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Error Propagation Analysis for Remotely Sensed Aboveground 
Biomass 

Ahmed H. H. Alboabidallah  

Abstract  

Above-Ground Biomass (AGB) assessment using remote sensing has been an active area 

of research since the 1970s. However, improvements in the reported accuracy of wide 

scale studies remain relatively small. Therefore, there is a need to improve error analysis 

to answer the question: Why is AGB assessment accuracy still under doubt? This project 

aimed to develop and implement a systematic quantitative methodology to analyse the 

uncertainty of remotely sensed AGB, including all perceptible error types and reducing 

the associated costs and computational effort required in comparison to conventional 

methods.  

An accuracy prediction tool was designed based on previous study inputs and their 

outcome accuracy. The methodology used included training a neural network tool to 

emulate human decision making for the optimal trade-off between cost and accuracy for 

forest biomass surveys. The training samples were based on outputs from a number of 

previous biomass surveys, including 64 optical data based studies, 62 Lidar data based 

studies, 100 Radar data based studies, and 50 combined data studies. The tool showed 

promising convergent results of medium production ability. However, it might take many 

years until enough studies will be published to provide sufficient samples for accurate 

predictions. 
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To provide field data for the next steps, 38 plots within six sites were scanned with a 

Leica ScanStation P20 terrestrial laser scanner. The Terrestrial Laser Scanning (TLS) data 

analysis used existing techniques such as 3D voxels and applied allometric equations, 

alongside exploring new features such as non-plane voxel layers, parent-child 

relationships between layers and skeletonising tree branches to speed up the overall 

processing time. The results were two maps for each plot, a tree trunk map and branch 

map.  

An error analysis tool was designed to work on three stages. Stage 1 uses a Taylor method 

to propagate errors from remote sensing data for the products that were used as direct 

inputs to the biomass assessment process. Stage 2 applies a Monte Carlo method to 

propagate errors from the direct remote sensing and field inputs to the mathematical 

model. Stage 3 includes generating an error estimation model that is trained based on the 

error behaviour of the training samples.  

The tool was applied to four biomass assessment scenarios, and the results show that the 

relative error of AGB represented by the RMSE of the model fitting was high (20-35% 

of the AGB) in spite of the relatively high correlation coefficients. About 65% of the 

RMSE is due to the remote sensing and field data errors, with the remaining 35% due to 

the ill-defined relationship between the remote sensing data and AGB. The error 

component that has the largest influence was the remote sensing error (50-60% of the 

propagated error), with both the spatial and spectral error components having a clear 

influence on the total error. The influence of field data errors was close to the remote 

sensing data errors (40-50% of the propagated error) and its spatial and non-spatial 
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components were also significant with ratios varying between 85-70% non-spatial and 

15-30% spatial.  

Overall, the study successfully traced the errors and applied certainty-scenarios using the 

software tool designed for this purpose. The applied novel approach allowed for a 

relatively fast solution when mapping errors outside the fieldwork areas. 
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 Introduction 

1.1 Introduction 

The general definition of biomass is the mass of all matter that is composed of organic 

compounds in a specific space and at a specific time (Achard et al., 2010). Therefore, 

biomass includes the mass of phytoplankton, fungi, animals and plants. However, in this 

study, biomass within the terrestrial environment is considered as being that within 

living trees. Above-ground Biomass (AGB), which is the mass in all plants’ parts above 

the soil, is the foremost sink of terrestrial above-ground Carbon (Jandl et al., 2007), and 

represents the third largest source of CO2 emissions (Keith et al., 2009). 

There is an increasing interest in biomass as an environmentally friendly source of 

energy (Gale et al., 2005). Therefore, a number of researchers have focused on 

developing methods to determine vegetation biomass with applications that include 

Carbon sequestration, biomass as a renewable energy resource, as a pollution cause, and 

its impact on biodiversity as a habitat for other species e.g. Ahlström et al. (2012) and 

Hall et al. (2011). The importance of AGB information increased after the 1992 United 

Nations Framework Convention on Climate Change (UNFCCC) with many of the 

Carbon sequestration studies being undertaken in the context of international treaties 

under this framework. Good examples are the Kyoto Protocol (KP), United Nations’ 

Reducing Emissions from Deforestation and forest degradation in Developing countries’ 

(REDD) Programme, the Forest Carbon Partnership Facility (FCPF) of the World Bank, 

the Reduced Emissions from Deforestation and Degradation Programme (REDD+), and 
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the Paris climate agreement. Despite these examples leading to strong support for 

scientific research on Carbon sequestration, accuracy issues have been overridden as 

there has been a requirement for an immediate global coverage of all relevant 

environmental information. Similarly, the current Paris Agreement allows only a few 

years before it sets in place actions in 2020 (Bodansky, 2016). There is an opportunity 

to make use of the accumulated experience from previous UNFCCC projects to improve 

the quality of the required studies and an increased need for more flexible, affordable, 

efficient and accurate assessment methods.  

Although a considerable amount of literature has been published on AGB assessment, it 

remains the largest source of uncertainty in Carbon cycle computations (Houghton, 

2005) causing a standard deviation of about 0.8 GtC/yr (Le Quéré et al., 2016). As a 

result, the estimate of terrestrial vegetation Carbon uptake has varied from about 35% of 

the Carbon sink (in 2010) by Le Toan et al. (2011), 27% by Le Quéré et al. (2013), and 

30% by Le Quéré et al. (2015). The only way to get to the exact AGB in a specific area 

is by cutting down and weighing all the trees. The most accurate non-destructive 

alternative is to apply this destructive procedure to some of the trees and derive an 

allometric equation to relate non-destructive measurements, like tree trunk diameter and 

height, to the biomass or volume (Ketterings et al., 2001). However, this still requires 

high cost field measurements. Furthermore, some forest areas are remote or inaccessible. 

Therefore, Remote Sensing (RS) data are frequently used for biomass estimations by 

building the relationship between remotely sensed information and the corresponding 

AGB based on sample field data. 

Studies have used a huge variety of remote sensing data types, bands, sensors, 
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resolutions, and scales with no specific data combination agreed as the standard for AGB 

assessment. In addition, there has been a slow improvement in the AGB accuracy, even 

though remote sensing data have witnessed a massive improvement in spatial resolution, 

temporal resolution and spectral characteristics (Koch, 2010). Therefore, a full error 

analysis can be used to explain sources of error and might help to suggest a solution 

through explaining the size of the uncertainty and the share of each input and role of the 

processing stages in order to improve the assessment process. This way, different data 

combinations can be compared to each other. It is also important to focus on the weakest 

component i.e., improved accuracy for the remote sensing data could be degraded by 

low fieldwork accuracy or a bad model or vice versa. 

1.2 Aim and Objectives 

Aim:  This study aims to develop and implement a systematic quantitative methodology 

to analyse the error of the remotely sensed AGB. This methodology has to include all 

perceptible error types and reduce the associated cost and computational effort required 

for conventional methods. In addition, it will investigate the accuracy of previous AGB 

remote sensing projects by addressing the following questions: 

- What are the included errors in each component of AGB assessment models? 

How big is each error? 

- What is the most viable technique to analyse how these errors propagate to the 

results? 

- How big is each error's influence on the final AGB error? 

- What are the weak points in the current systems, that curb the AGB assessment 

accuracy and need improvement, and what are the limitations of the system that are un-
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improvable and so where an alternative is required? 

Objectives: Four objectives are set for the study. First, to list the errors included in each 

input and define them quantitatively. Second, to create an accuracy prediction tool for 

the design stage of a standard biomass assessment; providing a rationale to breakdown 

time and economic costs, and to increase the cost effectiveness and resource efficiency 

in deriving the results. Third, to design an error propagation analysis tool that can be 

applied to several multi-input mathematical models (whether it is parametric based, such 

as regression, or non-parametric, such as an artificial neural network), and can be applied 

with several analysis techniques (whether it is pixel-based or object-based) with 

minimum computational costs. Fourth, to integrate this tool into tangible models with 

real data to provide a quantitative answer to the main question.  

1.3 Thesis Structure 

Chapter 2 situates the error analysis within the context of the academic community of 

spatial based subjects, and for AGB in particular. It provides a critical review of the 

relevant literature and points out a number of missing components within the error 

analysis for AGB assessments. Chapter 3 presents an error prediction tool based on the 

reported results from previous studies. It also provides a review to understand the data 

set, and the different components and the relevant techniques that are built into an AGB 

assessment system. Chapter 4 outlines the methodology of the terrestrial Laser scanning 

and the fieldwork data analysis. It also shows samples of the fieldwork results that are 

used for the scenarios in Chapter 5. Chapter 5 aims to focus on the error analysis tool 

developed within this research; including the different techniques, principals, and ideas 

used to develop it. It also discusses the calculation of errors for system RS and field data. 
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Chapter 6 develops a range of scenarios to test the applicability of the error analysis tool 

and provide answers to the research questions. Chapter 7 discusses the findings of and 

results within Chapters 2 to 6 and provides a list of recommendations for future work 

based on these findings. Chapter 8 concludes the findings of the research. 
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 Above-Ground Biomass Error 

Modelling 

2.1 Introduction 

AGB plays a key role in understanding the Carbon cycle. However, the accuracy of AGB 

assessment is still being questioned; it is agreed that AGB assessments include large 

errors (Le Quere et al. 2016; Réjou‐Méchain et al., 2017; Njana, 2017), but it is not 

agreed how large these errors are. The numerous AGB assessment approaches, variety 

of available data sources and complexity of biomass make an accuracy assessment hard 

to achieve.  

The effect of AGB on the Carbon cycle is consistently assessed by calculating it as the 

residual of all other Carbon cycle components. Therefore, it includes relative errors of 

more than 30% of the Carbon cycle errors. In other words, it is expected to cause a 

standard deviation of ±0.8 GtC/yr (Le Quéré et al., 2013; Le Quéré et al., 2014; Le Quéré 

et al., 2016). Also, it almost equals the increase in CO2 emissions from human activities 

for the last decade (2005-2016) (Le Quéré et al., 2016). 

RS based projects in general, and biomass assessment procedures specifically, usually 

process input data to achieve a final result. The processing is mathematically based, 

referred to as the mathematical model, and usually based on fieldwork data. Therefore, 

neither the inputs nor the mathematical models are perfect due to the fact that each RS 

input and each fieldwork data input has some random errors. This imperfection raises a 

question about how the final result is affected by the inputs and processing, with error 

analysis aiming to answer this.  
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Practically, each measurement can provide the most probable value (m.p.v.) of certain 

quantities with a margin of statistically evaluated random error. If this error is within the 

tolerance limits, it is acceptable, with these limits usually set according to how the error 

would affect the results. The process of the error affecting the results is called error 

propagation. 

2.2 Techniques for error analysis 

Where error tracking is needed for straightforward remote sensing applications a simple 

error propagation technique can be used, such as the brute force method that propagates 

errors in each stage by applying all possibilities without exceptions e.g., Boger et al. 

(2003). However, the approach makes this method very computationally expensive. In 

other applications, the arithmetic processes (mathematical models) are simplified 

mathematical relationships between real world inputs and outputs based only on linear 

equations. Here, errors could be derived at each stage using the chi-square method, 

described in Andrae (2010), which assumes the error distribution of the measured data 

is Gaussian. Andrae et al. (2010) states that this method is unmanageable for models 

with non-linear equations. Therefore, when simulating a complex reality with 

multivariate and high-dimensional data error outputs are harder to determine because the 

processing involves complicated systems of non-linear equation models. In some more 

complex models, error estimation via analytically driven methods could be applied with 

example deterministic methods being Taylor Methods and Rosenblueth’s method 

(Heuvelink, 1998). In Taylor methods (e.g. delta method, Fisher matrix method, and 

second order Taylor method), any non-linear equation can be linearized using a Taylor 

Series. Methods such as the delta method approximate this equation by including only 
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the first derivative terms. Some methods like the second order Taylor method only take 

the first and second derivative terms of the equations into consideration as the other 

derivatives are assumed to be small (Heuvelink, 1998). Rosenblueth’s method uses a 

similar approach but with derivatives being computed numerically. These methods are 

based on the equations calculus. Therefore, they can only be applied when the equation 

set is well known. However, some models do not require a detailed understanding of the 

processes of converting inputs to outputs e.g., the use of stochastic methods. Examples 

of these are the Monte Carlo (MC) method, bootstrap method, and random set method. 

The MC method repeatedly applies the model or system to the study. Each time, different 

randomly generated input errors are applied to the most probable input values; 

simulating both the expected range of error for each individual input. If the process is 

repeated a sufficient number of times, the group of outputs will be the whole distribution 

of expected outputs and can be statistically analysed to compute the most probable 

values, errors, variances and other parameters (Lee, 1993). 

MC is easy to use because it is simple, direct and robust (Caflisch, 1998). The main 

drawback is that it is computationally expensive because it requires applying the model 

again and again. The other problem with this method is the random error generation 

process. Instead of generating full random numbers, computer algorithms can only 

generate pseudo-random numbers that have many of the properties but are not exactly 

random. Therefore, occasionally problems can occur with very long sequences (Caflisch 

1998). Some studies have tried to improve the speed through improving the random 

sampling. For example, Caflisch (1998) used low-discrepancy quasi-random sequences. 

The bootstrap method is similar to MC method, in using repeatedly computed outputs. 
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However, it uses the original observation rather than adding errors to the m.p.v. of each 

input. Computationally, this method is less expensive than the MC method. It works by 

creating many randomly chosen samples called "bootstrap sample sets" from the training 

set and then applies the model to compute a pseudo-Y value based on each bootstrap 

sample set (Efron and Tibshirani, 1994). Instead of using new data not included in the 

training set (e.g. random errors generated for MC), the bootstrap world can imitate this 

situation by sampling randomly from the existing data to create different training sets 

(Tibshirani, 1996) as much as the process can afford (Efron and Tibshirani, 1994). 

However, sampling randomly from the existing data requires redundancy in the existing 

data to allow calculation to be undertaken with subset. For example, if a system is 

designed to be tested for 4 sample plots in each iteration. When, a 10000 iterations MC 

analysis to be undertaken, in each iteration, a simulated random error is to be added to 

each sample. Therefore, it will require a field data for four sample-plots coverage. For 

the same system, when 10000 iterations bootstrapping is to be applied, each iteration is 

required to be based on a unique set of samples. Therefore, the number of sample plots 

can be calculated based on combinations by applying: 

(
𝑛
𝑘

) = 𝐼                                                   ( 2-1)  

Where n is the number of required samples, k is the number of samples for each iteration 

(in the example k=4), and I is the number of iterations (in the example I=10000). Which 

means that n is about 24 sample plots. Compared with the costs of the fieldwork, this 

increment in the required fieldwork can be significant.  

Each one of these methods has its requirements and costs. Generally, the requirements 

can limit the applicability of the method for some application due to the mathematical 
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analysis that does not match the requirements. In addition, the costs can limit the 

applicability for some models due to the analysis scale and the analysed data size. 

Therefore, none of these methods are perfect: some do not apply to all types of 

operations, others are extremely time consuming or involve large approximation errors 

(Heuvelink, 1999). 

2.3 Error Analysis of Remote Sensing Applications 

Remotely sensed environmental topics (such as geography, geology, hydrology, 

agriculture and ocean colour remote sensing) usually include many types of data with a 

range of errors. Some of the errors are systematic and can be determined and eliminated 

in the pre-processing. Other errors are random and cannot be eliminated and therefore 

their effects on the results should be analysed. Therefore, many different error analysis 

techniques have been applied but can be divided into two levels, results verification, and 

sensitivity analysis. The first level which is the most common application is results 

verification analysis. It involves studying the errors of the applied system by studying 

the results disparity (Giacco et al., 2010) or by comparing the results with fieldwork data 

(Handcock et al., 2006); providing a level of trust in the results. The second level is the 

sensitivity analysis, which is a process of error propagation or weighting input errors 

(Jager and King, 2004) and to study how they propagate to the results. In other words, 

the process seeks to produce a reliable ranking for input variables by understanding the 

influence of the errors on the systems' results e.g. Congalton (1991). The sensitivity 

analysis can be extended to be a total error budget analysis. Therefore, it can be 

implemented in order to determine the characteristics of a remote sensing system 

(Cocard et al., 1991), assess the accuracy of the system’s mathematical model (Sabia et 

al., 2008), choose between models (Shataee et al., 2011), improve a specific model 
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(Hodgson and Bresnahan, 2004), or find the optimal fusion of several models (Giacco et 

al., 2010). This type of analysis provides the most detailed information about errors. 

However, it requires a full understanding of error sources and errors propagation. 

Therefore, it is the most computationally costliest analysis.  

As with other research fields, error analysis tends to involve systems that have very 

elaborate mathematical models. Methods that have already been investigated in the 

literature, which deal with propagating errors within spatial data, include all previously 

listed error analysis techniques. However, unlike in AGB remote sensing, in other RS 

fields there are many examples of applying successful error propagation analysis tools 

that are designed to adapt to these challenges by using advance computer hardware and 

recent software improvements. One example of successful error simulation is Ebrahimi 

et al. (2013) who built a Monte Carlo simulation of errors in remote sensing data using 

random processes theory. Another example is Goulden et al. (2016) practical experiments 

of error analyses for RS data error propagation within terrain surface models. An example 

of applying a combination of two methods is Marinelli et al. (2007), which used a first 

order Taylor series method, and the Monte Carlo simulation method to analyse the 

accuracy of agricultural monitoring data. The study shows how to use Taylor series and 

Monte Carlo simulation as full analytical methods for spatially varying errors. Although 

it did not deal with biomass, it showed how error surfaces could be achieved. The 

resulting accuracy map provides a comprehensive understanding of accuracy at each 

pixel. Another successful example is Chen et al. (2013) who applied a first order Taylor 

method to track error propagation within experimental sampling, using Landsat and 

AVHRR data to estimate foliage biomass. Similarly, Zhao (2012) and Zhao et al. (2011) 



 

13 

 

investigated the error in EO data based on random set theory. These successful examples 

suggest that these methods can be applied for AGB remote sensing.  

2.4 Error Analysis for Aboveground Biomass 

As a part of any Carbon sequestration terrestrial ecosystem service, an accuracy 

assessment is required for the estimation of AGB (Hill et al., 2013). There are many major 

research efforts focused on the capabilities of remote sensing data and techniques to help 

better understand AGB within different scales. However, accuracy and accuracy 

assessment is still among the most pressing problems that these studies are facing.  

(Han et al., 2016) suggested that the low accuracy is caused by errors from inter-annual 

and the overall AGB dynamic changes. Namayanga (2002) and Hill et al. (2013) take it 

to mean the failure of the algorithms being used. Others such as Hunt Jr et al. (2002) 

attribute it to the high number of samples that are needed to achieve a valid inference with 

a large number of input parameters that are generally not available for most studies due 

to the large study areas compared with budget limitations. Since the ‘AGB error’ can be 

of an unknown origin and even include systematic errors (Hill et al., 2013), AGB is often 

poorly estimated. Therefore, almost every paper addressing AGB analyses the accuracy 

of the results, which can be grouped as follows: - 

2.4.1  Correlation Coefficients and Coefficient of Determination 

The Correlation Coefficient (r) and Coefficient of Determination (R2) are statistical 

indicators of how well the field data measurements and RS based AGB relate to each 

other. It is possibly the most used accuracy indicator for AGB and therefore there are 

hundreds of examples including almost all the regression based studies in Appendix A. 
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Suresh et al. (2014) added confidence interval bounds to the regression coefficients. 

However, this assessment was still unable to understand how each error source affected 

the result. Furthermore, this approach is often limited to the system training samples and 

is not able to provide spatially based error maps. 

2.4.2  Verification and Validation 

Most studies use the general criteria for split sample validation and/or correlation 

coefficient analysis. The general criteria for split validation sample includes keeping a 

portion of the field samples out of the model computations. Then, the Root Mean Square 

Error (RMSE) can be obtained by comparing the field data to the RS based assessment 

results. This type of analysis is used either to justify a study result (e.g. Vaglio et al. 

2014), to compare results of different types of RS data (e.g. Holopainen et al., 2010) or 

to compare results from different models (e.g. Xie et al., 2009). Although, this procedure 

is statistically valid, it has its drawbacks regarding AGB assessment. It can be completed 

only at the last stage of the project, i.e. when the whole fieldwork and RS data are 

collected and the assessment process is completed. The resulting RMSE can give an 

indication of the whole process accuracy, but it cannot explain where the error came 

from. Moreover, the accuracy variation with geographic position cannot be visualised 

(as an error surface or error map) because the error is a unified RMSE error for the whole 

area or for each vegetation species. 

2.4.3  Propagation of Individual Error Type 

Some studies deal with only some types of error. Sherrill et al. (2006) used two-stage 

Monte Carlo analysis to study the propagation of errors related to the field 

measurements, sampling error, error in the allometric equation (the equation for deriving 

biomass from field measurements like trunk diameter and tree height), and error that was 
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associated with the regression equations for AGB estimation using Lidar data. The study 

found that assessing AGB for the whole landscape (instead of identical land cover areas) 

resulted in a dramatic drop in confidence intervals. Lo (2005) implemented the Gaussian 

error propagation method for allometric equation applications, and addressed the 

importance of ‘error budgets’ and ‘sensitivity indices’ in understanding error, and the 

most effective way to identify and reduce those errors. Similarly, Berger et al. (2014), 

Breidenbach et al. (2014) and Molto et al. (2013) used a Monte Carlo scheme in their 

studies of error propagation from field sampling to AGB. Chave et al. (2004) divided 

field errors into tree measurement error, allometric model error, sampling error and miss-

representativeness of the field data samples. They pointed out that the most important 

source of error in the field based sampling is the model error. However, all these studies 

were limited to applications at the field sampling work stage only. This approach was 

improved by Fu et al. (2017) by introducing Taylor principles into a Monte Carlo 

simulation procedure to analyse quantifying the corresponding uncertainty arising from 

both sampling and the regression model. 

In contrast, under the assumption that the allometric models are perfect, Hensley et al. 

(2014) studied RS data errors only; not addressing fieldwork errors or model errors that 

could affect the high accuracy of the RS data. They used a first-order Taylor-expansion 

method for assessing biomass estimation accuracy based on nominal properties of the 

implemented RS data. One of the study outcomes was that biomass accuracies could be 

highly effected by RS data characteristics. Similarly, Berra et al. (2014) studied the 

effects of pre-processing of RS data only on the accuracy of the results. Pacala et al. 

(1996) analysed the error propagation from the final results of biomass of each individual 

tree to the future prediction of the same tree and its neighbour. This analysis was applied 
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on the error propagation in the post-processing stage of the AGB results rather than error 

propagation inside the model. Zhang et al. (2014) offered an estimation of AGB errors 

by comparing the study results with existing AGB estimates of the same area. The most 

important contribution of this study is that it provided a map of AGB error, depending 

on RMSE, for all pixels. Weisbin et al. (2014) used a total least squares approach for 

studying the propagation of errors from RS based canopy height, and vegetation indices 

to the assessed AGB. This study argues that this approach could be applied to a range of 

data and regression models, deployed to achieve a balance between costs and benefits. 

However, this approach can be applied only when the equations to relate AGB per unit 

area to measurements made with RS data are known. This means that it is not applicable 

with models that are not equation based.  

2.4.4  Propagation of all Expected Error Types 

From the review of previous studies, errors can be classified (as shown in Figure 2-1) 

into field data errors represented by field measurement errors, allometric equation errors, 

and RS data errors. In addition, these errors might propagate to the model to generate 

model errors and then to the model based results as shown in Figure 2-1 resulting in error 

in the final AGB estimation. Ahmed (2012) provides one of the most complete 

classifications to date of errors in AGB assessment, based on two types of RS data, with 

RS errors represented by the impact of measurement errors. Whereas, model errors 

represent the miscorrelation between field and RS datasets, and the distinct bias in RS 

value between the deciduous and coniferous trees contributes, he suggests that the field 

data errors vary considerably with the type of allometric equations used. However, the 

study is limited to the error description and does not study error propagation.  
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Figure 2-1: The process of AGB assessment and the outline of a comprehensive error 

propagation through it based on previous studies. The assessment steps are shown in 

black, and the error propagation steps are shown in red. The process starts with the 

field and remote sensing data and completes with the derived AGB. 
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The Colgan et al. (2013) study depends on destructive harvesting of trees to assess 

allometric equation model errors beside the nominal vertical error of the canopy height 

map derived from the implemented airborne Lidar and the applied mathematical model 

errors. The study results show that about one third of AGB error was related to the field 

based estimation, almost one half was related to the Lidar data and the remaining errors 

are model errors. The Weisbin et al. (2014) revolutionary study was the first study that 

dealt with all error types described in other studies without destructive tests; errors were 

propagated through a simple linear RS data fusion model. In addition, the AGB deriving 

model was approximated to be linear avoiding the use of non-linear models that require 

more computationally expensive approaches.  

The most comprehensive study for AGB error analysis up to now is Chen et al. (2015). 

The study deals with all error types in each processing stage of a non-linear model with 

one RS input (airborne Lidar data) and the application of a Taylor method. This approach 

can be applied when the model equation has a direct well-defined relationship to the 

error under investigation. However, with non-parametric mathematical models, previous 

studies based on verification and validation analysis. 

However, although some studies have used linear models, non-linear models and non-

parametric models have been more widely used for AGB assessments (Chen, 2013). 

These models are not analysable with the listed approaches. Furthermore, these studies 

dealt with non-spatial errors of RS and field data based on RS data characteristics such 

as Signal-to-Noise Ratio (SNR) for RS data and the allometric equation error for the 

fieldwork data; there are number of spatial errors that have no direct relationship to the 

model that were not included. For example, RS data geo-location error cannot be 
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analysed using these models and there are currently no studies within the literature that 

deal with this error. The geo-location error is important since it directly related to the 

geographic correspondence between the field data and the RS data. In other words, the 

geo-location is the link that pair between each pixel and its corresponding part of the 

fieldwork. Therefore, the error shifts each pixel to be paired with an inaccurate part of 

the fieldwork. In addition, all the listed studies deal with pixel-based systems; there is 

no available error budget analysis for object-based AGB assessment models. Besides, 

all studies deal with completed projects and there is no error assessment for projects 

during the system design stage.  

2.5 Summary 

This chapter discussed the available error analysis techniques for remotely sensed AGB, 

in order to determine the limitations that curb the inclusion of error analysis. It has 

identified two levels of error analysis, results verification, and sensitivity analysis. The 

vast majority of the literature involves a result based verification analysis with a more 

limited number of studies having undertaken an error analysis of the inputs, highlighting 

how these errors propagate to the results.  

An error analysis approach requires a full understanding of error sources and error 

propagation, and involves computationally expensive calculations. Therefore, the error 

propagation analysis in the previous studies was either limited to one input error, or 

limited to a specific mathematical type. In general, to solve these limitations, new efforts 

are required to deal with these four steps:  
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- Error prediction for projects during the system design stage. 

- Error analysis for non-parametric and non-linear parametric models. 

- Error analysis that deals with spatial errors such as geo-referencing error.  

- Error analysis for object-based models.  

Taken together, these conclusions lead on to the following chapters that deal with these 

issues in order to provide a better understanding to the uncertainty of the AGB and to 

produce a methodology to solve these problems.  
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 Accuracy Prediction Tool for Above-

Ground Biomass Assessments 

3.1 Introduction  

Above-Ground Biomass (AGB) studies can be classified into two main types:  

 experiment studies that try to study a new data type, a new combination of data 

types or include a new analyses technique to extract AGB information, and  

 AGB survey projects that try to design AGB assessment systems based on the 

outcomes and recommendations of experiment studies.  

A few studies, such as (Weisbin et al., 2014), have decided the required accuracy and 

then tried to find the minimum cost solution to reach those requirements. Alternatively, 

some studies try to compare the accuracies of different techniques during the design stage; 

depending on previous study results. For example, Zhao et al. (2012) compared between 

allometric equations, Goetz et al. (2009) compared between some RS sensors, and Xie et 

al. (2009) compared between mathematical models. However, previous AGB studies 

have not employed a comprehensive analysis to assess accuracy in advance. 

In addition, the highly heterogeneous combinations of fieldwork data, RS data, analysis 

systems, and mathematical models available for AGB remote sensing make the decision 

complex and requiring a high level of experience. This chapter presents the development 
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of a tool to predict the accuracy of projects during the system design stage or half-finished 

projects, depending on the characteristics of the available data, study area and processing 

model. In addition, the chapter reviews the published literature in search of the parameters 

that can affect the accuracy of the assessed AGB. These parameters were used as a base 

to build the database to train and validate the error prediction tool. Hence, a set of data, 

shown in Appendix A, was built based on this literature survey. 

3.2 Effective Parameters for Biomass Uncertainty 

Based on the error propagation analysis of the previous studies shown in Figure 2-1, the 

parameters that affect the uncertainty in the results of the assessment system can be 

classified into the parameters that are related to the remote sensing data, fieldwork data 

and applied mathematical model. 

3.2.1 Remote Sensing Data Parameters 

Currently, no standard dataset is routinely used for AGB assessment. Hence, dataset 

selection often effects the set of parameters that in turn effects the accuracy as described 

in the following sections. Generally, remote sensing could be divided into passive and 

active systems with both types of systems widely used for AGB. 

3.2.1.1 Passive Remote Sensing 

This section summarises the parameters related to the use of data from passive sensors 

i.e., when the sensing system is illuminated by an external energy source (normally the 

Sun, but can also be the Earth). This type of remote sensing provided information to about 

horizontal tree land-cover structure that was correlated to AGB based on land-cover 
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classification (Gjertsen 2007), land-cover structure analysis (Hall et al. 2011), and tree 

land-cover interaction with different electromagnetic energy wavelengths (Bao et al., 

2009). The main parameter with this type of data is the spatial resolution, indicated by 

pixel size. Low and medium spatial resolution datasets are usually space-borne and have 

pixel sizes of 100 by 100 m or larger with a wide spatial coverage. High spatial resolution 

satellite data have pixel sizes of between 4 and 100 m, whereas very-high spatial 

resolution data would have a pixel size smaller than 4 m. Biomass studies use a wide 

range of spatial resolution data depending on the study scale, financial budget, required 

accuracy and data availability. The AGB assessment accuracy is also influenced by other 

vital specifications like temporal resolution (Askne et al., 2013), revisit time (Askne and 

Santoro, 2012), spectral coverage (Foster et al., 2002), number of bands (Daliakopoulos 

et al., 2009) and spectral resolution (Bao et al., 2009). Spectral resolution means the 

ability of the sensor to separate EM signal components according to each component’s 

wavelength. Therefore, it can be relevant to the quality of the AGB assessment when the 

assessment includes computations that are based on more than one band (Bao et al., 2009). 

For example, vegetation indices (VIs) can be based on how green leaves interacts with 

different EM wavelengths (usually red and near infra-red) to indicate the health and 

density of vegetation cover. These indices are suitable for many different sensors, which 

have these broad bands, while narrowband greenness indices focus on specific aspects of 

plant vitality or vigor, e.g. change in pigment content during the growing season, and are 

restricted to sensors with specific bands.  

