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Abstract: Biocomposites with regularly staggered alignment microstructure are frequently observed in 

natural biological tissues, and exhibit superior mechanical behavior. Owing to their viscoelastic nature, 

biocomposites exhibit stress rate-dependent stiffness function and mechanical behavior. In this paper, a 

linear viscoelastic shear lag model (SLM) is proposed to illustrate the micromechanical behavior of 

biocomposites under triangular loading pulse. Theoretical and numerical results are derived to predict the 

deformation and stress transfer between fibers and interfibrous matrix while the biocomposites are 

transiently stretched. The results from the analytical and numerical solutions demonstrate that how the fiber 

overlap length and loading rate affect the stress transfer and mechanical properties of biocomposties. The 

structure-property correlation is illustrated for viscoelastic biomaterials under transient loading, and the 

existence of characteristic length of soft matter with viscoelastic property is involved in load transfer 

mechanism between the adjacent reinforcements in transient regime, which optimizes the load transfer 

mechanism between the adjacent reinforcements. Furthermore, we found that discontinuous fibril model 

could ensure large relative sliding deformation, helping dissipate energy, protecting fibril from overall 

damage, and achieving high ductility and high toughness, which can provide beneficial design strategies 

for engineering fiber reinforced composites. 

Keywords: Biocomposites; Shear lag model; Mechanics of composite interface; Viscoelastic model; 

Mechanical response. 

 

1. Introduction 

1.1. Research objective 

Synthetic engineering materials with exceptional strength and toughness are a crucial requirement for many 

engineering structures; yet these mechanical properties are normally mutually exclusive [1]. The quest for 

addressing the conflict between high strength and high toughness has been prompting scientists to resort to 
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natural materials. Over millions of years of evolution by natural selection, unidirectional biocomposites 

with regularly staggered alignment microstructure are frequently observed in natural biological tissues (see 

Fig. 1) [2, 3], such as bone [4, 5], nacre [1], tendon [6] and axon [7], etc. Biocomposites have been found 

to exhibit an excellent mechanical balance with high strength and high toughness simultaneously [4, 8, 9]. 

In such microstructures, the stiff fiber, with relatively low fracture toughness and low strength-to-modulus 

ratio, is responsible for carrying a majority of the tensile stress. On the other hand, the compliant crosslinks 

of matrix, with relatively high ductility and high strength-to-modulus ratio, are inclined to take the 

comparatively greater part of the shear strain [3, 10, 11].  

The purpose of this paper is to theoretically and numerically explore and address the questions with regards 

to viscoelastic biocomposites owing to regular staggered alignment microstructure considering that the 

most elementary level of architecture is under transient loading. (1) Does there exist a structure-property 

correlation for the viscoelastic biomaterials under transient loading? (2) The characteristic length of bone 

and nacre exists under quasi-static loading conditions, which optimizes stiffness and strength; is there any 

associated characteristic length of soft matter with viscoelastic property involved in the mechanism of 

stress transmission between the neighboring reinforcements in transient regime? (3) As had been proposed 

by Gao et al. [2], building blocks in hard tissues are at nanoscales under quasi-static loading conditions; is 

the identical argument available for soft tissues under transient loading? With the aim of answering these 

questions, the following methods for analysis need to be applied: (a) establishing linear viscoelastic SLM 

for staggered alignment microstructural biomaterials under impact loading considering linear viscoelastic 

behavior, (b) identification of the characteristic length involved in these cases, (c) predicting characteristic 

length for collagen fibrils in tendon having staggered alignment microstructure as its fibril level, (d) 

providing new insights into the effect of applied stress rate on viscoelastic biocomposites. 

 

   

Fig. 1 Various geometries of fibrous structure in biological systems. (a) Bone collagen fibers [5]; (b) Nacre 

composed of aragonite platelets surrounded by thin layers of organic materials composed of proteins [4]; (c) 

Collagen fibrils with regular parallel arrays in tendon (Scale bar of 500 nm) [6]. (d) Electron micrograph of 

axonal microtubules connected by tau protein (Scale bar of 100 nm) [7].  

 

1.2. Literature review 

The well-known “brick-and-mortar” architecture, with discontinuous staggered stiff platelet embedded in a 

soft protein matrix, can be introduced to shed light on the load transfer mechanism of biocomposites. In 

order to characterize the mechanical interaction behavior of the platelets, Gao et al. [2, 12] proposed a 

tension–shear chain (TSC) model to explicitly elucidate the path of load transfer in the biocomposites, 

a b c d 
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where the fiber carry tensile load and the matrix transfers load between fibers via shear. Furthermore, TSC 

model established the relationship between the stiffness, aspect ratio of minerals, mineral volume fraction 

and material properties. It is noteworthy that many researchers utilized SLM to predict load transmission in 

the fiber reinforced composite under static or quasi-static loading conditions.  

The SLM was originally proposed by Cox [13], which is commonly applied to represent fiber reinforced 

composite material consisting of discontinuous fibers embedded in a softer matrix as a powerful analytical 

method for elucidating stress transfer and crack propagation between fibers and matrix [14]. The model has 

been widely used in various fields, such as materials science [8, 15, 16], geology [17, 18], structural 

engineering [19, 20] and biomechanics [21-23]. There are broad prospects for development. 

