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We derive focused laser pulse solutions to the electromagnetic wave equation in vacuum. After
reproducing beam and pulse expressions for the well-known paraxial Gaussian and axicon cases,
we apply the method to analyse a laser beam with Lorentzian transverse momentum distribution.
Whilst a paraxial approach has some success close to the focal axis and within a Rayleigh range
of the focal spot, we find that it incorrectly predicts the transverse fall-off typical of a Lorentzian.
Our vector-potential approach is particularly relevant to calculation of quantum electrodynamical

processes in weak laser pulse backgrounds.

I. INTRODUCTION

As the electromagnetic (EM) field intensities attain-
able in laser facilities increases, so do the possible ap-
plications EI—B] and prospects for studying fundamental
physics @, |. Example leading high-intensity laser facili-
ties include the VULCAN [6] and HERCULES [7] lasers.
Given the variation in laser intensities, applications and
configurations, there is an extensive list of different beam
and pulse models that describe the electromagnetic (EM)
fields produced [§10]. One of the most popular models
for describing high-intensity laser beams is the “Gaussian
beam”, and several different approaches have been used
to describe the fields (an overview can be found in [§, [11-
E]) A particularly useful approximation employed to
describe on-axis phenomena within the central Rayleigh
range of the Gaussian beam, is the so-called “paraxial
approximation”. With the advent of new experimental
techniques and the quest for ever higher intensities, fo-
cusing of intense laser beams is becoming increasingly
important ﬂ, ] Higher focusing naturally increases
the diffraction angle and brings into question the valid-
ity of the paraxial approximation ﬂﬂ, 14, @], especially
at sub-wavelength beam waist |15].

Other than linearly polarised, a Gaussian beam can
also be radially polarised (we refer to this as an “axicon”
beam). It has been shown that the axicon beam can be
focused to tighter spots and has the interesting property
of an electric field component in the direction of propa-

ation in the absence of a transverse component on axis
m] This longitudinal component of the field gives
rise to the applicability of using such a beam in the di-
rect acceleration of particles in the absence of a medium
23, [24).

There have been a number of different approaches used
to derive the fields of Gaussian beams in the paraxial ap-
proximation ﬂé, , ] An historical review of paraxial
theories is presented by ﬂﬂ] With the demand for tighter
focusing these approaches have been extended, providing
more accurate field descriptions using higher order ex-
pansions of various small parameters E @, ]
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There are now over fifty @, ] petawatt laser facil-
ities worldwide as well as even more ambitious facilities
planned, with the record intensity being of the order of
102*Wem ™2 ﬂ] This combined with sophisticated imag-
ing techniques @] is providing more experimental ev-
idence of the profile and propagation of high intensity
beams. This allows a more accurate theoretical descrip-
tion of high intensity beams and pulses. One such vari-
ation observed in some high intensity experiments was
that of the transverse intensity profile of the beam spot.
It was shown by [6] and further referred to by [, 31] that
the profile did not represent that of a Gaussian since only
20% of the energy was contained within the full width at
half maximum of 6um and 50% within 16um. Therefore
the intensity profile had wide tails which at the intensi-
ties used could have an appreciable effect on the target.
The suggestion was made by M] that a Lorentzian or
“q-Gaussian” transverse distribution would better rep-
resent the profile observed. It has been considered how
such a pulse propagates through plasma and how the
beam properties might be affected by a Lorentzian fre-
quency distribution for different g-values @]

Experimental advances have motivated interest in go-
ing beyond the “plane wave model” of laser-based strong-
field quantum electrodynamics (QED) (reviews can be
found in M, 5,133, @]) On the one hand, this allows test-
ing of the locally-constant field approximation @] used
throughout numerical codes, and on the other hand opens
up the possibility of studying new phenomena due to fo-
cussing ], medium effects and non-plane-
wave longitudinal structure ] A focused pulsed laser
background can be included in QED calculations pertur-
batively if it is weak enough, where it enters calculations
as the Fourier transform of the vector potential.