Medium Spatial Resolution Data: Medium resolution data are used in almost all global 

coverage studies. Also, they are widely used for small area studies down to a country 

level. These studies depend on the expected correlation between AGB and the vegetation 
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indices. Vegetation indices determining the volume of a vegetation cover through the 

interactions of green leaves with specific spectral wavelength (usually based on Red and 

Infrared bands). Therefore, they represent an integrative measure of both vegetation 

photosynthetic activity and canopy structural variation and consequently to the AGB. 

The main criteria for choosing datasets are the spatial coverage and the low cost. 

However, the correlation achieved by this type of data is low. For example, Lokupitiya 

et al. (2010) achieved an R2 of <0.4 by using the Advanced Very-High Resolution 

Radiometer (AVHRR) data, Lokupitiya et al. (2010) reached an R2 of 0.31 with Medium 

Resolution Imaging Spectrometer (MERIS), and Yuan et al. (2016) achieved a range of 

R2 of between 0.01 and 0.75 with MODerate resolution Imaging Spectroradiometer 

(MODIS) data. 

High Spatial Resolution Data: Over recent years, high spatial resolution satellite data 

have become widely used due to technical developments that have led to reduced costs, 

more powerful computing hardware and software and improvements in the ability of 

Geographic Information Systems (GIS) to handle these data. Extensive research using 

satellite imagery for mapping and monitoring biomass has been conducted over the last 

40 years using high-resolution data. The data were provided with different sources such 

as the Landsat time series multispectral sensors. Examples could be Landsat Thematic 

Mapper (TM) e.g., Lu et al. (2002), Spot High Resolution Visible Infra-Red bands 

(HRVIR) e.g., Hirata et al. (2014), Modis Terra satellite hosted Advanced Space-borne 

Thermal Emission and Reflection Radiometer (ASTER) e.g., Heiskanen (2006) and 

ALOS AVNIR-2 e.g., Sarker and Nichol (2011). Most high-resolution data studies 

depend on vegetation indices to estimate biomass. Other studies used image texture and 

classification as an indicator for biomass, with texture studies allowing all bands to be 
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used rather than only (normally) two bands for vegetation indices. Nichol and Sarker 

(2011) concluded that combining the texture characteristics from two 10 m resolution 

optical sensors (Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) and 

SPOT HRG) can result in a high correlation with biomass. However, Nichol and Sarker 

(2011) implemented an object-based analysis to generate training samples for the 

regression model; to deal with homogeneous forest. Most other studies found that texture 

indicators are weakly (Lu and Batistella, 2005, Li et al., 2008) to moderately (Sarker and 

Nichol, 2011) correlated with biomass. Generally, for this type of data, the relatively low 

spatial resolution is expected to limit the accuracy of AGB assessment. 

Very-High Spatial Resolution Data: When studies require a high level of accuracy, 

very-high spatial resolution airborne and/or satellite sensors data can be utilized. 

However, such datasets require a high degree of processing and purchase costs can also 

be high. Hence such factors can curb the use of this data, even in small areas such as in 

Lu (2006) and Santi et al. (2014).  

The very-high resolution satellite data was used as a source of spectral information such 

as in Coulibaly et al. (2008). It was used for object-extraction based approaches for 

example, this type of data was used for estimating tree crown size (Leboeuf et al., 2007). 

In addition, it was implemented as a source of detailed texture features such as in Persson 

(2016). Wordview-2 and Wordview-3 imagery provides eight spectral bands. However, 

most the other satellite sensors provide only four bands that are red, green, and blue in 

visible and one infrared band (e.g. IKONOS, Quick-Bird, and Pleiades). Even with only 

four bands, these datasets can perfectly satisfy the requirements of VIs. In addition, 

revisit time is around three days (Jacobsen, 2011) which is more sufficient compared to 
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high spatial resolution sensors such as Sentinel-2A and Sentinel-2B that are together 

provides a revisit time of five days (ESA, 2016). The shorter revisit time can be 

important for AGB change monitoring such as in cases of forest fire. On the other hand, 

it increases the probability of providing low cloud coverage data, especially for areas 

that have frequent cloudy weather. 

Studies such as Eckert (2012) and Migolet et al. (2007) tried to correlate the satellite 

data (WorldView-2 and IKONOS respectively) to the biomass by combining image 

classification, principal components, VIs and texture analyses. Although, the first Earth-

Observing instrument Advanced Land Imager (EO-1 ALI) sensor has a spatial resolution 

of 30m, which is lower than IKONOS's spatial resolution of 4m, Thenkabail et al. (2004) 

shows that the EO-1 ALI sensor performed better (in specific cases) for biomass 

assessment. Airborne sensors offer a possible avenue for much denser spatial and 

temporal coverage. In addition, airborne imagery can provide very-high spatial and 

spectral resolution data alongside stereoscopic modelling. For example, Ge et al. (2007) 

used the Compact Airborne Spectrographic Imager 2 (CASI II) "hyper-spectral imager" 

(that provides up to 288 bands in the spectral range between 401 and 915 nm) for AGB 

assessment. The stereoscopic modelling is rarely used because it is very time consuming 

compared to other 3D alternative techniques like Lidar (Light Detection and Ranging) 

and Radar (Radio Detection and Ranging). 

3.2.1.2 Active Remote Sensing 

Active remote sensing involves transmitting Electro-Magnetic (EM) pulses from the 

sensing system itself instead of using a natural source of energy. For Radar, the pulse is 

at radio frequency whereas in Lidar the pulse is in optical wavelength (Müller and 
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Quenzel, 1985). Both of these systems can provide estimations of the elevation above 

the ground or vegetation/ manmade structures, and so the relative heights of plants 

canopies above the ground can be calculated. The plant height is closely related to the 

volume and therefore biomass (Edson and Wing, 2011; Rosette et al., 2012). In addition, 

very-high resolution data can be related to trunk diameter and canopy structure 

(Dalponte et al., 2009). Therefore, this type of remote sensing provides another 

perspective of AGB assessments that can be integrated with passive remote sensing. 

However, costs often make it prohibitive for wide area studies. The specification of 

Radar and Lidar data are dissimilar, so each has specific parameters that effect the AGB 

assessment accuracy. 

Radar: Previous work has shown that Radar data is an efficient data type for biomass 

assessments. Multiband Radar is sensitive to the plant canopy because microwaves of 

longer wavelengths are able to reach the ground surface, by penetrating high-density 

vegetation cover, whereas shorter wavelengths are reflected by the vegetation surface 

(Becek, 2010). Radar can be used both during the day and night, and it can also penetrate 

cloud cover (Ghasemi et al., 2011; Becek, 2010).  

Synthetic-Aperture Radar (SAR), the Radar technology that is based on the motion of 

the antenna to provide higher spatial resolution, has been applied to biomass assessment. 

The SAR techniques include polarimetric interferometric SAR (Mette et al., 2004; 

Persson and Fransson, 2016), multi-temporal InSAR observations with high temporal 

resolution (Tanase et al., 2014), tomographic SAR (Robinson et al., 2013; Minh et al., 

2015), repeat-pass interferometric SAR (Khati et al., 2016), and using Tomo-SAR multi-

baseline techniques (Minh et al., 2016; Li et al., 2016). Also, a number of different 
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satellite missions have been used such as ALOS PALSAR (Lucas et al., 2010), and 

(Mohan et al., 2011), RADARSAT-2 (Shao and Zhang, 2016; Mohan et al., 2011), 

TerraSAR-X (Holopainen et al., 2010; Persson and Fransson, 2016) and COSMO-

SkyMed (Deutscher et al., 2013). Generally, satellite based systems can provide a wider 

area and hence a more comprehensive data source compared to the available airborne 

sensors.  

Studies show that study area characteristics have to be considered when choosing the 

most suitable Radar dataset. Some study area parameters relate to the target biomass 

such as structure, smoothness, mass distribution and orientation (Castel et al., 2002; 

Lucas et al., 2010; Montesano et al., 2014). Some are related to the topography of the 

land in the study area, such as ground smoothness slope and soil moisture content 

(Goering et al., 1995; Sun and Ranson, 2001; Soja et al., 2013). However, studies often 

pay most attention to the sensor parameters including wavelength, polarization, 

incidence angle, and spatial and temporal resolutions.  

A crucial parameter for choosing between Radar datasets is the wavelength due to its 

direct impact on the Radar 's ability to penetrate vegetation (Imhoff et al., 2000). X band 

data (wavelength of 2.5-4.0 cm) has the least penetration power in forest areas, with the 

signal being scattered by leaves and canopy cover, so it primarily provides surface layer 

information (Ghasemi et al., 2011). The C-band (wavelength of 4-8 cm) has moderate 

penetration power i.e., can reach tree branches. The L band (wavelength of 15-30 cm) 

has the power to penetrate the tree canopy down to the trunk (Lau, 2011), and (Mercer 

et al., 2011), with Tanase et al. (2014) suggesting that L-band interacts with branches, 

leaves and needles. However, the same study concludes that even expected 
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improvements in future L-band missions, in terms of spatial and temporal resolution, the 

accuracy of biomass estimation would not significantly improve. The P band 

(wavelength of 30-100 cm and not available with current satellite sensors) has the most 

penetration into the canopy cover and the major part of P band can be backscattered by 

trunk and ground. Therefore, the backscattering of the L and P band signal shows a 

relatively high correlation to tree biomass (Ghasemi et al., 2011). The VHF bands 

(wavelength of 1 m to 10 m, and not available with current satellite sensors either) is 

efficient to solve estimation problems related to the biomass saturation phenomenon 

(Israelsson et al., 1997), and (Imhoff et al., 2000).  

Another system effective parameter is the polarization of the signal. The SAR 

polarization is either:  

 Horizontal-Horizontal (HH): that has horizontal polarization for both transmitted 

and received signals.  

 Vertical-Vertical (VV): that has vertical polarization for both transmitted and 

received signals.  

 Horizontal-Vertical (HV): that has horizontal transmitted and vertical received 

signal.  

 Vertical-Horizontal (VH): the emitted signal has vertical and the backscattered 

signal has horizontal polarization.  

The first two types are usually called co-polarized backscatters and the other two are 

called the cross-polarized backscatters, and are the most sensitive to biomass 

(Holopainen et al., 2010), and (Tanase et al., 2010). Overall HV polarization is generally 

regarded as having the best potential to describe the AGB (Sun et al., 2002).  
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The other effective influence in choosing SAR data is the look angle of the system. The 

look angle relates to the incidence angle and to the reflectance of targets, the swath width 

and the perspective of the imagery. SAR systems used for biomass assessment can be 

divided into side looking and downward looking systems. Dubois-Fernandez et al. 

(2005) showed that the behaviour of the P band as a function of biomass is small change 

when the look angle varying from about 20˚ to about 40˚. However, with an increasing 

look angle, the resolution would decrease and shadowing, and layover effects would 

increase. The shadowing occurs when the SAR system fails to illuminate parts of the 

terrain that hide behind other parts of the terrain from the perspective of the sensor due 

to the relatively low elevation of these hidden parts. While, the layover occurs when the 

SAR signal reaches a horizontally farther point of the terrain before it reaches a 

horizontally closer point due to the relatively high elevation of the farthest point that 

make the first one closer in the three-dimensional space. SAR layover and shadows 

affects one of the interferometric calculation stages, in which the topographic effect 

should be defined to allow individually acquired images to be co-registered to each other 

(Pairman and McNeill, 1997). Downward looking SAR systems overcome shadowing, 

and layover effects and can gather more information than side looking systems 

(Wencheng et al., 2010; Peng et al., 2012). Also they require less power to be operated 

(Imhoff et al., 2000) and so can be placed on smaller and more mobile platforms (Peng 

et al., 2012). Nonetheless, it still has a lower cross-track resolution and more vibration 

errors (Wencheng et al., 2010).  

The spatial resolution of SAR data has improved with commercial satellite missions such 

as TerraSAR-X and COSMO SkyMed that are X-band and have a ground resolution of 

up to 1.5 m for TerraSAR-X and 1 m for COSMO SkyMed. Airborne SAR sensors such 
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as OrbiSAR and IFSAR can enable surveys of very-high ground resolution of 60cm. 

However, the financial costs of purchasing, the data size, and the processing costs are 

relatively high for these very-high-resolution data types. Lower resolution space agency 

missions are more accessible for biomass applications, and so would be the option of 

choice for many future studies. For example, the Copernicus Sentinel-1 C-band SAR 

images have a maximum ground resolution of up to 5 m and are free to access.  

Temporal resolution of SAR data is efficient because the data collection is not sensitive 

to cloud cover. Some satellite systems use more than one satellite to provide better 

temporal resolution. For example, at its full constellation of four satellites, COSMO 

SkyMed maximum revisit time reduced to 12 hours (Covello et al., 2010). Another 

example is the Sentinel-1 that has two satellites, on 12 days’ orbit that result in a repeat 

frequency of 6 days and a revisit frequency of 3 days due to the overlap between adjacent 

images.  

Lidar: As with other RS datasets, Lidar technology cannot directly provide three-

dimensional data about AGB due to the complexity of the vegetation constructions. 

Instead, it provides accurate remote sensing measurements of terrain elevation and 

vegetation height (He et al., 2013). By processing vegetation heights, the spatial 

distribution and texture alongside other information such as stem counts, crown 

diameters (Bortolot and Wynne, 2005), and (Van Aardt, 2004), and stem diameter 

(Dalponte et al., 2011) can be derived.  

Lidar data have their own characteristics in relation to the results uncertainty. Instead of 

spatial resolution, Lidar depends on the size and density of the Lidar footprint where the 

Lidar footprint is the illuminated area of the target by each laser pulse (Rosette et al., 



 

32 

 

2012). Footprint density is the number of footprints in a unit area. The other important 

parameter for Lidar data is the laser ranging systems, which could be phase-shift lasers 

or pulse laser. The phase-shift lasers send continuous waves with sinusoidal modulated 

optical power, and the reflected signal is detected and compared with the emitted signal 

to determine the difference in phase which can be used to find the time the signal takes 

to reach the target and return. Airborne and space-borne sensors use pulse lasers because 

it combines the high power output and the system power efficiency due to the short time 

required for each pulse. Pulsed laser systems can further be subdivided according to the 

recording mode into: double returns, multiple discrete returns and full waveform returns 

as shown in Figure 3-1. A dual-return Lidar (Figure 3-1A) records only two points for 

each pulse (usually first and last returns), and is widely used with commercial airborne 

Lidar systems. When the data are high density with a small footprint data, see examples 

in Table 3-1, the resulting height information about biomass is suited to areas of low tree 

density. A multiple discrete return system  (Figure 3-1B) can provide more points, 

depending on the peaks at the power of the sampled returned signal. When this is 

operated with a small footprint, see Table 3-1, it is common technique for airborne Lidar 

surveys. However, this type of data is generally non-figurative with large footprint 

systems. Therefore, this form of the data has been rarely used for AGB assessments. In 

contrast, full waveform scanning systems (Figure 3-1C) record the whole returned 

signal. The examples in Table 3-1 have shown that even though the technology is still 

maturing, this type of system is widely used in both the small and large footprint size 

configurations. It showed ability to assess biomass with good accuracy for small areas. 
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Figure 3-1: Lidar systems according to the recording mode, A- Dual-return Lidar system, B- Multiple 

discrete return Lidar system, and C- Full-waveform Lidar. 

 

Table 3-1: Examples of studies that have used airborne or satellite Lidar data for AGB assessment. 

Mode Small footprint examples Large footprint examples 

Two discrete returns (Lim and Treitz, 2004a) 

(Bortolot and Wynne, 

2005) 

(He et al., 2013) 

 

Multiple discrete returns (Dalponte et al., 2009) 

(Dalponte et al., 2011) 

(Vaglio et al., 2014) 

(Means et al., 1999) 

Full waveform scanning (McGlinchy et al., 2014) (Sun et al., 2007) 

(Baghdadi et al., 2014) 

 

The increased ability of computer hardware can open opportunities for small footprint, 

full waveform scanning systems to be applied for wide areas. However, software to 

process such data is still limited (Rosette et al., 2012). The large footprint, full waveform 

scanning systems provides more ability for large scale studies. Examples show that this 

       Lidar illumination  
 

       Lidar returns 
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type is the most suitable in dense forests to ensure that laser energy reaches the ground. 

The focus on this type of data has increased in the period when Geoscience Laser 

Altimeter System (GLAS) instrument on The Ice, Cloud, and Land Elevation Satellite 

(ICESat) was providing it. This sensor stopped working since 2009 but a new generation 

of it (ICESat-2) is scheduled for launch in 2018. Terrestrial Laser Scanning (TLS) is also 

used in studies either for small scale studies with very-high accuracy (Yao et al., 2011), 

and (Dassot et al., 2010) or to provide accurate sample data for a wider scale study 

(Popescu and Hauglin, 2014). TLS is an accurate non-destructive estimation method 

used by the forestry industry, hence separate commercial software packages have been 

produced for this type of data. Edson and Wing (2011) tested different software 

packages; the results produced differed but were relative close to each other’s 

estimations. 

3.2.1.3 Combined Remote Sensing Data 

Combination of more than one RS data set gives better results than using a single data 

set because the combination provides more information and explanatory power. 

Integrating the strengths of different sensors data sets can increase the confidence in 

forest biomass (Lu et al., 2012). Such combining can mean combining the influence of 

each RS data type specification on the accuracy. There are many examples of data 

combining systems. Attarchi and Gloaguen (2014) combined data from Landsat ETM+ 

and ALOS/ PALSAR data to provide topographic correction requirements for ETM+ 

images and to increase the number of multiple regression inputs. This combination 

achieved a significant enhancement in the general accuracy comparing with ETM+. 

However, the study does not compare results of using ALOS/POLSAR data only. 
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Holopainen et al. (2010) used a combination of ALS airborne Lidar and TerraSAR-X 

data to provide more inputs to the model. However, the general accuracy of combined 

data improved only slightly comparing with Lidar results. Similarly, Vaglio et al. (2014) 

studied the correlation between AGB and its estimation depending on laser alone and 

then depending on the laser coupled with hyper-spectral images which enhanced the 

correlation. However, the difference in the correlation indicators (and the accuracy) was 

slight. Lucas et al. (2008) combined Lidar and CASI hyperspectral data to achieve a 

relatively high accuracy. The study used a three steps procedure. First, trees were located 

using a CASI data. Second, tree heights were derived using Lidar. Then, height-based 

allometric equations were used to calculate the AGB.  

3.2.2  Fieldwork data Related Parameters 

3.2.2.1 Sampling Strategies 

For AGB assessment fieldwork, single tree samples (which are equivalent to random 

individual samples) were not explicitly represented in literature due to the high cost and 

the spatial context required to correlate the single tree sample to the remote sensing data. 

Therefore, almost all studies used plots (which are equivalent to the cluster statistical 

samples). Those plots vary in sizes and shapes. For example, Ahmed et al. (2013) used 

200 m by 50 m rectangular plots. Shao and Zhang (2016) used 30 m by 30 m square 

plots, Bortolot and Wynne (2005) used 30 m diameter circular plots. The plot sizes 

needed to be compatible with the resolution of RS data, e.g. Zheng et al. (2014) used 

circular plots with 300 m diameter with Landsat images, which is quite larger than plots 

of previous examples that work with finer spatial resolution data. However, some studies 

failed to achieve this condition for example Luther et al. (2006) use sample plots of 200 
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m2 areas, and Zheng et al. (2014) use 667 m2 plots. In both cases plots are smaller than 

the area of the pixel of Landsat TM data they used. The study by Saatchi et al. (2011) 

shows the importance of the size of the plot. The study provides a different accuracy 

result for each plot size. The choice of whole or part sample plots of some studies was 

to cut costs or solve logistic problems, i.e. there is no statistical logic behind choosing 

the sample. Similarly, some studies used an existing fieldwork data. For instance, 

Leboeuf et al. (2007) located his test sites near the towns whereas Yuan et al. (2016) 

used out-dated data observed by another study between 2000 and 2008. Other studies 

used statistical probability, where none of the vegetation cover types has a probability 

of zero to be sampled. The simplest strategy of this type is simple random clusters 

(plots). Dalponte et al. (2009), and Vierling et al. (2013) used simple Random Cluster 

samples. Gjertsen (2007), and Mitchard et al. (2013) used simple random cluster with 

sparse number of sample plots. This method of sampling strategy could be representative 

if the vegetation cover is homogeneous. However, random sampling can cause high 

uncertainties in heterogeneous areas if a significant vegetation cover type is not covered. 

The second probability strategy is systematic random sampling. In this strategy, 

geographical position of sample plots been chosen on a systematic pattern covers the 

whole area of the study. For example, Ghasemi et al. (2013) divided his study area into 

districts, parcels, and then plot inside each parcel. Another example is the use of 

Baghdadi et al. (2014), (Dalponte et al., 2011), and Heiskanen (2006) to plots of  a 

systematic grid. This strategy could be more representative, but still can cause the same 

problem of the first one. The other strategy is stratified random clusters. This type can 

be the most statistically valid one, especially under a full-scale condition. It classified 

the vegetation cover into categories or classes. Then, samples could be randomly chosen 
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for each class. The strategy has been widely employed for RS of AGB. e.g. Means et al. 

(1999), and Luther et al. (2006), used stratified random plots. Zheng et al. (2004) used 

two stages stratified random samples. The first stage results in supervised classification 

and the second stage results in plot sampling. Lu et al. (2002) used more complex Multi-

stage probability stratified random strategy. Strata consisted of plots for trees and 

subplots for smaller plants. Tanase et al. (2010), and Edson and Wing (2011) used 

stratified clustered strategy plots that were based on the age of trees. Santos et al. (2003) 

used a stratified cluster sampling method where random position sample plots were 

chosen for each land cover class. The number of samples also varying from only two 

plots such as in Persson and Fransson (2016) to more than a hundred like in Dong et al. 

(2003) depending on the study’s objective and scale. 

3.2.2.2 Data Collection  

The vast majority of studies use previously developed allometric equations, as it is rarely 

feasible to develop new ones (Ahmed et al., 2013). Studies of producing such equations 

depend on large scale destructive biomass sampling in order to relate the biomass of a 

tree to measurable parameters such as diameter at breast height (DBH) or tree age. The 

use of "species-specific" equations with different tree species is required due to the 

dependency of tree shape and wood density on the tree type (Ketterings et al., 2001). 

Smith and Gilbert (2003) list the tree species in the Great Britain including the study 

area. Almost all these species equations are listed in Zianis and Seura (2005) review 

book that compiles 83 equations for AGB for tree species growing in Europe. However, 

for other species general equations (e.g., Muukkonen 2007) can be applied. The other 

major concern is the time period between field data acquisition and RS data acquisition. 
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To study the two data sets synchronously, all biological measurements need to be 

processed using "tree and trait specific relative growth rates" (Lim and Treitz, 2004a). 

Those growth rates require sequential observations of the same sample trees for each 

tree category. If the data sets were taken in different seasons, the observation should be 

taken seasonally. Moreover, trees harvesting and deforestation should be taken in 

consideration. Therefore, visual comparison between fieldwork data and RS data is 

required. However, if synchronised RS and field data are available, they could be used 

for training the model and then this model could be applied on the old RS data. 

3.3  Deriving Above-Ground Biomass 

Extensive effort has been devoted to developing techniques for identification of the 

analysis techniques that can be used for deriving AGB from RS data. The techniques are 

used by previous studies can be divided into: parametric regression, nonparametric 

regression, and physical models. Those techniques can be subdivided as shown in Figure 

3-2 which shows the types of regression that were used for AGB assessment on previous 

works. 

3.3.1 Parametric Regression 

Parametric regression is a statistical method that utilizes the most statistically valid 

functional relation between some independent variables (X1,X2,…,Xn) continuous 

variables and a dependent variable or variables (Y) in order to predict an unobserved point 

in the dependent variable range (Neter et al., 1996). When the regression refers to the 

relation between two quantities only, one dependent variable (X1) and one independent 

variable (Y), it is usually referred to as a bivariate regression. When it refers to the relation 
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between more than two variables (X1, …, Xn), it is called multiple regression. The 

selection of the parameters was highlighted by the literature as a vital part to achieve a 

parsimonious model. In other words, to reach the best-balanced model between using 

unnecessary independent variables that can cause an over-fitted model and ignoring 

necessary variables that can results in an under-fitted model. The applied techniques used 

for this purpose are stepwise regression, Analysis of variance (ANOVA), jack knife 

based regression, and Genetic Algorithm (GA). 

The functional relation between variables is a mathematical equation is in the form of 

Y=𝑓(X1,X2,…,Xn). This equation can be formed in three stages, the decision upon the 

equation type based on the complexity of the relationship between dependent and 

dependent variables, the calculation for the equation parameters based on the observed 

points in the dependent range, and the statistical testing of the resulting regression model. 

Many types of parametric regression between biomass and remote sensing products were 

used. For example, some studies used an exponential equation such as McRoberts et al. 

(2011), Schlund et al. (2015), Næsset et al. (2015) and Suresh et al. (2014) or a 

multiplicative equation such as Lim and Treitz (2004b). However, the majority of the 

literature used a form of polynomial equation. The polynomial equation was in the first-

degree form (linear regression) such as Persson (2016), Mauya et al. (2015), Suresh et al. 

(2014) and Hansen et al. (2015), in the second-degree form (quadratic regression) such 

as Zaki et al. (2016) and Migolet et al. (2007), or in the third-degree form (cubic 

regression) such as Migolet et al. (2007). The determination of equation parameters (or 

the regression coefficients) is usually carried out by the method of least squares or the 

method of maximum likelihood (Neter et al., 1996). Both methods can ensure a minimum 

variance in the class of unbiased regression equation. However, for statistical reasons, 
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non-linear regression models require a reasonably large number of samples to avoid 

overfitting. There is a number of statistical indicators to test the regression such as 

correlation coefficients (R2 and Adjusted R2) the F-test, root mean square errors, and the 

variance of the residuals. However, each one of the previous parametric regression studies 

yielded different values for regression parameters and regression accuracy. This 

disagreement between literature, even when similar data and models were used, affected 

the knowledge relating to the relationship between RS and AGB.  

 

Figure 3-2: AGB deriving techniques found in the previous studies 

 

Approaches 
were used in 

AGB assessment 

parametric 
Regression 

Models 

Additive 
Regression 

Model

Simple 
regression

linear regression

quadratic 
equation

Multiple 
regression

linear regression

quadratic 
equation

cubic equation

Exponential 
Regression 

Model 

Multiplicative 
Regression 

Model

non-parametric 
Regression 

Models 

Machine 
Learning 

Algorithms

K Nearest-
Neighbour 
Algorithm

Support Vector 
Machines

Random Forests

Wavelet 
analyses

Neural Network 
Algorithm

Kriging or 
Gaussian 
process

Physical Models 



 

41 

 

3.3.2 Non-Parametric Regression  

There are two types of non-parametric regression used for AGB assessment. These are 

ordinary kriging and machine learning methods. The kriging is one of the geo-statistical 

methods that tries to smooth the experimental variogram and produce a model variogram 

based on least squares. An example of this model could be found  in Coulibaly et al. 

(2008). Machine learning approaches try to use field data and its corresponding remote 

sensing data to design a model and predict its parameters without previous equation 

form. Machine learning approaches may be grouped in several divisions: K-nearest-

neighbour method (k-NN) was used by number of studies for classification (Gjertsen 

2007) or for regression (Tomppo et al., 2002; Holopainen et al., 2010). Artificial Neural 

Network algorithm (ANN) was widely used like in Fraser and Li (2002), Zheng et al. 

(2014), Migolet et al. (2007), and Del Frate and Solimini (2004). Other types were also 

used with recent studies like Genetic Algorithm (GA) (Tuominen and Haapanen, 2013), 

Random Forests (Stelmaszczuk et al., 2015), Support Vector Machines (SVM) (Chen 

and Hay, 2011), wavelet analyses (Ghasemi et al. (2013), fuzzy logic algorithm (Walker 

et al., 2010) and Maximum Entropy modelling (MaxEnt) (Stelmaszczuk et al., 2015).  

Englhart et al. (2012) study compared between parametric regression and nonparametric 

regression for AGB. It reported a higher accuracy with nonparametric regression models. 

However, non-parametric regression algorithms, require a larger database to be trained 

compared to the parametric regression models (Englhart et al. 2012). This could be a 

drawback when fieldwork coverage is limited. Tanase et al. (2014) combined both 

nonparametric regression and parametric regressions to estimate biomass depending on 

multi-temporal Radar and multi-temporal Lidar data. Ghasemi et al. (2013) use wavelet 
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analyses in biomass assessment stage and ANOVA in the accuracy assessment stage. 

Walker et al. (2010) suggested a forest mapping with satellite Radar data using a fuzzy 

logic algorithm. Englhart et al. (2012) compare between SAR based AGB model with 

multiple linear regression, ANN and SVM; this study indicated that multiple linear 

regression has the lowest performance and highest error measures to retrieve AGB. The 

SVM model provided less saturation for higher AGB and showed a superior performance 

for modelling AGB. While, the ANN performance was the most accurate for low density 

biomass. However, other types of multiple regressions, which could perform better with 

nonlinear relationship, were not included in the comparison. Some models such as 

McRoberts et al. (2015) and McRoberts et al. (2011) combined parametric and non-

parametric regression in search of optimization.  

3.3.3 Physical Models 

Despite the clear advantages of regression, there is a need to improve remotely sensed 

AGB estimates models if they are to provide accurate information on AGB. Each time 

a parametric regression is applied, new parameters are produced. The produced 

parameters for a specific study are not applicable for most other studies. The reason is 

that RS data are not direct measurements of the AGB (Bollandsas, et al., 2018). 

Moreover, non-parametric regression produces a model with an unknown equation. For 

example, if models employ ANN, the processing includes hidden layers where 

undefined processes apply on data. Therefore, transferable biomass assessment 

equations are essential. Some studies, such as Pouliot et al. (2005), Daliakopoulos et al. 

(2009), and Ferraz et al. (2016), tried to solve this problem by finding a physical model 

for AGB assessment based on remote sensing data. The simplest physical model is the 
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tree count. Tree count depends on object-based classification and object detection (e.g., 

Daliakopoulos et al., 2009). Tree count requires very-high resolution RS data and 

represents a very laconic indicator of AGB in areas of mixed tree ages and/or tree species 

cover. Therefore its combination with tree crown delineation can give more relative 

information because it provides the crown diameter (Pouliot et al., 2005). Methods use 

spatial information extraction techniques and a productivity model. In addition, some 

three-dimension (Radar and Lidar) data have the power to provide an indicator of the 

heights. Mette et al. (2004) studied the allometric relation between trees Radar based 

height and forest field observed biomass. Lucas et al. (2008) and Ferraz et al. (2016) 

stated a procedure for extracting tree height, branches distribution, crown delineation 

and tree species from Lidar and hyperspectral images. However, the results of those 

physical models were correlated with AGB by means of regression too.  

3.4 Methods and Materials 

The methodology used includes training a computer software tool to emulate human 

decision making for the optimal trade-off between cost and accuracy for forest tree 

biomass surveys. It considers a variety of parameters, and their interactions, to create a 

flexible non-linear model; an Artificial Neural Network (ANN) fit is applied.  

