assay was also conducted to study the cell viability on the same time points over 21 
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days. Results showed that there was a similar and constant silver release of 

approximately 1-2 mg L-1 from the Ag, Ag+nHA and Ag+mHA treatments at the 

beginning of the experiment, but later, they decreased to around 0.3 mg L-1. Cell 

viability in these treatments remained above 60% relative to the negative control. This 

result reveals that silver has not induced a significant cytotoxicity to the cells. There 

was a decrease in cell viability after few days of the experiment but then increased 

until the end of the experiment. This may be explained by the fact that the released 

silver to the external media had killed some cells at the beginning of the exposure due 

to the silver shock, but later, the surviving cells had become tolerant to the environment 

(Table 6.3 and Table 6.4). Moreover, cell viability on the Ag+nHA treatment was 

increasing over time, but the viability of the cells from the Ag+mHA treatment was 

decreasing even in the presence of similar amount of released silver. This observation 

could be explained by the fact that the surface of Ag+nHA is uniform and fully covering 

the silver layer underneath, so the cells came in contact with the nano HA surface, 

while, the HA particles on the surface of Ag+mHA are sparse and the cells were 

attaching to the silver layer rather than the micro HA. Moreover, nano HA surface 

induces cell growth and proliferation and attachment with each other (Shi et al., 2013; 

Huan et al., 2016; Cheng et al., 2018). 

Regarding cell morphology, osteoblast cells grown on the Ti and Ag+nHA 

treatments were confluent and attached to each other without having obvious 

membrane damage. However, the cells on the Ag and Ag+mHA treatments exhibited 

an obvious shrinkage, but there was also cell attachment with each other and no 

noticeable cell membrane rupture. In addition, the expression of β-actin also confirmed 

the cell shrinkage, as it was found that the mRNA expression of β-actin was 

significantly lower in Ag and Ag+mHA compared to others. The expression of actin 
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proteins is involved in the cell volume control (Chowdhury et al., 1992; Kapus et al., 

1999). Cell shrinkage can be caused by osmotic shrinkage with likely water loss; and 

it is known that Ag interferes with Na+/K+ pump leading to the outward diffusion 

gradient of the Na+ (Hussain et al., 1994). However, due to the Na+ adsorption from 

the media to the disc surface, the actual Na+ content of the cells was masked. The cell 

shrinkage due to silver is further confirmed by Pauksch et al. (2014) who showed that 

the presence of silver with primary osteoblast cells was associated with 60% cell 

viability with a noticeable cellular shrinkage when the cells were examined under SEM. 

The LDH activity in the external media was low in all treatments, this indicates that 

although there was some cell shrinkage, there was not a significant amount of LDH 

release from the cells due to the cell membrane rupture. In addition, there was not a 

high LDH activity in the cell homogenate indicating that the cells were not depending 

on anaerobic respiration for ATP production, so the respiratory status of the cells was 

not altered by the presence of silver. 

  In the cell homogenate, exposure of silver to the cell monolayer was confirmed 

in all the treatments where silver was intended to be present: Ag, Ag+nHA and 

Ag+mHA. The concentration of Na2+ in the cell homogenate of negative and reference 

control was significantly lower compared to all other treatments, this is explained by 

the fact that Na+ and proteins from the cell culture medium are adsorbed to the surface 

of the discs (see Chapter 3). Ca2+ and P concentration in the cell homogenate showed 

significantly higher values in the Ag+mHA treatment compared to all other treatments. 