Interfacial shear stress distribution is a key parameter to determine the efficiency of load transfer from the 

polymer matrix to the fibers. Recently, researchers focused more on the constitutive relation of the matrix, 

resulting in various bond-slip models being accurately employed to improve the interfacial shear stress 

between the fibers and matrix (see Fig. 2). Chen et al. [24] discussed the characteristic length for efficient 

stress transfer in staggered biocomposites via the derivation of an elastic model (Fig. 2a) followed by 

numerical simulations. Wei et al. [8] proposed a criterion by using elasto-plastic model (Fig. 2d), which 

reveals the existence of a unique overlap length in biocomposites that contributes to an optimization on 

both strength and toughness fronts. Elastic-linear softening model (Fig. 2e) without the effect of friction 

after debonding is a popular bond-slip model [14, 25-28], which is usually applied by many researchers. 

However, some researchers [27, 29] considered the interfacial friction behavior between fiber and matrix, 

and postulated an elastic-linear softening-frictional model (Fig. 2f). In a similar manner, elastic-frictional 

model (Fig. 2g) was employed by Sanborn and Prévost [29] to investigate the platelet pullout process. For 

the sake of better understanding of the debonding process of fiber-matrix interface, Nian et al. [30] 

developed a bilinear traction separation and the Coulomb friction model (Fig. 2h) to capture different levels 

of plasticity at the interface. Moreover, elastic-hardening-softening model (Fig. 2i) was also proposed [31, 

32]. Investigations using shear lag model with piecewise linear model (Fig. 2j) and multilinear model (Fig. 

2k) were carried out by Pimenta and Robinson [33], Zhandarov and Mäder [34], respectively. In addition, 

nonlinear cohesive law (Fig. 2l) was applied for the single carbon nanotube pullout model [35]. Obviously, 

researchers attempt to find out the accurate interfacial constitutive relations for different adhesive materials. 

It should be noted that extensive literature exists on quantifying the role of microstructure and material 

parameters on the behavior of staggered architecture; however, most of the work was only under static or 

quasi-static loading conditions. There are very limited studies that address the factors responsible for this 

behavior under transient rates of loading. Dutta et al. [15, 36] constructed the mechanical dynamic model, 

and gave the impressive analytical results.  

Notably, these elastic and elasto-plastic constitutive models, as depicted in Fig. 2, lead to structure 

deformation instantaneously. Assuming that these interfacial constitutive relations are employed to 

elucidate the load transmission and crack propagation in biological composite materials, some limitations 

still exist, as they could not reflect the mechanical behavior of creep and stress relaxation. Nevertheless, 

soft material of biological tissue is sensitive to loading rate. Thus, physical property of viscosity needs to 

be considered in the analytical model of natural biological materials. The modified shear lag models have 

been recently developed for the application of tissues biomechanics. As for hard tissues, with high stiffness 
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and low viscosity, loading rate has little influence on the mechanical behavior of hard tissues. Soft tissues, 

with low stiff and high viscosity, are sensitive to loading rate. Furthermore, soft tissues exhibit stress 

rate-dependent breaking and stiffness function. Ahmadzadeh et al. [21] utilized bilinear elastic model (Fig. 

2b) to modify shear lag model for tendon. By using elastic model (Fig. 2a), rigid plastic model (Fig. 2c), 

elasto-plastic model (Fig. 2d), Szczesny and Elliott [22, 23] applied shear lag model to elucidate the 

fundamental mechanisms of deformation and stress transfer for tendon. Obviously, elasto-plastic 

constitutive models are insufficient to describe the mechanical behavior of biocomposites. 

 

 

Fig. 2 Common constitutive models for fiber-matrix interface. (a) Elastic-brittle model; (b) Bilinear elastic 

model; (c) Rigid plastic model; (d) Elasto-plastic model; (e) Elastic-linear softening model; (f) 

Elastic-linear softening-frictional model; (g) Elastic- frictional model; (h) Bilinear traction separation and 

the Coulomb friction model; (i) Elastic-hardening-softening model; (j) Piecewise linear model; (k) 

Multilinear model; (l) Nonlinear model. 

 

2. Fundamental Formulas 

2.1. General features 

To characterize the deformation and stress transmission mechanisms mainly caused from impact loading, 

creep and stress relaxation in fibrous biological structures, three common types of linear viscoelastic SLM 

are normally established to analyze the mechanical behavior between biological fibers and interfibrous 

matrix. Before theoretical derivations, the following assumptions should be taken into consideration: 

(i) The shear modulus of interfibrous matrix is several orders of magnitude smaller than the elastic modulus 

of fiber such that the interfibrous matrix could not transfer any normal stress between the adjacent fibers; 

the stress in the longitudinal direction can only be transferred via shear in interfibrous matrix. 

(ii) The stiffest discontinuous fibers are surrounded by interstitial fluid, or weakest-linked by protein, 
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proteoglycans or glycosaminoglycans, etc., generating large deformation and large deformation rate in the 

interfibrous matrix; and the stiff fibers are linear elastic. 

(iii) Under tensile force, the deformation of biocomposites is mainly in longitudinal dimension. 

(iv) The adjacent fibers are parallel arranged along the longitudinal direction, and overlap about half of 

their total length regularly. 

(v) The mass of the fibril is extremely small so that it can be neglected in the mechanical modeling. 

 

 

Fig. 3 (a) A unit cell with two adjacent fibers used in the shear lag model; (b) Equilibrium in infinitesimal 

body; (c) A Kelvin viscoelastic model composed of a spring and a dashpot in parallel considered for 

interfibrous matrix; (d) A Maxwell model containing a spring and dashpot in series; (e) A standard linear 

viscoelastic model containing a spring in series with a Kelvin unit. 

