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1. Introduction  

Over recent years, awareness of the ecological consequences of marine plastic debris have increased 

considerably. Vast quantities of plastic waste emanating from land-based sources (Geyer et al., 2017, 

pp. e1700782, Borrelle et al., 2020, pp. 1515-1518) have entered and accumulated in the marine 

environment, where they can fragment to form smaller micro- and potentially nano- sized fragments.  

Due to their small size, which for many marine creatures can be similar to that of their prey, 

microplastics have considerable potential to be ingested. Further, the prevalence of microplastics 

throughout the global ocean, from tropical to Polar Regions (Kanhai et al., 2020, pp. 5004, Bergmann 

et al., 2019, pp. eaax1157), and from sea surface to the deepest parts of our ocean (Peng et al., 2017, 

pp. 476-482, Thompson et al., 2004, pp. 838, Courtene-Jones et al., 2020, pp. 111092) indicate the 

widescale potential for biota to encounter microplastics in their ambient environment.   

 

The presence of small plastic pieces in the environment was first documented in the early 1970s 

(Carpenter et al., 1972, pp. 749-750, Carpenter and Smith, 1972, pp. 1240-1241, Buchanan, 1971, pp. 

23), but it was not until the late 1980s that interest into the biological impacts of this pollutant began 

to be investigated more extensively (Laist, 1987, pp. 319-326). Early work was primarily concerned 

with the effects of macroplastics such as fishing and maritime debris on marine megafauna, for 

example seals, seabirds and turtles (Bjorndal et al., 1994, pp. 154-158). The stomach contents of 

beached seabirds were examined, evidencing their consumption of plastics (Franeker, 1985, pp. 367-

369, Fry et al., 1987, pp. 339-343, Furness, 1985, pp. 261-272). The first assessment of the number of 

marine species impacted by plastics, in terms of both ingestion and entanglement totalled 267 species, 

and almost exclusively focussed on large vertebrates with the exception of a small number of fish 

(n=34) and crustaceans (n=8) (Laist, 1997, pp. 99-139).  

 

As knowledge regarding the presence of microplastics in the environment has increased (Thompson 

et al., 2004, pp. 838) so too has the concern for their ecological impacts, and research efforts have 

been focused to address such questions. Indeed, using the search terms ‘(microplastic OR 
microplastics) AND (ingestion OR uptake)’ in Web of Science indicated a substantial growth in research 

activity over the last decade (Error! Reference source not found.). A notable shift in investigation has 

also occurred with research moving away from simply considering the presence of internalised 

microplastics (Cadée, 2002, pp. 1294-1295) to wider examination of the multitude of ways 

microplastics may cause biological harm (see section 4), including the availability and toxicity of co-

contaminants (Fred-Ahmadu et al., 2020, pp. 135978) and the possibility of trophic transfer 

(Walkinshaw et al., 2020, pp. 110066).  
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Figure 1. The number of articles published (stated above the bars) over the last two decades using the 

terms microplastic and ingestion/uptake. Results obtained from Web of Science on 18/12/20. The star 

indicates the first use of the term ‘microplastic’ (Thompson et al., 2004, pp. 838),which was used in the 

body of the text rather than the title and so it was not detected in this search. 

 

2. Defining harm 
There are many ways in which harm can be defined. A report by Werner et al (2016, pp.) investigated 

the numerous ways in which litter and its degradation products can have impacts on organisms and 

the economy. As an example, a discarded plastic bag can cause entanglement to marine birds and 

mammals. Plastic bags can smother habitats, altering species assemblages and biogeochemical 

processes which may detrimentally impact the ecosystem as a whole (Green et al., 2015, pp. 5380-9). 

They can also reduce the aesthetics of the beach and consequently have an impact on human 

wellbeing (Wyles et al., 2016, pp. 1095-1126). The same bag can degrade over time and produce micro 

and nano particles, which in turn can be consumed by marine life. The ingestion of plastics can cause 

toxicological effects (see section 4) and microplastics can pass up through the food chain, potentially 

causing harm at different trophic levels (Carbery et al., 2018, pp. 400-409, Welden et al., 2018, pp. 

351-358). The accumulation of litter can also impact the economy through reduced tourism and the 

financial burden of costs associated with clean-ups (Werner et al., 2016, pp.). This chapter focusses 

on the ingestion of plastics; therefore, harm is defined here within the eco-toxicological context of 

impacts on organisms and ecosystems.  