The main aim of the current paper is to provide a flex-
ible formulation of the vector potential describing propa-
gating laser pulses. After demonstrating the approach by
reproducing well-known results for linearly and radially-
polarised Gaussian beams, we apply the method to a
model which exhibits non-Gaussian focusing and wider
tails in the intensity profile, similar to as in iﬂ]

This paper is organised as follows. In Sec. II we first
outline the method of resolving a vector potential de-
scription of focused beams, by reproducing the estab-
lished results of linearly and radially polarised paraxial
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Gaussian beams. Following this, we provide a beam de-
scription with non-Gaussian transverse profile. In Sec.
III we analyse our results for our Lorentzian beam/pulse
and compare with the better known Gaussian result. In
Sec. IV we conclude.

II. METHOD

Our approach is inspired by the works of Coleman HE]
and Dirac ] and begins with the realisation of the po-
tential A" as an ensemble of real photons with momenta
[#. This leads to an expression in terms of a Fourier
integral in momentum space:

d*
(o) = [

where A" is a solution of the wave equation [(JA* = 0
and the ansatz A*(l) is dependent on which gauge,
polarisation or beam set-up we desire.

et A1) (1)

This is a particularly useful form of the vector poten-
tial for calculations in QED when the external field (the
laser background) is included perturbatively. Suppose
we write the field in terms of the intensity parameter £
(sometimes referred to as ag): A¥(z) = (m&/e)et f(x)
where |f(x)] <1, e-e¢ = —1 and e > 0 is the charge of
the positron. When ¢ < 1, the background field can be
included perturbatively. If one considers Compton scat-
tering in such an external field, one of the two leading-
order Feynman diagrams is given in Fig. [[I Then, we see

FIG. 1: Compton scattering in an external
electromagnetic field (designated by a cross).

the scattering matrix element can be written:

—je? g.+m  ~

/23V 3000 Up ¢’€

Spi =

—m?2 +ie

and g, = p’ + k' i.e. it is the Fourier-transform of the
vector potential, evaluated at a momentum determined
by in- and out-going particles, which naturally occurs in
the calculation.

A. Gaussian Beam

Starting with Eq. () we choose to work in the Lorentz
gauge 0- A = 0 and set A° = 0. We begin by considering
linear polarisation. For this set-up our ansatz becomes:

AL (1) = —ie* Eo(2m)4 6(1 - 1) p(I°)0. (1) 1PO(1P1°) | (3)
where L represents the combined transverse coordinate.
Note that A* is supported only on the light cone §(I - 1)
with directionality enforced by the 0(I31°) term, so it
is automatically a solution to the electromagnetic wave
equation. The e* term is the real polarisation vector,
p(1°) represents the energy spectrum of the photon mo-
menta and in order for the field to be real-valued must
obey p(I°) = p*(—1°). Finally §.(I+) is the transverse
distribution of the photon frequencies, representing the
focusing of the beam. We maintain continuity with the
plane wave limit by imposing the condition;

lim d.(1

E—0OQ

5) =011 6(?). (4)

To recover the Gaussian beam result in the literature

we use the “nascent” delta function of the heat kernel:
—x2
li — | =4
to choose:
W2 lLWO 2
(1) = 4—72€XP [—(T) ; (5)

where ¢ = 2/w2 has been chosen and wy is the beam
waist.

To recover the four-potential AL (x) and show that this
ansatz does indeed reproduce the field of a Gaussian
beam as proposed, we must perform the momentum in-
tegrals in Eq. (). We eliminate the [® integral using:

5(1-1)=0]( ]
VO =TTP)

3 . 33
2|13| + (1* = =1%) |,

(6)

where 6(+) is the Lorentz-Heaviside function.