The input training data were based on the outputs from a number of previous biomass 

surveys; shown in Appendix A. The relative error (ratio of root mean square error, RMSE, 

to the approached value) of each sample is used as the target input. The inputs for each 

sample are the type of the fieldwork allometric equation that was used to derive fieldwork 

data (general equation or species specific equation), the processing model, allometric 

related properties (area, number of species and average biomass per km2), and RS data 
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properties. The reviewed literatures listed a number of effective characteristics for each 

dataset. However, to achieve a workable analysis, only the effective parameters that are 

reported in at least 50 samples in the literature were used. 

As discussed in section 3.1, each RS data type has different specifications. Therefore, 

samples were divided into four groups: 100 Radar inputs, 51 Lidar, 60 optical and 50 

combined RS datasets as listed in Appendix A. Only most effective characteristics were 

taken in consideration as listed in Table 3-2. Optical data are classified into panchromatic, 

multispectral or hyperspectral bands and characterised with spatial resolution. Lidar data 

are classified into single return and multiple return waveforms and characterised with 

footprint size. Radar data are defined according to wavelength, polarization, resolution, 

and incidence angle. Combined samples include studies that combine two of Radar, Lidar 

and optical data. This group is verified depending only on the data type and spatial 

resolution. The reason for verifying combined data, with less detailed inputs, is that the 

number of available studies is limited and so insufficient for a more detailed analysis. 

More studies can be added to the AGB assessment, increasing the size of the available 

samples yearly, and so more detailed accuracy production tools could be produced in the 

future.  

Due to the small number of the datasets available, neural network architecture design 

methods as described in Karsoliya (2012) resulted in over fitting. The alternative design, 

based on trial and error of many smaller networks, was therefore used. The best result 

network has one hidden layer of 10 neurons and one output layer of one neuron. In each 

group 60% of the data were used for training and 20% to find the epoch of best weights, 

with 20% used to test the trained network. This sample split was set as an alternative to 
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the software default split that uses 70%, 15% and 15% for training, validation, and testing 

correspondingly. The aim was to provide more samples for testing and validation due to 

the low number of available samples for each ANN. Two tests were applied depending 

on the regression between the predicted relative errors and the relative error in the original 

training, validation and testing data. The tests include analysing the correlation 

coefficients. 
 

3.5  Results 

To apply the methodology, a separate neural network has been applied to each dataset. 

The effective parameters that were selected to train the ANN systems are listed in Table 

3-2 alongside the characteristics of each ANN system. The correlations between neural 

networks results and actual studies accuracy results are shown in Figure 3-3 to Figure 3-6. 

The performance of neural network applied on optical data studies shows a Root Mean 

Square Error (RMSE) of ±9.2% in the test samples that is not included in the train process. 

The percentage value refers to the predicted absolute error as a percentage of the AGB. 

The correlation results compared to the true accuracy values is shown in Figure 3-3 with 

a correlation coefficient r of 0.76. Comparably, the performance of neural network 

applied on Lidar data studies shown in Figure 3-4 has an RMSE of ±6.5%. The correlation 

coefficient for this neural network is r=0.82. Similarly, Radar studies network has an 

RMSE of ±15.9%. The correlation coefficient of this neural network results with reality 

is r=0.62 (Figure 3-5). Jointly, combined data studies network has an RMSE of ±13.7% 

and r=0.60 (Figure 3-6).  
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Table 3-2: Summery of the effective parameters and number of samples for each dataset’s ANN 

compared to the RMSE of the validation for each one. 

Dataset  RS specifications used  Fieldwork 
specifications 

Model 
specifications 

No. of 
available 
samples 

RMSE of 
validation 
samples % 

Optical Spatial resolution, and 
number of bands 

study area 
coverage, and 
land cover 
heterogeneity 
(number of 
species), and field 
allometric 
equation type 

Model type 
(parametric or 
nonparametric) 

64 ±9.2% 

Lidar Lidar type, and footprint 
size 

62 ±6.5% 

Radar Number of bands,  
polarization/s, resolution, 
and incidence angle 

100 ±15.9% 

Combined  RS data types, and spatial 
resolutions 

50 ±13.7% 

 

 

Figure 3-3: The regression between neural network results and corresponding study results for optical 

data: A-for training samples, B-for Validation samples, C- for the test samples and D- for all samples 

together. 

 

-A- -B- 

-C- -D- 
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Figure 3-4: The regression between neural network results and corresponding study results for Lidar data: 

A-for training samples, B-for Validation samples, C- for the test samples and D- for all samples together. 

 

Figure 3-5: Neural network results for Radar data studies as A-for training samples, B-for Validation 

samples, C- for the test samples and D- for all samples together. 

-A- -B- 

-C- -D- 

-A- -B- 

-C- -D- 
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Figure 3-6:Neural network results for combined datasets, as A-for training samples, B-for Validation 

samples, C- for the test samples and D- for all samples together. 
 

3.6 Summary 

In this investigation, an aim was to find a methodology to predict the uncertainty of AGB 

assessment during the design phase. A second aim, for this chapter, was to investigate the 

variety of the possible AGB assessment models and inputs with error prediction based on 

the results of previous studies.  

The studies reviewed in this experiment confirmed that a wide range of parameters can 

affect the uncertainty within AGB projects. The parameters include RS data types and 

each type's specifications, the fieldwork allometric equation type, the assessment’s 

coverage, the vegetation cover variety in the study area, alongside the mathematical 

model type and specifications. The execution of the methodology showed moderate 

results due to the limited number of publications compared to the required samples for 

sufficient training. However, the reviewed possibilities in this chapter served as a base 

for the design of an inclusive error analysis tool in described in Chapter 5. 

-A- -B- 

-C- -D- 
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 Fieldwork Data Collection and 
Processing 

4.1 Introduction 

Although the accuracy of the field based data is assumed to be high enough to allow the 

ground information data to be implicit as error free truth, it is still being questioned. With 

allometric equations, there is a number of error sources that can effect this accuracy such 

as the errors expected in the direct measurements of DBH and tree heights, the error of 

allometric equation as a regression equation, the error of geographic location of the trees, 

and the inadequate number of samples. Relative positioning and temporal errors result in 

the biggest share of the fieldwork AGB uncertainty (Gonçalves et al., 2017). Therefore, 

In recent years, there has been a growing application of Terrestrial Laser Scanning (TLS) 

(Liu et al., 2017) as a precise fieldwork technology to support remote sensing (RS) data, 

with the highly detailed field data collected within a short time giving a smaller temporal 

variation and higher precision to the biomass estimations. In turn, this means more 

information being available.  

Practically, even with this detailed data, plot based sampling is still typically used to 

model the relationship between AGB and RS data (Næsset et al., 2015). The pixel-based 

approaches are not efficient due to the indirect relationship between AGB and RS data, 

even with very-high resolution data. Yet, high precision biomass distribution has an 

importance when AGB is correlated with high resolution RS data, especially when small 

subplots are used and plot boundaries probably intersect with some of the trees. Small 

subplots can provide a bigger number of samples than is required to train, calibrate and 
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validate any AGB assessment system and so help to avoid overfitting (Fassnacht et al., 

2014). In addition, the small subplots can reduce loss of detail due to averaging the 

biomass within each plot. Therefore, single-tree-level forest inventory is expected to play 

a key role in near future biomass mapping systems (Kankare et al., 2017). 

The huge size of the TLS data’s computer files, the wide coverage, and the complex tree 

structure make the processing and analysis methods to automatically retrieve the whole 

tree structure computationally expensive. For instance, Côté et al. (2011) stated that using 

their method on a single long Douglas fir tree, which has a simple structure compared 

with most other species, can take more than 30 hours to be processed depending on the 

required processing. In another example, Calders et al. (2015) stated that a sample of 

Eucalyptus tree took more than 18 hours to be reconstructed. The processing also requires 

a high density point cloud, which means more field work and larger computer files. To 

avoid these problems, a number of studies verified the significance of using the TLS to 

extract only the parameters that can be indirectly correlated with AGB (inventory 

parameters) like tree coordinates, tree height (h) and tree diameter at breast height (DBH). 

The DBH is usually measured at height of between 1.30 (e.g. see Alberti et al. 2005, 

Muukkonen 2007, and Forrester et al. 2017), and 1.50 m (e.g. see Pérez-Salicrup, and 

Barker 2000, and Evans et al. 2014). Despite these methods providing an accurate 

biomass assessment, they could not provide a precise biomass distribution, i.e. they 

provide the biomass of each tree as a point while the tree biomass is heterogeneously 

distributed over a few square meters. Therefore, a fast method, that combines the high 

precession AGB distribution provided by analysing the TLS with the high accuracy 

provided by inventory parameters, can overcome the problem by providing an AGB result 

that is fast and reduces the uncertainty of correlation with very-high resolution RS data.  
 

Two techniques have been used for this purpose. The first technique involves converting 

the TLS point clouds into a volumetric pixel three-dimensional model (voxels), e.g. 
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Hackenberg et al. (2014), with each 3D pixel having a digital number representing the 

number of TLS points located inside it. The voxel reduces the data size and the processing 

time as a result. The second one uses one of the 3D tree modelling approaches (Pratihast 

2010; Raumonen et al. 2013; Liu et al. 2017) that depends on existing knowledge of the 

tree shape, for instance each tree branch is expected to have a smaller diameter than its 

parent branch. When this knowledge is generalized, it can be used to fill the gaps in the 

TLS data, and predict initial values and limits of fitting parameters. 

4.2 Materials and Methods 
 

4.2.1 Study Area 
 

The study area (Figure 4-1) is located in the south-west of the United Kingdom between 

Latitude 50° 15' N and 50° 90' N and between longitudes 3° 40' W and 4° 40'. This 

coverage was chosen due to the land cover heterogeneity that is equivalent to the variety 

achieved with larger scales areas; the scanned plots represent a variety of tree types, tree 

species and ground terrain. The area covers the river Tamar catchment and Dartmoor 

National Park.  

The Tamar catchment includes more than 70 woodlands and forests with various tree 

cover densities, sizes and types distributed in rural areas of wide agricultural fields. It 

includes a number of towns as well. There are some water cover areas such as river Tamar, 

river Tavy, and Burrator reservoir. In the contrast, Dartmoor National Park has areas of 

tree cover surrounded by areas of moorland.  
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Figure 4-1: Tree types map and fieldwork sites in the study area.( Forestry_Commission, 2002a; 

Forestry_Commission, 2002b) 

The main tree species in this area includes sitka spruce (Picea sitchensis), larch (Larix 

occidentalis), oak (Quercus), beech  (Fagus Sylvatz'ca), birch (Betula),sycamore (Acer 

pseudoplatanus), ash (Fraxinus excelsior), and elm (Ulmus campestris) (Forestry-

Commission, 2001). These species can be categorised according to the geographical 

distribution with in the study area to broadleaf trees areas, conifer trees areas, and mixed 

trees areas, beside the non-standard tree areas like young trees, felled trees, under planting 

areas, and coppice trees. The distribution of these categories is shown in Figure 4-1. 

TCB
Text Box
Figure has been removed due to Copyright restrictions.  Please see Forestry_Commission (2002a) National Inventory of Woodland and Trees- Cornwall, United Kingdom: Forestry_Commission. Available at: https://www.forestry.gov.uk/pdf/cornwall.pdf/$FILE/cornwall.pdf. andForestry_Commission (2002b) National Inventory of Woodland and Trees- Devon, United Kingdom: Forestry_Commission. Available at: https://www.forestry.gov.uk/pdf/devon.pdf/$FILE/devon.pdf.
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Therefore, a number of sample plots were decided based on study area resonance in order 

to increase the representability of the field data. The selected sites for fieldwork sample 

plots are listed in Table 4-1. 

Table 4-1: A list of the selected fieldwork sites. 

Site No. Location (,) Category 

1 50˚30’ 55”N, 04˚ 09’ 50”W Broadleaf trees  

2 50˚34’ 40”N, 03˚ 53’ 55”W Conifer trees  

3 50˚30’ 15”N, 04˚ 02’ 15”W Mixed trees  

4 50˚27’ 30”N, 04˚ 15’ 20”W Mixed trees  

5 50˚27’ 50”N, 04˚ 14’ 50”W Broadleaf trees  

6 50˚34’ 40”N, 03˚ 54’ 00”W Conifer trees  

 

4.2.2 Laser Scanning 

Leica ScanStation P20 was used to scan 38 sample plots (divided on the six sites listed in 

Table 4-1) of about 2500 m2 each. This scanner is a dual band laser scanner (808 nm and 

658nm) with a 3D angular accuracy of ±8 second, 3D Position Accuracy of 3 mm at 50 

m distance targets, and a linearity error of less than 1 mm. The scanning took place in 

2014 and 2015. The scanned plots represent a variety of tree types, tree sizes and ground 

terrain patterns. The scanner can provide a scanning range of up to 120 m. however, the 

effective range of laser scanning was analysed by using a single scan in a high density 

forest area shown in Figure 4-2.  
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Figure 4-2: A single station scan in a relatively high density forest area. A- selected trees’ location on a 

top view of the scan. B- the details of each tree the distances between trees and the scanner were 1- 10 m, 

2- 22 m, 3- 27 m 4- 33 m, 5- 39 m and 6- 45 m correspondingly. 

Six example trees were selected on different distances from the scanner on 10 m, 22 m, 

27 m 33 m, 39 m and 45 m. The trees on distances of less than 30 m were presented with 

fine details for all above-ground tree parts. The tree scans for trees of a distance greater 

than 30 m were affected by laser shadows of other trees in the way between the scanner 

and the objected tree. These shadows on the point cloud could include tree parts that are 

hidden behind other objects that are closer to the scanner. The available solution is by 

scanning the trees from more than one station. The basic scanning plan is shown in Figure 

4-3.  

 

-A- 

-B- 
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Figure 4-3: The basic scanning plan for one of the field sites. 

This plan is designed to cover each tree from three to four stations with a distance of less 

than 50 m. The scan stations were set in rows of 35 m from each other. Each scan station 

provides a point cloud with a local coordinate system. Therefore, a set of connection 

targets were used to co-register the resultant point clouds from the scan stations to a 

unified coordinate system. Leica 6 inch black/white target that are compatible with the 

Laser scanner was used for this purpose. The scan stations are designed to be separated 

from the registration targets by a distance of about 35 m. However, in the field it was 

almost impossible to apply the exact plan because the existence of the trees that may 

either lie in the planned positions of the stations or targets, or be close to it and will result 

in a large shadow on other trees behind them. The scan stations were located to be as 

close to the plan as possible, but within workable positions.  
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4.2.3 Pre-processing Laser Scanning Data  

The pre-processing includes using “Leica Cyclone 3D point cloud processing software” 

to co-register all the scan data to produce combined point clouds. The same software was 

then used to trim the point cloud to the object area boundaries, and to export the results 

to a standard ASCII file of the X, Y, and Z coordinates of the points. 

4.2.4 Laser Scanning Data Processing 

The AGB deriving process was included in the main steps in the flowchart shown in 

Figure 4-4. After the pre-processing, the following stages of processing were 

programmed using Python1: 

- Step 1: Modelling Terrains and Excluding Ground Points.  

A new technique was used to achieve a workable filtering, with minimum processing 

requirements to reconstruct the ground surface by processing only the set of points that 

lies inside far-apart parallel profiles as shown in Figure 4-5.  The Profile Points (PP) are 

defined in terms of the minimum X coordinate of the plot (Xmin), the distance between 

successive profiles (D)  and the depth of the profile (d) as in Equation 4-1: 

Equation 4-1 

𝑃 𝜖 𝑃𝑇𝐿𝑆: ǁ
𝑋𝑝𝑜𝑖𝑛𝑡 −𝑋𝑚𝑖𝑛

𝐷
ǁ +

𝑑

2
>

𝑋𝑝𝑜𝑖𝑛𝑡 −𝑋𝑚𝑖𝑛

𝐷
> ǁ

𝑋𝑝𝑜𝑖𝑛𝑡 −𝑋𝑚𝑖𝑛

𝐷
ǁ −

𝑑

2
 ,                       (4.1) 

where PTLS is the whole TLS points data. For each plot, D was set depending on the terrain 

complexity and d was set depending on the point cloud intensity. An example of the 

filtering result of one of the fieldwork scanning areas is shown in Figure 4-5.  

                                                 

1 The programming code was uploaded to be freely available on 

https://github.com/AhmedAlboabidallah/field-data-analysis  

https://github.com/AhmedAlboabidallah/field-data-analysis
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Figure 4-4: The flow chart of data processing and AGB mapping. 

 

0.1m 
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Figure 4-5: The processing steps to produce the DTM. 

Then a simple minimum filter was applied to keep only the minimum elevation point in 

each 0.5 m x 0.5 m area, by applying the equation: 

𝑃𝐺 𝜖 𝑃𝑃: 𝑃𝐺 = min(𝐶), where C ϵ PP:ǁ Xpoint -Xmin

0.5
ǁ+0.25> Xpoint -Xmin

0.5
>ǁ Xpoint -Xmin

0.5
ǁ-0.25 

 ∧ǁ Ypoint -Ymin

0.5
ǁ+0.25> Ypoint -Ymin

0.5
>ǁ (Ypoint -Ymin)

0.5
ǁ-0.25  (4.2) 

In the next step, the DTM was built from points that passed the filter. The final step was 

filtering out all PTLS points using a 0.2 m buffer around the DTM to exclude ground points.  

- Step 2: Producing the 3D voxel 

A new technique was applied to produce the voxel. Voxel layers were produced to be 

non-flat surfaces that are parallel to the DTM as shown in Figure 4-6 instead of being 

horizontal planes. The idea behind this process is to define the height of each point from 

the ground, allowing the trunk detection procedures to be applied on each slice evenly. 

Also, a small file of each voxel pixel’s original TLS points was produced and linked to 

that pixel. This process aimed to arrange the TLS data and make it easy to be recalled for 

the next steps. The voxel-model is a 3d raster representation of the TLS point cloud. 

Therefore, the coverage of the voxel model was similar to the coverage of the TLS point 

m 

0.1m 
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cloud. The size of the 3d voxel pixel represents the resolution of the voxel. The finer the 

3d voxel pixel is, the higher the accuracy is. However, the finest the 3d voxel pixel is the 

greater the processing computational costs is. Therefore, the pixel size was decided to 

0.05 m to provide the minimum spatial resolution that can fulfil the requirements of the 

tree structure reconstruction steps.    

 
-A-                                       -B-                          -C-          . 

Figure 4-6: Slicing Lidar data and producing raster images. A. the concept of building a voxel by non-flat 

layers, B. The features of a single layer, and C. The extracted features in the layer. 

- Step 3: Trunks Detection and Modelling 

A new technique was applied to detect trees trunks. Trunks detection designed to work 

on four layers around the breast height (elevation ≈1.5m) by: 

 Intersecting every two successive layers to emphasise the upstanding tree parts, like 

expected trunks, and to reduce other tree parts, like branches. This step is designed to 

reduce the effect of branches and leaves at the breast height. The intersection was used 

for trunk detection (by intersecting layers 1.3 m with 1.4 m and 1.5 m with 1.6 m) and for 

trunk tracing (by using all other layers).  

Spatial segmentation of each intersection result by analysing non-zero pixel 

neighbourhoods' connectivity with any other non-zero pixels and giving any connected 
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group pixel an Identification number (ID). For example, the voxel layer subset shown in 

Figure 4-7 has three groups of non-zero pixels each group was given an ID that is identical 

for the group and unique for the other groups. This step is important for image analysis 

and interpretation for object extraction because each segment is expected to be strongly 

related to the trees’ trunks and branches. This segmentation transforms the voxel layer 

into high-level image description in terms of each extracted object and its corresponding 

original points in the point cloud.  
 

 

Figure 4-7: An example of the spatial segmentation process. A. The voxel layer subset. B. The 

segmentation result of the subset. 

 Applying the Hough Circle Transform (HCT) to the intersection results. Because the 

trunk sections are not perfect circles, the tolerance parameters are set to be highly tolerant. 

This helped to reduce the false negative results. However, this requires a next step to 

reduce the false positive results. 

 Checking each detected circle, whether it represents a trunk section or not. This step 

includes visual classification at the current stage. However, all the results are kept in a 

separate database to be used later as a training data for a machine learning based automatic 

classification to true positives and false positives. This step helped to avoid false positive 

results. 

 The centre coordinates and DBH of each tree was computed from the original TLS 

points of the closest segments that cover a minimum required angle around the centre 

-A- -B- 
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detected by HCT or all segments that lies within a threshold distance which unify and 

combine the detected centres of processed layers.  

Three fitting approaches were compared with each other in terms of accuracy and 

computational cost. These methods include fitting a circular cylinder with free axis 

orientation, an elliptical cylinder with free axis orientation and an elliptical cylinder with 

Z direction axis orientation.  

The cylinder fitting procedure employed a non-linear least-squares fitting of cylinder that 

is similar to Wei and Wang (2009) fitting. The Wei and Wang (2009) algorithm includes 

finding the initial axis orientation angles with the three coordinate axes, and fitting a 

cylinder by iterating non-linear least square method. The applied algorithm makes use of 

the expected physical model of the trunk to reduce the cost of the cylinder fitting by 

setting the initial orientation to be parallel to the Z axis.  

 

Every two successive layers were intersected and tree trunks were traced in layers of 

higher and lower than breast height, starting from each centre. The tracing process based 

on tracing the closest pixel in the next layer to the centre in the previous layer (the lower 

layer for heights greater than 1.3 m and the upper layer for the other layers). This type of 

tracing layers was designed to reduce the cost of repeating the procedure of cylinder 

fitting for each layer. This way the detected centre will be on the trunk surface rather than 

the centre which will cause a certain amount of error but it will reduce the errors at the 

layer where large branches intersect with trunk and the shifts tracing process to tend 

toward branches and get lost. If the next layer centre horizontal distance is more than the 

threshold distance the trunk centre the tracing process passes to the next layer to avoid 

the problem of the missing trunk parts in the shadows of intense branches expected at the 

upper part of the tree. The tree heights were determined by the highest elevation non-zero 
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pixel in each trunk zone. To avoid possible noise points, pixels with less than three points 

were consider as zero-pixels for tree height determination.  

- Step 4: Biomass Calculation and Mapping 

This step is overlapped with trunk biomass as it requires the DBH and H to calculate the 

biomass, and the trunk biomass modelling requires the biomass value. Biomass were 

basically computed by using an allometric equation for each tree type for three reasons. 

The biomass calculation depending on the exact fitting of the tree is expensive in terms 

of the required TLS point-cloud quality and data processing. The second reason is that 

fitting can yield in computing the tree above-ground volume rather than its AGB and will 

required a destructive test to find the biomass density to convert it to AGB. The third 

reason is that volume-based AGB calculations involves an additional error component 

that is related to the wood density due to the necessity of converting volume into mass. 

- Step 5: Branch Detection and Modelling 

In all voxel layers, all pixels that are located with a distance of three times the radius of 

the trunk at that layer were set to zero. The remaining pixels were considered as branches.  

To reconstruct the branches, point spatial segmentation was applied. The segmentation 

process included segmented pixels of each layer and segmenting the pixels’ segments of 

all layers through their parent-child relationships. For example, layer i in Figure 4-8 is the 

parent layer in the branch. Because segment 1 has no parents in the lower layer (i-1), it is 

the first segment to be added to the set that represents the branch. Segment 1 in layer i+1 

(the child layer of layer i) has a neighbourhood with a segment in the series (which is 

segment 1 of layer i). Therefore, this segment was added to the series too. A reverse check 

should be taken for other parents of segment1, layer i+1. If there is any, all parents’ series 

should have been combined in one series. For instance, the example in Figure 4-8 



 

63 

 

segment1, layer i+5 has been added by segment1, layer i+4 and it has another parent 

(segment2, layer i+4) to be added to the series. The child layer is the parent of next layer 

and the same procedure continues until it reaches layer i+n which has no children for set 

segments of the previous layer. This way, the segmentation process is extended to include 

segments hierarchical series in between slices depending on the standard parent-child 

spatial. Each reconstructed branches classified to be a branch of the tree that has the 

closest trunk centre to it. The TLS points of each segment were sorted by their distances 

from the centre.  

f  

Figure 4-8: Steps of reconstructing a tree branch by using segmented raster layers. A- Finding 

relationships between segments of successive layers, B- Reconstructing segments, C- Cylinder fitting by 

Lidar points, and D- Reconstructed branch 

To increase the information details and due to the fact that specific RS data types such as 

optical data can be better correlated to the tree branches unlike other data types such as 

Radar that can be more correlated to trunks. Branch maps and trunk maps were produced 

-A- 

-B- 

 
 

-C- 

-D- 
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separately. This strategy benefits from the availability of detailed species based allometric 

equations for most tree species. The tree species were mapped in the field. Most scanned 

plots were of one tree type. Biomass of other plots were calculated by giving each try 

type a specific ID and call a different allometric equation accordingly.  

Branches were dealt with as cone and statistical weights of their biomass for each layer 

were calculated as the volume of the cone intersection with the layer. The calculated 

biomass for each layer was the statistical weight of the branch of the layer divided by the 

summation of the weights of the branch for all layers. Then the trunk biomass inside the 

layer were added as a circle of pixels. The centre of this circle is the traced centre of the 

trunk and the radius of it is the calculated radius of the trunk at the layer.  

Branches statistical weighting is more complex and could be computationally expensive. 

Therefore, three techniques were tested to decide on the weight of each branch series 

including: 

1- By fitting cylinder to the corresponding point cloud that lies on a specific distance 

from the centre and the branch length to build a cone. This procedure based on the fact 

that branches are most likely to have cylindrical shape at the parts that are close to the 

trunk before it takes more complex shapes that are combined by more leaves at the far 

parts from the trunk. The initial values setting used for trunk fitting is not expected to 

work for branches because it can be of any orientation. Due to the fact that the Gauss 

Image method used in (Wei and Wang, 2009) uses a small number of random points, the 

different numbers of points will affect the precision of initial vector. Therefore, this stage 

was replaced with simple Principal Component (PC) transformation. The analysis scale 

was designed to be limited to the points inside the extracted branch in the voxel. A 

limitation of PC is that it is sensitive to the variance due to measurement noise (Bailey, 

2012). However, in this application of PC, the branch points are selected using spatial 
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segmentation and therefore high percentage of the points are real branch points. 

Moreover, the branch parts close to the trunk often have less leaves than other branch 

parts.  

The other limitation of the PC is the problem of missing data that can be cause by scanning 

shadows (Bailey, 2012). This problem can affect the accuracy of the cylinder fitting as 

well. One solution to this problem is by increasing the length of the objected part of the 

branch. On the other hand, this can increase the tree leaves noise and the probability of 

the branch to have a bow shape rather than straight shape.  

2- Applying a Principal Component analysis to the same points in the cylindrical fitting 

in the previous method and use the length to build a cone. This analysis projects points to 

a new coordinate system that allows one of the projections to be vertical to the main axis 

of the branch. The example in Figure 4-9 shows a PC analysis of a branch and its 

relationship to the radius. In this example, even when the branch is not straight, the 

residuals of the points around the second PC axis is expected to correlate to the diameter 

of the branch. The range of branch points on the third PC also represented the third PC. 

 
-A-                                                   -B- 

Figure 4-9: The PC analysis of the closest part of the branch to the trunk. A. the branch part. B. the same 

part with respect to its PCs 

3- By skeletonising the branch  

The term skeletonisation refers to the thinning process of non-zero parts in the image to 

thin lines of one-pixel width based on the image morphology. To increase the efficiency 
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of this method, the thinning processes were designed to avoid the 3d analysis. 

Alternatively, the 2d projections of the branch were used. For example, branch shown in 

Figure 4-8 can be projected into the top and side views shown in Figure 4-10. The branch 

statistical weight is calculated as the resultant of the length of the skeleton in the top-view 

and the vertical range of the branch. This way calculations can avoid the calculations of 

the branch orientation and increase the calculations speed. The scikit-image (Van der 

Walt et al., 2014) algorithm were used to calculate the voxels for the statistical weighting  

process.  

These techniques were compared with each other and against manually traced branches 

in one of the scanning areas. PCA is used to provide initial values of each cylinder 

orientation and radius for the fitting process. The cylinder fitting is found to be 

computationally expensive. Instead the width of the branch in the second principal 

component of the first 30 cm of the branch was tested to be the weight.  

 

Figure 4-10: The skeletonisation process of the branch shown in Figure 4-8. A- the top-view of the 
branch’s voxel, B- the skeleton of A. C. the side-view of the branch’s voxel and D- the skeleton of C 

The practical problem of applying this procedure is that some branches lay in a low point 

density of the point-cloud. The other drawback is the misleading results for branch series 

that include multiple tangled branches because it will count as a single branch. It is also 

-A- -B- 

-C- -D- 
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computationally expensive because it requires using the original point cloud points that 

is corresponding to the first 30 cm of the branch series. Therefore, the alternative solution 

needs to be based on the voxel only. The branch length logically relates to the branch 

volume. The relationship between the length of the branch and its volume is complex and 

it requires a wider scale analyses to find a general equation. However, this was chosen as 

the approach to geographically distribute the biomass of the branches as it is a workable, 

relatively fast and precise technique. The other tested solution was by using the volume 

of the branch series in the voxel model. This technique is directly related to the branch 

volume. However, in the real samples the voxel volume was highly influenced by the 

amount of leaves on the branch. 
 

The weights of the volumetric voxel pixels in each branch were computed by distributing 

the branch weight on the pixels. The pixels were given different weights based on cone 

volume that is parallel to the branch and has the same length, as illustrated in Figure 4-

11. The cone base is at the closest part of the branch to the trunk and the top is at the 

farthest part from the trunk. The weight of each pixel is the volume of the corresponding 

part of the cone divided by the summation of volumes of all pixels along the branch.  

 

Figure 4-11: The branch’s pixels statistical weighting process. 
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4.3 Results 

The programming code was written with Python to apply the designed algorithm (Figure 

4-4). The results include: 

1-Modelling Terrains and Excluding Ground Points  

The filter in Equation 4-1 was applied for each plot’s TLS data, and the two sample results 

shown in Figure 4-12 represent the profile results in two different areas. The distance 

between each successive profiles (D) is set to 2 m for low slope terrain areas (e.g. scanning 

area shown in Figure 4-12a) and to 1 m for the high slope areas (e.g. scanning area shown 

in Figure 4-12b), with profile slice width (d) is set to 0.25m. The produced profiles are 

processed with filter in Equation 4-2. 

The whole point cloud below the elevation of +20 cm were dealt with as ground points 

and were excluded. This process did not affect the tree heights because the tree height 

was calculated from the DTM rather than the point cloud lowest point. However, it was 

noticed that the elevation at the tree trunk was generally underestimated. This occurred 

due to the use of minimum elevation filter. The terrain at the tree trunk is generally 

expected to have a higher elevation than surrounding areas due to the contribution of tree 

root systems to slope stability and soil erosion control (Reubens, et al., 2007). The point 

cloud’s part that is filtered with the DTM represents 20-40 % of the whole data size for 

the different scanned area.  