 

 

3. Ingestion of microplastics by marine organisms 

Owing to the small size of microplastics and their near ubiquitous presence throughout the marine 

environment, concern for marine life arises from their ingestion. The bioavailability of microplastics 

to a specific organism is determined by the size, density, abundance and colour of microplastic (Wright 

et al., 2013, pp. 483-92) as well as biological factors such as biofilm and aggregation with organic 
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material (Figure 2). The size fraction ingested will depend on the size of the mouth/buccal cavity of 

the animal (Jâms et al., 2020, pp.). Due to their small size (< 5mm in diameter), microplastics are 

available via ingestion to a wide range  of organisms as they overlap with the size range of their prey 

(Galloway et al., 2017, pp. 116) and can be readily ingested along with prey items (e.g. Lee et al., 2013, 

pp. 11278-83, Hall et al., 2015, pp. 725-732, Goncalves et al., 2019, pp. 600-606). The specific density 

of the polymer will affect its position within the water column and thus the potential that a species 

will interact with the plastic. As such, the types of plastics ingested may vary between organisms. 

Those inhabiting the upper water column will likely encounter low-density, buoyant polymers such as 

polystyrene (PS) and polyethylene (PE) on the sea surface, while benthic species may have a greater 

likelihood of ingesting high-density negatively buoyant polymers, such as polyester. This is perhaps an 

over-simplification, as biofilms can rapidly form on the surface of plastics (Lobelle and Cunliffe, 2011, 

pp. 197-200), and cycles of fouling and de-fouling can occur (Kooi et al., 2017, pp. 7963-7971) altering 

their buoyancy and position in the water column. The abundance of microplastics in the marine 

environment will also affect its bioavailability, i.e. where microplastic abundances are greater there is 

a higher chance that an organism will encounter a particle and thus a greater likelihood of ingestion. 

For example, rotifers exposed to 1.0 and 10.0 mg/L microplastics showed ingestion in all individuals; 

however, at 0.1 mg/L, the incidence of ingestion was less than 30% (Beiras et al., 2018, pp. 452-460). 

It is hypothesised that benthic detritivores and deposit feeders may be more susceptible to plastic 

ingestion due to the high quantities of microplastics found in sediments (Bour et al., 2018, pp. 652-

660, Browne et al., 2010, pp. 3404-3409). Finally, colour may influence the likelihood of ingestion due 

to prey item resemblance, for example some species of fish which prey upon zooplankton may ingest 

white, tan or yellow microplastics that most resemble their prey (Shaw and Day, 1994, pp. 39-43, Ory 

et al., 2018, pp. 566-573). Microplastics can also be ingested through consumption of contaminated 

prey items (e.g. da Costa Araújo et al., 2020, pp. 140217), i.e. trophic transfer, which is discussed 

further in section 4.3. 

Microplastic bioavailability can be influenced by biological factors, for example the growth of biofilms 

on the surface of plastics may enhance their likelihood of being consumed (Hodgson et al., 2018, pp. 

154-159) through the secretion of exopolymeric substances and aggregation with organic matter. 

Vroom et al. (2017, pp. 987-996) demonstrated that ageing in seawater may make PS beads more 

likely to be ingested by marine zooplankton, as many of the species ingested  aged polystyrene in 

preference to pristine polystyrene beads. Additionally phytoplankton colonising the surface of plastics 

can produce infochemicals such as dimethylsulfide (DMS) that are chemical cues. Empirical studies 

found that microplastics can acquire DMS signatures which can subsequently enhance their ingestion 

by seabirds (Savoca et al., 2019, pp. 35-41) and zooplankton (Procter et al., 2019, pp. 1-6, Botterell et 

al., 2020, pp. 12024-12033). 
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Figure 2. Factors influencing the bioavailability of microplastics to marine organism 

 

Field and laboratory studies have demonstrated the wide and increasing range of organisms spanning 

numerous habitats and taxonomic levels which ingest microplastics; these include fish (Lusher et al., 

2013, pp. 94-9), seabirds (Puskic et al., 2020, pp. 140666), zooplankton (Cole et al., 2015, pp. 1130-7), 

corals (Hall et al., 2015, pp. 725-732), molluscs (Al-Sid-Cheikh et al., 2018, pp. 14480-14486, Green et 

al., 2017, pp. 68-77) and crustaceans (Watts et al., 2014, pp. 8823-30, Welden and Cowie, 2016, pp. 