However, this value might have been masked by the presence of HA on the specimen 

surface that can subsequently be mixed with the cell lysate. In addition, the presence 

of adsorbed Ca2+ and P from the external media to the HA surface of the disc can 

mask the actual Ca2+ and P values of the cell homogenate (Harding et al., 2005).  
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6.4.2 Cell differentiation and mineralisation  

The osteoblast cell mineralisation in the reference control (differentiated cells) 

compared to the negative control (undifferentiated cells) was assessed by observing 

the mineral deposits under the microscope, and also measuring the Ca2+ and P 

content in the cell homogenate after 21 days. The reference control was mineralised 

and differentiated. Figure 6.1 shows the mineralised human primary osteoblast cells 

on the surface of the culture dish. Cells in the reference control showed orange/red 

deposits while cells in the negative control did not, the deposits might be calcified 

masses produced by the differentiated cells. This argument was also confirmed by the 

ICP-OES finding as it showed that Ca2+ and P in the cell homogenate of the reference 

control was significantly higher than the negative control. In addition, in all treatments, 

cell differentiation and mineralisation were achieved, these were confirmed by the 

SEM and EDS spectra that clearly show that the cells in all treatments produced 

calcium and phosphorus deposits (Figure 6.1 and 6.2). This result is supported by Tian 

et al. (2016) that used SEM and EDS to qualitatively investigate the production of 

calcium and phosphorus deposits by osteoblast cells cultured on titanium surface for 

21 days.  In addition, SEM findings of the current study showed that there were cellular 

extensions to the calcified matrix (Figure 6.1). Similar observation was noticed by 

Jones et al. (2007) after studying the mineralisation of human primary osteoblast cells 

on a phosphate-free porous bioactive glass scaffold. It was found that the cells were 

extending filopodia to the calcified masses. This was also observed by Linder et al. 

(1983) during electron microscopic analysis of the bone-implant interface. Linder and 

co-workers installed dental implants in rabbits for 12 weeks and then the animals were 
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sacrificed and implants removed for electron microscopical analysis of the bone-

implant interface.  

Silver release to the external media and silver exposure to the cell homogenate 

did not induce a significant interference with the differentiation/mineralisation process 

of any of the treatment groups. Since it was found that cells in all treatments were  

produced calcium and phosphorus deposits (Figure 6.2). This finding corroborates 

with another study that tested the effect of silver with primary human osteoblast cell 

differentiation grown in DMEM media supplemented with 10% fetal calf serum. It was 

found that 10 µg g-1 of silver nano particles did not induce a significant change in ALP 

activity after 34 days compared to the control (Paukch et al., 2014). Moreover, 

Tilmaceau et al. (2015) also tested mesenchymal stem cell differentiation on silver-

containing phosphonate monolayers on titanium, the results showed that the 

differentiation and mineralisation were not affected by the presence of silver since ALP 

enzyme activity and mRNA expression were not significantly different from uncoated 

titanium. However, the presence of silver was only confirmed by surface 

characterisation of the coated discs. The silver release to the external media was not 

measured. Consequently, it is difficult to compare the amount of silver release with the 

current study. 

In this study, osteoblast functional gene expression study showed that the 

mRNA encoding ALP, osteocalcin and RUNX-2 was expressed in all treatments. 

There were no differences in the mRNA expression for osteocalcin and RUNX-2 

relative to β-actin housekeeping gene between the treatments, for ALP, there was no 

significant difference between the reference control and the Ag+nHA. A similar finding 

was observed by Masaki et al. (2005) that ALP and osteocalcin mRNA expression 

were not significantly different between the treatments although the cell viability was 
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significantly different between them. Moreover, Masaki and co-workers found that 

changes in ALP and osteocalcin mRNA expression were around one fold relative to 

controls; similar values were obtained in the current study (Figure 6.6). The mRNA 

expression for ALP was higher in the Ag+nHA treatment compared to that in cells 

grown on Ti (Figure 6.6). This result is supported by another study; Tian et al. (2016) 

found that ALP mRNA expression in osteoblast cells grown on silver nanoparticle-

doped HA coating on titanium was higher compared to uncoated titanium. ALP 

hydrolyses pyrophosphates to produce phosphates for matrix mineralisation (Orimo, 

2014). This result supports the fact that nano HA surface can induce osteoblast 

mineralisation as HA resembles the mineral constituents of living bone. Thus, nano 

HA coated titanium dental implants can potentially enhance the ossteointegration 

process inside the jawbone. 