4.3.1 Producing the 3D voxel 

After the ground points have been removed, the remaining points in the point cloud were 

sliced. A corresponding raster layer of point density is produced for each voxel layer. The 

voxel spatial resolution was set to 0.05 by 0.05 by 0.05 m. This means that the minimum 

distance between tree parts has to be at least 0.05 m to be distinguished. The rational was 
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to insure that branches that have a diameter of 5 cm can be detected. The 3D visualization 

of the branch is not required for following next steps. Therefore, the processing cost to 

plot the 3D visual representation, produced to visualize the voxel’s quality, was not 

counted within the efficiency testing. An example of the 3D representation of a voxel is 

shown in Figure 4-13 that shows the voxel quality for one of the sample plots. 

 
-A- 

 
-B- 

 
Figure 4-12: The profiles extraction results. A. sample profiles in a low slope area, B. sample profiles in a 

high slope area. 
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Figure 4-13: The voxel quality. A. The top view of the voxel. B. The isometric view of the voxel part 

inside the red colour box in A. C. The voxel quality in a branch part (the orange box part in B). D. The 

voxel quality in a trunk part (the blue box part in B). 
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4.3.2 Above-Ground Biomass Calculations 

A Number of allometric equations were selected for the AGB calculations based on the 

scanned tree species. The selected equations needed to be geographically compatible with 

the study area to increase the geographic reliability of the equation. In addition, due to 

the objectives of this study, these equations were required to provide a sufficient error 

analysis. Hence, the species specific allometric equations of Alberti et al. (2005), 

Muukkonen (2007) and (Forrester et al., 2017) were used for biomass calculations. The 

calculated AGB was used to fulfil the requirements of step 4 (Trunks Detection and 

Modelling) and step 5 (Branch Detection and Modelling) as described in section 4.1.4.  

4.3.3 Trunk Detection and Modelling  

Review of the layer intersection results show an improvement in the tree trunks isolation: 

the majority of the tree branches attached to the trunks were separated or reduced. 

However, for a number of trees it does not fully exclude the branches attached to the 

trunk. Figure 4-14 shows an examples of a successful and a failed branch exclusion. The 

branch sections were either a close curve, open curve, or disconnected parts of a curve. 

The variety in the shape is either due to the laser shadows or due to the layer’s intersection 

process. 

 

-A-                                                                         -B- 
Figure 4-14: The effect of layer intersection on the trunk section. A- an example of a successful branches 

exclusion. B- an example of failed branch exclusion. 
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The trunk detection algorithm is applied on the raster layers at to the breast height by 

using OpenCV programming library (Culjak et al., 2012) under Python environment. The 

parameters required for trunk section recognition include the minimum distance between 

detected centres, the strength of the edge detection filter, the threshold score for centre 

detection, the minimum radius to be detected, and the maximum radius to be detected.  

Beside the detected true centres (true positives) there is a possibility to detect some non-

trunk features as trunks (false positives) and a probability of some true trunks that the 

detection algorithm fails to detect (false negatives). In order to set the trunks detection 

parameters to get the minimum false negatives for each plot, the minimum distance 

between detected centres were set to zero, the edge detection strength was set to 

maximum, threshold for centre detection was set to zero, minimum radius to be detected 

set to 5cm, and maximum radius was set to 1.5m. The visual classification of detected 

trunks of each plot shows that up to 45% of the detected trunks are false positives. 

However, the visual inspection stage reduced the ratio of the false positives to 1%. Table 

4-2 shows the results of the trunk detection process before and after the visual inspection.  

Table 4-2: The numbers of true positive of the trunk detection process for number of plots. 

Area 
(m2) 

Trees True positives False negative trunks False positive 
Trunks 

B
efore 

inspection 

A
fter 

inspection 

B
efore 

inspection 

A
fter 

inspection 

B
efore 

inspection 

A
fter 

inspection 

1600 Broadleaved 10 10 0 0 4 0 
1225 Broadleaved 12 12 0 0 3 0 
2500 Broadleaved 41 40 2 2 10 2 
2500 Broadleaved 27 26 1 1 8 1 
2500 Needle-leaved 28 28 0 0 4 0 
2500 Needle-leaved 37 35 1 1 6 0 
2500 Broadleaved 44 43 1 1 9 2 
2500 Needle-leaved 20 20 0 0 2 1 
2135 Needle-leaved 29 27 0 0 4 0 
3519 Mixed 35 34 1 1 9 1 
1968 Mixed 26 26 1 1 6 1 
2500 Needle-leaved 17 17 0 0 4 0 
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To compare the results of fitting techniques, correlations between trunk-diameter results 

from each fitting technique and manual-measurement was undertaken as shown in Figure 

4-15, the best result was achieved with the elliptical cylinder with free axis orientation 

with R2=0.94 and RMS=0.99 cm. Fitting an elliptical cylinder with Z direction axis 

orientation yields in an R2 of 0.92 and an RMS of 1.20 cm. While, fitting a circular 

cylinder with free axis orientation shows a slightly lower correlation with R2=0.90 and 

RMS=1.28 cm. However, the process of fitting an elliptical cylinder with a free axis 

orientation was computationally expensive compared to the process of fitting an elliptical 

cylinder with restricted Z direction axis orientation. This is due to the fact that the first 

one consists of fitting a circular cylinder, re-projecting the points to a plane that is normal 

to the central axis of the cylinder and then fitting an ellipse to find the radii, while the 

second one consists of the direct ellipse fitting only. The average time cost for free axis 

orientation method was 2.6 s compared with 0.2 s for the Z direction axis and 2.3 s for 

circular fitting with free axis orientation. Moreover, both free axis orientation algorithms 

have failed to converge four times out of the 97 tree used for the comparison while free 

axis orientation provide results for all trees. Therefore, the Z direction axis cylinder fitting 

was implemented. 

The procedure described in Section 4.1.4, step five was applied based on the allometric 

equations listed in Table 4-3 The AGB map shown in Figure 4-16 represents the trunk 

biomass map of an example plot. These equations were mainly chosen because they have 

well-defined accuracy statistics that was used later in Section 6.5.3. Each pixel represents 

the summation of AGB of the voxel pixels located in the corresponding vertical column 

of the voxel. Hence, the spatial resolution of the resulted map is equal to the spatial 

resolution of the voxel which is 0.05 m.  
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The DBH was fitted around 1.5 m from the DTM that was derived in step1, section 4.2.4. 

The rational of choosing this height was to compensate the underestimation of the terrain 

elevation at tree trunk.  

Table 4-3: Allometric equations implemented for AGB calculations for the fieldwork data analysis 

Species   Equation  Reference 

Ash Stem 𝐴𝐺𝐵 = 0.71 ∗ 0.17 ∗ 𝐷𝐵𝐻2.46  (Alberti et al., 2005; Cai et 

al., 2013) Branch 𝐴𝐺𝐵 = 0.16 ∗ 0.17 ∗ 𝐷𝐵𝐻2.46  

Birch Stem 
𝐴𝐺𝐵 = 𝑒(−2.411 +10.21

𝐷𝐵𝐻

𝐷𝐵𝐻+8.291
)   (Muukkonen, 2007) 

Branch 
𝐴𝐺𝐵 = 𝑒(−3.579+0.570

𝐷𝐵𝐻

𝐷𝐵𝐻+11.363
)  

Scots pine Stem 
𝐴𝐺𝐵 = 𝑒(−1.408 +10.666

𝐷𝐵𝐻

𝐷𝐵𝐻+15.775
)  

(Muukkonen, 2007) 

Branch 
𝐴𝐺𝐵 = 𝑒(−0.928+9.889

𝐷𝐵𝐻

𝐷𝐵𝐻+32.338
)  

Beech Stem 𝐴𝐺𝐵 = 0.159 𝐷𝐵𝐻2.346  (Chakraborty et al., 2016) 

Branch 𝐴𝐺𝐵 = 0.233𝐷𝐵𝐻1.781  

Oak Stem 𝐴𝐺𝐵 = 𝑒−2.181𝐷𝐵𝐻2.269  (Forrester et al., 2017) 

Branch 𝐴𝐺𝐵 = 𝑒−2.986𝐷𝐵𝐻2.309  

Mixed 

Species 

Stem 𝐴𝐺𝐵 = 𝑒−2.527𝐷𝐵𝐻2.414  (Forrester et al., 2017) 

Branch 𝐴𝐺𝐵 = 𝑒−3.723𝐷𝐵𝐻2.33  

 

 
-A-                                           -B-                                         -C- 

Figure 4-15: The correlation results for trunk radius algorithms. A. for elliptical cylinder with free axis 

orientation, B. for elliptical cylinder with Z direction axis orientation. C. for circular cylinder with free 

axis orientation.  
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Figure 4-16: Resulting 2D tree trunk AGB map for a sample plot.  

 

4.3.4 Branches Detection and Modelling 

To reconstruct branches for each plot, trunk pixels were excluded from all layers and 

layers were segmented. Then the spatial parent-child relationship was built between 

successive layers’ segments. The branches were assigned to the trees using nearest 

neighbour trunk centre, using the 3D model of trunks from the previous steps. Each 

branch was assigned to a statistical weight that represents the share of each branch from 

the total tree branch. As a comparison of branch weighting methods, 30 branches were 

randomly selected from three plots and their point cloud points were used to rebuild the 

branches by manually measuring radii along each branch CAD model (the point cloud in 

the AutoCAD environment). The manually reconstructed volume has a correlation of R2= 
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0.63 for cylinder fitting compared to R2=0.34 and 0.59 for the skeletonisation method as 

shown in Figure 4-17. The average time cost for the weighting of a single branch was 

2.5s for cylinder fitting (least squares fitting (Wei and Wang, 2009)), 0.1s for the PC 

method (PCA Python library (Risvik, 2008)) and 0.1s for the skeletonisation method 

(skimage Python library (Van der Walt et al., 2014)). The branch biomass was calculated 

using allometric equations provided in Zianis et al. (2005) and Cai et al. (2013) and then 

this biomass was distributed to the tree branches based on the skeletonisation weight of 

each branch with the biomass of each branch redistributed to its pixel’s weight.   

The biomass of each single pixel was added to the branch biomass layer to produce the 

branch biomass map. For example, Figure 4-18 shows the branches biomass of the same 

sample plot as shown in Figure 4-16.  
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-A-  

 

 
-B- 

 

 
-C- 

 
Figure 4-17: Correlation between manually measured volume of branches (extracted from three sample 

plots) and statistical weights resulted from: A. Cylinder fitting method, B- PC method and C. 

Skeletonisation method.  
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Figure 4-18: Resulting 2D tree branch AGB map for a sample plot. 

4.4 Summary 

An algorithm was developed to map the woody biomass of all trees in a specific area, in 

order to combine the high accuracy of allometric equations and the high precision of 

biomass spatial distribution. TLS was used to both provide the input data for and evaluate 

the accuracy of the resulting maps. A set of techniques were used to increase the 

efficiency, by increasing the accuracy and reducing the computational cost. New 

techniques have been identified, including extracting the ground surface using a minimal 

proportion of the point cloud, producing a new type of voxel, supporting the trunk 
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detection by intersecting layers, reconstructing branches through segment parenting, and 

distributing biomass for each tree to its pixels through statistical weighting.  

Currently, the tree detection is based on a user’s visual inspection to classify the detected 

trees into true or false detections. However, the algorithm was designed to keep the 

results and so can be used as training data for a future automated machine learning 

approach.  

The computational efficiency comparison for the DBH determination methods found 

that fitting an elliptical cylinder, which is inclined, provided the highest accuracy but 

also the highest computational cost. In addition, there were a significant number of cases 

when the fitting process failed to converge. Therefore, the elliptical cylinder fitting was 

applied with a vertical Z-axis orientation. In addition, the branch weighting methods 

comparison shows that time efficiency can be increased by accepting slightly lower 

precision techniques, without affecting the total accuracy, by applying the 

skeletonisation method. 

The resulting maps of trunk biomass and branch biomass have a high spatial resolution, 

similar to the voxel resolution. The approach used in the nine plots in this test stage, was 

generalized on six sites that included 38 plots. These plots provide the field data that 

were analysed for errors in Chapter 5 and implemented for the AGB assessment in 

Chapter 6. A summary of the field sites results is listed in Table 4-4. 
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Table 4-4: A summary of fieldwork data analysis results for the six field sites. 

Site No. Number 
of plots 

Average 
Stem 

density 
(tree/ha) 

Average 
DBH (cm) 

Average 
tree 

height 
(m) 

Average 
AGB 

density 
(t/ha) 

Species percentage 

1 4 310 13.0 12.3 39.1 Ash 95% 
Oak 5% 

2 9 385 28.9 16.0 96.6 Birch 98% 
Scot pine 2% 

3 6 106 51.1 17.3 165.7 Mixed 
Conifers about 
70%: (spruce, and 
pine) 
Broadleaves about 
30% (Oak and 
Beech) 

4 6 86 62.5 16.2 189.6 Mixed 
Conifers about 
55%: (fir, and pine) 
Broadleaves about 
45% (Hazel, plumb 
and Sycamore) 

5 3 129 47.3 18.7 115.0 Oak 65% 
Beech 35% 

6 10 180 41.6 20.6 123.4 Scot pine 100% 
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 Error Analysis Software Tool 

5.1 Introduction  

As discussed in chapter two, there is a lack of theoretical approaches to spatial error 

analysis of biomass assessment systems. The available solutions for non-linear models 

are complex and computationally intensive. These solutions are further constrained, as 

the vast majority of available algorithms is restricted to parametric regression models and 

not available to non-parametrically derived models like neural network systems. In 

addition, the available approaches do not provide a complete solution for models that 

include object-based analysis. Overall, these theoretical limitations have resulted in a 

paucity of software tools available for AGB uncertainty analysis. In addition, they could 

become more pronounced as the role of more complex systems, which use non-parametric 

models, and object-based analysis increases in usage.  

In light of this need, this chapter aims to provide solutions that bridge this gap, and use 

these solutions as underlying concepts to build a relatively complete software tool for 

AGB uncertainty analysis. Therefore, the objectives are threefold. First, to design the tool 

to be inclusive of the widest range of model types, fieldwork data types, and RS datasets 

combinations that include both pixel-based and object-based approaches. Second, to 

minimize the computational costs. This minimisation can be achieved by reviewing the 

computationally costly steps for producing error distribution maps. Third, to aim for 

freely available software by avoiding a dependency on any non-free commercial packages 

within the tool. In addition, there is the complementary design objective of providing the 

simplest possible user interface; helping to reduce the required training to use the tool. 
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One of the major hurdles is that even with minimized computation costs, the designed 

tool is still expected to be computationally expensive. Utilizing the maximum hardware 

capabilities has been taken into consideration as a solution to accelerate the processing. 

Therefore, the code aims to support the parallel multiprocessing technique that is suitable 

for multi-core computers and the graphics-processing unit computing that is suitable to 

the Graphics Processing Units (GPUs) whenever possible.  

Another aim for this chapter is to provide the required calculations to understand the 

errors inherited in a number of RS and field datasets. This can help to apply the software 

tool for practical scenarios in the next chapter. Therefore, this chapter discusses the 

software tool and the random errors of field and RS data. 

5.2 Underlying Concepts 

As stated in chapter 3, the RS inputs could be a single dataset or a combination of more 

than one dataset and each dataset could be one or a wide variety of sources. Similarly, the 

field dataset can have a number of specifications with both the RS and field data passing 

through a number of data preparation steps. Currently, the data preparation steps are not 

included within the analysis tool. However, a number of data preparation processes will 

be discussed later on in this chapter. 

The error analysis in the model production stage deals with both RS and field data errors, 

which includes both spatial and spectral errors. Previous studies, such as Ahmed (2012), 

Colgan et al. (2013), Chen (2013), Weisbin et al. (2014), and Chen et al. (2015) ignored 

spatial errors and non-parametric models, therefore, it was possible for them to use the 

Taylor method for error propagation. However, regardless of the model type, it is possible 

to use the standard equations for Monte Carlo error propagation (Equation 5.1). The aim 

of the MC method is to apply the model or system under study (Y) repeatedly. Each time, 
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different randomly generated errors (rge1,i, rge2,i,…, rgen,i) were applied to the most 

probable values of the inputs (X1, X2, …, Xn).  

Yi= Y (X1+rge1,i, X2+rge2,i,…, Xn+rgen,i)   (5-1) 

Each rge is a simulation of the expected error for each individual input. If the process is 

repeated a sufficient number of times, the group of outputs will be the whole distribution 

set of expected outputs FY(.) for Y. FY can be statistically analysed to compute the most 

probable values, errors, variances and other statistical parameters for Y.  

At the model formalization stage, Y represents the model parameters and Xs represents 

the RS and field data therefore regs have to be spectral/ non-spatial errors for RS data and 

quantitative errors for field data. Spatial errors are not algebraically addable, and when 

geo-referencing is applied the geometric correspondence of the dataset with other datasets 

will differ. Therefore, there is no mathematical representation between the spatial error 

value and the model characteristics at this stage. However, the MC concept can still be 

used to simulate these errors stochastically and generate a new model training dataset for 

each MC iteration. This can then be applied in parallel to the algebraically addable 

spectral/ non-spatial errors. Equation 5.2 is the mathematical representation of this 

application of MC. This concept cannot be applied with deterministic methods, and 

therefore the workable techniques are limited to those where MC can be applied.  

Yi= Y ([X1]spatial error 2,i
+rge1,i, [X2]spatial error2,i

+rge2,i, …, [Xn]spatial error n,i
+rgen,i)  (5-2) 

The number of random errors required to simulate the regs is equal to the summation of 

pixels of all inputs because each pixel has its own noise. This high dimensionality, 

combined with the limited number of iterations an affordable MC can allow, limits the 

MC to be applied to error propagation without any attempt at correction. On the contrary, 

to simulate spatial errors, only three components of error are needed for each dataset. 

These components are the error in x coordinate, the error in y coordinate and the error in 
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the orientation (in the x-axis direction). With this dimensionality, it might be possible to 

find the spatial corrections that are statistically probable because they give the highest 

correlation between RS and field data.  

After data error propagation is used to define model errors, the model errors and RS data 

errors are propagated to the results. The cost of this process is expected to be huge due to 

the fact that it has to be applied to the whole study area compared to dealing with only 

the much smaller fieldwork areas as for the previous stages. 

On one hand, for parametric models, the high-dimensional spectral errors require a larger 

MC iteration compared with the lower dimensionality spatial errors. The suggested 

solution is to separate this stage into two processes. One of them is to propagate the spatial 

errors that can propagated only with MC, and has low dimensionality, with a minimum 

possible number of iterations to control the computational cost. The other process is to 

propagate other errors that can propagated with other low cost deterministic approaches 

such as Taylor methods method.  

On the other hand, non-parametric models cannot be partially derived for the independent 

variables, as required by the deterministic methods. The computational cost of applying 

a MC iteration to propagate errors to the whole study area can be significant enough to 

make this process unaffordable, especially for wide coverage studies. The suggested 

solution is to apply the error propagation in two stages. The first stage includes applying 

the error propagation to only the fieldwork areas. The second stage includes using the 

results of the first stage to train a machine-learning algorithm that can derive the expected 

uncertainty from the input values to calculate the AGB. The critical issue is being 

provided with enough samples for valid training. However, the chosen approach is that 

same number of sample plots/sample segments that is used for training the AGB 

assessment model will be used for the AGB error assessment model. Therefore, if the 

number of samples is enough to train the AGB model, it has to be enough for error 
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mapping. Once again, the spatial errors are propagated separately because the spatial 

continuity of AGB cannot be represented as a feature for the machine-learning model.  

One of the important options the tool has to provide is the ability to separate error sources. 

This can be done by giving the user the ability to turn on/off each type of error for each 

input. This flexibility allows the users to separate errors by error type, by input type or by 

a customized combination of errors. The other flexibility of the tool is allowing the user 

to decide the number of iterations and the model type.  

5.3 Supported models  

The main model types listed in Section 3.2 are supported by the software tool that includes 

simple regression, multiple regression, Support Vector Machine (SVM), Neural Network, 

Gaussian Process, Random Forest, and k Nearest Neighbours. Each one of these types is 

provided with a range of options that can be set by the user.  

5.4 Implementation 

This tool is entirely coded within the Python, which is a dynamically-typed object-

oriented scripting language. It was chosen for the coding for several reasons, with the 

three most important being its simplicity, availability, and suitability for geospatial 

processing (Westra, 2016). It is relatively simple, neat, compact and elegant (Milano, 

2013). In addition, it is an interpreted language that means it does not require compiling. 

In addition, Python is an open source language with a variety of free third-party software 

including statistical modules, profilers, graphical libraries, multiprocessing modules, and 

GIS modules. 

Data importing and outcome map exporting are primarily built on the Geospatial Data 

Abstraction Library / OGR simple features library (GDAL/OGR) (OSGeo_Project). The 
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GDAL/OGR translator libraries can support 226 data formats that include all the RS raster 

and GIS vector standard data types. This allows the designed tool to directly import the 

original data.  

Pandas (Pandas, 2017), Python data analysis library, is implemented to provide high-

performance data structures. It can provide integrated, intuitive routines for performing 

statistical data manipulations and analysis on the tabular numerical data read from the 

original data (McKinney, 2011). This library was also chosen over other available 

libraries for its efficiency to reduce Random Access Memory (RAM) usage compared to 

the standard Python data structure (McKinney, 2011). However, other data structures are 

occasionally used for some processes such as random error generation with NumPy 

(Scipy, 2006). It is also used to export and import tabular data in the standard ASCII file 

formats. 

Tkinter, the Python's standard library for Graphical User Interface (GUI) (Chaudhary, 

2015) is used for constructing GUIs, which allow users to interact with the tool without 

requiring advance knowledge of the programming code.  

StatsModels Python library (Seabold and Perktold, 2010) is used for simple, multiple, and 

stepwise regression models. This implementation of a verified package is used firstly to 

ensure that the statistical calculations are correct and secondly to make use of the 

extensive list of result statistics this package provides with each regression includes the 

correlation coefficients and the root mean square error. 

The Scikits Learn library (Pedregosa et al., 2011) is deployed for the SVM, Gaussian 

process, Random Forest, and k-nearest neighbours models. The Scikits SVM variant used 

is the SVM for regression problems (SVR) that is based on Smola and Schölkopf (2004). 

The applied Gaussian process model is based on Lophaven et al. (2002), and the Random 

Forest model is based on Breiman and Cutler (2003).  
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In order to obtain the trained neural networks, TensorFlow (Abadi et al., 2016) was 

implemented. TensorFlow is one of the most advance systems for neural networks. It uses 

data flow graph technology that efficiently uses the full capabilities of the hardware 

system including multicore Central Processing Units CPUs, one or more Graphics 

Processing Units GPUs, and Google’s Tensor Processing Units (TPUs). Moreover, 

TensorFlow supports cloud computing engines such as the Google cloud machine-

learning engine, and Amazon elastic compute cloud.  

5.5 Availability/Requirements 

All required source code and installation URL links can be found in GitHub1. Because 

the tool can be run in Python without installation, there are no strict hardware 

requirements. However, there should be enough free memory to save the outputs as well 

as the inputs. Therefore, it is recommended to use a machine with a reasonable amount 

of RAM to deal with the raster data.  

The parallel processing requires a multi-core CPU with a high speed; > 2.2GHz is 

recommended. When the Neural Network model is used, GPU operation is recommended 

to accelerate the processing speed. The tool is tested on a personal computer with 16GB 

RAM, a 3.6GHz Intel Core_i7 processor and a NVIDIA Quadro K2200 4GB GPU.  

5.6 The User Interface 

The user interface aims to provide a clear means to enable the user to feed the tool with 

all the required fields, RS data inputs, the user decisions regarding system parameters, 

and the considered error types. It also summarizes the inputs and provides the option to 

                                                 

1 The tool was uploaded on https://github.com/AhmedAlboabidallah/EATool to be freely available 

https://github.com/AhmedAlboabidallah/EATool
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export them in a specific format, with the ability to import them and modify them later. 

Therefore, the overall approach is an interactive conversation with a series of windows. 

Figure 5-1 displays a schematic diagram of the interactive components of the user 

interface. On the start-up, four groups of inputs are required related to the field data, RS 

data, Monte Carlo iteration, and processing type. The field data table properties selection 

has two options: the formatted table file (if there is one), and the number of the field 

inputs if no table file is available. The RS data table properties are similar to the field data 

table properties. The processing type can be pixel-based or object-based. The segments 

file is also required in the case of object-based processing. Spatial error of each 

component can be input as two values, the expected error in the coordinates and the 

expected error in the north direction. The non-spatial error of each component can be 

input as a constant when the non-spatial error is uniform all over the map. Otherwise, the 

user can provide the tool with the error map of the input. An example of the RS table 

windows is shown in Figure 5-2. This example also shows the colour codding for the RS 

inputs. This colour code shows the bands that are of the same database (have an identical 

dataset number) that are processed as if they all inherit an identical spatial error. For 

example, if a Landsat-8 image to be used, all bands are expected to have the similar spatial 

error. The similarity is due to the fact that these bands were processed using the same co-

registration algorithm, geo-referencing algorithm, and with the same set of ground control 

points. 
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Figure 5-1: A schematic diagram that shows the components of the software tool interface 

windows and their relationships. 
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Figure 5-2: An example of the user interface window of RS data table. 

The next window, Figure 5-3, is to select the properties of the mathematical model 

including the model type and its specifications. When a specific model is selected, its own 

relevant inputs will be required interactively. Both simple and multiple regressions are 

referred to as standard regression due to the fact that the number of inputs is open. In 

other words, if the model is implemented with only one independent input (single RS 

input) the resulted model will be a simple regression. Otherwise, if more than one RS 

input is used, the model will be a multiple regression model. In both cases, the user can 

decide upon the degrees of regression equation. 

The SVM model options include the kernel to be used that can be linear, Gaussian RBF 

or polynomial. In cases when the polynomial kernel is to be applied, the degree of SVM 

can be set as well. For random forest, the available option is to use bootstrapping or not. 
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For the Gaussian process model, the available options are the kernel type and noise level. 

The available kernels are RBF, Matern, rationale quadratic, exponential sine squared, and 

the dot product kernels. The options for the k-nearest neighbour model are the k-value 

(the number of samples for each local estimation) and the weights type i.e., whether it is 

uniform or distance based. For the neural network model, the user can decide upon the 

number of hidden layers and the number of nodes in each hidden layer. The last required 

input is the filepath to the output workspace, where the outcomes will be kept.  

 

Figure 5-3: The model selection window, A - available options when parametric regression is selected, B 

- available options when Gaussian process is selected, C - available options when SVM is selected, D - 

available options when k nearest neighbour model is selected,  E - available options when random forest 

model is selected, and F - available options when neural network is selected. 

 

   
-A-                                        -B-                                          -C- 

 

 
 -D-                                        -E-                                          -F- 
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5.7 Output Files 

The analysis outputs are a number of files that are saved to the user’s specified 

directory/folder. The files are text files of the model parameters and the equivalent 

correlation coefficient for every MC iteration, and the binary files of the models required 

to calculate AGB and error maps. Specifications  

5.8 Testing the Tool 

The aim of the scenarios is to cover a range of AGB assessment datasets, mathematical 

models, and processing techniques that have been used by previous researchers, as 

highlighted in Section 3.2. To achieve this aim, four scenarios were designed to cover the 

processing types, RS data types and AGB assessment mathematical models. It was not 

practically applicable to test all possibilities of the variety of parameters described in 

chapter three. Therefore, it was considered reasonable to test a sample of each main 

category.  

The RS data was classified according to the system type (passive or active), and according 

to the spatial resolution (high and very-high). The model types were classified into 

parametric and non-parametric models. The processing types into pixel-based and object-

based. A wide variety of data processing procedures to derive new products from raw RS 

data are also covered such as using inter-band calculations, Principal components, Radar 

data interferometry, Digital Canopy Model (DCM) production, and texture features.  

5.8.1  High Resolution RS Data and products 

5.8.1.1 Landsat-8 Products 

The two Landsat-8 scenes listed in Table 5-1 were used for model training for the first 

two scenarios. Landsat-8 images are sensitive to cloud cover: only a few images in the 
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Landsat archive have no cloud cover over the study area, resulting in the scenes having a 

time difference of up to 6 months from the field data acquisition. Among those images, 

the chosen data were selected to be the closest to canopy peak in September and the 

canopy minimum in June for the majority of tree species (Melaas et al., 2013). The images 

were downloaded from the United States Geological Survey (USGS) (USGS, 2017) as 

Level-1T Terrain Corrected images having a 30 m spatial resolution. The Level 1 

processing means that the images are radiometrically corrected, orthorectified, and are 

rectified to Universal Transverse Mercator (UTM) and the World Geodetic System (WGS 

84) datum and ellipsoid. The digital number was converted to top-of-atmosphere 

reflectance using the information in the provided Landsat metadata ancillary data file 

(MTL) and the Dark Object Subtraction (DOS) atmospheric correction was applied using 

the Semi-Automatic Classification Plugin pre-processing tool (Congedo, 2013). There 

are more accurate procedures that can be applied for atmospheric corrections. However, 

for this study’s objectives, the top-of-atmosphere reflectance and DOS is practical and 

satisfactory as the error analysis to be applied is linked to the non-systematic errors such 

as noise and not directly connected to systematic errors such as atmospheric errors.  

Table 5-1: High resolution Earth observation data details. 

# Mission Position Date Weather  Vegetation 

condition  

1 Landsat-8 Path:204, Row:25 30/09/2015 Dry Leaf on  

2 Landsat-8 Path:204, Row:25 20/01/2016 Dry Leaf off  

3 Sentinel-1 Absolute Orbit: 010325 11/03/2016 Dry  Leaf partially on  

4 Sentinel-1 Absolute Orbit: 010150 28/02/2016 Dry  Leaf off  

5 Sentinel-1* Absolute Orbit: 009625 23/01/2016 Wet  Leaf off  

6 Sentinel-1* Absolute Orbit: 014350 12/12/ 2016 Dry  Leaf off  

7 Sentinel-1* Absolute Orbit: 014525 24/12/ 2016 Dry  Leaf off  

* Used only for data temporal stability, not for model production and biomass calculations.  
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Landsat-8 images were subset to the study area, and Normalized Difference Vegetation 

Index (NDVI) has been calculated by applying the NDVI standard equation (Equation 5-

3) that is based on near infrared band (NIR) and red band (R): 

NDVI= NIR-R
NIR+R

       (5-3) 

A new index, the NDVI Range (NDVIR), was designed to distinct between different tree 

types. Needle-leaved tree land cover is likely to witness a less variation in the NDVI 

compared to broadleaf tree land cover over seasons. Therefore, there is a possibility that 

the algebraic difference in NDVI can be related to the tree land cover type. NDVIR was 

computed simply by subtracting the NDVIs (for 30/09/2015 and 20/01/2016) from each 

other’s. NDVI values range between -1 and +1; the NDVI differences are expected to be 

between -2 and +2. Therefore, to get positive values, a constant (C = 2) was added as in 

Equation 5-4 to ensure positive values for all NDVIR pixels. The resulting NDVIs and 

NDVIR are shown in Figure 5-4. 