 

Table 1 Symbols used in the viscoelastic shear lag model 

Variable Brief description 

Ef Fiber Young’s modulus 

G Interfibrous matrix shear modulus 

η Interfibrous matrix viscosity coefficient 

L Half-length of fiber 

LC Characteristic load transfer length 

r Fiber radius 

h Distance between adjacent fibers surfaces 

δ Relative displacement between adjacent fibers 

ui Displacement of i-th fiber 

εi Normal strain of i-th fiber 

σi Normal stress of i-th fiber 

τ Interfibrous matrix shear stress 
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γ Interfibrous matrix shear strain 

P Force at the midpoint of fiber 

cf Fibrous volume fraction 

 

 

When a biocomposite is under tensile loading, stress is transferred from one fiber to the adjacent fibers 

through interfibrous matrix, which is subjected to shear stress and leads to relative sliding between fibers. 

Let δ be the relative sliding between adjacent fibers, which can be expressed as 

     1 2, , ,x t u x t u x t                                  (1) 

where u1(x,t) and u2(x,t) are the displacement of the 1st and 2nd fibers, respectively. 

The parameters used in this viscoelastic shear lag model are list in Table 1. A Cartesian coordinate system 

is placed at the midpoint of a fiber, in such a way that the length direction of fibers is along x-direction, as 

depicted in Fig. 3b. Interfibrous matrix shear strain γ can be expressed as follows 

     1 2, , ,u x t u x t x t

h h





                             (2) 

where h is the surface-to-surface distance between the adjacent fibers.  

The unit cell (Fig. 3a) and infinitesimal body (Fig. 3b) show the two adjacent fibers, in which each fiber is 

affected by its adjacent fibers. A shear stress τ(x,t) acts over the entire fiber circumference, resulting in the 

equilibrium equations as follows [22] 

   1 , 2 ,x t x t

x r

 



                                  (3) 

   2 , 2 ,x t x t

x r

 
 


                                  (4) 

where r is the radius of the fibers, σ1 and σ2 are the normal stresses of the fibers, which can be expressed as  

 
 1

1 1

,
, f f

u x t
x t E E

x
 


 


,  

 2

2 2

,
, f f

u x t
x t E E

x
 


 


              (5) 

where Ef is the Young’s modulus of the fibers; ε1 and ε2 are the normal strains of fibers. Furthermore, at any 

point x along fibers length direction, normal stresses acting on the cross section should maintain their 

mechanical balance with the loading force P(t), leading to the following equation 

     2 2

1 2, ,x t r x t r P t                            (6) 

The fiber normal stress σ1 and σ2 along the x-direction can be expressed as 

1 2

1 1

2 2
f

P
E

x r







 


, 

2 2

1 1

2 2
f

P
E

x r







  


                    (7) 

The boundary conditions are σ1(0,t)=0, σ1(L,t)=P(t)/πr2. According to Eq. (7), they can be alternatively 

written as 

   
2

0,

f

t P t

x E r






 


, 

   
2

,

f

L t P t

x E r









                     (8) 

While the initial condition can be expressed as follows 

 ,0 0x                                     (9) 
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2.2. Kelvin model 

Unlike an elastic material, which instantaneously deforms when a force is applied, biological materials 

slowly displace until their equilibrium deformation is reached. A Kelvin viscoelastic model containing a 

spring with shear stiffness G in parallel with a dashpot of viscosity η (Fig. 3c) is applied for interfibrous 

matrix in an attempt to elucidate the mechanical response of biological composites subjected to transient 

tensile loading 

=G   &                                    (10) 

where G and η are the shear modulus and viscosity coefficient of the interfibrous matrix, respectively. 

Though many complicated constitutive relations have been developed by considering the component of 

interfibrous matrix [3, 21, 37-41], Eq. (10) characterizes the basic stress-strain relation underlying Kelvin 

viscoelastic matrix shear lag model. 

Letting 

2

G


  , 

4

f

C

E rh
L

G
                                (11) 

and combining Eqs. (1)-(5), we obtain the governing partial differential equation (PDE) for relative sliding 

δ as follows 

2 2

2 2 2

1CL

t x

 


 

 
 

 
                                (12) 

where LC is the characteristic length over which the stresses are transferred between interfibrous matrix and 

fibers. 

A theoretical solution will be employed to solve δ(x,t), the details of which are given in our previous work 

[10]. Relative sliding can be derived by solving the nonhomogeneous PDE (Eq. (12)) with 

nonhomogeneous boundary conditions (Eq. (8)) and initial condition (Eq. (9)).  

     
   

2 2 2

2 2 22

11

2

0 0 2 2
1

, cos

CL n
tt

L

n n

n f f

P t P tn x
x t C D t e C D t e x x

L E r L E r



  


 

 
    
 



                (13) 

where 

   2

0 2 20

0 01 L

f f

P P
C x x dx

L E r L E r 

 
   

  
                          (14) 

   2

2 20

0 02
cos

L

n

f f

P P n x
C x x dx

L LE r L E r



 

 
   

  
                   (15) 

   
2

1

0 0
0

st

D t e h s ds                                        (16) 

   

2 2 2

2 2 2

1

0

cL n
s

t L

n nD t e h s ds



 

 
 
 
                                   (17) 

   0
0

1
,

L

h t H x t dx
L

                                        (18) 
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   
0

2
, cos

L

n

n x
h t H x t dx

L L


                                 (19) 

It can be seen from the Eq. (13)-(19) that, C0 and Cn are determined by the initial condition of force. If no 

force in the beginning, C0=Cn=0. D0 and Dn are resulted from the applied force P(t).  