 

6.4.3 Conclusions  

In this experiment, the in vitro culture time was enough to allow the cells to differentiate 

and mineralise. This study demonstrated the ability of primary human osteoblast cells 

to grow, differentiate and mineralise on the silver and HA coatings in the presence of 

an antibacterial dissolved silver. In addition, prolonged antibacterial activity was also 

insured through the continuous release of silver over 21 days. However, the 

interpretation of the gene expression work is hampered by the ubiquitous effects of 

silver on the cellular machinery. It is therefore recommended to use more than one 

housekeeping gene for performing gene expression studies with silver. Moreover, 

measuring Ca2+ and P in the cell homogenate can be a better alternative than just 

relying on ALP enzyme activity to assess the differentiation and mineralisation. 
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Nonetheless, the results did confirm the biocompatibility of Ag+nHA coatings, and so 

this composite especially has utility to be used as a novel dental implant material in 

dental clinics to minimise the incidence of dental implant failure due to infection. 

However, in vivo studies are needed to further confirm the dental implant integration 

with the surrounding bone. After that, the coating can be suggested for clinical trials.  
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Chapter 7 

General Discussion 
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Peri-implant infections are one of the major causes of implant failure. Peri-implantitis 

often requires revision surgery and can be compounded with long-term post-operative 

treatment; which can have a negative impact on the physical and psychological 

wellbeing of patients. To prevent this undesirable clinical outcome, the implant can be 

made antibacterial by applying a bactericidal agent on the implant surface. Silver is a 

metal well-known for its antibacterial properties (Chapter 1), and it can prevent 

bacterial growth when applied as a coating to titanium alloy (Zhao et al., 2009). 

However, all the active coatings which are able to release particles or silver ions to the 

surrounding environment can also present a toxicity hazard to the healthy human cells 

in the vicinity to the implant site (Besinis et al., 2015), especially those involved in 

wound healing or providing stability for the implant. Therefore, silver coatings on dental 

implants must be tested for biocompatibility with a relevant cell type, such as primary 

osteoblast cells, prior to the clinical use.  

The hypothesis of this study was that coating the dental implant surface with 

nano silver and nano HA would provide antibacterial activity whilst maintaining the 

biocompatibility of the implant surface with human osteoblast cells. The results of this 

study confirmed the hypothesis, since the coatings demonstrated biocompatibility with 

human primary osteoblast cells over 7 days; as demonstrated by the biocompatibility 

experiment (Chapter 5). The ability of osteoblast cells to survive for longer periods and 

achieve mineralisation was confirmed on the specimens after 21 days as shown in the 

differentiation experiment (Chapter 6). 
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7.1 Coating application and stability  

The first objective of this study was to successfully coat the medical grade titanium 

specimens with silver and HA. It was found that the coatings were successfully applied 

on the substrate and the particles were at the nano-scale. The quality of the coatings 

and the chemical composition was confirmed by SEM and EDS images of the coatings 

(see chapter 2). The electroplating process successfully resulted in the formation of 

uniform layer of silver nanoparticles on titanium, and the sintering technique was also 

a successful method for HA application (Figure 2.2). 

Nano coatings on dental implants are vulnerable to physical and chemical 

damage during implant placement and while exposed to blood during/after surgery. 

Cell culture medium substances can cause nanoparticle dissolution, so there can be 

a direct effect of cell culture substances on the implant coating stability (Loza et al., 

2014). In the current study, the results of coating stability tests in cell culture medium 

showed that the coatings remained intact, even after 21 days (Figure 6.1). In addition, 

there was a constant silver release to the external media over 21 days (Table 6.1), 

which was higher than the antibacterial concentration needed to prevent microbial 

growth (Besinis et al., 2017). This shows the ability of the coating to stay intact with a 

cell culture media that is broadly similar to the chemical composition of blood; and 

release a long-term consistent antibacterial silver. Mechanical adhesion of the 

coatings on the discs was also studied through conducting the pull-off test (Table. 2.4). 