NDVIR = NDVI2 - NDVI1+ C         (5-4) 

The Landsat-8 dataset number 1 (for 30/09/2015) was classified with supervised 

Maximum Likelihood Classifier (MLC) software (Nolè, et al., 2015). This classification 

was reported by previous studies such as Walker et al. (2010), Eckert et al. (2011), and 

Laurin et al. (2016) as a reliable algorithm for AGB classification. The land cover was 

classified into five classes, namely tree cover, vacant land, non-tree open area, built up 

area and water body. The required information for the supervised classification were 

collected in the field with aid of GPS observations. A pixel-based classification process 

was applied for the first scenario, while an object-based classification analysis was 

applied to the second scenario. For the pixel-based classification, shown in Figure 5-5, 

the percentages of user and producer accuracies, overall accuracy and Kappa coefficient 

are listed in Table 5-2. For the object-based classification, the percentages of user and 
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producer accuracies, overall accuracy and Kappa coefficient are listed in Table 5-3. The 

classification result is shown in Figure 5-6. The Landsat-8 dataset number 2 was used 

alongside with Landsat-8 dataset number 1, for NDVIR production. All the resulted 

products were used later on as inputs for the feature selection in Section 6.2.1 and Section 

6.3.1. 

Table 5-2: Accuracy assessment for pixel-based land-cover classification based on Landsat-8: producer’s, 

user’s and overall accuracies, and the Kappa statistic. 

 Tree 
cover 

Waterbody Vacant 
land (bare 

soil) 

Non-tree 
green Space 

Built-
up area 

Summation  
 

User 
accuracy 

Tree cover 
 

109 1 0 5 0 116 94.8% 

Waterbody 
 

3 35 1 4 0 42 83.3% 

Vacant land 
(bare soil) 

2 1 18 4 3 26 69.2% 

Non-tree 
green Space 

10 0 5 19 1 32 59.4% 

Built-up 
area 

0 0 3 1 18 22 81.8% 

Summation  
 

124 37 27 33 22 238  

Producer 
accuracy 

87.9% 94.6% 66.7% 57.6% 81.8%   

Overall accuracy=84.5% 
Kappa =0.79 

 

Table 5-3: Accuracy assessment for object-based  land-cover classification based on Landsat-8: 

producer’s, user’s and overall accuracies, and the Kappa Statistic. 

 Tree 
cover 

Waterbody Vacant 
land (bare 

soil) 

Non-tree 
green Space 

Built-
up area 

Summation  
 

User 
accuracy 

Tree cover 
 

214 2 4 19 0 239 89.5% 

Waterbody 
 

2 42 3 4 0 51 82.4% 

Vacant land 
(bare soil) 

7 3 54 8 3 75 72.0% 

Non-tree 
green Space 

12 5 5 59 1 82 72.0% 

Built-up 
area 

0 1 3 1 35 40 87.5% 

Summation  
 

235 53 69 91 39 487  

Producer 
accuracy 

91.1% 79.2% 78.3% 64.8% 89.7%   

Overall accuracy=83.0% 
Kappa =0.75  
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-A-                                                                   -B- 

 

-C- 

Figure 5-4: The resulting NDVIs and NDVIR layer as: A - NDVI1 layer, B - NDVI2 layer and C - 

NDVIR layer 
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Figure 5-5: First scenario pixel-based classification result. 

       
Figure 5-6: Second scenario object-based classification result. 
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5.8.1.2 Sentinel-1 and Interferometric Local Heights Differences 

The Sentinel-1 two constellation satellites A and B, launched on 2014 and 2016 

correspondingly, can provide C-band SAR images on dual polarization capacity (HH+HV 

and VV+VH). As part of European Space Agency (ESA)’s Copernicus, the Sentinel-1 

images are distributed for free to all users. Two Sentinel-1 images, as listed in Table 5-1, 

were used for model training and AGB calculations. The other three Sentinel-1 images 

were used to study the Sentinel-1 data stability over time. The images were chosen to 

have an acquisition date close to the field data collection dates. They were Interferometric 

Wide (IW) swath, Single Look Complex (SLC) products with dual vertical-vertical (VV) 

and vertical horizontal (VH) polarisation. The IW mode captures three sub-swaths using 

Terrain Observation with Progressive Scans SAR (TOPSAR) for each image. The SLC 

mode images are of 5 m spatial resolution in the range direction and 20 m in the azimuth 

direction (Jung et al., 2013).  

The datasets were delivered by the Sentinels Scientific Data Hub (Copernicus) with Level 

1 processing that means the internal calibration, absolute Doppler centroid estimation (the 

required correction for the range and azimuth variation depends on the satellite attitude 

and satellite attitude as a function of time), and the single look complex focusing 

(converting the complex amplitude and phase information into  SLC data) are already 

performed. Therefore, the only required pre-processing includes topographic correction. 

This process had been done with the final processing steps because it conflicts with the 

SNAPHU phase unwrapping software that requires Range increasing towards the right in 

the interferogram file (Chen, 2001). 

To map the interferometric Local Heights Differences (LHD), a digital surface model 

(DSM) is produced with the terrain heights map and height differences calculated. To 

apply the procedure an interferometric processing chain uses both the SNAP Sentinel-1 
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toolbox and SNAPHU software. First, a sub-pixel co-registration was applied with the 

first Sentinel-1 image selected as the master and the second image as the slave. The co-

registration was done with interpolation of the a priori digital-elevation-model 

automatically downloaded by the Sentinel-1 toolbox. Then, the interferogram is formed 

to produce interferometric phase and coherence. The results are then deburst (converted 

to continuous image in terms of azimuth time) and merged into one image. The HV 

polarization deburst topographic phase product is removed and the resulting layer 

exported to SNAPHU, with the output of phase unwrapping being the estimated 

unambiguous phase values derived from observed phase. The terrain heights map is then 

produced after the data has been imported back into the Sentinel-1 toolbox.  

The heights map shows the general trends of the terrain surface and the local effect of the 

surface features including trees. To override the general trend, and improve the local 

features effect, height maximum and minimum maps were produced and subtracted from 

each other using a 3x3pixel convolution, and then normalized to be in the range between 

0 and 1. The LHD map before normalization is shown in Figure 5-7. 

5.8.1.3 Stability of Local Heights Differences  

This study explored LHD as a new types of input. Based on the visual comparison 

between tree map in Figure 4-1 and the LHD, Figure 5-7, there is a noticeable co-

existence between relatively large LHDs and tree areas. Therefore, it was reasonable to 

test the temporal stability for LHD over time. The first evaluation included comparing the 

LHD that is used for the model (derived from images number 3 and 4 in Table 5-1) with 

the LHD shown in Figure 5-8A (derived from images number 4 and 5 in Table 5-1).  

This dataset is chosen to provide a contrast in the weather conditions compared with the 

original dataset. Therefore, image 5 was selected to be in a wet weather. The difference 
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between the two images is clear, but for a systematic comparison the scatterplot of each 

pixel’s value with the corresponding pixel’s value is plotted based on the normalized 

LHD; shown in Figure 5-9.  

 

Figure 5-7: The normalised interferometric heights local differences layer. The inset shows details of an 

enlarged-scale sample area of the LHD map.  

The second test is applied on another LHD dataset (derived from images number 6 and 7 

in Table 5-1). The images were selected to be in dry weather conditions, similar to the 

models original dataset. The result shows a clear visual similarity, with the scatterplot 

shown in Figure 5-9B. The same datasets were analysed for another important factor 

which is the leaves on/off situation. This factor was explored based on the comparison 

between evergreen tree cover with deciduous tree cover.  
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Figure 5-8: LHD layers used for comparison. A – normalised LHD derived from image 4 and 5 and B – 

normalised LHD derived from image 6 and 7. The insets show details of the equivalent sample to the 
enlarged-scale area in Figure 5-7. 
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The scatterplot of the second test shows a relatively high similarity between the 

normalized LHD comparing with the first dataset. However, the pixel value scale before 

normalization is not the same: the first LHD map has a mean of 115 m and a standard 

deviation of 116 compared to 85 m and 89 for the second LHD map. By visually 

comparing the LHD for the fieldwork areas, it is noticed that LHD showed a relatively 

similar sensitivity to both evergreen to deciduous tree covers. In addition, the same tree 

cover areas showed a clear dissimilarity between LHD derived from different weather 

condition datasets. For example, the subset in Figure 5-7, Figure 5-8A, and Figure 5-8 

shows LHD of evergreen tree cover areas that is not expected to be largely affected by 

seasonal changes. However, it shows a clear contrast due to the weather conditions. 

Therefore, this instability should be taken in consideration when implementing more than 

one dataset for an AGB assessment. 

       
-A-                                                                   -B- 

Figure 5-9: Scatterplot for the normalised model image vs A – normalised dry weather dataset and 
B – normalised wet weather dataset.  

 

5.8.2  Very-High Resolution RS Data 

5.8.2.1 WorldView-3 Products 

The optical WorldView-3 sensor, launched by Digital-Globe in August 2014, is a 

multispectral commercial satellite with a very-high spatial resolution. It provides eight 

multispectral (MS) bands, eight Shortwave Infrared (SWIR) bands, twelve Clouds, 
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Aerosols, Vapours, Ice, and Snow (CAVIS) bands and one panchromatic band. The 

utilized data were captured on 30 June 2015 in cloud free conditions, with two subsets 

extracted from the original image. The subsets includes three of the six fieldwork sites as 

shown in Figure 5-10. The 8 MS band bundle is 2 m spatial resolution and were delivered 

as product level LV3D (sensor corrected, radiometrically corrected, and ortho-rectified). 

The data were converted from digital numbers to top-of-atmosphere spectral reflectance 

using equations in and parameters 2015v2 provided by DigitalGlobe. 

 

Figure 5-10: The coverage of the implemented WorldView-3 data subsets. 

The atmospheric correction was then applied by using the DOS technique. As mentioned 

before, for this study’s objectives, the DOS is satisfactory as the error analysis to be 

applied is linked to the non-systematic errors, while atmospheric correction deals with 

systematic atmospheric effect. The processing techniques were selected based on 

previously used optical data discussed in chapter two that includes, beside the original 
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bands, the use of vegetation indices based on NDVI, principal component analysis and 

texture features. NDVI is calculated from band 5 (Red: 630-690 nm) and band 7 (Near 

Infrared 1: 770-895 nm), with the result shown as Figure 5-11. The first three Principal 

Components produced, based on the 8 MS bands, are shown in Figure 5-12.  

 

Figure 5-11: WorldView-3 based NDVI, for both subsets.  

The texture Grey Level Co-occurrence Measures (GLCM) parameters were produced by 

using Python code that is based on GLCM texture features function provided by Python 

skit image library (Van der Walt et al., 2014); band 5 was used as recommended by Eckert 

(2012) to be the grey scale base map. Four GLCMs produced with 9x9, 11x11, 13x13 and 

15x15 pixel windows, where these window sizes were chosen after initial correlation tests 

to be smaller than those chosen by Eckert (2012) who tests 15 × 15 to 23 × 23 pixel 

windows and recommended the 19x19 window due to the relatively high detailed field 

AGB map available for this study compared to his. Each GLCM includes six products 

based on the statistics of Angular Second Moment (ASM), contrast, correlation, 

dissimilarity, energy, and Inverse Difference Moment (IDM). Sample GLCMs are shown 

in Figure 5-13 for ASM, Figure 5-14 for contrast, Figure 5-15 for correlation, Figure 5-16 

for dissimilarity, Figure 5-17 for energy and Figure 5-18 for IDM. These products was 

used later to feed the feature selection processes in Sections 6.4.1 and 6.5.1. 
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-A- 

 
-B- 

 

-C- 
Figure 5-12: Principal components analysis for both subsets as A - PC1, B - PC2, and C - PC3. 

 



 

106 

 

  
-A-                                                                   -B- 

Figure 5-13: Normalised ASM texture feature for subset-1 with A - 9x9 window, and  B - 15x15 window.  

 
-A-                                                                   -B- 

Figure 5-14: Normalised contrast texture feature for subset-1 with A - 9x9 window, and  B - 15x15 window. 

 
-A-                                                                   -B- 

Figure 5-15: Normalised correlation texture feature for subset-1 with A - 9x9 window, and B - 15x15 
window. 
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-A-                                                                   -B- 

Figure 5-16: Normalised  dissimilarity texture feature for subset 1 with A - 9x9 window, and  B - 15x15 
window.  

 
-A-                                                                   -B- 

Figure 5-17: Normalised energy texture feature for subset 1 with A - 9x9 window, and B - 15x15 
window. 

 
-A-                                                                   -B- 

Figure 5-18 Normalised IDM texture feature for subset 1 with A - 9x9 window, and B - 15x15 window. 
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The image classification was applied twice, the first time with a pixel-based classifier and 

the second time with an object-based classifier. Similar to Landsat-8 images, the data was 

classified into tree cover, vacant land, non-tree open area, built up area and water body. 

The pixel-based classification results are shown in Figure 5-19 with the percentages of 

user and producer accuracies for tree class, overall accuracy and Kappa coefficient being 

as listed in Table 5-4. The object-based classification results are shown in Figure 5-20 

with the percentages of user and producer accuracies for tree class, overall accuracy and 

Kappa coefficient being as listed in Table 5-5.  

 

Figure 5-19: Pixel-based classification result for WorldView-3 subsets. 

 

Figure 5-20: Object-based classification result for WorldView-3 subsets. 
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Table 5-4: Accuracy assessment for pixel-based land-cover classification based on WorldView-3 image: 
producers, users and overall accuracies, and the Kappa statistic. 

 Tree 
cover 

Waterbody Vacant 
land (bare 

soil) 

Non-tree 
green Space 

Built-
up area 

Summation  
 

User 
accuracy 

Tree cover 
 

73 0 1 3 0 77 94.8% 

Waterbody 
 

0 11 1 1 0 13 84.6% 

Vacant land 
(bare soil) 

2 1 13 2 1 19 68.4% 

Non-tree 
green Space 

6 2 2 15 0 25 60.0% 

Built-up 
area 

0 0 1 0 9 10 90.0% 

Summation  
 

81 14 18 21 10 144  

Producer 
accuracy 

90.1% 78.6% 72.2% 71.4% 90.0%   

Overall accuracy=84.1% 
Kappa =0.75 

 

 

Table 5-5: Accuracy assessment for object-based  land-cover classification based on WorldView-3 image: 

producer’s, user’s and overall accuracies, and the Kappa Statistic. 

 Tree 
cover 

Waterbody Vacant 
land (bare 

soil) 

Non-tree 
green Space 

Built-
up area 

Summation  
 

User 
accuracy 

Tree cover 
 

54 0 1 2 0 57 94.7% 

Waterbody 
 

0 7 1 1 0 9 77.8% 

Vacant land 
(bare soil) 

0 1 14 1 0 16 87.5% 

Non-tree 
green Space 

3 2 2 16 0 23 69.6% 

Built-up 
area 

0 0 2 0 10 12 83.3% 

Summation  
 

57 10 20 20 10 117  

Producer 
accuracy 

94.7% 70.0% 70.0% 80.0% 100.0%   

Overall accuracy=86.3% 
Kappa =0.80  

 

5.8.2.2 Lidar Processing 

The Environment Agency Geomatics Group holds a significant archive of airborne Lidar 

data, as a grid of small geographical blocks with different acquisition dates for each group 

of blocks that range from 2005 and 2016. The data used in this study were collected in 



 

110 

 

the period between 2012 and 2013, and the spatial resolution is 1 m with the projection 

being the Ordnance Survey British National Grid (BNG). The data are available as both 

a Digital Terrain Model (DTM), and Digital Surface Model (DSM), so the pre-processing 

included the production of a Digital Canopy Model (DCM) by subtracting the provided 

DTM from the DSM. The DCM shown in Figure 5-21 was calculated to the same extents 

of the WorldView-3 data shown in Figure 5-10. 

 

Figure 5-21: DCM for both Lidar subsets. 

5.8.3 Field Data  

The AGB maps derived within Chapter 4 were used as the reference AGB to produce the 

model. The summation of trunk and branch maps were used with high-resolution RS data 

scenarios, while just the branch maps were implemented to simulate the very-high-

resolution data based scenarios. This decision of field maps selection was based on the 

best regression result achieved from the field maps for each RS data spatial resolution. 

The correlation between each spatial resolution type and the AGB maps will be discussed 

in the practical scenarios in Chapter 6.  
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5.8.4  Error Analysis for RS Data 

5.8.4.1 Spectral Errors in Landsat-8 Products 

The Landsat-8 sensor OLI has a high dynamic range of 12 bits (4096 grayscale levels) 

(Czapla-Myers et al., 2015) compared to 8 bits (256 grayscale levels) for Landsat-7’s 

ETM+ (Scaramuzza et al., 2004). The increased dynamic range means a higher 

radiometric resolution, which improves the SNR for the OLI by an order of magnitude 

for typical radiance levels (Morfitt et al., 2015). The ground based tests, undertaken by 

Czapla-Myers et al. (2015), showed a level of noise of less than 2% for the bands used 

for AGB assessment.  

This error can be propagated to the NDVI using the Taylor method as  

𝜎𝑁𝐷𝑉𝐼 = √(
𝜕𝑁𝐷𝑉𝐼

𝜕𝑁𝐼𝑅
)2(𝛿𝑁𝐼𝑅)2 + (

𝜕𝑁𝐷𝑉𝐼

𝜕𝑅
)2(𝛿𝑅)2    (5-4) 

where 

𝜕𝑁𝐷𝑉𝐼

𝜕𝑁𝐼𝑅
=

(𝑁𝐼𝑅−𝑅)+(𝑁𝐼𝑅+𝑅)

(𝑁𝐼𝑅+𝑅)2 =
2𝑅

(𝑁𝐼𝑅+𝑅)2 , 𝜕𝑁𝐷𝑉𝐼

𝜕𝑅
=

(𝑁𝐼𝑅−𝑅)−(𝑁𝐼𝑅+𝑅)

(𝑁𝐼𝑅+𝑅)2 =
−2𝑁𝐼𝑅

(𝑁𝐼𝑅+𝑅)2 , 𝐼𝑅 =

𝛿0.02 ∗ 𝑁𝐼𝑅 , and 𝛿𝑅 = 0.02 ∗ 𝑅  

After producing the error maps for the NDVIs, the error in the NDVIs can be propagated 

to the NDVIR as: 

𝜎𝑁𝐷𝑉𝐼𝑅 = √(
𝜕𝑁𝐷𝑉𝐼𝑅

𝜕𝑁𝐷𝑉𝐼1
)2(𝛿𝑁𝐷𝑉𝐼1)2 + (

𝜕𝑁𝐷𝑉𝐼

𝜕𝑁𝐷𝑉𝐼2
)2(𝛿𝑁𝐷𝑉𝐼2)2    (5-5) 

and therefore, 

𝜎𝑁𝐷𝑉𝐼𝑅 = √(𝛿𝑁𝐷𝑉𝐼1)2 + (𝛿𝑁𝐷𝑉𝐼2)2       (5-6) 

The results of spectral errors in Landsat’s NDVI and NDVIR are shown in Figure 5-22 

and Figure 5-23 correspondingly.  
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-A- 

 
-B- 

Figure 5-22: Spectral Error in Landsat-8 based NDVI Maps. A- for NDVI1, and B-for NDVI2 
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Figure 5-23: Spectral error NDVIR layer 

Figure 5-22, shows high errors in the water, and in some built-up areas. In contrast, the 

maps show low errors for the both vegetation areas, and for the soil-covered areas where 

the red band has a high value compared to the NIR. Similarly, Figure 5-23, show a high 

errors in the water, and in some built-up areas, and low errors for vegetation and soil-

covered areas.  

This interesting observation was interpreted as following. The NDVI increased directly 

with the NIR band and inversely with the red band as shown in Figure 5-24A. While the 

maximum error values lie on the red=NIR diagonal axis as shown in Figure 5-24B. This 

non-proportional relationship between band values and band errors explains why error 

maps, shows high errors in the water body areas where both bands have low pixel values, 

and in some built-up areas where both bands have moderate pixel values. In addition, it 

explains why the maps also show low errors for the both vegetation areas where the NIR 

band is high compared to the red band, and for the soil-covered areas where the red band 



 

114 

 

has a high value compared to the NIR. The NDVIR error is a resultant of two NDVI error 

components (equation 5-6) and therefore expected to show a similar behaviour of the 

NDVI non-spatial error.  

 

-A-                                                      -B-                           a   

Figure 5-24: NDVI and NDVIs non-spatial error increment with red and near infrared bands with colour 

scales shows , A-the NDVI values, B- the non-spatial error values.  

5.8.4.2 Height Errors in Sentinel-1 

As SAR data, S1 has a number of errors such as system noise, radiometric resolution 

limits, orbit error, and phase error. These errors are expected to have a significant effect 

on the calculated heights. Unlike Landsat based products and Lidar heights, it is not 

practical to propagate these errors to the local height differences with error propagation 

techniques for two reasons. First, the height is estimated through a series of 

mathematically complex steps, transformations, and smoothing processes as described in 

Section 5-7. Second, the processing software does not provide tools for stochastic 

simulation of the error sources. Therefore, it was reasonable to apply approximate error 

estimation procedures available in the literature.  
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Height derivation is based on interferometric phase difference, with systematic and noise 

errors in the interferometric phase difference propagate to the height estimate (Richards, 

2007). Systematic errors, such as baseline errors, can to be eliminated in the pre-

processing stage. Therefore, the only significant error components are the phase induced 

random errors. These errors can be approximately calculated using Equation 5.7 provided 

by (Richards, 2007) 

𝛿ℎ ≈ ±
𝜆𝑅𝑐𝑜𝑠𝜓

4𝜋𝐵𝑠𝑖𝑛(𝜓+𝛽)
𝛿𝜙        (5-7) 

where 𝛿ℎ is the expected error in height, 𝜆 is the wavelength of the Radar system, R is 

the range of the SAR data, 𝜓 is the depression angle, B is the length of the baseline, 𝛽 is 

the baseline orientation angle with respect to horizon, and 𝛿𝜙 is the phase error.  

For S1, the wavelength equals 0.18m, the depression angle is 60°, and the phase error 

equals 5°. For the utilized dataset (image 3 and 4), the range of the SAR data equals 

846662 m, the length of the baseline is 96.6 m and the baseline orientation angle 

equals 5.2°. Hence, the error in the height is about ±6.7 m. While for the utilized dataset 

(image 6 and 7), the baseline is 86.1 m, and the baseline orientation angle equals 174.8°. 

Hence, the error in the height is about ±7.2 m. 

According to Taylor method, error in height propagates through the equation of local 

height differences as following 

𝜎𝐿𝐻𝐷 = √(
𝜕𝐿𝐻𝐷

𝜕𝐻𝑚𝑎𝑥
)2(𝛿𝐻𝑚𝑎𝑥)2 + (

𝜕𝐿𝐻𝐷

𝜕𝐻𝑚𝑖𝑛
)2(𝛿𝐻𝑚𝑖𝑛)2      (5-8) 

The errors in local maximum height 𝛿𝐻𝑚𝑎𝑥 and the error in local minimum height 𝛿𝐻𝑚𝑖𝑛 

are assumed equal to the systems height error (𝛿ℎ). Therefore, the error in the LHD is 

defined as  
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𝜎𝐿𝐻𝐷 = √2 𝛿ℎ ≈±10m.        (5-9) 

5.8.4.3 Spectral Error in WorldView-3  

WorldView-3 images have a high dynamic range of 11 bit. However, with a higher spatial 

resolution and the narrower bandwidth compared to Landsat images, this type of image 

is expected to have a relatively higher noise level due to the trade-off between spectral 

resolution, spatial resolution, and Signal-to-Noise Ratio (SNR). A number of studies 

discussed the radiometric characteristic of WorldView-1 and WorldView-2, the previous 

sensors in the WorldView series, such as Krause (2008) and Poli et al. (2015). However, 

the radiometric characteristic studies of WorldView-3 are rare. Therefore, an image-based 

analysis was applied to identify the SNR, using the Homogeneous Area (HA) method 

discussed in Atkinson et al. (2007). Curran and Dungan (1989) showed that SNR is 

dependent on the land cover class and wavelength. Therefore, the geo-statistical 

procedure was applied to subsets of the image parts within the tree cover areas for each 

band. The SNR maps are visually similar, with the SNR for band 4 shown in Figure 5-25 

as an example of the resulting error maps. The obtained SNR varying between 66 and 

400. For the woodland areas, the SNR is around 100 for the implemented bands, which 

means that the spectral error is about 1%. 

The NDVI error was calculated based on Equation 5.4, with the resulting NDVI error 

map shown in Figure 5-26. The PC error analysis was based on a 100 iterations Monte 

Carlo analysis by adding random noise to the image bands within the limits of the spectral 

errors of each band, and then calculating the PCs for each iteration. Then a statistical 

analysis was applied to the results of the iterations to calculate the standard deviation of 

each pixel. The resulting error map of the first principal component is shown in Figure 

5-27.  
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The texture-based products are not directly correlated to the original bands through a 

mathematical equation. Therefore, the Taylor method was not applicable to extend this 

analysis to include a quantitative interpretation of the effects of the SNR to the texture 

based products. Instead, a 100 iterations Monte Carlo method was used to simulate the 

effect of the spectral error and produce error maps for the texture images. The simulation 

result for the ASM (with a 13x13 window) is shown in Figure 5-28, and demonstrates 

that the spatial variation effect on the texture products is small and has a significant value 

only in the flat feature areas. For the woodland areas, it is less than 0.0001 and therefore 

it was neglected. 

 

Figure 5-25: SNR of band 4 subset-1. 
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Figure 5-26: NDVI error. 

 
Figure 5-27: Error analysis of the first principal component.  

 
Figure 5-28: Error of texture for ASM with a 13x13 window. 
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5.8.4.4 Height Errors in Lidar 

The elevations obtained from the Lidar DSM data (𝐸𝑙𝑒𝑣𝐷𝑆𝑀) have a nominal vertical 

accuracy of less than ±15 cm (Agency, 2016), and the vertical accuracy of the DTM 

elevations (𝐸𝑙𝑒𝑣𝐷𝑇𝑀) is not available. Many studies have reported a reduction in the 

accuracy of the DTM under tree cover. Therefore, a comparison between the TLS based 

DTM (derived from the field data) and the Lidar DTM was applied. The comparison was 

undertaken by first correcting the TLS data to ensure a constant datum; the local datum 

of the TLS data was converted to the global datum of the Lidar DTM by adding the 

algebraic difference between the averages of the DTMs to the TLS’s DTM. Ten randomly 

selected points in each field site were then used for the comparison. The obtained RMS 

values were ±61 cm, ±9 cm, ±25 cm, ±28 cm, ±17 cm, and ±27 cm. The expected error 

in the DCM for each plot can then be calculated as: 

𝜎𝐻𝐷𝐶𝑀
= √(

𝜕𝐻𝐷𝐶𝑀

𝜕𝐸𝑙𝑒𝑣𝐷𝑆𝑀
)2(𝛿𝐸𝑙𝑒𝑣𝐷𝑆𝑀)2 + (

𝜕𝐻𝐷𝐶𝑀

𝜕𝐸𝑙𝑒𝑣𝐷𝑇𝑀
)2(𝛿𝐸𝑙𝑒𝑣𝐷𝑇𝑀)2  

            = √(𝛿𝐸𝑙𝑒𝑣𝐷𝑆𝑀)2 + (𝛿𝐸𝑙𝑒𝑣𝐷𝑇𝑀)2       (5-10) 

5.8.4.5 Spatial Errors in Landsat-8 

The ground based assessment of the geolocation accuracy for Landsat-8 shows a pre-

control accuracy less of than ±40 m that improves to be about ±12 m for Level 1T data 

(Storey et al., 2014a; Storey et al., 2014b). Tests performed for band-to-band registration 

accuracy show a high accuracy of better than 5 m (Storey et al., 2014a; Storey et al., 

2014b). 

5.8.4.6 Spatial Errors in Sentinel-1  

Sentinel-1 is expected to provide high and consistent geolocation accuracy. The nominal 

accuracy of IW SLC data is ±7 m (Bourbigot et al., 2016). All other Sentinel-1 products 

shows biases, for example, Schubert et al. (2014) reports azimuth offsets of two samples 
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from May 2014. This accuracy improved to one sample by 2015 (when the data used in 

this study was collected) (Schubert et al., 2015) for all products accept IW SLC that is 

not reported at that time. Unlike other Sentinel-1 modes, there was no estimation of the 

geolocation accuracy for the IW SLC product by 2015 (Schubert et al., 2015). The bias 

problem for IW SLC remain unsolved yet (Schubert et al., 2017). Therefore, it was 

reasonable to assume that the spatial accuracy is one sample (±20 m for the IW SLC data) 

for the datasets used in this study.  

5.8.4.7 Spatial Error in WorldView-3 

According to Bresnahan et al. (2016), the fieldwork data geolocation accuracy of 

WorldView-3 data is 3.5m, with the same study reporting a band-to-band registration 

error of ±3.3 m. This means that the error in each band is almost independent of the error 

in other bands.  

5.8.4.8 Spatial Errors in Lidar 

The nominal absolute spatial error for the EA Lidar data is ±40 cm (Agency, 2016), which 

is high compared to the resolution of 1m. The original DTM and DSM datasets were 

provided on the Ordnance Survey British National Grid (BNG) map projection, and so 

they were converted to the WGS84 datum to match the rest of the data (satellite and field 

data). This process is expected to reduce the horizontal accuracy of the DCM, with the 

conversion applied (OSGB 1936 to WGS84) having an error of up to ±2 m (EPSG, 2010).  

5.8.5  Errors in the Field Data 

As discussed in Chapter four, the field data were derived based on TLS. The process 

involved extracting the measurements of DBH and/or H, to fulfil the requirements of an 

allometric equation and derive the AGB. Then the calculated AGB is spatially distributed 

to the corresponding pixels in the AGB map according to the tree structure that is 
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 reconstructed by the algorithm described in chapter four. This process is a source of a 

number of errors that can be divided into three components: allometric quantity errors, 

spatial errors, and misdetection error. 

5.8.5.1 Allometric Non-Spatial Errors 

The AGB quantity error is due to errors determining DBH and H, and errors in the allometric 

equation parameters. It can be determined by propagating the errors of DBH, H and the 

allometric equation parameters through the allometric equation. This process may vary 

depending on the equation specifications, with the most recent allometric studies avoiding 

combining DBH and H in their models due to the high collinearity between them. Therefore, 

most studies provide equations that consist of only DBH as an independent variable, 

assuming that DBH can be more accurately measured and has increased correlation to AGB 

compared to H. However, this can be questionable when TLS is in use. Therefore, and due 

to the shortage in the H based allometric equations, an additional analysis was undertaken to 

provide allometric equations for some plots that are based on H as an independent variable.  

The additional analysis involved propagating errors from the original allometric equation 

(AGB(DBH)) and from the conversion equation H(DBH) to the yielded equation (AGB(H)), 

which is key to simulating possible scenarios. The mathematical forms, shown in Table 5-6, 

were used to cover the tree species in the fieldwork plots, with each form requiring a slightly 

different calculation. However, all forms are continuously differentiable, as illustrated in 

Table 5-6 for DBH based equations and in Table 5-7 for H based equations. Hence, the 

Taylor method can be applied to propagate errors. The required information to apply the 

propagation are the errors inherited from the allometric equation parameters, and the errors 

in the tree measurements. The allometric equations are usually available with a standard 

error for each parameter while errors of DBH and H were derived, in chapter four, by 

comparing the automatically measured quantities and the corresponding manually measured 

ones. 