After the solution of relative sliding is obtained, the expressions for normal stress in the fiber and shear 

stress in the interfibrous matrix can be obtained 

     
   

2 2 2

2 2 2

1

1 2 2 2
1

2
, , sin

2 2

CL n
t

L

n n

n

P t P tn n x
x t x L t C D t e x

L L r L r



  
 

 

 
  
 
 



               (20) 

   
 

2 2 2

2 2 2

1
2 2

2
1

, cos
4

CL n
t

L

n n

n

P tn r n x
x t C D t e

L rLL



  




 
  
 
 



                   (21) 

This implies that the theoretical solution of fibers’ displacement ui (i=1, 2), normal stresses σi (i=1, 2) and 

strains εi (i=1, 2), and shear stress τ can be derived if the boundary conditions are known. 

 

2.3. Maxwell model 

The Maxwell model consists of a spring and a dash pot in series. We can divide the total strain into two 

separate strains, one for the spring and one for the dashpot (refer to Fig. 3d). The stress will be the same in 

both elements. The constitutive relation for Maxwell model is given by 

G

 



 

&
&                                      (22) 

Combining Eqs. (1)-(5), (11) and (22), we obtain the PDE for relative sliding δ 

23 2
2

2 2 2

C

C

L
L

t x t x

  



  
 

   
                               (23) 

Thus, the governing equation of Maxwell viscoelastic shear lag model is a PDE with mixed derivatives in 

space and time, which can be solved by numerical Laplace transform method. Boundary and initial 

conditions are referred as Eqs. (8)-(9). 

Let us take the Laplace transform with respect to time of both sides of Eq. (22) due to t>0 

   0 , ,x s x t    L ,    0P s P t   L                       (24) 

The governing equation can alternatively be written as an ordinary differential equation with parameter s 

 
 

2 2
0

02 2 2 2

,
, 0

C C

d x s s
x s

dx L s L






  


                          (25) 

and boundary conditions can be transformed into 

   0 0

2

0,

f

d s P s

dx E r

 
 , 

   0 0

2

,

f

d L s P s

dx E r


                        (26) 

According to the theory of ordinary differential equation, we can obtain the analytical solution of Eq. (25) 

as follows 

     0 ,

s s

C C

x x

L L
x s A s e B s e

 


                             (27) 

where 
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 
 0

2

1 1

s

C

s s

C C

L

L
C

L L

sf L L

P s L e
A s

E r
e e



 










,  
 0

2

1 1

s

C

s s

C C

L

L
C

L L

sf L L

P s L e
B s

E r
e e



  






, 
2

2 1
s

s

s








      (28) 

Taking Laplace inverse transform on both sides of Eq. (27), we have 

   0 0

1
, , ,  >0

2

a i
st

a i
x t x s e ds t

i




 

 
                       (29) 

Now we apply the Fourier series method to numerically calculate Laplace inverse transform. This method 

is based on choosing the contour of integration in the inversion integral, converting the inversion integral 

into the Fourier transform, and then approximating the transform by a Fourier series [42]. This method 

approximates the inversion integral using the following equation: 

   0 0 0

1

2 1
, Re , Re , cos

2

at

k

e k i k t
x t x a x a

T T T

 






     
           

     
            (30) 

where 1i   . The parameters a and n must be optimized for increasing accuracy. The numerical results 

are highly accurate for a very short loading time. If the loading time is long, the result of  ,x t  might 

not converge to the accurate result. Nevertheless, finite element result has good convergence for a long 

loading time, so that we can perform finite element simulations (COMSOL 5.2) to calculate the relative 

sliding. 

Consequently, we calculate the numerical result of  ,x t  according to convolution theorem of Laplace 

transform. According to convolution theorem of Laplace transform, we can get back to the original 

function of relative sliding 

 
 

 
 

 01

0 02 20
, , ,

t
C C

f f

P s L P L
x t x s x t d

E r E r


   

 


 

    
  

L             (31) 

 

2.4. Standard linear solid (SLS) model  

According to the theory of viscoelasticity, Kelvin model could not describe the creep behavior of 

viscoelastic material, while Maxwell model could not capsule the stress relaxation behavior. We are now in 

a position to look at a more complicated and realistic model, the SLS model. This model consists of a 

spring in series with a Kelvin unit, which can characterize the creep and stress relaxation behavior of 

viscoelastic materials. Constitutive equation of SLS model can be given by 

1 2 1

1 2 1 2 1 2

G G G

G G G G G G


     

  
&&                           (32) 

Combining Eqs. (1)-(5) and (32), we get 

  2 3
1 2

1 2 1 2 24 4

f fE rh G G E rh
G G G

t x x t

  
 

  
  

   
                  (33) 

By letting 

2

1

1G


  , 2

2

2G


  , 

14

f

C

E rh
L

G
                          (34) 
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Eq. (33) can be simplified as 

2 2 2 3
2

2 2 2 2 2

1 2 2

1C C

C

L L
L

t x x t

  


  

   
    

    
                     (35) 

In a similar way to solving Maxwell viscoelastic shear lag model, by letting 

2 2 2

1 1 2

2 2 2 2

1 2 1 2

s

s

s

  


   




 
                              (36) 

the PDE can be transformed to an ordinary differential equation with respect to x 

 
 

2 2
0

02 2

,
, 0s

C

d x s
x s

dx L


                             (37) 

which is similar to the form of Eq. (25). Thus, the Fourier series method for the Laplace inversion can also 

be applied to the governing equation (Eq. (37)). 

 

3. Relevant Experiments and Parameters 

As a viscoelastic and hierarchical structure, tendon connects muscle to bone and transfers forces to 

generate smooth motion [43]. Owing to its intermedia stiffness between that of muscle and bone, tendon 

has a superior mechanical behavior, and serves as a buffer, which is capable of protecting muscle and bone 

from damage effectively [44].  