895-900). The first comprehensive review indicated that 177 species had ingested plastics  (either 

entanglement or ingestion, Laist, 1987, pp. 319-326), which increased to 208 species (Gall and 

Thompson, 2015, pp. 170-179), then 331 species (Kühn et al., 2015, pp. 75-116) and more recently 

701 species were reported (Kühn and van Franeker, 2020, pp. 110858), illustrating the development 

in our understanding of species affected by plastic ingestion (Table 1). Many of the species were listed 

as near threatened, vulnerable, endangered or critically endangered on the International Union for 

Conservation of Nature (IUCN) Red List (Gall and Thompson, 2015, pp. 170-179), indicating additional 

anthropogenic stressors on already vulnerable species. Few taxa have been routinely monitored to 

investigate temporal trends in plastic ingestion; however, data from seabirds and turtles reveal that 

their ingestion frequency has increased over the last few decades (Senko et al., 2020, pp. 234-252). 

Large-scale monitoring of northern fulmars (Fulmarus glacialis) has indicated that between 1969 to 

2010 both the incidence of ingestion and the mass of plastics ingested have increased (Avery-Gomm 

et al., 2012, pp. 1776-81). While these studies are valuable in assessing the temporal trends in the 

quantities of plastics ingested, understanding the impacts remains more challenging (discussed in 

section 4). 
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Table 1. Summary of the number of species within each taxa documented to have ingested plastics, 

as reviewed by Laist 1997; Kühn et al 2015 and Kühn and van Franeker, 2020. 

 

(Laist, 1997, 

pp. 99-139) 

(Kühn et al., 

2015, pp. 75-

116) 

(Kühn and van 

Franeker, 2020, 

pp. 110858) 

Seabirds 

Anseriformes (marine ducks)   1 2 

Podicipediformes (grebes)  0 0 0 

Phaetontiformes (tropicbirds)  2 2 

Gaviformes (loons)  3 4 

Sphenisciformes (penguins)  1 5 5 

Procellariiformes (tubenoses) 62 84 91 

Pelecaniformes (pelicans) 8 2 3 

Suliformes (gannets, cormorants)  12 15 

Charadriiformes (gulls, terns, skuas, 

auks)  40 55 58 

Total all seabirds 111 164 180 

Marine Mammals 

Ursidae (polar bears)  0 0 

Mustelidae (marine otters)  0 0 0 

Pinnipedia (all seals) 2 12 15 

Cetartiodactyla (all whales)  23 47 52 

     Mysticeti (baleen whales)  2 7 8 

     Odontoceti (toothed whales)  21 40 44 

Sirenia (manatees, dugongs) 1 3 2 

All marine mammals 26 62 69 

Other taxa 

All turtles 6 7 7 

All sea snakes  - 0 0 

All fish 33 92 363 

All invertebrates 1 6 82 

    

Grand total 117 331 701 
 

 

4. The impacts of microplastic ingestion on marine organisms 

With a growing geographical database of wild collected biota that had ingested microplastics (e.g. fish; 

Wang et al., 2020, pp. 109913), there is increasing focus to determine whether the presence of these 

materials is hazardous to organisms. Studies have reported detrimental impacts caused by 

microplastic ingestion across different levels of biological organisation (Rochman et al., 2016, pp. 302-

312), from those at the individual-level (including sub-cellular, cellular and organ-specific effects) to 

ecosystem-level effects (sections 4.1- 4.3). Reporting the presence of microplastics in an organism 

does not indicate harmful consequences. As with all compounds (xenobiotic, i.e. chemical substances 

found within an organism which are not naturally produced by that organism; or otherwise), there will 
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be a concentration or dose at which negative effects (i.e., toxicological) will begin to be observed, 

indicating a decline in health. The exposure concentrations where toxicological effects begin to be 

observed is likely to change depending on the physico-chemical properties of the plastic (e.g. size, 

shape, polymer and associated chemicals), the organism and its life history. 

 

4.1. Individual-level impacts 

The result of the microplastic exposure can lead to effects at different levels of biological functioning, 

including those on the individual, at site-specific target organs, on certain cell types, and even sub-

cellular effects. Once ingested, microplastics can either remain in the gut, or if the particles are smaller 

than that of the cells lining the gut lumen (which will vary between organisms) they may be absorbed 

across the gut tissue and into the animal. In both of these scenarios microplastics may be egested by 

the organism with no detrimental effects (Jovanović et al., 2018, pp. 123-131), or direct toxicity due 

to the physical impacts of plastic ingestion, or indirect toxicity related to the release of chemicals from 

the plastic may occur (see section 4.4).  

Direct physical impacts may occur whereby microplastics block the gastrointestinal tract, or 

microplastics may interact with and irritate the cells lining the gut tissue, which may cause the mucous 

present to slough away (Williams et al., 2015, pp. 445-55). This sloughing effect is finite, and if 

exhausted will reveal the underlying tissue, causing further damage to the underlying musculature.  