The bonding strength between the coating and the substrate was acceptable and 

similar to previous reports (Mohseni et al., 2014; Asri et al., 2016). This confirms the 

utility of the coatings and ability to stay attached to the substrate while implant insertion. 
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7.2 Biocompatibility of the coatings 

 In the first biocompatibility experiment of the current study, the silver release was 

constant over 7 days (around 1 mg L-1). The experiment used low number of cells so 

that their proliferation could be observed, but the low amount of cells created some 

experimental challenges that made the cell viability data difficult to interpret. These 

logistical challenges included not enough sample to measure all the enzyme activities 

one would like and the absence of additional cell viability assays. However, the 

findings showed that the cells were unable to survive on Ag and Ag+mHA, but only a 

few cells survived on Ag+nHA (Chapter 3).  

Moreover, it was unclear whether the toxicity was from the dissolved silver 

released into the media, or if it was direct contact toxicity with the coating surface. 

Thus, another experiment was conducted to study the toxicity of dissolved silver from 

the specimens (Chapter 4). The results of that study showed that the released silver, 

which was around 1 mg L-1, was compatible with the human osteoblast cells used in 

the experiment. Another experiment was conducted to investigate the contact toxicity 

and also the effect of surface geometry on cell health (Chapter 5). In this experiment, 

more cells were used to have sufficient sampling to reliably measure enzyme activity 

and to be able to better interpret the data. Furthermore, two control were added to the 

experimental design to assess the effect of surface geometry which included Ti plus 

nHA and Ti plus mHA, (Chapter 5). The experiment demonstrated that, of the silver-

containing materials, the Ag+nHA was the most biocompatible with human primary 

osteoblast cells. Having established biocompatibity, a differentiation experiment was 

conducted to study the cell mineralisation on the coatings (Chapter 6). 

The amount of released silver in all biocompatibility experiments was 1-2 mg L-

1, this confirms the reproducibility of silver release and constant supply in different 
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experiments. In the differentiation experiment, silver release from the discs decreased 

over time to reach to 0.2 mg L-1 on day 21, but it was still above the effective 

antibacterial concentration. Besinis et al. (2017) found that 0.2 mg L-1 silver release 

from nano silver and nano HA coated titanium dental implants was enough to kill 

Streptococcus sanguinis after 24 hours growth on the coating. Regarding the cell 

health, it was found in all experiments that osteoblast cells were healthier on Ag+nHA 

compared to Ag and Ag+mHA in the presence of similar amounts of silver release. 

The cell health was assessed using the alamar blue assay, LDH assay and SEM 

images to investigate the cell morphology.  

LDH activity was used in all cell experiments to assess the cell health. It was 

difficult to detect the LDH activity in the media due to very low amount of LDH, which 

indicates that the cell membrane was intact, and did not release LDH enzyme to the 

media. Alternatively, the LDH activity was always measurable in the cell homogenate. 

The LDH activity in the cell homogenate was not significantly different between the 

treatments in all experiments; this indicates that the cells were not in need of using 

anaerobic respiration for ATP production. An additional viability assay that used in this 

study was alamar blue. This assay was more sensitive to assess the cell viability 

compared to LDH activity as the latter can lead to high standard deviations between 

the samples. Thus, alamar blue might be better to interpret the cell viability.  

The ALP activity assay was also used to assess the osteoblast cell health and 

function. Very low activity was detected in the media and the homogenate after 7 days 

(0.006 nmol min-1 ml-1) in the homogenate, while the activity was around 0.03 nmol 

min-1 ml-1 after 21 days in the homogenate. This indicates that the ALP activity was 

relatively low at the beginning of the experiment and later increases during the 

differentiation. Moreover, it supports the argument that ALP activity increases during 
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osteoblast cell differentiation (Yamaguchi et al., 2000). However, to assess the 

mineralisation status of the cells, it is recommended to actually measure the Ca2+ and 

P content of the cell homogenate rather than just relying on ALP activity. 