 

   

 

Table 5-6: Allometric equation mathematical forms, and the derivatives of the parameters and measurements for DBH based equations. 

  (∂AGB/∂a1 ) (∂AGB/∂a2 ) (∂AGB/∂a3 ) (∂AGB/∂DBH ) 

1 𝐴𝐺𝐵 = 𝑎1𝐷𝐵𝐻𝑎2 † 𝐷𝐵𝐻𝑎2 𝑎1𝐷𝐵𝐻𝑎2 ∗ ln (𝐷𝐵𝐻) - 𝑎1𝑎2𝐷𝐵𝐻𝑎2−1  

2 
𝐴𝐺𝐵 = 𝑒

(𝑎1+𝑎2
𝐷𝐵𝐻

𝐷𝐵𝐻+𝑎3
) 

 

𝑒
(𝑎1+𝑎2

𝐷𝐵𝐻
𝐷𝐵𝐻+𝑎3

) 𝑒
(𝑎1+𝑎2

𝐷𝐵𝐻
𝐷𝐵𝐻+𝑎3

)

∗
𝐷𝐵𝐻

𝐷𝐵𝐻 + 𝑎3
  

𝑒
(𝑎1+𝑎2

𝐷𝐵𝐻

𝐷𝐵𝐻+𝑎3
)

∗

−𝑎2𝐷𝐵𝐻

(𝐷𝐵𝐻+𝑎3)2   

𝑒
(𝑎1+𝑎2

𝐷𝐵𝐻

𝐷𝐵𝐻+𝑎3
)

∗ 
−𝑎2𝑎3

(𝐷𝐵𝐻+𝑎3)2 

† This form could be find in literature as ln (biomass) = ln (a1) + a2 ln (DBH). 

Table 5-7: Allometric equation mathematical forms and the derivatives of the parameters and measurements for H based equations. 

AGB equation (∂AGB/∂𝛽0 ) (∂AGB/∂𝛽1 ) (∂AGB/∂H ) 

1 † ∂AGB

∂DBH 
∗

−100𝐻

𝑒(𝛽0+𝛽1log (𝐻))  
∂AGB

∂DBH 
∗

−100∗𝐻∗log (𝐻)

𝑒(𝛽0+𝛽1log (𝐻))    ∂AGB

∂DBH 
∗

100∗(1−
𝛽1

ln (10)
) 

𝑒(𝛽0+𝛽1log (𝐻))  

2 ‡ 

 

∂AGB

∂DBH 
∗

√ℎ

(1−𝛽1√ℎ  )
  

∂AGB

∂DBH 
∗

𝛽0ℎ

(1−𝛽1√ℎ  )
2  ∂AGB

∂DBH 
∗

(1−𝛽1√ℎ  )∗
𝛽0

2√ℎ  
+

𝛽0𝛽1
2

(1−𝛽1√ℎ  )
2   

† where 𝜕𝐴𝐺𝐵

𝜕𝑎1 
,

𝜕𝐴𝐺𝐵

𝜕𝑎2 
,

𝜕𝐴𝐺𝐵

𝜕𝑎3 
 𝑎𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑖𝑛 Table 5‐6 𝑤𝑖𝑡ℎ 𝐷𝐵𝐻 =

100∗𝐻

𝑒𝛽0+𝛽1log (𝐻)  

‡ where h=H-1.3 and  𝜕𝐴𝐺𝐵

𝜕𝑎1 
,

𝜕𝐴𝐺𝐵

𝜕𝑎2 
,

𝜕𝐴𝐺𝐵

𝜕𝑎3 
, 𝑎𝑛𝑑 

𝜕𝐴𝐺𝐵

𝜕𝐷𝐵𝐻 
 𝑎𝑟𝑒 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝑠 𝑖𝑛 Table 5‐6 𝑤𝑖𝑡ℎ 𝐷𝐵𝐻 =

𝛽0√ℎ

(1−𝛽1√ℎ  )
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According to (Ahmed et al., 2013) there is another type of error related to the geographic 

reliability of the equation when plots are sited outside the region for which the equation 

was originally developed for. For example, if an equation was developed to be typical for 

North-America, and it is to be applied in Europe, then this error can be significant. Ahmed 

et al. (2013) suggested that this error could be added to the error of the allometric equation 

as a third component, beside the parameter error and the measurement error. In the 

absence of an accurate non-destructive methodology for estimating the value of this 

component, the best solution is to have the error ranging between zero (when the equation 

is based on many studies) to duplicating the error of other components (when the equation 

based on only one site). This study applied a species-specific equation for plots where 

there is only one species and a general equation for the mixed plots.   

The first order Taylor  methods approximate the error of AGB (AGB) calculated from the 

parameters (ai…am), which have errors of (𝛿𝑎1 … 𝛿𝑎𝑚) correspondingly and 

measurements (xi…xn) which have errors of (𝛿𝑥1 … 𝛿𝑥𝑚) correspondingly by using the 

equation: 

𝜎𝐴𝐺𝐵 = √∑ (
𝜕𝐴𝐺𝐵

𝜕𝑎𝑖
)2(𝛿𝑎𝑖)2 + ∑ (

𝜕𝐴𝐺𝐵

𝜕𝑎𝑖
)2(𝛿𝑎𝑖)2𝑛

𝑖=1
𝑚
𝑖=1        (5-11) 

When this equation is extended to include the geographic reliability error (𝛿𝐺.𝑅.𝐸.) as a 

component it becomes:  

𝜎𝐴𝐺𝐵 = √∑ (
𝜕𝐴𝐺𝐵

𝜕𝑎𝑖
)2(𝛿𝑎𝑖)2 + ∑ (

𝜕𝐴𝐺𝐵

𝜕𝑥𝑖
)2(𝛿𝑎𝑖)2 + (𝛿𝐺.𝑅.𝐸.)

2𝑛
𝑖=1

𝑚
𝑖=1       (5-12) 

The equation conversion process, from DBH based equations to H based equations, was 

based on Nasund’s equation that is adopted by (Muukkonen, 2007) and for the Scots-
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Pine, and Birch and on Hein and Spiecker (2008) for Ash. The original form of Nasund’s 

equation defines H as a function of DBH as in Equation 5.13: 

H=1.3+ DBH2

(β0+β1.DBH)
2       (5-13) 

Then it was converted to another form, in which DBH can be defined as a function of H 

to replace each DBH in the DBH based equations. The conversion involves the following 

process: 

H-1.3= DBH2

(β0+β1.DBH)
2        (5-14) 

by taking the square root of the equation and substituting h=H-1.3: 

√h= DBH
(β0+β1DBH)

   

Using cross multiplication: 

β0√h+β1√h DBH=DBH  

Which means that: 

 DBH-(β1√h)DBH=β0√h  

DBH(1-β1√h)=β0√h  

and the final equation could be: 

DBH= β0√h
(1-β1√h)

        (5-15) 

While Hein and Spiecker (2008) provides the DBH as a function of H for Ash trees as 

in Equation 5.16.  
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DBH= 100*H
eβ0+β1log(H)        (5-16) 

The conversion parameters 𝛽0 and 𝛽1 are species-specific. However, the samples used for 

estimation were located outside the geographic region of the study area. Therefore, this 

might increase the effect of the geographic reliability error (δG.R.E. for the H based 

equations. Species-specific equation forms, parameters and parameters standard errors 

used for the field data analysis are listed in Table 5-8. 

The error analysis for trunk AGB are shown in Figure 5-29, Figure 5-30, and Figure 5-31 

for the tree species used in this study with both DBH and H based equations and Figure 

5-32 for species that were explored with DBH based equations only. The error values for 

sample trees of each species were correlated to the corresponding AGB values of the 

analysed trees. The correlation equation was used to estimate errors for other trees of that 

species. The error component used for the analysis was based on the linear approximation 

of the relationship between AGB and allometric equation error. Similarly, this error 

analysis was applied with branch allometric equations. Examples of the analysis results 

for the quantity errors of the branch AGB is illustrated in Figure 5-33. The total quantity 

error maps were produced by the root square of the summation the squares of the error 

components. This root square represents the physical resultant of the error components. 
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Table 5-8: Species-specific equation forms, parameters and parameters standard errors used for the field data analysis. 

Species   Equation  a1  SE a2 SE a3 SE 𝛽0 SE 𝛽1 SE 

Ash stem 1 0.17 (Alberti  

et al., 2005) *0.71(Cai et 

al., 2013) 

0.067*0.71 2.46 0.129 - - 5.358 (Hein and 

Spiecker, 2008) 

0.069 0.672 0.038 

branch 1 0.17*0.16 0.067*0.16 2.46 0.129 - - 5.358 0.069 0.672 0.038 

Birch stem 2 -2.411 (Muukkonen, 

2007) 

0.204 10.210 0.182 8.291 0.736 1.460 (Muukkonen, 

2007) 

0.019 0.184 0.001 

branch 2 -3.579 0.299 0.570 0.350 11.363 1.728 1.460 0.019 0.184 0.001 

Scots 

pine 

stem 2 -1.408 (Muukkonen, 

2007) 

0.155 10.666 0.151 15.775 1.137 2.082(Muukkonen, 

2007) 

0.020 0.170 0.001 

branch 2 -0.928 0.141 9.889 0.523 32.338 4.556 2.082 0.020 0.170 0.001 

Beech stem 1 0.159 (Chakraborty et al., 

2016) 

0.021 2.346 0.062 - - - - - - 

branch 1 0.233 0.056 1.781 0.113 - - - - - - 

Oak stem 1 𝑒−2.181 (Forrester et al., 

2017) 

𝑒−2.181

∗ 0.231 

2.269 0.033 - - - - - - 

branch 1 𝑒−2.986(Forrester et al., 

2017) 

𝑒−2.986

∗ 0.196 

2.309  0.061 - - - - - - 

Mixed 

Species 

stem 1 𝑒−2.527(Forrester et al., 

2017) 

𝑒−2.527

∗ 0.029 

2.414 0.005 - - - - - - 

branch 1 𝑒−3.723(Forrester et al., 

2017) 

𝑒−3.723

∗ 0.196 

2.330 0.008 - - - - - - 
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-A-                                                                   -B- 

 
-C-                                                                   -D- 

 
-E- 

 

Figure 5-29: Error analysis results for Ash trees, A - DBH (Calculated vs observed DBH), B - AGB (H 

based vs DBH based), C - Error of the DBH based equation, D - Error of the H based equation, and E - 

Error of H based equation vs error of DBH based equation. 
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-A-                                                                   -B- 

 

-C-                                                                   -D- 

 

-E- 

Figure 5-30: Error analysis results for Birch trees as A - DBH (Calculated vs observed DBH), B - AGB 

(H based vs DBH based), C - Error of the DBH based equation, D - Error of the H based equation, and E - 

Error of H based equation vs error of DBH based equation. 
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-A-                                                                   -B- 
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Figure 5-31: Total AGB error analysis results for Scot-Pine trees as A - DBH (Calculated vs observed 

DBH), B - AGB (H based vs DBH based), C - Error of the DBH based equation, D - Error of the H based 

equation, and E - Error of H based equation vs error of DBH based equation. 
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-C-  

Figure 5-32: Total AGB error analysis yields from the DBH based allometric equations for A - Beech 

trees, B - Oak trees, and C - for mixed trees. 
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Figure 5-33: Branches AGB error analysis yields from the DBH based allometric equations for A - Ash 

trees,  B- Oak trees, and C- mixed trees. 
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5.8.5.2 Spatial Errors 

The spatial component includes errors in the geo-referencing of the AGB map, and errors 

in the AGB spatial distribution. The field data were geo-referenced by using GPS 

measurements of the position of the scanner for some scan stations in each field site. The 

accuracy of the hand-held Trimble Juno 3B GPS with Satellite-based Augmentation 

System (SBAS) correction is about ±5 m after differential correction. This accuracy can 

be directly provided to the error analysis software tool.  

The accuracy of biomass distribution is limited by number of factors including the 

shadows in the TLS cloud, the tree structure approximation, and the statistical weighting 

of the branches. The determination of this type of error, with the spatial resolution 

provided within the fieldwork data analysis, is not practically possible even with 

destructive methods due to the fact that it is not possible to find the weight of parts of the 

tree parts that are located within specific spatial limits. However, the high resolution of 

the biomass maps makes it possible to reduce the effect of this error significantly by 

averaging all pixels that lie within each pixel of the remote sensing image, when pixel-

based analysis is used, or for each object when object-based used. Therefore, this error is 

negligible for the available RS data resolutions and, as a result, the spatial errors were 

limited to the geo-location error.  

5.8.5.3 Misdetection Errors 

This error exists due to the false positives and false negatives in the tree detection stage. 

This error is for an approximate value of one average tree and with random spatial 

coordinates, meaning that this error is statistically random. The effect of false positives 

would be equivalent to adding an extra trunk to the trunk AGB map, and changing the 

classification of the close branches to be these false positive branches. This means that 
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the biomass of a whole tree is increased and the distribution of the biomass of some trees 

are changed. The effect of false negatives is classifying the undetected tree as branches 

of the closest trees, which means missing the biomass of the whole tree and distributing 

it other trees instead. In both cases, this error was approximated to be the biomass of one 

tree per miss-detection probability with a DBH that equals the average DBH of detected 

trees in the objected plot.  

5.8.5.4 Wood Density Variability 

The conversion from above-ground volume into AGB was avoided due to the use of direct 

AGB allometric equations. Theoretically, this helped to avoid the need to use the wood 

density. Though, the indirect effect of the high spatial and temporal variability of above 

ground biomass is still unavoidable (Svob, et al., 2014). However, the variability of wood 

density affects the field samples that were used to derive the allometric equation. As a 

result, this type of error is an included component in the error assessment of any AGB 

allometric equation (Berger et al., 2014). Therefore, and due to the fact that allometric-

equation error was taken into consideration in this study, the variability of wood density 

is expected to be implicitly included in the error propagation. 
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 Practical scenarios 

6.1 Introduction  

This chapter aims to analyse the propagation of remote sensing and fieldwork data errors 

to the AGB. This quantitative analysis was based on the error calculations discussed in 

Chapter 5. Four practical scenarios were designed to represent the variety of possibilities 

for AGB assessment systems. The rational was first to provide a better understanding of 

the error behaviour in a different AGB assessment system and second to prove that the 

software tool can manage a wide range of possible systems. As discussed in Chapter 2, 

the AGB assessment system possibilities can be related to the input data, the processing 

type, and the applied mathematical model.  

Due to the wide variety of possibilities, and taking the limited time frame of the study, 

the scenario design was based on only main classification categories. The data related 

parameters are the spatial resolution (high or very high spatial resolution) and the RS 

system type (active or passive). The analysis type is either pixel-based or object-based. 

While the system type is either parametric or nonparametric. Accordingly, four scenarios 

were designed. The first scenario used pixel-based analysis of high spatial resolution 

active and passive data, with parametric regression. The second scenario used object-

based analysis of high spatial resolution active and passive data, with parametric 

regression. The third scenario used pixel-based analysis of very high spatial resolution 

active and passive data, with non-parametric regression. And the fourth scenario used 

pixel-based analysis of very high spatial resolution active and passive data, with non-
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parametric regression. Therefore, the four scenarios were designed to cover the 

possibilities as shown in Table 6-1.  

Table 6-1: The scenarios coverage to the possibilities of remote sensing data, model type, and processing 

type. 

   

Analysis type 
    

   Pixel-based Object-based     

Sp
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l r
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ut
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n 

H
ig

h 
sp
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ut

io
n 

First scenario 

(Pixel-based, parametric 

regression model, Landsat-8 

and Sentinel-1 data) 

 

 

Second scenario 

Object-based, parametric 

regression mod, Landsat-8 and 

Sentinel-1 data) 

Param
etric regression 

M
odel type 

V
er

y 
hi

gh
 sp

at
ia

l r
es

ol
ut

io
n 

 

Third scenario 

(Pixel-based, NNA model, 

WorkdView-3 and Lidar 

data) 

Forth scenario 

(Object-based, NNA model, 

WorkdView-3 and Lidar data) 

N
on-param

etric regression 

6.2 First Scenario 

The first scenario applies a multiple linear regression as a parametric based mathematical 

model using the fieldwork information, derived in chapter four, combined with high-

resolution active and passive RS data. A pixel-based approach was used to perform this 

regression, as described in the following sections. 

Passive RS 

Active RS 
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6.2.1 Model Design 

Two-stage analysis was applied to design the regression model. The first stage is a 

primary ANOVA that is inclusive to all inputs, and the analysis tests the relationship 

strength between inputs, including Landsat-8 bands 2, 3, 4, and 5, NDVI, NDVIR, and 

LHD with the fieldwork biomass. The Landsat bands were selected based on the results 

of Lu, et al. (2002); Gjertsen (2007); Melaas et al. (2013); Berra et al. (2014); and Dube 

and Mutanga (2015) that shows that amongst Landsat sensors bands, only these bands 

equivalents showed significant correlation for AGB assessments. NDVIR was derived 

from NDVIs on two different seasons as described in Section 5.8.1.1 and therefore is 

expected to relate to the tree type and AGB due to the fact that each tree type has a distinct 

annual cycles. LHD was used to provide active remote sensing data and hence the 

advantages of this type of data as discussed before in Section 3.2.1.2. All inputs are 

normalized to be in the range 0 to 1, and the ANOVA results are shown in Table 6-2.  

Table 6-2: Model parameters and statistical P-values for the first scenario. 

Primary 

ANOVA results 

RS product Coefficients P-value 

Landsat B2 0.1075 

 

0.566 

 
Landsat B3 1.6831 

 

0.089 

 
Landsat B4 -2.8880 

 

0.005 

 
Landsat B5 1.4143 

 

0.012 

 
NDVI 0.4037 

 

0.002 

 
NDVIR -1.0384 

 

0.004 

 
LHD 0.4112 

 

0.111 

 
Final ANOVA 

results 

RS product  Coefficients P-value 
Landsat B4 0.6667 0.001 

NDVI 0.2777 0.003 

NDVIR 0.0857 0.187 
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The second stage applies a final ANOVA test to the inputs that have P-values equal to or 

less than the P-value of band 4, and these inputs are then used to train the model. The P-

value of band 4 is used as a criterion to assess the input P-values due to the fact that the 

red wavelength Landsat-8 band has been reported to have a moderately inverse 

relationship with AGB (Walker et al., 2010, Dube and Mutanga, 2015; Wu et al., 2016). 

The rationale of using this reduction in the number of model inputs is to avoid over-fitting, 

which can result when there is a small number of samples. The ANOVA results show that 

only three inputs (Landsat NDVI, RNDVI, and band 4) have P-values less than or equal 

to the Landsat-8 band-4 P-value of 0.005, and they were used to train a linear regression 

model. The model ANOVA results are listed in Table 6-2, with it having an R2 of 0.62.  

6.2.2 Biomass Mapping  

The linear regression model was used to map the AGB. The modelled AGB for each pixel 

of the fieldwork areas are compared to the corresponding AGB of the fieldwork data as 

shown in Figure 6-1. The analysis showed that the residual level is high with an average 

of 56 t/ha and RMS of 66 t/ha. The resulted AGB map (density on each pixel) is shown 

in Figure 6-2. The map resolution is equivalent to the Landsat-8 resolution which is 30.m. 

 

Figure 6-1: Modelled AGB vs fieldwork based AGB for the first scenario. 
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Figure 6-2: AGB map resulting from the first scenario. 

 

6.2.3 Error Analysis  

The error analysis tool was implemented with seven settings, with the: 

 First setting including all the spatial and spectral field data errors and the RS data 

spatial and spectral errors. 

 Second setting including the spatial and spectral errors for the field data only.  

 Third and fourth settings separating the field data spatial errors from spectral 

errors.  

 Fifth setting including the spatial and spectral errors of RS data only.  

 Sixth and seventh settings separating the RS data spatial errors from spectral 

errors.  
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Each setting was applied with 1000 iterations. The execution time consumed to apply the 

software tool ranged between 5 to 7 minutes for each setting. The regression parameters 

standard errors are listed in Table 6-3, with the uncertainty components of the field plot 

pixels of each analysis is shown in Figure 6-3.  

Table 6-3: The influence of errors on the model coefficients. 

 coefficient SE regression 
(overall 

coefficient 
error) 

SE all 
errors 

SE due to field data errors 
influence 

SE due to RS data errors 
influence 

All Spatial Spectral All Spatial Spectral 

Landsat B4 - 0.1667 0.065 0.047 0.029 0.010 0.019 0.032 0.018 0.026 

NDVI 0.2777 0.092 0.069 0.033 0.026 0.002 0.045 0.041 0.033 

NDVIR 0.0857 0.058 0.032 0.024 0.008 0.022 0.019 0.017 0.012 

 

 

The highest absolute residuals (Figure 6-3 A) lie in the areas of AGB around the 180 

metric-tonne/Hectare (t/ha), with the areas of low AGB showing a lower average residual 

density within the study area, with the AGB map (density on each pixel) shown in Figure 

6-2. The error propagation results show that the errors propagated from the RS and field 

data have an obvious trend that is proportional to the AGB. The combined RS and field 

data error (Figure 6-3 B) starts low for low AGB pixels and increases to reach a level 

similar to the residuals for the high AGB pixels. The average of these errors is about 33 

t/ha that is significantly lower than the average of the residuals. The RS errors (Figure 

6-3 C, D and E) shows that the average RS data error is about 19 t/ha. The spectral and 

spatial components of the RS data have averages of about 14 and 9 t/ha, respectively, with 

the average field error being around 21 t/ha. The non-spatial and spatial error components 

have averages of 19 and 9 t/ha, respectively. The software tool used these error analyses 

to model the errors all over the study area.  
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-A-                                                      -B- 

  
-C-                                                      -D- 

  
-E-                                                      -F- 

   
-G-                                                      -H- 

Figure 6-3: The uncertainty components for the first scenario as: A - residuals of AGB fitting vs AGB, B 

- standard deviation yields from applying all RS and field errors vs AGB, C - standard deviation yields 

from applying all RS errors vs AGB, D - standard deviation yields from applying spectral RS vs AGB,  E 

- standard deviation yields from applying spatial RS vs AGB, F - standard deviation yields from applying 

all field errors vs AGB, G- standard deviation yields from applying spectral field vs AGB, and H - 

standard deviation yields from applying spatial field vs AGB. 
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-A-                                                                   -B- 

 

-C-                                                                   -D- 

Figure 6-4: Error maps for the first scenario as the A – fitting error, B - uncertainty component that is 

related to RS and field errors, C - uncertainty component that is related to RS errors only, and D - 

uncertainty component that is related to field errors only. 

The correlation between residual error and the modelled error was on an R2 of 0.33. The 

correlation between simulated RS and field errors, and the errors mapping model results, 

was high with R2s between 0.82 and 0.94. The error model result was the error maps 

shown in Figure 6-4. The maps represent the error map for the main settings including 

fitting residual errors, the uncertainty component that is related to the combined RS and 
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field errors, the uncertainty component that is related to RS errors only, and the 

uncertainty component that is related to field errors only. 

6.3 Second Scenario 

The same RS data that were explored for the first scenario were explored for the second 

scenario that included Landsat-8 images, NDVIs and RNDVI alongside Sentinel-1 LHD. 

The same field data were used to provide the reference AGB data and, in addition, the 

fieldwork data used for classification in the first scenario was also used in this scenario. 

6.3.1  Model Design 

That same procedure used in the first scenario was applied in this scenario. However, an 

object-based correspondence was used instead of the pixel-based correspondence 

between field and RS data. The average of each layer’s pixels for each objects polygon 

was applied. For example, if an object polygon covers 10 pixels of some layer the average 

of the 10 pixels was used as a value for the object. Therefore, the number of resulted 

fieldwork samples was fewer compared to the first scenario; each sample segment 

consists of a number of pixels instead of one pixel samples in the first scenario. Primary 

ANOVA yields in results that are shown in Table 6-4. Accordingly, the final model 

ANOVA test was applied on Landsat-8’s B4, NDVI, and Sentinel-1’s LHD. The model 

ANOVA results are listed in Table 6-4, which has an overall R2 of 0.84.  
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Table 6-4: Model parameters and statistical P-values. 

Primary ANOVA 

results 
RS product Coefficients P-value 

Landsat B2 -0.2946 0.359 
Landsat B3 -0.3338 0.605 
Landsat B4 -0.7655 0.107 
Landsat B5 0.6791 0.181 
NDVI 0.5918 0.003 
NDVIR -0.1131 0.605 
LHD 0.3283 0.0670 

Final ANOVA 

results 
RS product Coefficients P-value 

Landsat B4 -0.2816 0.160 
NDVI 0.3997 0.001 
LHD 0.1452 0.094 

6.3.2 Biomass Mapping  

The resulting linear regression model was used to map the AGB density within the study 

area. The modelled AGB for each object of the fieldwork areas are compared to the 

corresponding AGB of the fieldwork data as shown in Figure 6-5. The analysis showed 

that the average of the absolute residual is with an average of 21 t/ha and RMS of 36 

t/ha. The resulted AGB map (density on each pixel) is shown in Figure 6-6. The map is 

object-based. Hence, each polygon has an AGB average. 

 

Figure 6-5: Modelled AGB vs fieldwork based AGB for the second scenario. 
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Figure 6-6: AGB map resulting from the second scenario. 

6.3.3 Error Analysis  

The error analysis tool was implemented with the seven settings used in the first scenario. 

Each setting was applied with a 1000 iterations. The execution time consumed to apply 

the software tool ranged between 3 to 6 minutes for each setting. The parameters standard 

errors are as listed in Table 6-5, and the uncertainty components of the field plot polygons 

for each setting are shown in Figure 6-7. The highest residuals lie in the areas of AGB 

around the 200 t/ha. The areas of low AGB showed a lower average residual density 

within the study area, with the AGB map (density on each polygon). The correlation 

between residual error and the modelled error was on an R2 of 0.14. The correlation 

500 t/ha 

 

0 
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between simulated RS and field errors, and the errors mapping model results, was high 

with R2s between 0.61 and 0.64. The result of applying the error model was the AGB 

error maps shown in Figure 6-8. The maps represent the error map for the main settings.  

  
-A-                                                                   -B- 

  
-C-                                                                   -D- 

  
-E-                                                                   -F- 

  
-G-                                                                   -H- 

Figure 6-7: The uncertainty components of the second scenario, A- residuals of AGB fitting vs AGB, B- 

standard deviation yields from applying all RS and field errors vs AGB, C- standard deviation yields from 

applying all RS errors vs AGB, D- standard deviation yields from applying spectral RS errors vs AGB, E- 

standard deviation yields from applying spatial RS vs AGB, F- standard deviation yields from applying 

all field errors vs AGB,. G - standard deviation yields from applying spectral field vs AGB, and H- 

standard deviation yields from applying spatial field errors vs AGB. 
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As in the first scenario, the error propagation results showed that the errors propagated 

from the RS and field data have an obvious trend that is proportional to the AGB. The 

combined RS and field data error (Figure 6-7B) starts relatively high for low AGB 

pixels compared to the first scenario. The average of these errors is about 22 t/ha that 

is significantly lower than the average of the residuals which equals 29 t/ha. The RS 

errors (Figure 6-7C, D and E) shows that the average RS data error is about 17 t/ha. 

The spectral and spatial components of the RS data have averages of about 11 and 10 

t/ha, respectively, with the average field error being around 11 t/ha. The non-spatial 

and spatial error components have averages of 10 and 2 t/ha, respectively.  

Table 6-5: The influence of errors on the model coefficients for the second scenario. 

 coefficient SE 
regression 
(overall 
coefficient  
error) 

SE all 

errors 

SE due to field data errors 

influence 

SE due to RS data errors 

influence 

All Spatial Spectral All Spatial Spectral 

Landsat B4 -0.2816 0.159 0.081 0.022 0.003 0.020 0.089 0.027 0.064 

NDVI 0.3997 0.107 0.120 0.014 0.005 0.012 0.077 0.041 0.032 

LHD 0.1452 0.091 0.048 0.005 0.001 0.005 0.040 0.019 0.032 
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-A-                                                                   -B- 

 

 

-C-                                                                   -D- 

Figure 6-8: Error maps for the second scenario as A - fitting error, B - the uncertainty component that is 

related to RS and field errors, C - the uncertainty component that is related to RS errors only, and D - the 

uncertainty component that is related to field errors only. 
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6.4 Third Scenario 

The third scenario applies a neural network regression as a non-parametric based 

mathematical model using the fieldwork information and very-high resolution active and 

passive RS data. The passive data includes the eight bands of WorldView-3, the NDVI, 

the first three principal components of WorldView-3 bands, and the six texture features 

with four window sizes for each feature. The active data includes the Lidar based DCM. 

A pixel-based approach was used to perform this scenario as described in the following 

sections. 

6.4.1 Model Design 

Some products are expected to have a high multi-collinearity (i.e., strongly correlated to 

each other) especially when they were based on the same band/bands for their 

calculations. Some other products can have low correlation to the AGB. Therefore, it was 

important to apply a feature selection process i.e., selecting a subset of only the relevant 

products to reduce the risk of overfitting, cut the noise of unnecessary products and 

increase the processing speed. Moreover, the flexibility of the neural network model can 

increase the probability of overfitting. Therefore, a simple ANOVA based feature 

selection that was used for the first two scenarios, was not applicable as it is based on the 

correlation between dependent and independent features. Therefore, the applied The 

Recursive Feature Elimination (RFE) algorithm for feature selection was adopted, as it 

was able to provide a robust solution.  

RFE algorithm described in Liu et al. (2011) was used for this study. As a wrapper 

algorithm, it can analyse the correlation amongst features (Phuong et al., 2005) and hence 

be combined with many machine learning techniques for optimization based on the kernel 
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or cost function used (Liu et al., 2011). The RFE used here is a two-step algorithm. The 

backward sample ranking runs an iteration based optimization for finding the best 

performing subset of features by repeatedly training a model and selecting the top 

performing feature based on the model based optimization criteria, excluding the selected 

feature and then repeating the process until all features are excluded. The results are then 

used to rank features according to model performance when they were excluded. Then 

the forward selection includes adding features to the model based on the ranking of the 

backward step, starting with the top feature and adding the next ranked feature in a 

recursive fashion according to the reported performance of the model at each iteration 

along with the features utilized in that step. The forward step is important for deciding 

which features do not improve the performance, and so can be eliminated. The skit-learn 

Python (Pedregosa et al., 2011) library was used to perform the feature selection. The 

model was tested with two fieldwork data types. First, the system was tested by 

implementing the total AGB map that was obtained by adding branch AGB map (an 

example plot is shown in Figure 4-18) to the trunk AGB map (an example plot is shown 

in Figure 4-16). Second the system was tested by implementing the branch AGB map 

only. The maximum R2 obtained when the total AGB fieldwork data was 0.28 compared 

to 0.62 when branch AGB map was implemented instead of the total AGB map. Six out 

of the thirty-six products were selected according to the obtained correlation coefficient 

as shown in Figure 6-9; the selected features are DCM, NDVI, band 3, first principal 

component, the energy texture feature, and the ASM. The neural network applied used a 

single hidden layer with four neurons. The small number of neurons was decided to avoid 

overfitting due to the limited number of fieldwork samples as suggested by Del Frate and 

Solimini (2004) and Migolet et al. (2007) for similar applications with similar number of 

inputs.  
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Figure 6-9: The obtained correlation coefficient for each number of features. 