When trying to understand the effects of ingestion fish have been widely studied, through the 

incorporation of microplastics to a diet which can be fed to fish at a fixed dose for a period of time. 

The effects of microplastics on fish following ingestion varies widely between observed and no 

observed effects. Medaka displayed altered gene expression, following a two-month dietary exposure 

to virgin polyethyelene and to polyethylene which had previously been weathered in the environment 

for three months (Rochman et al., 2014, pp. 656-61). Down-regulation of choriogenin (Chg H) occurred 

in males, and down-regulation of vitellogenin, Chg H and the oestrogen receptor (ERα) was 
documented in females, indicating plastic exposure can cause an endocrine-disrupting effect 

(Rochman et al., 2014, pp. 656-61). Another study fed Medaka diets containing 0.01, 0.1 or 1.0% of 

microplastics isolated from environmental samples caused death, decreased head-to-body ratios, and 

alterations to swimming behaviour in larvae, in a dose-dependent manner (Pannetier et al., 2020, pp. 

105047). Following 60 to 90 days exposure to 0.1% PVC microplastics, there is some evidence of 

intestinal upset, with the presence of oedema of the tissue layers making up the gut in seabass (Pedà 

et al., 2016, pp. 251-256). However, fish fed a diet containing 0.01% MPs showed no effect on growth 

rate, pathology in the intestine or liver to gilt-head bream (Jovanović et al., 2018, pp. 123-131). This 

may represent a concentration dependent effect in the exposures of the two studies. 

Prolonged exposure to plastics or other xenobiotics can upset normal functioning of oxidative 

pathways, causing build-ups of potentially toxic by-products (e.g., superoxide) known as oxidative 

stress. These molecules are often highly charged, with the ability to damage subcellular components 

such as proteins and DNA. In laboratory studies, they can be measured either directly (e.g., reactive 

oxygen species), or indirectly through associated detoxification enzyme concentrations (e.g., catalase) 

or damage products (e.g., thiobarbituric acid reactive substances (TBARS)). These end-points have 

been common among microplastic exposures, but there is no clear consensus on these systems. For 

example, fish fed 33.3 mg/kg environmentally sourced microplastics for 5 days showed significant 
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elevation in catalase (CAT), glutathione-s-transferase (GST) and superoxide dismutase (SOD) activity 

and TBARS concentrations compared to control fish where no microplastics were present (Zitouni et 

al., 2020, pp.). However, fish fed polystyrene microplastics for 28 days shows no effects on hepatic 

catalase or GST activity (Ašmonaite et al., 2018, pp. 14381-14391). To unravel the effect of particle 

size and polymer, a systematic approach needs adopting. 

 

4.2. Population-level impacts 

As summarised in the previous section, a number of detrimental impacts can occur to an organism as 

a result of ingesting microplastics. Whether or not risk is posed to a population as a whole depends 

on a number of factors including the life history of a species (e.g. rate of reproduction), foraging 

strategy, species range and the population size. Individual-level effects, such as reduced feeding ability 

(Yin et al., 2018, pp. 97-105, Bergami et al., 2016, pp. 18-25) or altered reproduction (Sussarellu et al., 

2016, pp. 2430-2435) may affect an entire population by causing an overall population decline, or can 

cause successive generations to become less evolutionarily fit. For example, copepods which had been 

exposed continuously to microplastics over two generations, showed increased mortality rates across 

life stages and a higher proportion of the female egg sacs failed to develop (Lee et al., 2013, pp. 11278-

83). The study indicates that there could be detrimental impacts to recruitment on successive 

generations, ultimately causing a reduction in the population size and in turn reducing food availability 

for higher trophic levels. Sussarellu et al. (2016, pp. 2430-2435) reported that oysters exposed to 

micro-polystyrene particles produced 38% fewer oocytes and sperm velocity was reduced by 23%, 

also there were marked carryover effects with significant impacts on progeny, potentially reducing 

evolutionary fitness. Observation of polychlorinated biphenyls (PCBs) in the soft tissues of the 

lugworm Arenicola marina following ingestion of polystyrene microplastics with surface sorbed-PCBs 

(Besseling et al., 2013, pp. 593-600) showed these could reduce overall fitness.  