Histologically, collagen fibril, surrounded by a non-collagen interfibrillar matrix, is the fundamental 

element for bearing tensile forces in tendon. Both collagen fibrils and the surrounding non-collagen 

interfibrillar matrix play a crucial role in stress transfer under tensile forces. Gupta et al. [45] stated that, at 

the fibril level, the interfibrillar matrix governs tendon viscoelastic behavior by generating relative sliding 

between the adjacent fibrils. On the other hand, stiff fibrils is responsible for carrying a majority of normal 

stress [22]. 

According to the relevant experimental observation and measurement by researchers, the geometrical and 

material parameters of the fibrils and interfibrillar matrix used in this study are listed in Table 2. 

 

Table 2 Parameter values 

Parameter  Value  References 

Ef 1 GPa [46] 

G 1 Pa [22] 

r 75 nm [47] 

L 50 μm–1.0 mm [38] 

cf 0.7 [48] 

η 0.35 Pa·s [49] 
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4. Results and Discussion 

4.1. The process of stress transfer 

Although numerous experiments have been conducted by using atomic force microscopy (AFM) to 

measure the micromechanical properties of tendon [50, 51], few researchers explored the effect of loading 

rate on tendon. When the tendon is subjected to tensile stress, some of its elongation is significantly related 

to relative sliding between fibrils, which were demonstrated by the earlier studies [52, 53]. In accordance 

with the constitutive relation of interfibrillar matrix (Eqs. (10), (22) and (32)), shear stress acting on the 

entire fibril is not only closely relevant to relative sliding, but also significantly affected by relative sliding 

rate. In order to visualize the variation of shear strength in the joint throughout the overlap length and over 

time, a constant stress rate 𝜎̇=5.8333 MPa/s is hence applied to the 1st fibril at one end x=L, while the 2nd 

fibril is fixed at the other end x=0 (see Fig. 3a). The distribution of the relative sliding between fibrils and 

the normal stress in the 1st fibril at different time is shown in Fig. 4. 

As can be seen from Fig. 4, the values of δ and σ1 are both continuously increasing, while the applied stress 

is loading at the end x=L. The maximum relative sliding occurs at both ends, and the minimum value 

occurs at the midpoint of the overlap length x=L/2 due to the structural symmetry. Of course, the loading 

process of the tendon is based on the assumptions that the interfibrillar links are permanently engaged in 

the load transfer mechanism although they can unbind and rebind periodically. 

The closer distance to the applied force is, the larger the normal stress of the 1st fibril is. The maximum 

normal stress of the 1st fibril occurs in the loading end. However, the normal stress in the 2nd fibril is in 

the opposite condition, which can be found from σ1(L/2,t)=σ2(L/2,t), referring to Eq. (20). For the 

simplicity of the presentation in figures, the normal stress of the 2nd fibril is not provided therein. Indeed 

similar mechanical behaviors were reported by other researchers [21-23]. 

Among these three linear viscoelastic models, the deformation of Maxwell model at the same moment is 

the largest, in comparison of Kelvin and SLS models, which implies that the Maxwell model has an 

excellent performance in stress transfer. On the contrary, the relative sliding of Kelvin model is the smallest, 

the shear stress is concentrated on the both ends of overlap length, and the normal stress of the 1st fibril is 

concentrated at the loaded end. 

 

     

(a) Relative sliding of Kelvin model            (b) Normal stress in the fibril of Kelvin model 
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(c) Relative sliding of Maxwell model          (d) Normal stress in the fibril of Maxwell model 

     

(e) Relative sliding of SLS model              (f) Normal stress in the fibril of SLS model 

Fig. 4 Deformation and stress distribution of three kinds of linear viscoelastic shear lag model. (Model 

parameter used in calculation are L=3.266 mm, 𝜎̇=5.8333 MPa/s). 

 

4.2. Effect of the fibril overlap length on stress transfer 

In our previous study on stress transfer and crack propagation between fiber and matrix, we found that 

overlap length plays a vital role in the stress transfer [14]. Furthermore, linear elastic mathematical models 

and finite element models were developed to investigate how fibril overlap length affects the mechanical 

behavior of tendon [21, 40]. In the present study, the shear lag model taking into account the viscoelasticity 

is developed to elucidate the overlap length effects on deformation and stress distribution. A unit cell, with 

different overlap lengths 2LC, 8LC, 14LC and 20LC, is investigated in this section. When the fibril is 

stretched by a force with a constant stress rate 𝜎̇=5.8333 MPa/s, the distribution of relative sliding and the 

1st fibril normal stress are depicted in Fig. 5.  

When the fibril overlap length is short, e.g. L=2LC, the relative sliding δ at the midpoint does not appear to 

be much different from the values at both ends, and normal stress in the short fibril is linearly distributed 

along the length direction. In contrast, the relative slidings δ at both ends are much larger than that at the 

midpoint of overlap length, when the overlap length is long L=20LC, which leads to the 1st fibril normal 

stress is concentrated at the loaded end severely. Thus, the longer the fibril overlap length is, the smaller 

the relative sliding is, and the severer the normal stress is concentrated at the loaded end. These 

conclusions are in excellent agreement with what was reported by Ahmadzadeh et al. [21].  
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Among these three linear viscoelastic models, the deformation of Maxwell model at the same moment is 

the largest, followed by the SLS model. The relative sliding of Kelvin model is the smallest, leading to 

larger normal stress at the loaded end. Thus, the Kelvin model does not seem conducive to stress transfer 

between the fibril and interfibrillar matrix. 