6.4.2 Biomass Mapping 

The model was used to map the branch AGB. The R2 of the correlation between the 

fieldwork data and calculated AGB based on the model was 0.62 as shown in Figure 6-10. 

The resulting branch AGB map is shown in Figure 6-11. Due to the pixel-based analysis, 

the map is of a spatial resolution that is equivalent to the spatial resolution of WorldView-

3 image.  

 

Figure 6-10: Modelled AGB vs fieldwork based AGB for the third scenario. 
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-A-                                                                   -B- 

Figure 6-11: The branch AGB map resulting from the third scenario. 

6.4.3  Error Analysis 

The error analysis tool was implemented with the seven settings, as used in the first 

scenario. Each setting was applied with 1000 iterations. The execution time consumed to 

apply the software tool ranged between 6 to 11 minutes for each setting. The uncertainty 

components of the field plot polygons for each setting analysis are shown in Figure 6-12. 

It shows that the average of model fitting residuals is about 8 t/ha and an RMSE of 10 

t/ha compared to an average of branch AGB of about 40 t/ha. These residuals start with 

an average of about 10 t/ha for the low AGB, decreases to about 4 t/ha at the median value 

AGB areas and then increases again to about 20 t/ha with the high AGB pixels. The RS 

error has an average of about 3 t/ha the spatial error caused an average variation of 2.8 

t/ha, whereas, the non-spatial error caused an average variation of 1.3 t/ha. The field error 

was 3.3 t/ha. Non-spatial field error component resulted in an average variation of about 

3 t/ha, whereas, spatial errors results in about 1.3 t/ha. The general trend of all the error 

components to the AGB seems to be of a second order. Therefore, a quadratic regression 

model was used to generalised the error relationship to the AGB in order to map the error 

76 t/ha 

0 
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all over the study area. The correlation between residual error and the modelled error was 

on an R2 of 0.12. The correlation between simulated RS and field errors, and the errors 

mapping model results, was high with R2s between 0.51 and 0.84. The resulted error maps 

of the main setting are shown in Figure 6-13.  

 
-A-                                                                   -B- 

 
-C-                                                                   -D- 

 
-E-                                                                   -F- 

 
-G-                                                                   -H- 

 

Figure 6-12: The uncertainty components of the third scenario as the A- residuals of AGB fitting vs AGB, 

B - standard deviation yields from applying all RS and field errors vs AGB, C - standard deviation yields 

from applying all RS errors vs AGB, D - standard deviation yields from applying spectral RS vs AGB, E 

- standard deviation yields from applying spatial RS vs AGB,  F- standard deviation yields from applying 

all field errors vs AGB, G - standard deviation yields from applying spectral field vs AGB, and H - 

standard deviation yields from applying spatial field vs AGB. 
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-A- 

 
-B- 

Figure 6-13: Error maps for the third scenario, A- fitting error for both subsets, B - the uncertainty 

component that is related to RS and field errors for both subsets, C - the uncertainty component that is 

related to RS errors only for both subsets, and D - the uncertainty component that is related to field errors 

only for both subsets (continued). 
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-
C- 

 

-D- 

Figure 6-13: (continued) Error maps for the third scenario as the, A - fitting error for both subsets, B - 

uncertainty component that is related to RS and field errors for both subsets, C - uncertainty component 

that is related to RS errors only for both subsets, and D - uncertainty component that is related to only 

field errors for both subsets. 

6.5 Fourth Scenario 

The fourth scenario applies an object-based analysis to satisfy a non-parametric based 

mathematical model using the same data as for the third scenario. However, due to the 

use of object-based analysis, the number of samples dropped compared to the third 
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scenario. Therefore, and due to the fact that neural networks required large quantities data 

to be trained properly, a support vector machine regression was applied instead of a neural 

network approach.  

6.5.1 Model Design 

Five out of the thirty six products were selected according to the obtained correlation 

coefficient for each number of features as shown in Figure 6-14; the selected features 

were DCM, NDVI, band 3, first principal component, and the ASM. The support vector 

machine model was implemented with an RBF kernel as suggested by (Chen and Hay, 

2011) for a similar data combination.  

 

Figure 6-14: The obtained correlation coefficient for each number of features. 

6.5.2 Biomass Mapping 

The trained SVM model was generalised to the study area to produce a branch AGB map. 

The resulted branch AGB map, shown in Figure 6-15, is an object-based map. In other 

words, each object polygon was assigned to an AGB value. Figure 6-16 shows the 

modelled AGB versus the fieldwork based AGB for the object polygons inside the 

fieldwork sites. The R2 of the correlation between fieldwork data and the calculated AGB 

based on the model was 0.78. The polygon AGB values ranged between 0 and 74 t/ha.  
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Figure 6-15: Branch AGB map resulted of the fourth scenario. 

 

Figure 6-16: Modelled AGB vs fieldwork based AGB for the forth scenario. 
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The error analysis tool was implemented with the seven settings used in the previous 

scenarios. Each setting was applied with 1000 iterations. The execution time consumed 

to apply the software tool ranged between 5 to 9 minutes for each setting. The uncertainty 

components of the field plot polygons of each setting are shown in Figure 6-17.  
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-C-                                                                   -D- 

  
-E-                                                                   -F- 

  
-G-                                                                   -H- 

 
Figure 6-17: The uncertainty components of the fourth scenario, as: A - residuals of AGB fitting vs AGB, 

B - standard deviation yields from applying all RS and field errors vs AGB, C - standard deviation yields 

from applying all RS errors vs AGB, D - standard deviation yields from applying spectral RS vs AGB, E 

- standard deviation yields from applying spatial RS vs AGB, F - standard deviation yields from applying 

all field errors vs AGB, G - standard deviation yields from applying spectral field vs AGB, and H - 

standard deviation yields from applying spatial field vs AGB. 

The error analysis shows that the average of the absolute residuals is 6 t/ha and the RMSE 

is 8 t/ha, with a distribution that is similar to the residuals of the third scenario. The 
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average influence of the combined RS and field errors propagated to the AGB is about 5 

t/ha. The influence of the RS data error was on average of about 4 t/ha. The spatial error 

component of RS inputs shows an influence in average of about 4 t/ha, whereas, non-

spatial error component was on average of about 1.5 t/ha. The field data error was lower 

than the RS data error, with an average of about 3 t/ha and most of it being from the non-

spatial error component. All the propagated error components show a quadratic 

relationship to the AGB. As in previous scenarios, the software tool modelled the error 

all over the study area based on the error behaviour of the fieldwork samples. The 

correlation between residual error and the modelled error was on an R2 of 0.13. The 

correlation between simulated RS and field errors, and the errors mapping model results, 

was high with R2s between 0.45 and 0.67. The error maps for main setting are shown in 

Figure 6-18.  

6.6 Evaluation of the Scenarios Outcomes 

To summarize the results of all scenarios, the averages over the error components were 

converted into percentage ratios as illustrated in Figure 6-19. For all four scenarios, it is 

noticeable that the error values are high although a variety of datasets, model types and 

processing techniques were included. The share of the errors between the RS and field 

error components are close, but the relative proportion is slightly different for different 

scenarios. For example, the spatial error propagation was computationally efficient; 

especially for the third and fourth scenarios. These errors have tended to be ignored in 

previous studies, and the only studies that included a similar results to this study were the 

studies based on destructive tests such as Colgan et al. (2013). All the scenarios showed 

that fitting residuals exceeded the error propagation results, with significant values that 

can indicate a hidden error component that was not included in the analysis.  
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-B- 

Figure 6-18: Error maps for the fourth scenario, as the A - fitting error for both subsets, B - uncertainty 

component that is related to RS and field errors for both subsets, C - uncertainty component that is related 

to RS errors only for both subsets, and D - uncertainty component that is related to field errors only for 

both subsets. (continued) 
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-D- 
Figure 6-18: (continued) Error maps for the fourth scenario, as the A - fitting error for both subsets, B - 

uncertainty component that is related to RS and field errors for both subsets, C - uncertainty component 

that is related to RS errors only for both subsets, and D - uncertainty component that is related to field 

errors only for both subsets. 
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Figure 6-19: Approximate proportion of error component for: A- 1st scenario. B- 2nd scenario. C- 3rd 

scenario. D- 4th scenario. 
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6.7 Summary  

The purpose of this chapter was to design, execute, and test a software tool for error 

propagation in the AGB assessments. The aim was to be applicable to the widest possible 

range of AGB assessment systems and inclusive to all definable input error types. 

Therefore, a Monte Carlo based error propagation tool was designed to deal with 

quantified errors of each input.  

To reduce the computational costs, the designed system was based on a novel technique 

that can derive general error equations that can be applied to the whole study area, from 

analysing datasets that only exist within the fieldwork areas. In addition, the software was 

supported by a number of techniques that can accelerate the computation process, such 

as parallel computing technique and GPU processing capabilities. A user interface was 

designed to make the tool accessible for wide range of users, and it has been uploaded to 

an online sharing platform so it is available to the community.  

The input error types were considered as RS data errors and field errors. Each has two 

types of errors, non-spatial and spatial. The errors in the RS inputs were explored using 

nominal error indicators provided with the raw data or previous experimental tests 

whenever these were available. The errors in the field data were based on the nominal 

uncertainty indicators of the allometric equations and the experimentally identified errors 

in the tree DBH and H.  

The tool was successfully tested on four scenarios that cover a wide variety of model RS 

inputs (Sentinel-1, Landsat-8, Lidar and WorldView-3 data), model types (parametric and 

non-parametric), and processing methods (pixel-based and object-based). The results 

showed a relatively high RMSE for all scenarios, with error propagation analysis showing 
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a significant effect for all defined error components. However, the propagated error result 

was generally smaller than the Root Mean Square Error (RMSE) as shown in Figure 6-19.  
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 Discussion 

The research has dealt with different types of error involved in AGB assessment, which 

included assessing those coming from the field and RS data and the influence on the 

results. Section 7.1 discusses the findings of the literature review (Chapter 2), with the 

design criteria and accuracy prediction tool (Chapter 3). The fieldwork data collection, 

field data processing, and the resulting fieldwork based information (Chapter 4) are 

discussed in Section 7.2. The uncertainty analysis tool (Chapter 5) and its application 

scenarios (Chapter 6) are discussed in Section 7.3, and then finally future work is 

discussed in Section 7.4. 

7.1  Literature review and resulting accuracy prediction tool  

Several reports, such as (Le Quéré et al., 2016, Réjou‐Méchain et al. 2017, and Njana 

2017), have shown there is often large uncertainties in global estimations of AGB and 

there is no agreed standard system for AGB assessment, with many of the published 

studies using either new techniques or new data types. As mentioned in the literature 

review, there was a lack of analytical approaches that could support non-parametric 

models, non-linear parametric models, and object-based models within error propagation 

techniques. Spatial errors were often excluded, and there was limited use of accuracy 

prediction schemes for projects that are still in the system design stage. 
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The reviewed data types and model types (Chapter 3) has limited the error propagation 

methods to the Monte Carlo method. Deterministic methods, such as Taylor's and 

Rosenblueth’s methods, are not applicable for the non-differentiable non-parametric 

models such as ANN. Methods based on iterating data subsets in their original forms 

(such as bootstrap methods) are not applicable for some error types, due to the 

dependency between the errors of different subsets. The Monte Carlo method used 

independent random error values and error orientations for each iteration making the 

variance between iterations more representative of the effect of the simulated error. This 

finding is contrary to previous studies which have suggested that deterministic methods 

should be used to minimise the computational costs, e.g. Chen et al. (2015).  

The accuracy prediction tool presented in Chapter3 raises the possibility that a machine-

learning tool (ANN) using previous studies can solve the complex task to assess accuracy 

during a system’s design stage and the rationale of using the ANN was that it could deal 

with inputs that are class-based as well as quantity inputs. For example, the RS data type 

could be Lidar, Radar, optical etc. with each represented by a class number. The drawback 

is that it requires a large number of training samples compared to the limited number of 

studies available so far, which affected the accuracy of the results obtained. Therefore, 

the solution was to apply a separate model for each RS data type while the fieldwork 

specification and the model type are less complex and so could be represented by one 

variable each. In general, the obtained correlation further supports the idea of Ahmed 

(2012) and Weisbin et al. (2014), that the accuracy of AGB is largely based on the system 

design and the data specifications.  
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7.2 Fieldwork Data 

The results showed that the accuracy of the inputs to the tree biomass allometric equation 

was relatively high compared to the other tree’s parts, possibly because of the provided 

knowledge of the tree trunk physical model as an upstanding object. Emphasising the 

trunk gave more confidence in tree diameter at breast height (DBH) fitting and in tree 

height (h) extraction. Even though the accuracy of the total biomass of a single tree is 

based on the accuracy of the DBH and H, the accuracy of a wider scale process of biomass 

assessment can be influenced by the tree detection efficiency. Therefore, any weakness 

in the tree detection can affect the accuracy of both biomass and distribution.  

The proposed algorithm succeeded to reduce the false negatives automatically, by 

applying tolerance parameters. However, it failed to reduce false positives automatically, 

and so a manual step was unavoidable. Nevertheless, this stage can be considered as a 

learning algorithm because it is designed to retain all the user answers to be able to use 

them as training data for a future machine learning classifier; the relative accuracy of this 

algorithm's results could be accepted or rejected based on the required application of the 

biomass. In all cases, it cannot be dealt with as error-free information. This issue has not 

previously been described as previous studies either dealt with individual trees such as 

Côté et al. (2011), or assumed that tree detection is an error free process, e.g. Calders et 

al. (2015).  

The 3D voxels that are parallel to the terrain can be applied regardless of the terrain 

smoothness. This technique improved the detection by providing fewer layers with all the 

trunks at the same height. It also allowed the algorithm to focus on a particular layer, and 

so increase the computational efficiency. Another benefit was that it could provide the 
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tree height with minimum required calculations because it provides relative heights from 

the ground rather than absolute elevations.  

The practical applicability and time efficiency were considered when fitting techniques 

were chosen on condition that they did not affect the archived accuracy. For example, the 

vertical elliptical cylinder fitting was used because the inclined cylinder fitting failed to 

converge in number of cases and therefore is expected to affect the system consistency. 

Similarly, the branch weighting methods showed that all methods had a moderate 

correlation with the branch biomass. Even though it has a slightly lower correlation than 

the cylinder fitting method, the skeletonisation method was adopted since it required 

lower computation resources. Unlike the trunk DBH fitting, the branch weighting was 

applied to a relatively large number of branches in each plot, but will not affect the total 

biomass because it is not an input to the allometric equations. For example, for branch 

reconstruction using skeletonisation can increase the time efficiency by about 42 mins for 

each 1000 tree branches given that some plots can have more than 10000 branches.  

The biomass maps are at a high spatial resolution (0.05 m). This resolution is significant 

in at least two respects; the plot could be subdivided to give more spatially accurate 

subplots; and the subplot shape is flexible enough to fit any object when object-based 

analysis is used. For example, this type of output can be correlated to 1 m resolution RS 

data on a one-to-one pixel basis. At the same time the subplot can be correlated to random 

shape segment objects. 

7.3 Error Propagation Analysis  

Spatial errors were considered within the error analysis for AGB; maybe for the first time. 

The spatial errors can be input as a shift error and orientation error with other spatial 
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errors such as geometric distortions, relief displacement, and scale errors, not included in 

the analysis due to the complexity of these types of errors that will affect the time 

efficiency of the error analysis. It is argued that these errors should be small compared to 

the shift and orientation error for the geometrically corrected images.  

The error analysis tool was used in four scenarios, intended to cover the main categories 

of AGB assessments by exploring active and passive RS data with high and very-high 

resolutions, and with both parametric and non-parametric models. Landsat-8 radiometric 

data and NDVI have been widely used, as discussed in chapter 3. The newly introduced 

product was NDVIR, which is expected to have a relationship with the tree type and AGB 

because each tree species can have its distinctive annual cycles.  

SAR data are also widely utilised for AGB assessments, with Sentinel-1 providing a 

unique combination of global coverage, C-band SAR data and free to access data. 

Therefore, implementing this dataset illustrated a highly challenging, but not uncommon, 

conditions for data processing (Argamosa, et al. 2018). However, the LHD based on 

Sentinel-1 data had not been explored in previous studies. Therefore, the aim was to 

explore its capabilities for AGB assessment and to simulate the error propagation through 

an interferometric based input. The stability analysis (Figure 5-8 and Figure 5-9) showed 

that this type of data is unstable and therefore it cannot be generalised, meaning that the 

LHD map used for the model training should also be used for applying the model. This 

result agrees with Kyriou and Nikolakopoulos (2018), which stated that stable 

interferometric borders are not achievable with Sentinel-1 data.  

The RS input error analysis showed three types of spectral/non-spatial errors: constant 

error i.e., when the error value is constant all over the map; error value has a defined 

linear relationship to the RS product, e.g. error of 2% of the pixel’s value; and non-linear 
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relationship between the error and the RS product/s. e.g. the error of NDVI explained in 

Section 5.8.4.1. This finding supports Ahmed (2012) and Chen et al. (2015)’s suggestions 

to use a theoretical framework to estimate errors.  

Previous studies, including Ahmed (2012), Colgan et al. (2013), Chen (2013), Weisbin et 

al. (2014), and Chen et al. (2015), have tended to limit the field error analysis to the non-

spatial errors, while this study extended the analysis to include the spatial errors and the 

misdetection error. The non-spatial error analysis was based on the determined DBH and 

H errors and the standard error for each allometric equation parameter. 

Figure 7-1 combined the behaviour of non-spatial error of observed tree species in Figure 

5-29C, Figure 5-30C, Figure 5-31C, and Figure 5-32. Comparing these errors shows that 

the tree species and the selected allometric equation error can affect the accuracy. The 

figures also illustrate that the error has a direct relationship to the AGB, with all species 

showing non-linear behaviour for small AGB values that changes to an almost linear 

behaviour for the vast majority of the AGB range. Therefore, this relationship was 

approximated to a first order linear equation for each tree species. This approximation 

shows a close similarity with (Chen et al., 2015)’s field error equation 

(AGB=0.38xAGBtree) and (Chave et al., 2004)’s field error equation 

(AGB=0.31xAGBtree), i.e. in both the error equation form and the equation parameters.  
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Figure 7-1: Non-spatial errors per tree in the field AGB of explored species compared to 

the tree’s AGB.  

 

The non-spatial error analysis for field data demonstrated:  

 an agreement with statements in previous studies about the influence of the 

allometric equation specifications on the error of field data, highlighting the 

importance of the availability of allometric equations with a minimum uncertainty 

level;  

 that the error in the field data is proportional to the AGB that means the field error 

is a map based error rather than a constant number;  

 that converting an allometric equation from the DBH based form to the H based 

form will reduce the high relative accuracy of H that can be obtained from the 

TLS.  

The most important error source is the allometric equation, with the error in DBH being 

negligible (Molto et al., 2013). Therefore, improving an H-based equation was not 

expected to improve the accuracy. However, the relative error in DBH that is based on 
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TLS is high compared to the relative error in H that is small compared to conventional 

methods. This result agrees with the conclusion of Calders et al. (2015) that a TLS 

provided H that is closer to the destructive test results than other field inventory 

approaches 

Error analysis for the field data was tree rather than pixel-based and therefore the ideal 

procedure for each iteration should include separating each tree’s AGB, adding the 

random error for the tree AGB, and then reassembling the AGB map. However, this 

solution can slow the analysis down and so the solution was to use the plots as a cluster 

of trees (samples). Each cluster has an error in one direction (either positive or negative 

for all pixels) with random quantities for each pixel. This field data averaging process of 

field data for each RS pixel/object can be bias. The unavoidable disadvantage of this 

solution is a higher probability of getting an imbalanced number of positive to negative 

error trees for each fieldwork site due to the limited number of plots per site.  

The model errors consisted of two components: the error that was propagated from the 

inputs to the model and then from the model to the final AGB; the error from the 

mathematical model’s inappropriateness for the relationship between the RS data and 

AGB. The second component should be eliminated in the model generation stage, by 

providing a sufficient number of field samples, applying feature selection to avoid 

overfitting and designing the model and the model characteristics based on statistical tests 

to avoid under-fitting. Therefore, the model error was not considered as an external source 

of error. This finding is contrary to previous studies, such as Sabia et al. (2008) and 

Ahmed (2012), which have suggested that model error is an independent external error.  

The scenarios were designed to cover the widest possible range of RS based AGB 

assessment. For the first two scenarios, the feature selection process was limited to 
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implementing an ANOVA procedure. Both scenarios used the same inputs but yielded 

two different sets of products due to the processing technique (either pixel or object-

based). Kellndorfer et al. (2004) established that SAR based heights are not stable unless 

averaging a minimum of 20 pixels. Therefore, it is expected that a higher LHD 

performance would be achieved with the object-based processing that averages the pixels 

with each polygon. The interpretation for the failure of NDVIR, to pass the feature 

selection in the second scenario, could be that the NDVIR did not perform as good as it 

performed in the first scenario due to the averaging process. The other interpretation could 

be that the performance of band 4 data has improved with object-based analysis and 

therefore its P-value increased and exceeded the P-value of the NDVIR. For both 

scenarios, the selected Landsat-8 products somewhat disagree with previous studies such 

as Hall, et al. (2006) which chose Landsat-7 bands 3, 4, and 5, and Dube and Mutanga 

(2015), which selected Landsat-8 bands 3,4,5, and 7; and vegetation indices. This 

disagreement could be due to the differences in the fieldwork data sampling that uses 

pixel/object-based samples instead of plot based sampling. 

There are similarities between the ratios of remote sensing and fieldwork error splits 

to the total error in this study and those described by Colgan et al. (2013); Weisbin et 

al. (2014); and Chen et al. (2015); the error component averages for all scenarios 

showed that the highest share of errors came from RS data followed by the field data. 

However, the total error seems to be underestimated in the non-destructive studies, 

namely Weisbin et al. (2014); and Chen et al. (2015). This difference was interpreted 

to be due to the neglected error component in these studies, as they did not analyse 

the spatial error component.  
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An important implication of the error analysis is the possibility to determine the link 

between the local AGB and its error for each pixel/object. For all scenarios, the error 

propagation shows that the combined error from RS data and field data has a general 

trend that is directly proportional to the AGB with a relatively high average.  

Although there was a significant increase in the R2 of the second and fourth scenario 

model compared to the first and third scenarios, the relative absolute residuals were 

still high. This finding, while preliminary, suggests that reporting high correlation 

without validating the results, as many previous AGB assessment did, does not mean 

low uncertainty. Instead it can indicate a risk of overfitting.  

In the first and second scenarios, the highest residuals corresponded to the medium 

AGB, which might indicate that there are two or more areas that have tree covers of 

distinctive behaviours linked to the RS inputs that were covered by fieldwork 

validation samples. However, in the second scenario, the error value for the low AGB 

polygons was high compared to the corresponding errors for the low AGB pixels in 

the first scenario. This increase could be because of the constant spectral error of the 

LHD; the average error from the error propagation is close to the value of the average 

residuals.  

For the third scenario, the smallest possible sample size, which is one pixel, was used 

in order to make use of the detailed fieldwork-based AGB maps to provide the largest 

number of samples for the model training as a small sample size can reduce the 

precision by averaging the data over the plot area (Colgan et al. 2013; Hensley et al., 

2014). However, the resulting direct correlation between the RS data and the total 

AGB was unsatisfactory with a weak correlation due to the high density of the AGB 
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of the tree trunk over a small area that is not completely visible by the optical RS data. 

In other words, the tree trunk that has the largest share of the tree’s AGB is hidden 

behind tree branches and leaves. Therefore, the branch AGB map was used to provide 

a better correlation. These findings may help to understand why finer resolution data 

can possibly fail to improve the accuracy of AGB assessments in general. 

Applying an averaging filter to both the RS data and branch AGB data was key to 

reducing the effect of the pixel to pixel registration errors between the RS datasets and 

field data, and the effect of shadow areas in the WorldView-3 data. One of the 

disadvantages of using the branch biomass was that the relationship between total 

biomass and branches is very dependent on the tree species. For example, based on 

equation parameters in Table 43, an Oak tree with a branch AGB is about 400 kg 

should have a trunk AGB is about 2500 kg compared to a trunk AGB is about 860 kg 

for an Ash tree of the same branch AGB. Therefore, the conversion from branch AGB 

to the total AGB requires accurate tree species mapping.  

When compared to the Eckert (2012) feature selection result for WorldView-3 data 

(Figure 6-9 and Figure 6-14), both results agree on selecting a vegetation index and more 

than one texture feature. However, Eckert (2012)’s feature selection excluded the PCs 

and the original bands, which could be linked to the difference in the sample sizes as 

Eckert (2012) used plot samples.  

The error analysis, (Figure 6-12), showed that the model fitting residuals are high 

compared to the average branch AGB. These residuals start high with the low AGB, 

decreases for the middle values and then increase again for the high AGB pixels. A 

possible interpretation is that the high number of samples which are concentrated in the 

low and high AGB ranges and hence force the model to fit these samples. An implication 
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of this is the possibility that error analysis can be also used to indicate the weaknesses in 

the fieldwork sampling.  

The total error yield from propagating RS and field data to the AGB shows a direct 

correlation with the square of AGB which means that a second order model is reasonable 

to model the error outside the field areas. The quadratic relationship between error and 

AGB occurs as a result of the error fitting model matching the AGB model regarding 

complexity and flexibility because it was designed to be applied to the same model 

specifications. 

The fourth scenario all the selected features were common with the third scenario. 

Although it uses a smaller number of features, the trained model shows a higher R2 than 

the third scenario model (R2=0.78). This could be because the object-based analysis 

provided a smaller number of samples compared to the pixel-based analysis; the smaller 

number of samples can train a lower complexity model and therefore requires a smaller 

number of input features to avoid overfitting (Gu et al., 2016; Lever et al., 2016).  

The variances between residuals and error propagation results of the scenarios could 

be due to the existence of one or more error components that were not included in the 

analysis. In this study, all possible spatial and non-spatial errors from the field and RS 

data were taken in consideration. Still, the gap between residuals and simulated errors 

is large. Therefore, a possible hypothesis is that this component is related to a weakness 

in the relationship between AGB and the RS data.  

One of the issues that emerges from the scenarios is that the portions of errors can 

vary based on the processing methodology. Figure 6-19 shows that the ratios of spatial 

and non-spatial error component varies for each scenario. For example, for the first 

two scenarios, the non-spatial RS errors have more influence than the spatial errors. 
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In contrast, for other scenarios, most of the RS error was caused by the influence of the 

spatial error.  

The results summarised in Figure 6-19 also shows that all error component were 

significant. According to the findings of this study, the error sources considered by 

previous studies (Figure 2-1) could be extended to include the spatial error components 

of both field and RS inputs. Therefore, an alternative illustration is shown in Figure 7-2. 

This lack of error analysis for these two components (the spatial errors and the weakness 

in the relationship between RS data and AGB) can explain why previous simulation 

models were optimistic compared with the practical AGB models in this research. An 

example of an optimistic simulation study is Weisbin et al. (2014) that expected the Lidar 

based systems to achieve an uncertainty level of 5%. Also, Feng et al. (2017) showed that 

after a certain level of accuracy, adding a new type of RS data cannot improve the 

accuracy. 

The error analysis was applied with the minimum number of settings to satisfy the 

objectives of this study. Therefore, only seven settings were used for each scenario. 

However, the error analysis tool is flexible enough to provide further specific settings to 

separate the error components related to each single data set, which can satisfy a more 

sophisticated error analysis. Therefore, the outcomes of the undertaken quantitative 

research describe the state of concerns within the applied scenarios.  
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Figure 7-2: The process of AGB assessment and the comprehensive error propagation through it according 

to this study results. The assessment steps are shown in black, and the error propagation steps are shown in 

red. 

In addition, the study tried to accurately represent the sophisticated possibilities of AGB 

assessment systems in general with representative practical scenarios. The error 

propagation tool was applied to several varied scenarios and showcased the efficiency of 

applying a Monte Carlo method. A new technique was designed and implemented in order 

to overcome the computational cost limitation of previous studies. The technique was 

based on dividing the analysis into two stages. The first stage is applying the analysis to 

the fieldwork areas, and the second stage is modelling the errors for the first stage and 
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generalizing the resulting error model to estimate errors over the whole area of interest. 

Therefore, it can be claimed that this study is externally valid for other AGB assessment 

models. In addition, due to the new technique design, this methodology is applicable to 

the wider coverage AGB studies whenever the AGB modelling applicable. Moreover, this 

methodology is not limited to the AGB applications. It can be applied to any RS system 

that uses RS correlation to fieldwork-based data.  

7.4 Future Work  

With TLS based fieldwork improvements, such as faster and more spatially detailed 

information compared to the direct tree DBH measurements, there is a need to develop 

H-based allometric equations. The error analysis for the allometric equation error shows 

that the relative error of tree height measurements extracted from the TLS point cloud can 

be less than the relative error of the DBH extracted from the same point cloud. However, 

the accuracy can be reduced when the DBH allometric equation is converted to an H 

based equation.  

The plot based fieldwork had a limited spatial resolution information. The idea of 

distributing each plot to a number of smaller sized field samples can be extended in the 

future, providing a higher number of samples for the model training compared to the 

number of plots over the same fieldwork area and with higher spatial resolution. Also, 

distributing each plot to a number of samples, can provide maps that are more detailed; 

especially when very-high resolution RS data are utilized. However, the sampling 

strategy that was based on a large number of small area samples requires a detailed spatial 

distribution of the field AGB maps. Therefore, improving this technique will require 

improving the spatial accuracy of the fieldwork methods.  
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The relationship between branch AGB maps and total AGB needs to be explored further. 

The third and fourth scenarios showed that when small-area field samples were used, the 

branch maps showed a higher correlation to the very-high resolution RS data. However, 

the conversion from the branch maps to the total AGB maps can be a large source of 

uncertainty unless a well-established conversion is provided. 

This work can be expanded to be generalized for AGB and other remote sensing 

applications especially that the accuracy analysis applications are not limited to the AGB 

applications. The accuracy prediction tool (Chapter 3) can be applied on any application 

when enough literature is available. A better precision result is expected if the application 

bases on less variables or when more published detailed studies are available. The error 

sources classification (Chapter 6) is applicable on wide range of remote sensing 

applications. Therefore, the error propagation analysis tool (Chapter 5) can be applied on 

many uses that correlate field information and remote sensing data. 
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 Conclusions 

The overall research questions focused on what are the significant error components 

in AGB assessment systems, how to propagate errors to the results, and what 

influence each error component has on the assessed AGB. In answering these, the 

strengths of this research, compared to previous studies, are that: 

• The research was based on a careful classification of the expected error sources. 