Filter-feeding megafauna (i.e. mobulid rays, filter-feeding sharks and baleen whales) may be 

susceptible to high levels of microplastic pollution and exposure any associated contaminants due to 

their feeding strategy, life history and habitat overlap with dense aggregations of plastics located in 

the gyres (Eriksen et al., 2013, pp. 71-6, Law et al., 2010, pp. 1185-8) as well as in other regions such 

as the Coral Triangle (Germanov et al., 2018, pp. 227-232, Worm et al., 2017, pp. 1-26). Within manta 

ray feeding areas in the Coral Triangle, it was found that between 4.4 - 62.7 pieces of microplastics 

could be ingested per hour, depending on the season (dry/wet) (Germanov et al., 2019, pp. 1-21). 

While the extent of the impact of microplastic ingestion by filter-feeding megafauna is not fully 

understood, populations are already threatened with other anthropogenic pressures such as 

poaching, by-catch from fisheries, habitat destruction, and boat strikes. Nearly half of mobulid rays, 

two-thirds of filter-feeding sharks and over a quarter of baleen whale species are listed by the IUCN 

as globally threatened (IUCN RedList) and are prioritised for conservation. Megafauna exhibit k-

selective life history strategies which are characterised by slow reproductive rates, late sexual maturity 

and low offspring numbers, meaning populations can be slow to recover after decline. Marine 

megafauna are charismatic species, with the potential to act as flagship species for marine 

conservation (Bowen-Jones and Entwistle, 2002, pp. 189-195). The use of iconic megafauna as flagship 

species can bring awareness to the impacts of microplastics to marine life, enhancing communication 

and public engagement, and stimulating community action (Pahl et al., 2017, pp. 697-699). 
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As mass production of plastics only commenced within the last 70 years, plastics in the marine 

environment present a relatively novel substrate for the colonisation and dispersal of species. Bacteria 

that colonise plastics were shown to differ from the surrounding water (Zettler et al., 2013, pp. 7137-

46), sediment (Harrison et al., 2014, pp. 1-15) and from those colonising non-plastic/natural debris 

(Ogonowski et al., 2018, pp. 2796-2808). As such, plastics provide a different ecological niche to 

natural debris, supporting different populations and communities of bacteria. Furthermore, plastics 

offer a vector for long-range dispersal of organisms. While natural materials, such as wood and 

seaweeds, tend to degrade and sink within months, plastics persist over much longer time scales 

(decades or longer), and so offer a mechanism for species to be transported over much greater 

distances (Barnes et al., 2009, pp. 1985-98, Barnes and Milner, 2004, pp. 815-825) and time-scales. 

With the quantities of plastics in marine environment increasing over the last seven decades (Borrelle 

et al., 2020, pp. 1515-1518), the potential for plastic-associated dispersal presents a viable 

opportunity for the movement of species. Indeed some 270 species have been identified to disperse 

via plastic debris including some invasive species 

(Secretariat of the Convention on Biological Diversity and the Scientific and Technical Advisory Panel

—GEF, 2012, pp. 61). This list was expanded a few years later to include a further 25 taxa, including 

bryozoans, molluscs, crustaceans and polychaetes, that had not been previously reported in rafting 

assemblages (Goldstein et al., 2014, pp. 1441-1453). Plastic debris stranded in northern Spain was 

found to contain three different invasive species (Miralles et al., 2018, pp. 12-18). If an invasive species 

is able to establish and proliferate outside of its native distribution, this may threaten native species 

due to increased resource competition. Such effects could cascade through the ecosystem and the 

Convention on Biological Diversity indicates that this is both a biological and economic challenge 

(Secretariat of the Convention on Biological Diversity, 2016, pp. 78). 

 

4.3. Ecosystem-level impacts 

To date, few studies have quantified the effects of microplastic pollution on ecosystem functioning. In 

part, this is due to the profound challenges in linking sub-organism level effects to the ecosystem level. 

Yet, it is the ecosystem-wide consequences of a pollutant that bring the greatest concern. Ecosystem-

wide effects could result where sub-lethal effects on a particular species or population prevents them 

from performing certain functions on which other parts of the ecosystems rely, for example 

bioturbation of sediments, or carbon and nutrient export. 