The protein assay was used in the first experiment (chapter 3), and aimed to 

measure the protein content of the cell homogenate at the end of experiment. However, 

the protein adsorption test (Chapter 3) showed that there was protein adsorption from 

the external media to the surface of the specimens resulting in biasing the actual 

protein content of the cells. As a result of this, neither the enzyme activities, nor the 

concentration of silver and electrolytes in the cell homogenate were normalised with 

the protein content of the cell homogenate. It is a common rule in biochemistry to 

normalise enzyme activities in the cell homogenate to the protein content of the cells. 

However, for any experiment with growing cells on solid surfaces (e.g., titanium) or 

nano-coated surfaces, values are better to be expressed per volume of homogenate 

rather than per amount of protein; this is to prevent including the adsorbed proteins 

and biasing the data. Protein adsorption can pose difficulties for in vitro experiments 

because of the problems discussed above, however, protein adsorption is clinically 

essential, as the adsorption of proteins on the dental implant surface do provide a 

base for osteoblast cells adhesion during ossoeintegration (de Jonge et al., 2008). 

Cell differentiation and mineralisation experiment showed that the cells were able to 

produce calcium and phosphorus nodules after 21 days in vitro. The cells were 

growing and the gene expression study showed that the fold changes of the target 

genes in the treatments relative to the negative control was approximately 1-2. 

However, 1-2 fold change in gene expression may not be a true response, it might be 

the issue of variability and the fact that every gene shows switching on and off all the 

time, and so a 1-2 fold change might be within the normal homeostatic range of the 
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genes. Nevertheless, this result was also observed by Masaki et al. (2005) who found 

that the fold changes of ALP and osteocalcin mRNA expression in osteoblasts cultured 

on titanium implants were approximately 1 relative to the control. Moreover, Schneider 

et al. (2003) argued that the expression of RUNX-2 in osteoblasts cultured on titanium 

implants was approximately 2 folds relative to the control. Since other studies have 

obtained similar values, so 1-2 fold change might be enough to regulate protein 

expression. However, to confirm this argument, it might be necessary to conduct the 

protein expression study (using western blot test) aiming to detect and confirm the 

presence of osteoblast specific extracellular matrix proteins (i.e. Collagen I, 

Osteocalcin, Ostepontin and Bone Sialoproteins), (Kirkham and Cartmell, 2007). 

7.3 Clinical perspectives 

For any biomaterial to be used in clinics, several in vitro and in vivo experiments are 

needed to demonstrate the safety and efficacy of the material. Current regulatory 

procedures for clinically approving new medicines or biomaterials also apply to 

nanomaterials. For any new biomaterial to be used, there are some criteria on which 

the approval of any new biomaterial is based: the efficacy of the new biomaterial 

should be higher compared to the existing ones, offer benefits to the patient, utility and 

compatibility with neighbouring vital structures (safety), (Juillerat-Jeanneret et al., 

2013). In dentistry, Annex I of the Medical Devices Directive 93/42/EC identifies some 

legal requirements on the use of dental materials that include dentures and dental 

implants, regardless of having engineered nanomaterials. So there are no regulations 

which are specific for nanomaterials used in dental implants. The use of nanomaterials 

(especially silver and HA) in dentistry is arising, for example, silver nanoparticles can 

be used as an alternative to chlorhexidine disinfectant as Besinis et al. (2014) showed 

a better antibacterial activity of silver nanoparticles compared to the dental disinfectant 
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chlorhexidine. The prospects of silver nanoparticles are good: they may be widely 

used as an antibacterial agent in dentistry in the future. 

  

7.4 Limitations and future recommendations 

Protein adsorption on the surface of the discs were biasing the actual protein content 

of the cell homogenate. This created a challenge in normalising the enzyme activity 

and electrolyte concentration of the cell homogenate per mg cell protein. Overall LDH 

and ALP activity in the cell homogenate and external were low, this was because of 

the limited cell number due to the specimen size. It would be better to use bigger 

samples to conduct experiments in 12 or even 6 well micro plates, hence, larger 

amount of cells could be used leading to significantly higher enzyme activity in the cell 

homogenate.  