Under static loading conditions, Ji and Gao [54] and Chen et al. [24] investigated the staggered 

arrangement of biocomposites previously. They proposed that the characteristic length was 

2C fL E rh G  in the view of stress transfer. Similarly, Wei et al. [8] predicted 2.318C fL E rh G  

according to an optimization on both strength and toughness fronts. Moreover, under transient rates of 

loading, characteristic length was predicted based on the maximum shear transfer efficiency point of view, 

 min ,C L
L x t    , as was presented by Dutta et al. [36]. In the present study, we introduce viscoelasticity 

to shear lag model, and use the stress transfer concept to predict characteristic length in the natural fiber 

biocomposites under transient rates of loading, as given by 0.5C fL E rh G  for Kelvin and Maxwell 

models (Eq. (11)) and 10.5C fL E rh G  for SLS model (Eq. (34)). Owing to the influence of 

viscoelasticity, the characteristic length is shorter than that postulated by Chen et al. [24] and Wei et al. [8].  

Characteristic length is a significant parameter for the design strategy of engineering fiber reinforced 

composites. In contrast to natural biocomposites, high performance fiber reinforced composites typically 

use continuous fibers, thus achieving high stiffness and strength but presenting limited toughness and 

ductility. Bio-inspired design of the discontinuous architecture might potentially improve the toughness and 

ductility, and extend the applicability of fiber reinforced composites to damage tolerant structures [55, 56]. 

Longer overlap length does not seem conducive to stress transfer. On the other hand, discontinuous fiber 

would help dissipate energy and protect fibril from overall damage. Also, crack bridging by discontinuous 

fibers can make brittle materials tougher by transferring stresses from the crack tip to elsewhere in the 

matrix material.  

 

     

(a) Relative sliding of Kelvin model           (b) Normal stress in the fibril of Kelvin model
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(c) Relative sliding of Maxwell model          (d) Normal stress in the fibril of Maxwell model 

     

(e) Relative sliding of SLS model              (f) Normal stress in the fibril of SLS model 

Fig. 5 Deformation and stress distribution of three kinds of linear viscoelastic shear lag model with 

different overlap lengths. (Model parameter used in calculation are t=10 s, 𝜎̇=5.8333 MPa/s, LC=408.19 

μm). 

 

4.3. Effect of the loading rate on stress transfer 

In accordance with the governing equations (Eqs. (12), (23) and (35)), the mechanical behavior of tendon is 

determined by two parameters, 2

CL  and 2  (or 2

1 , 2

2 ), of which the boundary conditions are 

independent. Notably, the values of these two parameters depend on the geometrical and material 

parameters of fibril and interfibrillar matrix, excluding the overlap length. Nevertheless, the boundary 

conditions are only relevant to the tensile force P(t) and the overlap length L. Overall, the mechanical 

property of tendon relies on the fibril Young’s modulus, fibril geometrical dimension and the 

viscoelasticity of interfibrillar matrix. 

In Section 4.1, we have discussed the relative sliding and stress distribution of fibrils and interfibrillar 

matrix when tendon is stretched by different stresses but at an identical stress rate. We are now to 

investigate the relative sliding and stress distribution under the same stress but at different stress rates, as 

illustrated in Fig. 6. Under slow stress rate, e.g. 𝜎̇=5.8333 MPa/s, the relative sliding δ is large. While 

tendon is stretched under a fast stress rate, e.g. 𝜎̇=10000×5.8333, 1000×5.8333 and 100×5.8333 MPa/s, 

the relative sliding in the region 0.2<x/L<0.8 is close to zero for Kelvin model. As for Maxwell and SLS 
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models, the distribution of relative sliding and 1st fibril normal stress appear to be very close, which 

indicates that, when the loading rate reaches to a certain level, the influence on the structure is very small, 

even though the loading rate continues to increase. Comparing with these three types of linear viscoelastic 

model, we can find that Kelvin model is more sensitive to loading rate. When the loading rate is fast 

enough, Kelvin model might lead to stress concentration at both ends of the overlap length, and do not 

conductive to stress transfer. It is noteworthy that SLS model (G1=0.5 Pa and G2=0.5 Pa) is more 

conductive to stress transfer at fast loading rate. However, under slow loading rate, Maxwell model is more 

conductive to stress transfer. 

The mechanical properties of tendons with various viscosity coefficients or shear modulus can be obtained 

according to the analytical and numerical solution to this problem. In order to clarify the relationship 

between the applied stress rate & and viscosity η of interfibrillar matrix, the time and spatial coordinate 

system is rescaled as T t &, X x L . Variables in the governing equations can be written in a rescaled 

manner to obtain:  ,X T L  ,    T t L      & ,  2 2 2 2T L t      , and 

 3 2 3 2X T L x t         &. On the basis of the rescale variables, governing equation of Kelvin model 

can be transformed into dimensionless equation as follows 

2 2

2 2

CL

G T L X

   
 

 

&
                               (38) 

For Maxwell model, the dimensionless form of governing equation is gives as 

2 23 2

2 2 2 2

C CL L

G T G L X T L X

     
 

   

& &
                          (39) 

For SLS model, the dimensionless form of governing equation can be expressed as follows, 

2 23 2

1

2 2 2 2

2 2 2

1C CL L G

G T G GL X T L X

       
    

    

& &
                    (40) 

Eqs. (38)-(40) show that the interfibrillar matrix with high viscosity has a similar tendency for relative 

sliding and fibril normal stress distribution in the tendon when all other parameters remain unchanged. 