Bioturbation of sediments by plants and animals is a fundamental process redistributing nutrients and 

oxygen across the benthic boundary layer and altering the habitat structure for other benthic 

organisms (Meadows et al., 2012, pp. 31-48). After a two-month exposure to Polyvinyl Chloride (PVC) 

containing sediment, the lugworm Arenicola marina showed a significant reduction in feeding activity 

and the passage of this material through the gut was 1.5 times slower (Wright et al., 2013, pp. 483-

92). Extrapolating this to the Wadden Sea, the authors report that this could mean that 130 m3 less 

sediment is reworked annually. Another study exposing A. marina to PE, PVC and the biodegradable 

polymer Polylactic Acid (PLA) containing sediments also reports reduced feeding and burrowing 

activity, causing a 10- 16% reduction in burrow surface area and hence less water and nutrient 

exchange (Green et al., 2016, pp. 426-34). The behaviour and action of bioturbators could alter the 

distribution of microplastics within the sediment itself, enhancing mixing of microplastics into deeper 

sediments (Nakki et al., 2017, pp. 255-261) and interaction with infauna. 
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Mussels and clams are considered ‘ecosystem engineers’ due to the fundamental role they play in 
creating biogenic reefs which act as refugia and nursery grounds for diverse communities including 

commercially important seafood species. The reefs also play an important function in increasing 

turbulent mixing and particle resuspension which provides food for filter feeders (Drost, 2013, pp. 64). 

Green (2016, pp. 95-103) demonstrated that mussels that ingested microplastics had 50% less byssal 

attachment strength, potentially causing mortality through dislodgement by wave action and 

compromising their ability to form or maintain reef structures, which could have ramifications on the 

ecosystem as a whole.  

Within the global ocean the vertical flux of organic material, such as detritus and faecal pellets, is 

fundamental to the ‘biological pump’ (Turner, 2015, pp. 205-248), the mechanism by which carbon-

containing compounds are exported to the deep ocean. Many species of zooplankton and mesopelagic 

fish undertake vertical migrations, travelling long distances from the epipelagic zone where they feed 

to the deeper ocean where they deposit faecal material. This provides carbon and nutrients to the 

ocean interior and the benthos, and also promotes oceanic storage of atmospheric carbon (e.g. 

Giering et al., 2014, pp. 480-3, Buesseler, 2012, pp. 305-306). Following the ingestion of microplastics, 

zooplankton species can expel them with other organic material. Laboratory studies utilising some of 

the most commonly manufactured polymers, which were fed to zooplankton, showed that the 

subsequent microplastic containing faecal pellets had modified buoyancies compared to controls 

(Coppock et al., 2019, pp. 780-789, Cole et al., 2016, pp. 3239-3246). Those containing low-density 

polymers (PS, Low Density Polyethylene) had reduced settling velocities while those with high-density 

polymers (polyethylene terephthalate, polyamide) sunk at either the same or an increased rate to 

controls (Coppock et al., 2019, pp. 780-789, Cole et al., 2016, pp. 3239-3246). Extrapolating these 

results to the average depth of the ocean would hypothetically result in faecal pellets taking between 

10 days less to 53 days longer to sink to the benthos. While modifications to faecal pellet sinking rates 

have only been studied in copepods (Coppock et al., 2019, pp. 780-789, Cole et al., 2016, pp. 3239-

3246) and Antarctic krill (Bergami et al., 2020, pp.), a considerable diversity of organisms are reported 

to ingest and subsequently expel microplastics (Nelms et al., 2018, pp. 999-1007). If similar results are 

found across species and taxonomic assemblages there could be profound ramifications to pelagic and 

benthic ecosystems on a global scale. 

Increasing numbers of studies have shown that many lower trophic level organisms are able to ingest 

microplastics. Microplastics may therefore be indirectly assimilated as a result of trophic transfer, 

whereby predators consume contaminated prey items and as such microplastics can spread through 

the food chain. Laboratory studies have shown that microplastics can be transferred indirectly 

between trophic levels, i.e. from prey to predator. The trophic transfer of microplastics have been 

recorded from mussels to crabs (Watts et al., 2014, pp. 8823-30, Farrell and Nelson, 2013, pp. 1-3), 

between planktonic trophic levels (Setälä et al., 2014, pp. 77-83), and between herring and captive 

seals (Nelms et al., 2018, pp. 999-1007). Trophic transfer relies upon microplastics being retained in 

the body of an organism for long enough for it to be predated, thereby passing on the plastics. The 

duration that microplastics remain within an organism following consumption is not well known and 

results differ considerably between species. Mussels can rapidly (within 24 hours) expel the majority 

of ingested microplastics in their pseudofaeces (Goncalves et al., 2019, pp. 600-606, Woods et al., 

2018, pp. 638-645); however, this rate may slow when food is abundant (Chae and An, 2020, pp. 

124855 (6 pages)). Copepods display microplastic retention rates comparable to natural food items 

(Vroom et al., 2017, pp. 987-996), while egestion of microplastics by the planktivorous fish Serolella 



10 
 

violacea took on average 7 days (longer than food items) and 49 days at most (Ory et al., 2018, pp. 