In addition, LDH and ALP activities were not enough to precisely assess the 

cell viability, using alamar blue in parallel with LDH and ALP activities resulted in 

having clearer understanding of the cell health. Thus, it is recommended to use more 

than one viability assays to assess the cell viability especially with nanomaterials. 

Furthermore, the presence of high amounts of Na+ and K+ in the external media 

masked the cellular Na+ and K+ detection in the homogenates. Therefore, it was 

difficult to compare the electrolyte concentration of the cell homogenate with the 

electrolyte concentration in the external media. Moreover, as the coatings were 

composed of silver and HA, so there was possibility of mixing Ag, Ca2+ and P in the 

coatings with the cell homogenate; with homogenisation resulting in biasing the actual 

Ag Ca2+ and P content in the cell homogenate. In the gene expression study, the β-

actin housekeeping gene was not consistent between the treatments as the mRNA 
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expression was significantly lower in Ag and Ag+mHA treatments compared to the 

others. This was due to the difference in cell viability and cell volume which directly 

attributed to the alteration in β-actin mRNA expression. It can be recommended to use 

more than one housekeeping genes so that to find the most consistent one that can 

be used with target genes to calculate ∆CT values. Nevertheless, in the presence of 

silver, it can always be challenging to have a constant mRNA expression of the 

housekeeping gene, this is because silver is interfering with cell health, cell volume, 

cell proteins, reactive oxygen species production, etc. Thus, finding a housekeeping 

gene that can remain constant even in the presence of those conditions is difficult. 

Another limitation of this study was the lack of protein expression data which can clarify 

whether or not the expressed genes has resulted in the formation of specific proteins. 

7.5 Future works  

Further to the conducted experiments in this project. There are few more scientific 

questions to be answered. It is crucial to optimise the coating methods, instead of 

manually adding HA by pipetting. HA is better to be sputter coated on silver plated 

titanium discs, and then the sintering process can be carried out. This is particularly 

useful while coating cylindrical implants, as it is very difficult to precisely coat a 

cylindrical surface with a pipette. Regarding the cell biology, it is important to 

investigate whether or not primary osteoblast cells can survive in the presence of 

bacteria (infectious environment), as implants can face the same environment 

clinically. This can be conducted by growing the cells on the specimens for 24 hours, 

and then replacing the media with a fresh one containing living bacteria, after that, the 

specimens can be placed under SEM to investigate the cell morphology. Furthermore, 

it is important to study whether the proteomic profile of mature osteoblasts at 21 days 

of growth indicative of normal cells, or if the cells have adapted for development on 
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the nano surfaces compared to controls. In addition, investigating if the cells have 

produced extra cellular matrix proteins that are usually expressed during 

mineralisation. It would also be interesting to coat cylindrical titanium specimens with 

silver and HA using exactly the same coating method as used in this study, then, 

conducting the differentiation experiment using 3D culture technique and investigate 

the mineralisation of osteoblast cells on the coated titanium discs in three dimensions 

prior in-vivo studies. This is to evaluate the bone formation around the implant and 

working out the surface area covered by bone compared to control. Finally, to conduct 

in vivo studies to further confirm the utility of the coating. This can be carried out by 

coating cylindrical titanium specimens with silver and HA using exactly the same 

coating method as used in this study, then, install the implants in rabbit bone. After 3 

months, conducting pull-off test to evaluate the osseointegration of the coated titanium 

implants compared to uncoated implants. 

 

7.6 Conclusions  

In this project, the Ag+nHA coating showed an acceptable bonding strength to the 

substrate (see chapter 2). Moreover, since this coating was developed to provide an 

antibacterial activity to the implant surface, so a continuous supply of an antibacterial 

silver to the surrounding environment is necessary. The coating demonstrated that 

there was a long-term (21 days) silver supply that was above the antibacterial dose. 