 

     

(a) Relative sliding of Kelvin model            (b) Normal stress in the fibril of Kelvin model 
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(c) Relative sliding of Maxwell model           (d) Normal stress in the fibril of Maxwell model 

     

(e) Relative sliding of SLS model               (f) Normal stress in the fibril of SLS model 

Fig. 6 Deformation and stress distribution of three kinds of linear viscoelastic shear lag model with 

different loading rates. (Model parameter used in calculation are L=3.266 mm, t=10/k s, 𝜎̇=5.8333×k 

MPa/s, where k is an accommodation coefficient). 

 

4.4. Allocation of shear modulus (G1 and G2) of SLS model 

When G1=∞ or G2=0, the governing equation of SLS model (Eq. (35)) can be written in a simplified 

manner to obtain the governing equation of Kelvin model (Eq. (12)) and Maxwell model (Eq. (23)), 

respectively. We investigate the allocation of shear modulus (G1 and G2) effects on the relative sling and 

fibril normal stress distribution herein, as shown in Fig. 7.  

It can be noted from Fig. 7 that, relative sliding is the smallest when G1=0.5 Pa, G2=0.5 Pa, followed by 

G1=0.7 Pa, G2=0.3 Pa and G1=0.3 Pa, G2=0.7 Pa. In addition, the normal stress along the fibril is more 

inclined to linear distribution when G1=0.9 Pa, G2=0.1 Pa and G1=0.1 Pa, G2=0.9 Pa. 

 



 

17 

 

    

(a) Relative sliding between adjacent fibrils           (b) Normal stress in the 1st fibril 

Fig. 7 SLS model with different G1 and G2. (The unit of shear modules is Pa and model parameter used in 

calculation are L=3.266 mm, t=60 s, 𝜎̇=5.8333 MPa/s). 

 

4.5 The effective stiffness 

The mechanical behavior of macroscale tissue might be predicted from its micromechanical structure. For 

instance, the Young’s modulus of tendon could be derived from the ratio of the average fibril force over the 

cross sectional area and the average strain  1 ,u L t L , which can be expressed as 

 
 

 
1

1

,

2 ,

fc L L t
E t

u L t


                                 (41) 

where cf is the fibril volume fraction. Notably, cf depends on the fibril radius r and the surface-to-surface 

distance between adjacent fibrils h. Assuming that there are four neighboring fibrils near one fibril, the 

geometric relationship can be given by 

2
f

h

r c


                                     (42) 

It was reported that the geometrical parameters of fibril (lengths and radius) had a critical influence on the 

elastic modulus of tendon [48, 57]. Also, the Young’s modulus of tendon is affected by the geometrical 

parameters differently under different loading rates, as depicted in Fig. 8. As for Kelvin model, when the 

tendon is loaded with a slow loading rate, the Young’s modulus has a linear growth in the whole loading 

process (Fig. 8a). However, when the loading rate is fast, the tendon Young’s modulus increases 

nonlinearly owing to the contribution of viscosity of interfibrillar matrix (see Fig. 8b). Fig. 8b depicts that 

the effective stiffnesses of tendon with overlap lengths 2LC, 8LC, 14LC, 20LC are very close at fast loading 

rate. Kelvin model could capture the creep behavior but not the stress relaxation effect of soft matter, so its 

Young’s modulus increases very fast. As for Maxwell model, Young’s modulus of fibril with overlap length 

2LC decreases at applied stress rate 5.8333 MPa/s and 5.8333×1000 MPa/s owing to the stress relaxation 

effect. Under slow applied stress rate, the Young’s modulus of tendon with overlap lengths 8LC, 14LC, 20LC 

increases first, and then decreases. However, the Young’s modulus of tendon with overlap lengths 8LC, 

14LC, 20LC under fast loading rate continuously increases with a slow growth rate. As for SLS model, no 

matter how fast or slow of the loading rate, the Young’s modulus of tendon with overlap lengths 8LC, 14LC, 
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20LC continuously increases; yet the Young’s modulus of tendon with overlap lengths 2LC continuously 

decreases.  

Apart from Kelvin model, Maxwell model and SLS model could describe the process of stress relaxation 

behavior. Obviously, shorter overlap length is more likely to occur stress relaxation for Maxwell and SLS 

models (see Fig. 8c-f). Also, we could find that longer overlap length leads to larger effective stiffness of 

tendon. Furthermore, viscosity property contributes to the effective stiffness of tendon, especially under 

fast loading rate. 

Nacreous layers of some mollusk shells and bone of vertebrates are high-performance structural biological 

materials. Meyers et al. [58] explored the mechanical design principles for increased stiffness and strength. 

The Young’s modulus of the aragonite bricks is chosen to be 105.39 GPa and the shear modulus of the 

biopolymer matrix is approximately 1.4 GPa [8]. As for tendon, the Young’s modulus of fibril is 1.0 GPa 

[46] and the shear modulus of interfibrillar matrix is 0.5–1.0 Pa [22]. The shear modulus of bone 

biopolymer matrix is several orders of magnitude larger than that of tendon interfibrous matrix. Thus, the 

effective stiffness of tendon is much smaller than that of bone. Hard tissue, e.g. bone, nacre and tooth, can 

achieve high stiffness and high strength. Nevertheless, soft tissue, e.g. tendon, ligament and muscle, can 

achieve higher toughness, higher fatigue resistance and longer life.  

The microstructure of biological materials is optimized by natural selection to meet their fundamental 

physiological functions. The shear modulus of hard tissue is comparatively large, the critical overlap length 

of building blocks in hard tissue, e.g. bone and nacre, is close to the characteristic length LC [36]. On the 

other hand, the shear modulus of soft tissue matrix is dramatically small, thus the critical overlap length in 

the building blocks is several times longer than characteristic length. 