566-573). Small microplastic particles also have the ability to translocate once ingested (von Moos et 

al., 2012, pp. 11327-35, Browne et al., 2008, pp. 5026–5031, Al-Sid-Cheikh et al., 2018, pp. 14480-

14486) increasing the potential for them to be retained in an organism's body and be passed to higher 

trophic predators.  

 

4.4. Impacts of plastic associated chemicals on organisms  

During production, chemicals are added to plastics to alter or improve their desired properties, such 

as plasticisers, flame-retardants, anti-microbial agents or UV-inhibitors. Many of these additive 

chemicals, such as bisphenol A, polybrominated diphenyl ethers (PBDE) and phthalates are also known 

to be endocrine-disrupting compounds, owing to their ability to modulate the endocrine system. 

These additive chemicals can subsequently leach from the plastic into the environment (Markic et al., 

2019, pp. 1-41, Turner, 2018, pp. 1020-1026) or if ingested, into organisms (Coffin et al., 2019, pp. 

4588-4599, Hermabessiere et al., 2017, pp. 781-793, Bakir et al., 2014, pp. 16-23). Studies have 

indicated that plastic additives can cause toxicological impacts, such as mortality; however, attributing 

impacts to specific chemical compounds remains challenging (Gandara et al., 2016, pp. 364-370, 

Bejgarn et al., 2015, pp. 114-9).  

In addition to the chemicals intentionally added into plastics, other compounds present in the 

environment due to agricultural and industrial processes may become adsorbed onto microplastics. 

Toxic hydrophobic organic compounds, often termed ‘persistent organic pollutants’ (POPs) due to 
their slow degradation rates, have been identified in plastics collected from the environment (Rios et 

al., 2007, pp. 1230-1237, Mato et al., 2001, pp. 318-324, Teuten et al., 2009, pp. 2027-45). Samples of 

plastics pellets collected globally were found to contain adsorbed PCBs, hexachlorocyclohexane 

pesticides (HCHs) and dichlorodiphenyltrichloroethane (DDT) and its breakdown products 

dichlorodiphenyldichloroethane (DDD) and dichlorodiphenyldichloroethylene (DDE) (Ogata et al., 

2009, pp. 1437-46). Indeed, plastics have been shown to readily adsorb hydrophobic organic 

chemicals, such as polycyclic aromatic hydrocarbons (PAHs) and HCHs (Lee et al., 2014, pp. 1545-52). 

Microplastics in the presence of up to 25 ng/g of different PCB congeners can bind up to 65% present 

in solution (Llorca et al., 2020, pp.). Due to their large surface area to volume ratio, microplastics can 

acquire a considerable loading of chemicals, up to six orders of magnitude greater than in the 

surrounding seawater (Hirai et al., 2011, pp. 1683-92, Mato et al., 2001, pp. 318-324). These chemicals 

can remain attached to the surface of the microplastic and can dissociate once ingested (Teuten et al., 

2009, pp. 2027-45), where they can potentially become bioavailable for uptake across the gut. A 

recent study indicated that while bioavailable to copepods, microplastic-sorbed PAHs did not cause 

significant toxicity (Sørensen et al., 2020, pp. 113844), while other studies have shown altered gene 

expression following exposure to microplastic-sorbed with contaminants (PCBs, brominated flame 

retardants, perfluorinated chemicals, PAHs, PCBs, PBDEs) (Rochman et al., 2013, pp. 3263, Rainieri et 

al., 2018, pp. 135-143). 

While studies indicate that microplastic-associated POPs can be transferred once the microplastics are 

ingested (Athey et al., 2020, pp. 154-162), it is not clear how what role microplastics play, compared 

to other sources of exposure, i.e. uptake through food. Modelling studies suggest that the amount of 

hydrophobic organic contaminants sorbed onto plastic is expected to be negligible (<0.001%; 

Koelmans et al., 2016, pp. 3315-3326). Even under modelled gut conditions, the co-exposure of 
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ingested microplastics with DDT, phenanthrene and bis-2-ethylhexyl phthalate is minimum compared 

to other routes (water or diet alone rather than microplastic; Bakir et al., 2016, pp. 56-65). 