Furthermore, the coating showed an acceptable compatibility with the human primary 

osteoblast cells in terms of cell growth and mineralisation over 21 days. This confirms 

the utility of the coating in terms of preserving an antibacterial activity and maintaining 

biocompatibility with the surrounding tissues.  
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Appendix 

This section contains some data which could provide extra information about the presented data in the experimental chapters. 

 

Appendix 1 

Table: 1 pH values of the media over 24 hours in dialysis experiment (chapter 2).  

A: in Milli-Q water (control) 

Treatments 

Time points (hour) 

0 0.5 1 2 3 4 6 8 24 

Blank 5.7 ± 0.1 5.8 ± 0.1 5.4 ± 0.1 5.9 ± 0.1 4.9 ± 0.1 5.2 ± 0.1 6.3 ± 0.1 5.4 ± 0.1 6.9 ± 0.1 

Ag 5.8 ± 0.2 5.6 ± 0.2 4.9 ± 0.1 5.3 ± 0.1 4.8 ± 0.1 5.3 ± 0.2 5.7 ± 0.1 5.1 ± 0.1 6.5 ± 0.1 

Ag+nHA 6.1 ± 0.1 5.8 ± 0.1 5.3 ± 0.1 6.0 ± 0.1 5.1 ± 0.1 4.9 ± 0.1 5.5 ± 0.1 5.7 ± 0.2 6.7 ± 0.3 

Ag+mHA 5.4 ± 0.2 5.8 ± 0.2 5.9 ± 0.1 6.1 ± 0.2 4.9 ± 0.1 4.9 ± 0.1 5.3 ± 0.1 5.8 ± 0.1 6.7 ± 0.1 
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B: in DMEM 

Treatments 

Time points (hour) 

0 0.5 1 2 3 4 6 8 24 

Blank 7.3 ± 0.1 7.4 ± 0.1 7.5 ± 0.1 7.5 ± 0.1 7.6 ± 0.1 7.6 ± 0.1 7.3 ± 0.1 7.3 ± 0.1 7.9 ± 0.1 

Ag 7.4 ± 0.1 7.5 ± 0.1 7.6 ± 0.1 7.5 ± 0.1 7.6 ± 0.1 7.6 ± 0.1 7.7 ± 0.1 7.7 ± 0.1 7.9 ± 0.1 

Ag+nHA  7.4 ± 0.1 6.8 ± 0.1 7.5 ± 0.1 7.4 ± 0.1 7.5 ± 0.1 7.6 ± 0.1 7.6 ± 0.1 7.6 ± 0.1 7.8 ± 0.1 

Ag+mHA  7.4 ± 0.1 7.4 ± 0.1 7.5 ± 0.1 7.4 ± 0.1 7.6 ± 0.1 7.6 ± 0.1 7.6 ± 0.1 7.6 ± 0.1 7.8 ± 0.1 

 

Data are presented as mean ± S.E.M (n = 3), no significant difference were located between the treatments (one way ANOVA, p > 

0.05).
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Appendix 2  

 

Figure 1. Stress/strain curves from the Pull-off test (chapter 2). The curves are 

representative examples and taken from a specimen in each treatment. Note the 

point where each curve declines, this is where the failure occurs. 

 

 

 

 

Figure 2. BCA Protein assay standard curve from bovine serum albumin (BSA). 
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Figure 3. An example of ALP activity curve, note the change (increase) in absorbance 

due to pNPP conversion to pNP by ALP enzyme. The curve flats when the ALP 

enzyme action ends.  

 

 

Figure 4. An example of LDH activity curve, note the change (decrease) in absorbance 

due to pyruvate conversion to lactate, and NADH conversion to NAD by ALP enzyme. 

The curve flats when the LDH enzyme action ends.  
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Appendix 3: poster presentation at BSODR conference (September 2015, Cardiff) 
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Appendix 4. Best presentation award from Postgraduate Society Conference of 

Plymouth University  
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