A preliminary list of errors was formed, based on the literature review, and then 

extended to include the spatial errors within both the field AGB maps and remote 

sensing data that were shown to have a significant influence on the total error.  

• A new, fast, fieldwork approach was developed that provides very high spatial 

resolution (5 cm) outputs. The approach combines the high precession (3D accuracy 

of a few millimetres) AGB distribution assessment provided by terrestrial laser 

scanning data (with 3d accuracy of few millimetres for the P20) with the high 

accuracy existing allometric equations that are based on destructive tests for a large 

number of sampled trees. The AGB maps were separated into trunk and branch AGB 

maps with a higher correlation achieved when branch AGB maps were correlated 

against very-high resolution remote sensing data, compared to the total AGB.  

• The analysis tool was sufficiently flexible that it could propagate both non-spatial 

(e.g. spectral) and spatial errors, for all field and remote sensing data, to the model 

and hence results. It also dealt with both pixel-based and object-based analysis 
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techniques and could analyse a single error component or combination of all 

components, providing error models that gave an error analysis for each pixel or 

object.  

• The new error analysis technique, developed in this study, can derive general 

error equations (based on the fieldwork sites) that can be applied to the whole study 

area. This reduced the computational cost of stochastic simulation and allowed the 

processing to be accelerated within a parallel computing framework with GPU 

capabilities. Therefore, it was possible to make use of the widely applicable, and 

flexible, Monte Carlo approach for fieldwork sites. The resulting error maps visually 

illustrate areas where data needs to be improved and/or more fieldwork should be 

undertaken.  

Regarding areas for further work: 

• While a neural network system was trained to emulate human decision making, 

providing as an optimal trade-off between cost and accuracy, it might take a long 

time before enough studies are published to get sufficient training data for accurate 

predictions. In addition, the practical scenarios showed that the total error and the 

error components varied based on the system components. Therefore, predicting the 

final accuracy remains complicated.  

• More tree-height based allometric equations need to be provided in order to make 

use of the higher relative accuracy of TLS based tree height compared to the relative 

accuracy of TLS based tree diameter. 

• The relationship between the branch and total AGB needs to be explored further. 

When small-area field samples were used, the branch maps showed a higher 
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correlation to the very high spatial resolution remote sensing data. However, the 

conversion from the branch to the total AGB maps remains a significant source of 

uncertainty.  

• It is recommended that future AGB assessment studies/projects report the input 

details and the accuracy of their outputs, which can then be included within future 

versions of the accuracy prediction tool.  
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Appendix-A: Studies used as inputs to the accuracy prediction tool. 

1. Radar studies. 

Study Bands Polarisations Resolution Incidence 
angle 

(degrees) 

Study area 
scale 

Land cover 
heterogeneity 

(number of 
species) 

Field 
allometric 
equation 

Model Average  
biomass 

Best 
RMSE/average 

AGB 

(Ahmed, 2012) L,C HH,HV,VH,VV 1.6 25-65 forest 6 species Parametric 200 0.17 
(Askne et al., 2003) C VV 30 23 forest 2 species Parametric 140 0.07 
(Askne et al., 2003) L HH 100 23 forest 2 species Parametric 140 0.25 
(Minh et al., 2014) P HH,HV,VH,VV 1 24-62 forest 4 general Parametric 350 0.09 
(Soja et al., 2013) P HH,VV 50 26-35 forest 3 species Parametric 182 0.22 

(Rauste et al., 2009) L HH,VV 100 40 county 3 general Parametric 66 0.53 
(Askne et al., 2013) X VV 11 41 forest 2 general Parametric 105 0.18 
(Askne et al., 2013) X VV 12 34 forest 3 general Parametric 105 0.21 
(Rauste et al., 2009) X HH,HV,VH,VV 16 40 county 3 general Parametric 66 0.70 

(Sandberg et al., 2011) L,P HH,HV 4 28–50 country-state 3 species Parametric 111 0.31 
(Sandberg et al., 2011) L HH,HV 4 28–50 country-state 3 species Parametric 111 0.18 
(Sandberg et al., 2011) P HH,HV 4 28–50 country-state 3 species Parametric 111 0.27 

(Tian et al., 2013) L HV 0.25 18-43 forest 2 species physical model 90 0.26 
(Tian et al., 2013) L HH 0.25 18-43 forest 2 species physical model 90 0.31 
(Hyde et al., 2007) X, P HH,VV 5 20-60 forest 3 species Parametric 125 0.42 
(Hyde et al., 2007) UHF HH,HV,VV 0.75 20-60 forest 3 species Parametric 125 1.00 

(Robinson et al., 2013) L HH,HV,VV 5 20-50 forest 6 species Parametric 158 0.30 
(Robinson et al., 2013) L HH,HV,VV 5 20-50 forest 6 species Parametric 75 0.31 

(Tsui, 2013) C HH,VV 50 39.2 forest 3 general Parametric 223 0.54 
(Tsui, 2013) L HH,HV 19 34.3 forest 2 general Parametric 224 0.44 
(Tsui, 2013) L,C VH 20 34.3-39.2 forest 3 general Parametric 224 0.36 
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(Tsui, 2013) L,C HH,HV,VV 20 34.3-39.2 forest 3 general Parametric 224 0.40 
(Tan, 2012) X HH,HV,VH,VV 7 24 county 15 species Parametric 75 0.38 
(Tan, 2012) L HH,HV,VH,VV 10 24 county 15 species Parametric 75 0.31 

(Tanase et al., 2014b) L HH 10 8 - 30.0 forest 4 species Parametric 50 0.22 
(Tanase et al., 2014b) L HV 10 8 - 30.0 forest 4 species Parametric 50 0.23 
(Tanase et al., 2014b) L HH,HV,VV 10 8 - 30.0 forest 4 species Parametric 50 0.21 
(Tanase et al., 2014b) L HH 10 8 - 30.0 forest 4 species Non-parametric 50 0.26 
(Tanase et al., 2014b) L HV 10 8 - 30.0 forest 4 species Non-parametric 50 0.26 
(Tanase et al., 2014b) L HH,HV,VV 10 8 - 30.0 forest 4 species Non-parametric 50 0.26 
(Tanase et al., 2014b) L HH 10 8 - 30.0 forest 4 species Non-parametric 50 0.24 
(Tanase et al., 2014b) L HV 10 8 - 30.0 forest 4 species Non-parametric 50 0.24 
(Tanase et al., 2014b) L HH,HV,VV 10 8 - 30.0 forest 4 species Non-parametric 50 0.24 
(Tanase et al., 2014b) L HH 10 8 - 30.0 forest 4 species Non-parametric 50 0.23 
(Tanase et al., 2014b) L HV 10 8 - 30.0 forest 4 species Non-parametric 50 0.24 
(Tanase et al., 2014b) L HH,HV,VV 10 8 - 30.0 forest 4 species Non-parametric 50 0.24 
(Banskota et al., 2011) VHF VV 30 5–45 county 8 general Parametric 140 0.22 
(Mougin et al., 1999) P HV 1.5 35 forest 4 species Parametric 200 0.37 
(Mougin et al., 1999) P,L,C HH,HV,VV 1.5 35 forest 4 species Parametric 175 0.23 

(Jing et al., 2013) C HH 3 10.0-60.0 forest 1 species Non-parametric 19 0.11 
(Jing et al., 2013) C HV 3 10.0-60.0 forest 1 species Non-parametric 19 0.06 
(Jing et al., 2013) C HH,HV 3 10.0-60.0 forest 1 species Non-parametric 19 0.08 

(Sarker et al., 2012) L HH,HV 10 8.0-60.0 country-state 10 general Parametric 175 0.24 
(Sarker et al., 2012) L HH 10 8.0-60.0 country-state 10 general Parametric 175 0.43 
(Sarker et al., 2012) L HV 10 8.0-60.0 country-state 10 general Parametric 175 0.39 

(Ghasemi et al.) L HH,HV 12.5 8.0-60.0 forest 6 general Parametric 200 0.13 
(Sun et al., 2011) L HH,HV,VH,VV 15 21.5-34.3 forest 3 general Parametric 150 0.19 

(Tanase et al., 2014a) L HH 6 15-45 forest 2 species Parametric 45 0.68 
(Tanase et al., 2014a) L HV 6 15-45 forest 2 species Parametric 43 0.60 
(Tanase et al., 2014a) L VV 6 15-45 forest 2 species Parametric 48 0.75 
(Tanase et al., 2014a) L HH,HV 6 15-45 forest 2 species Parametric 45 0.63 
(Tanase et al., 2014a) L HH,HV,VH,VV 6 15-45 forest 2 species Parametric 45 0.68 
(Dobson et al., 1995) L,C,X HH,HV,VH,VV 7.4 29-34 forest 5 species Parametric 125 0.11 
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(Avtar et al., 2013) L HH,HV 40 7.9-60.0 country-state 20 general Parametric 140 0.45 
(Avtar et al., 2013) L HH,HV 40 7.9-60.0 country-state 20 general Parametric 90 0.21 
(Avtar et al., 2013) L HH,HV 40 7.9-60.0 country-state 20 general Parametric 110 0.19 

(Hamdan et al., 2014) L HV 25 7.9-60.0 country-state 2 general Parametric 227 0.19 
(Hamdan et al., 2014) L HH 25 7.9-60.0 country-state 2 general Parametric 227 0.22 
(Hamdan et al., 2014) L HH,HV 25 7.9-60.0 country-state 2 general Parametric 227 0.24 

(Avtar et al., 2014) L HH,HV 12.5 35 country-state 5 general Parametric 90 0.26 
(Englhart et al., 2011) X VV 8.25 29.9-36.2 county 5 species Parametric 180 0.65 
(Englhart et al., 2011) L HH,HV 12.5 38.8 county 5 species Parametric 180 0.57 
(Englhart et al., 2011) L,X HH,HV,VV 8.25 29.9-36.2 county 5 species Parametric 180 0.44 
(Englhart et al., 2011) L,X HH,HV,VV 8.25 29.9-36.2 county 5 species Parametric 200 0.30 
(Schlund et al., 2015) X HH 3.3 46.8–48.5 forest 1 species Parametric 314 0.17 
(Treuhaft et al., 2015) X HH 2.5 40 forest 4 species physical model 179 0.29 
(Solberg et al., 2013) X HH 3 36-42 forest 3 species physical model 338 0.20 

(Neumann et al., 2012) L HV 50 25-55 country-state 3 species Parametric 94 0.38 
(Neumann et al., 2012) P HV 50 25-55 country-state 3 species Parametric 94 0.43 
(Neumann et al., 2012) L HV 50 25-55 country-state 3 species Parametric 94 0.23 
(Neumann et al., 2012) P HV 50 25-55 country-state 3 species Parametric 94 0.30 
(Neumann et al., 2012) L HV,VV,HH 50 25-55 country-state 3 species Parametric 94 0.22 
(Neumann et al., 2012) P HV,VV,HH 50 25-55 country-state 3 species Parametric 94 0.28 
(Neumann et al., 2012) L HV,VV,HH 50 25-55 country-state 3 species Non-parametric 94 0.21 
(Neumann et al., 2012) P HV,VV,HH 50 25-55 country-state 3 species Non-parametric 94 0.26 
(Neumann et al., 2012) L HV,VV,HH 50 25-55 country-state 3 species Non-parametric 94 0.26 
(Neumann et al., 2012) P HV,VV,HH 50 25-55 country-state 3 species Non-parametric 94 0.24 

(Tsui et al., 2012) C HH,HV,VH,VV 8 39.2 forest 2 species Parametric 223 0.54 
(Tsui et al., 2012) L HH,HV 20 34.3 forest 2 species Parametric 223 0.44 
(Tsui et al., 2012) L,C HH,HV,VH,VV 8 34-39 forest 2 species Parametric 223 0.45 

(Suresh et al., 2014) L HV 50 36.6-40.9 county 5 species Parametric 100 0.47 
(Montesano et al., 2014) L HH, HV, VV 5 NA county 20 general Parametric 100 0.45 
(Montesano et al., 2014) L HH, HV, VV 5 NA county 20 general Parametric 20 0.60 

(Minh et al., 2015) P HV 1.245 25 forest 20 general Parametric 350 0.10 
(Tian et al., 2012) L HV 10 8 - 30.0 forest 1 species Parametric 96 0.42 
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(Tian et al., 2012) L HV 10 8 - 30.0 forest 1 species Non-parametric 96 0.26 
(Næsset et al., 2011) X HH 15 57 forest 3 species Parametric 110 0.29 

(Vastaranta et al., 2014) X HH,VV 2 35.8-52 forest 3 species Non-parametric 150 0.28 
(Saatchi et al., 2011) L HH 5 20-60 forest 11 species Parametric 139 0.35 
(Saatchi et al., 2011) L HV 5 20-60 forest 11 species Parametric 139 0.32 
(Saatchi et al., 2011) L VV 5 20-60 forest 11 species Parametric 139 0.33 
(Saatchi et al., 2011) P HH 10 20-60 forest 11 species Parametric 139 0.31 
(Saatchi et al., 2011) P HV 10 20-60 forest 11 species Parametric 139 0.27 
(Saatchi et al., 2011) P VV 10 20-60 forest 11 species Parametric 139 0.28 
(Saatchi et al., 2011) L HH,HV 5 20-60 forest 11 species Parametric 139 0.31 
(Saatchi et al., 2011) L HH,HV,VV 5 20-60 forest 11 species Parametric 139 0.28 
(Saatchi et al., 2011) P HH,HV 10 20-60 forest 11 species Parametric 139 0.21 
(Saatchi et al., 2011) P HH,HV,VV 10 20-60 forest 11 species Parametric 139 0.19 

2. Lidar studies. 

Study Records 
 

Footprint 
size m 

Study 
area size 

Land cover 
heterogeneity 

(No. Of 
species) 

Allometric 
equation 

Model Average  
biomass 

Best 
RMSE/average 

AGB 

(Ahmed, 2012) Full Waveform 20 forest 6 species Parametric 200 0.17 
(Baghdadi et al., 2013) Full Waveform 70 forest 1 species Parametric 64 0.25 

(Bortolot and Wynne, 2005) Multi Returns 0.5 forest 4 species Parametric 70 0.16 
(Drake et al., 2002a) Full Waveform 25 forest 3 age Physical 175 0.36 
(Drake et al., 2002a) Full Waveform 25 forest 4 age Parametric 175 0.11 

(He et al., 2013) Multi Returns 0.4 forest 4 species Parametric 104 0.14 
(Lim and Treitz, 2004a) Multi Returns 0.3 forest 1 general Parametric 84 0.35 
(Lim and Treitz, 2004b) Multi Returns 0.2 forest 4 site-specific Parametric 120 0.40 

(Lu et al., 2012) Multi Returns 0.25 forest 7 species Parametric 239 0.34 
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(Mitchard et al., 2013) Full Waveform 70 global 20 general Parametric 100 0.23 
(Vaglio et al., 2014) Multi Returns 0.1 forest 4 general Parametric 172 0.39 

(Popescu et al., 2011) Full Waveform 70 forest 2 general Parametric 150 0.25 
(Hyde et al., 2007) Multi Returns 2 forest 3 species Parametric 125 0.21 

(Tsui, 2013) Multi Returns 0.5 forest 3 general Parametric 315 0.18 
(Tan, 2012) Multi Returns 0.25 forest 15 species Physical 75 0.20 

(Tanase et al., 2014b) Multi Returns 0.1 forest 4 species Non-parametric 61 0.28 
(Banskota et al., 2011) Multi Returns 1 county 8 general Parametric 140 0.20 
(Banskota et al., 2011) profiling 0.6 county 8 general Parametric 140 0.23 

(Riegel, 2012) Multi Returns 0.16 forest 3 general Parametric 1 0.13 
(Sun et al., 2011) Full Waveform 20 forest 3 general Parametric 150 0.21 

(Clark et al., 2011) Multi Returns 0.3 forest 3 general Parametric 121 0.30 
(Clark et al., 2011) Multi Returns 0.3 forest 3 general Parametric 121 0.28 
(Clark et al., 2011) Multi Returns 0.3 forest 3 general Parametric 30 0.36 
(Clark et al., 2011) Multi Returns 0.3 forest 3 general Parametric 30 0.27 

(Persson et al., 2012) Multi Returns 0.5 forest 5 general Parametric 111 0.40 
(Johnson et al., 2014) Multi Returns 2 county 20 general Parametric 208 0.17 
(Johnson et al., 2014) Multi Returns 2 county 20 general Non-parametric 208 0.35 
(Popescu et al., 2004) Multi Returns 0.65 forest 1 species Parametric 132 0.33 
(Tanase et al., 2014a) Multi Returns 0.15 forest 2 species Parametric 57 0.30 
(Drake et al., 2002b) Full Waveform 25 forest 2 general Parametric 161 0.14 
(Drake et al., 2002b) Full Waveform 25 forest 2 general Parametric 161 0.10 
(Drake et al., 2003) Full Waveform 25 forest 1 general Parametric 224 0.14 
(Drake et al., 2003) Full Waveform 25 forest 2 general Parametric 161 0.14 
(Means et al., 1999) Full Waveform 10 forest 2 species Parametric 500 0.26 
(Means et al., 1999) Full Waveform 10 forest 2 species Parametric 500 0.18 

(Swatantran et al., 2011) Full Waveform 12.5 forest 5 species Parametric 200 0.35 
(Kronseder et al., 2012) Full Waveform 0.25 county 2 general Parametric 228 0.21 
(Schlund et al., 2015) Multi Returns 0.3 forest 1 species Parametric 315 0.11 

(Skowronski et al., 2014) Multi Returns 1 forest 5 species Parametric 88 0.26 
(Tsui et al., 2012) Multi Returns 0.52 forest 2 species Parametric 315 0.18 
(Hyde et al., 2007) Multi Returns 5 forest 3 species Parametric 125 0.21 
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(Hyde et al., 2006) Full Waveform 12.5 forest 5 species Parametric 500.00 0.15 
(Sheridan et al., 2015) Multi Returns 0.25 forest 10 species Parametric 114 0.31 
(Hansen et al., 2015) Multi Returns 0.22 forest 20 general Parametric 462 0.32 

(Skowronski et al., 2014) Multi Returns 1 forest 5 species Parametric 93 0.26 
(Neigh et al., 2013a) Full Waveform 50 global 20 general Physical 75 0.78 

(Montesano et al., 2014) Full Waveform 50 contenant 20 general Parametric 100 0.50 
(Montesano et al., 2014) Full Waveform 50 contenant 20 general Parametric 20 1.00 
(Montesano et al., 2014) Full Waveform 20 country 20 general Parametric 100 0.50 
(Montesano et al., 2014) Full Waveform 20 country 20 general Parametric 20 0.50 
(Montesano et al., 2014) Multi Returns 1 country 20 general Parametric 100 0.45 
(Montesano et al., 2014) Multi Returns 1 country 20 general Parametric 20 0.60 

(St‐Onge et al., 2008) Multi Returns 1 forest 6 species Parametric 175 0.23 
(Anderson et al., 2008) Full Waveform 10 forest 8 species Parametric 243 0.23 

(Tian et al., 2012) Multi Returns 0.5 forest 1 species Parametric 97 0.13 
(Nelson et al., 2007) Multi Returns 1 forest 1 species Parametric 200 0.17 

(He et al., 2012) Multi Returns 1 forest 3 species Parametric 100 0.16 
(Næsset et al., 2011) Multi Returns 1.4286 forest 3 species Parametric 110 0.14 

(Vastaranta et al., 2014) Multi Returns 2 forest 3 species Non-parametric 150 0.22 

 

3. Optical studies. 

Study Resolution  Spectral 
resolution  

Study area size Land cover 
heterogeneity  

(No. of species) 

Allometric 
equation 

Model Type  Average  
biomass 

Best 
RMSE/average 

AGB 
(Dong et al., 2003) 8000 Multi-spectral country-state 8 general Physical 61 0.5 

(Eckert, 2012) 2 Multi-spectral county 4 general Parametric 50 0.08 
(Heiskanen, 2006) 15 Multi-spectral forest 3 general Parametric 8 0.41 
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(Leboeuf et al., 2007) 0.65 Panchromatic forest 12 general Physical 50 0.22 
(Migolet et al., 2007) 4 Multi-spectral forest 5 general Non- parametric 9 0.01 
(Migolet et al., 2007) 4 Multi-spectral forest 5 general Parametric 8 0.18 

(Nichol and Sarker, 2011) 10 Multi-spectral forest 3 species Parametric 175 0.17 
(Sarker and Nichol, 2011) 10 Multi-spectral forest 3 general Parametric 175 0.26 

(Tomppo et al., 2002) 30 Multi-spectral forest 3 general Non- parametric 71 0.53 
(Xie et al., 2009) 30 Multi-spectral forest 7 general Non- parametric 121 0.42 
(Xie et al., 2009) 30 Multi-spectral forest 7 general Parametric 147 0.53 

(Zhang and Kondragunta, 2006) 1000 Multi-spectral Continent  20 general Parametric 125 0.32 
(Nichol and Sarker, 2010) 10 Multi-spectral county 3 general Parametric 175 0.14 
(Labrecque et al., 2006) 30 Multi-spectral county 3 general Non- parametric 116 0.51 
(Labrecque et al., 2006) 30 Multi-spectral county 3 general Parametric 107 0.53 
(Labrecque et al., 2006) 30 Multi-spectral county 3 general Physical 153 0.52 

(Chung et al., 2009) 30 Multi-spectral forest 2 general Non- parametric 131 0.50 
(Chung et al., 2009) 30 Multi-spectral forest 3 general Parametric 136 0.41 

(Muukkonen and Heiskanen, 2005) 15 Multi-spectral country-state 6 species Non- parametric 104 0.41 
(Muukkonen and Heiskanen, 2005) 15 Multi-spectral country-state 6 species Parametric 104 0.45 

(Reese et al., 2002) 30 Multi-spectral county 4 species Non- parametric 66 0.53 
(Reese et al., 2002) 30 Multi-spectral county 4 species Non- parametric 84 0.69 
(Reese et al., 2002) 30 Multi-spectral county 4 species Non- parametric 95 0.69 
(Reese et al., 2002) 30 Multi-spectral county 4 species Non- parametric 82 0.79 

(Soenen et al., 2010) 10 Multi-spectral forest 2 species Parametric 170 0.41 
(Soenen et al., 2010) 10 Multi-spectral forest 2 species Parametric 80 0.41 
(Clark et al., 2011) 1.6 Hyper-spectral forest 3 general Parametric 121 0.58 
(Clark et al., 2011) 1.6 Hyper-spectral forest 3 general Parametric 121 0.53 
(Clark et al., 2011) 1.6 Hyper-spectral forest 1 general Parametric 30 0.75 
(Clark et al., 2011) 1.6 Hyper-spectral forest 1 general Parametric 30 0.67 

(Persson et al., 2013) 2.5 Panchromatic forest 5 general Parametric 110 0.33 
(Persson et al., 2013) 10 Multi-spectral forest 5 general Parametric 110 0.31 

(Byrd et al., 2014) 30 Multi-spectral forest 2 species Parametric 15 0.21 
(Byrd et al., 2014) 1 Multi-spectral forest 2 species Parametric 15 0.22 
(Byrd et al., 2014) 30 Hyper-spectral forest 2 species Parametric 15 0.34 
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(Cortés et al., 2014) 30 Multi-spectral forest 3 species Parametric 86 0.52 
(Hamdan et al., 2014) 5 Multi-spectral county 2 general Parametric 227 0.19 

(Swatantran et al., 2011) 3.3 Multi-spectral forest 5 species Parametric 200 0.46 
(Hyde et al., 2006) 2 Multi-spectral forest 5 species Parametric 500 0.21 
(Hyde et al., 2006) 30 Multi-spectral forest 5 species Parametric 500 0.222 

(Neigh et al., 2013b) 30 Multi-spectral forest 8 species Parametric 150 0.31 
(Mutanga et al., 2012) 1 Multi-spectral forest 4 general Non- parametric 34 0.13 
(Mutanga et al., 2012) 1 Multi-spectral forest 4 general Parametric 34 0.16 

(Günlü et al., 2014) 30 Multi-spectral forest 1 general Parametric 83 0.10 
(Ramoelo et al., 2014) 1 Multi-spectral forest 1 species Parametric 4 0.17 
(Ramoelo et al., 2014) 1 Multi-spectral forest 1 species Parametric 2 0.19 
(Ramoelo et al., 2014) 1 Multi-spectral forest 1 species Parametric 4 0.3 
(Korom et al., 2014) 4 Multi-spectral county 1 general Parametric 73 0.10 
(Korom et al., 2014) 4 Multi-spectral county 1 general Parametric 140 0.04 
(Korom et al., 2014) 4 Multi-spectral county 3 general Parametric 135 0.10 
(Wallin et al., 2008) 30 Multi-spectral country-state 5 species Parametric 448 0.52 

(Güneralp et al., 2014) 30 Multi-spectral forest 4 species Parametric 125 0.23 
(Güneralp et al., 2014) 10 Multi-spectral forest 4 species Parametric 125 0.18 

(Dube and Mutanga, 2015) 30 Multi-spectral forest 3 species Parametric 139 0.45 
(Anderson et al., 2008) 3.3 Multi-spectral forest 8 species Parametric 243 0.23 

(Tian et al., 2012) 10 Multi-spectral forest 1 species Non- parametric 97 0.24 
(Tian et al., 2012) 10 Multi-spectral forest 1 species Parametric 97 0.40 
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4. Combined studies. 

Study Data 
source 

1 

Resolution 
of data 

source 1 

Data 
source 2 

Resolution 
of data 

source 2 

Study 
area size 

Land cover 
heterogeneity 

(No. Of 
species) 

Allometric 
equation 

Model Average 
biomass 

Best 
RMSE/average 

AGB 

(Attarchi and Gloaguen, 2014) Radar 10 optical 30 forest 5 species Parametric 196 0.16 

(Ghasemi et al., 2013) Radar 12.5 optical 10 forest 5 species Non-parametric 250 0.11 

(Lucas et al., 2008) Lidar 0.75 optical 1 forest 4 species Parametric 85 0.14 

(Lucas et al., 2008) Lidar 0.75 optical 1 forest 5 species Physical 85 0.30 

(Tanase et al., 2014c) Lidar 0.15 Radar 6 forest 1 general Parametric 48 0.48 

(Tuominen and Haapanen, 2013) Lidar 20 optical 0.5 county 8 species Non-parametric 96 0.23 

(Vaglio et al., 2014) Lidar 1 optical 1 forest 4 general Parametric 172 0.36 

(Zhang et al., 2014) Lidar 70 optical 30 state 8 general Parametric 300 0.25 

(Amini and Tetuko Sri Sumantyo, 
2009) 

Radar 50 optical 10 forest 7 general ANN 92 0.20 

(Popescu et al., 2011) Lidar 70 optical 2.4 forest 5 general Parametric 150 0.25 

(Tian et al., 2013) Lidar 0.15 Radar 0.25 forest 2 species Physical 90 0.26 

(Hyde et al., 2007) Lidar 2 Radar 5 forest 3 species Parametric 125 0.19 

(Goh et al., 2014) Radar 100 optical 10 forest 1 general Parametric 420 0.36 

(Tsui, 2013) Lidar 0.5 Radar 20 forest 3 general Parametric 315 0.07 

(Treuhaft et al., 2003) Radar 20 optical 20 forest 2 general Parametric 161 0.16 

(Banskota et al., 2011) Lidar 0.6 Radar 30 county 8 general Parametric 140 0.15 
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(Banskota et al., 2011) Lidar 1 Radar 30 county 8 general Parametric 140 0.17 

(Gagliasso et al., 2014) Lidar 0.25 optical 30 forest 5 species Non-parametric 22 1.57 

(Gagliasso et al., 2014) Lidar 0.25 optical 30 forest 5 species Non-parametric 22 1.26 

(Gagliasso et al., 2014) Lidar 0.25 optical 30 forest 5 species Parametric 22 1.43 

(Riegel, 2012) Lidar 0.16 optical 1 forest 3 general Parametric 3 0.05 

(Sun et al., 2011) Lidar 20 Radar 15 forest 3 general Parametric 150 0.19 

(Clark et al., 2011) Lidar 0.3 optical 1.6 forest 3 general Parametric 121 0.29 

(Clark et al., 2011) Lidar 0.3 optical 1.6 forest 3 general Parametric 30 0.29 

(Persson et al., 2013) Lidar 0.5 optical 2.5 forest 5 general Parametric 154 0.21 

(Persson et al., 2012) Lidar 0.5 optical 10 forest 5 general Parametric 110 0.30 

(Popescu et al., 2004) Lidar 0.7 optical 4 forest 1 species Parametric 80 0.36 

(Cortés et al., 2014) Lidar 0.2 optical 30 forest 3 species Parametric 95 0.35 

(Hamdan et al., 2014) Radar 25 optical 5 county 2 general Parametric 226 0.14 

(Swatantran et al., 2011) Lidar 12.5 optical 3.3 county 5 species Parametric 200 0.32 

(Kattenborn et al., 2015) Radar 2.5 optical 0.5 forest 5 species Non-parametric 196 0.15 

(Tsui et al., 2012) Lidar 0.52 Radar 8 forest 2 species Parametric 299 0.08 

(Hyde et al., 2007) Lidar 5 Radar 5 forest 3 species Parametric 125 0.19 

(Hyde et al., 2006) Lidar 5 optical 30 forest 5 species Parametric 500 0.14 

(Hyde et al., 2006) Lidar 5 Radar 2.5 forest 5 species Parametric 500 0.15 

(Hyde et al., 2006) Radar 2.5 optical 2 forest 5 species Parametric 500 0.17 

(Hyde et al., 2006) Lidar 5 optical 2 forest 5 species Parametric 500 0.15 

(Neigh et al., 2013b) Lidar 20 Radar 7.2 forest 8 species Parametric 150 0.21 
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(St‐Onge et al., 2008) Lidar 1 optical 1 forest 6 species Parametric 175 0.29 

(Anderson et al., 2008) Lidar 10 optical 3.3 forest 8 species Parametric 243 0.21 

(Tian et al., 2012) Radar 10 optical 10 forest 1 species Non-parametric 97 0.23 

(Tian et al., 2012) Radar 10 optical 10 forest 1 species Parametric 97 0.29 

(Amini and Tetuko Sri Sumantyo, 
2009) 

Radar 13 optical 2.5 forest 7 species Non-parametric 51 0.11 

(Nelson et al., 2007) Lidar 1 Radar 30 forest 1 species Parametric 200 0.16 

(Tsui et al., 2013) Lidar 1.4 Radar 8 forest 4 general Non-parametric 450 0.45 

(Næsset et al., 2011) Lidar 1.4 Radar 15 forest 3 species Parametric 110 0.39 

(Simard et al., 2006) Lidar 1.5 Radar 30 forest 1 species Parametric 150 0.37 

(Shendryk et al., 2014) Lidar 0.5 optical 10 forest 4 species Parametric 475 0.10 

(Kandel et al., 2014) Lidar 1 optical 5 county 3 species Parametric 207 0.25 
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