 

5. Laboratory studies: limitations and discrepancies between laboratory and field 

observations 

Despite growing knowledge of the ubiquitous presence of microplastics in the environment, assessing 

the risks they pose to marine life is challenging, and in part, is hampered by the variability in laboratory 

protocols and types of microplastic particle used (Hermsen et al., 2018, pp. 10230-10240, de Ruijter 

et al., 2020, pp. 11692-11705).  There are many technical challenges to performing robust laboratory 

exposures that are environmentally representative. Some of these challenges surround the exposure 

conditions; for instance, exposing animals to microplastics via the ambient water can lead to incidental 

ingestion, making it difficult to extrapolate whether any observed effects are from exposure via the 

gill or gut, or both.  Another challenge which has been commonly identified in the literature is the 

concentration of microplastics used in laboratory experiments, which often greatly exceed those 

detected in the environment (Burns and Boxall, 2018, pp. 2776-2796, Lenz et al., 2016, pp. E4121-2). 

However, selecting appropriate microplastic concentrations is, for laboratory studies confounded by 

the high variability of microplastics reported between different environmental studies, localities and 

sampling methods (Barrows et al., 2017, pp. 1446-1453, Rist et al., 2020, pp. 115248, Kanhai et al., 

2017, pp. 307-314), making it difficult to suggest a single environmentally realistic concentration. 

Further, the abundance of small microplastics in the natural environment are very likely to a have 

been underestimated due to methodological constrains. For example, surface water samples are 

typically collected with a 333µm aperture net, resulting in the absence of data for smaller microplastic 

sizes (GESAMP, 2016, pp. 220). This is an area of particular concern as smaller microplastic particles 

are bioavailable to a wider range of organisms such as zooplankton (Vroom et al., 2017, pp. 987-996, 

Botterell et al., 2019, pp. 98-110). Under sampling of smaller microplastics in the environment means 

that there are few estimates that can contribute towards making laboratory methodologies more 

relevant to environmental conditions, and very few which can simulate environmental concentrations 

of nanoplastic particles in a laboratory setting (Al-Sid-Cheikh et al., 2018, pp. 14480-14486). 

Within the environment, thermoplastics such as polyethylene, polypropylene, polystyrene and 

polyethyleneterephthalate occur most frequently (SAPEA, 2019, pp. 176) and are thus likely to be 

ingested. Field studies often report the occurrence of polyester, polyamide and acrylic fibres, which 

can contribute >90% of the total microplastics ingested for certain species (Beer et al., 2018, pp. 1272-

1279, Courtene-Jones et al., 2017, pp. 271-280). The majority of laboratory studies have however used 

spherical polystyrene microplastics to examine  impacts; while beads are ingested by wild populations, 

fibres and fragments are more typically identified (Burns and Boxall, 2018, pp. 2776-2796). One reason 

why polystyrene spheres are so widely used is their commercial availability in reproducible form 

whereas microfibres would have to be extracted from larger materials before use. Microplastics which 

were previously underrepresented in laboratory studies, in terms of polymers, morphologies and 

sizes, are increasingly receiving research focus (Bucci et al., 2020, pp. e02044, Al-Sid-Cheikh et al., 

2018, pp. 14480-14486, Cole et al., 2020, pp. 111552), which will advance understanding of the 

impacts posed by these different particles.  
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6. Conclusion  
Over the last forty years, an increasing number of organisms spanning different habitats, taxonomic 

groups and feeding guilds have been reported to ingest microplastics. By comparison, the 

ecotoxicological impacts of ingesting microplastics and the mechanisms by which these are caused, 

are still poorly understood. Challenges in addressing the impacts of microplastics are, in part, 

presented by the i) diversity and complexity of physico-chemical properties of ‘microplastics’, ii) 
variability and environmental relevancy of laboratory protocols, and iii) the physiology and life-history 

of the study species. Evidence shows that microplastics and their associated co-contaminants can 

cause detrimental impacts to organisms across all levels of biological organization, from sub-cellular 

to ecosystem-wide effects (section 4). Exposure to microplastics can trigger inflammatory responses, 

oxidative stress and supressed feeding and reproduction, which over successive generations may 

reduce evolutionary fitness. Increasing numbers of studies have shown that many lower trophic level 

organisms are able to ingest microplastics and may suffer detrimental impacts. What this effect, at 

the base of the food chain, may have for long-term productivity and resilience of the ecosystem is 

unknown, especially when considering cumulative impacts with other anthropogenic pollutants in a 

warming climate (Welden and Lusher, 2017, pp. 483-487, Horton and Barnes, 2020, pp, Lamb et al., 

2018, pp. 460-462). There is broad consensus between the public, policy makers and industry that the 

current levels of plastic pollution in the environment are unacceptable. Continued efforts are 

therefore required to reduce plastic inputs and to focus research to address key knowledge gaps 

regarding the impacts of microplastics and their associated chemicals on marine life and the 

environment as a whole, which can help to inform and prioritise solutions.  
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