Note that the fibril volume fraction cf contains two cross-sectional geometrical parameters, the fibril radius 

r and the distance between adjacent fibrils surfaces h (see Eq. (42)). We have previously discussed the 

effect of fibril volume fraction cf on effective stiffness [10], and found that no matter how slow or fast of 

loading rate, tendon effective stiffness with larger fibrils volume fraction will be bigger than that with 

smaller fibrils volume fraction, and has a similar tendency. As was postulated by Ji and Gao [54] using 

TSC model, under quasi-static condition, higher volume fraction of ceramic can achieve larger effective 

stiffness. Due to the length of the article, effect of cf on the effective stiffness is not discussed herein. 

 

     

(a) Kelvin model under slow stress rate              (b) Kelvin model under fast stress rate 
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(c) Maxwell model under slow stress rate           (d) Maxwell model under fast stress rate 

     

(e) SLS model under slow stress rate                (f) SLS model under fast stress rate 

Fig. 8 The effective stiffness of three kinds of linear viscoelastic shear lag model with different overlap 

lengths (Slow stress rate is 𝜎̇=5.8333 MPa/s and fast stress rate is 𝜎̇=5.8333×1000 MPa/s). 

 

4.6. Model validation 

A series of in situ and in vitro uniaxial tensile tests on tendon fascicle were previously conducted to 

determine the biomechanical behavior of tendon [22, 23, 38, 41, 59]. In situ tensile testing and synchrotron 

X-ray diffraction experiments on rat-tail tendons were implemented by Puxkandl et al. [59] under the 

applied loading rate in the range 0.0001–0.01 mm/s. Tendon with viscoelastic nature exhibits strain 

rate-dependent mechanical properties. Hence a microstructural model was established to elucidate the 

tendon at a fibril level, where fibrils and interfibrillar matrix act as coupled Kelvin viscoelastic system. 

Although researchers have advanced experiment apparatus, such as AFM, transmission electron 

microscope (TEM) and microelectromechanical systems (MEMS), etc., it is a tricky experiment for them to 

measure the shear stress distribution in the interfibrillar matrix and normal stress distribution in the fibrils. 

Generally, stress-strain relations of tendon fascicle is measured by researchers in the tensile experiments 

[38, 41, 59].  

When the deformation of tendon is small, the Young’s modulus of Kelvin model is close to zero, which is 

not in accord with physical attributes of soft materials. On the other hand, Maxwell model could not reflect 

the creep behavior of tendon, which is significant to explain the case of the white collar’s rotator cuff tears 
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resulting from using computer for a long time. In our previous work, we have numerically compared 

Kelvin SLM with experimental results, and pointed out that Kelvin model is reasonable for modelling 

creep, but does not accurately predict stress relaxation [10]. Thus, SLS model is employed to elucidate the 

mechanical behavior of tendon. SLS model can explain the phenomena of creep behavior and stress 

relaxation of biological materials. Hence substitution of the geometrical and material properties of tendon 

into the governing equation of SLS model, leads to the effective stiffness of tendon and the normal stress of 

fibril, as seen in Fig. 9. In accordance with the relationship between stress and strain of the native rat tail 

tendon fascicle measured by Fessel and Snedeker [38], nominal stress-nominal strain curves calculated by 

the current model is consistent with the experimental results [38]; it also agrees well with the numerical 

results calculated by Ahmadzadeh et al. [21], as illustrated in Fig. 9a. Moreover, Fig. 9b shows the normal 

strain distribution in the 2nd fibril, which shows a good agreement with the numerical results obtained 

from other researchers [40]. Overall, our theoretical predictions show an excellent agreement with relevant 

experimental and numerical results. 

 

     

(a) Nominal stress-nominal strain curve            (b) Normal stress along the fibril 

Fig. 9 Comparison of our current model with experiments [38] and numerical results [21, 40] (Model 

parameters used in calculation are Ef=1 GPa, L=8400 μm, r=75 nm, cf=0.5, G1=G2=0.5 Pa, η=0.35 

Pa·s, 𝜎̇=5.8333 MPa/s, t=8.5 s). 

 

5. Concluding Remarks 

For bone, shell, and teeth, viscosity can generally be neglected during micromechanical analysis. However, 

viscosity is a non-negligible physical characteristic for soft tissue [60], which might have a crucial effect 

on the micromechanical properties of biological tissues. Hence, viscoelastic shear lag model needs to be 

developed to illustrate the micromechanical behavior between fiber and matrix in the biocomposites under 

transient loading. In this paper, we have extended and improved the previous shear lag model by including 

viscoelastic behaviors for the interfibrillar matrix and related the effective stiffness of tendon to the 

velocity of the applied load. This viscoelastic shear lag model is an essential extension to the previous 

shear lag models which only considered the elastic or elasto-plastic behaviors under static or quasi-static 

loads. Moreover, we developed an analytical solution to Kelvin shear lag model, and numerical results for 
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Maxwell and SLS shear lag models. In this way, we address the questions with regards to viscoelastic 

biocomposites possessing regular staggered alignment microstructure as the most elementary level of 

architecture under impact loading conditions, by considering a triangular loading pulse: (1) identifying the 

structure-property correlation for viscoelastic biomaterials under impact loading, (2) the existence of 

characteristic length of soft matter with viscoelastic property involved in the mechanism of stress 

transmission between the neighboring reinforcements in transient regime, which could optimize the 

mechanism of stress transmission between the neighboring reinforcements, and (3) ratify the choice of 

viscoelastic shear lag model in biocomposites under transient loading. The outcome of the current 

investigation would provide beneficial guidelines in custom-design manufacture of engineering fiber 

reinforced composites. 
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