Writing out A1 (x) explicitly using Eq. (@) to replace
5(L-1), we have:

At(z) = —iEO‘éV_g / d10 21t ettt at — (el
s
p(1%)0[(1°)% = (I+)?]
[Q(ZO)eiZ (19)2—(+)2 _ 9(_10

Yo~ =V 2=

(7)



As stated previously, we are looking to connect
with the well known analytical result of the Gaussian
beam in the paraxial limit. This is achieved using two
approximations.

i) Since we are not solving the paraxial wave equation
directly, we must make assumptions about the photon
momenta to ensure we recover the same result, namely
that:

<10 (8)

This allows us to simplify the integral by manipulating
the square root term. Performing a Taylor expansion of
I3 and neglecting terms of order (lj-/lo)4 we recover a
Gaussian term:

2 1\2
@r- = eyfi- () =-S5k

ii) The integration in (I+)? is bounded by (I°)2. Since
the Heaviside-Lorentz 6 function only depends on (I1)2,
we perform the integral over [+ in polar co-ordinates and
compute the integral over the angular dependence. Fol-
lowing this we may use the 6 function to determine the
limits for the remaining integration:

]
1(°,2) = 2”/ dp p e Jo(lztp);  (10)
0

where,
2
_ % . Z
a = 1 +1 2|lo|
and J,(x) is the nth order Bessel function of the first
kind |49]. We find:

At(z) = —iEO;V—E / di° p(1%)e= "t
[9(10)&““'51(10, 2) — (=191 12 (10, —z)} .
(11)

To perform the [° integral we must state the form of
the p(I°) function (frequency spectrum). To recover the
Gaussian beam, we choose:

1
p(1°) = W [5(10 —w)+6(1° + w)}, (12)
where w > 0 is the laser beam frequency.

Then we find:

2
1 _ Wo iw(z—t)
A+ (x) on—Smue I(w,2) +cc.. (13)

Now to deal with I(w, z) we make the second assump-
tion that wwg > 1 to perform the integral I(w, z) ana-
lytically, giving:

12
[z |

Eye 2 |zt %6
At =2~ in|wr +tan ¢ —
w 1 —|—g2 w2 ’

where we have defined:

and 2z, = w?wy/2 is the usual Rayleigh length. The
well-documented , , ] result for the electric field

of a paraxial Gaussian beam using £+ = —9; A", is then
_let? P
i o € w2 _ 1 X q
Epeam(T) = Eoﬁ Cos {wx +tan ¢ — w2
(15)

Finally to achieve an expression for a Gaussian parax-
ial pulse simply adapt the frequency spectrum p(I°) to
the desired pulse profile of a Gaussian distribution:

T —72 (I° — w)?
exp | ————
10v/47 4

p(1°) =

+ (w— —w)) ,
(16)

Where 7 is the pulse duration. On substituting into
Eq. () and computing, we yield an expression for the
Gaussian paraxial pulse which differs from the beam Eq.
(@3 only in the addition of a Gaussian temporal enve-
lope:

—\2
x

EX (x) = ef(T) B (2). (17)

B. Axicon Beam

To demonstrate the flexibility of this method, we de-
termine the field of an axicon beam. Taking our lead
from [§] we consider the case where A% is the only non-
zero spatial component of A and, choosing to work in the
Lorentz gauge 0 - A = 0 implies that 9y A° = 93 A3.

The method is the same as before, we evaluate the
momenta integrals in Eq. (IJ) except in this case we have
the ansatz:

A% = —(20) i Eo0 (1) p(1°)6- (1) PO (1°1°). (18)



On performing the integrals we recover the expression
for A3:

o |2
Epe w2 |zt |26
3y o€ v o - —1__
A®(z) = Ve sin |wz™ +tan"" ¢ =2

(19)

Now to establish the E3 component of the electric field

we recall that A° is non zero and hence has a contribution

to E3. Therefore differentiating A® with respect to z
gives:

P
e w B B |xJ_|2§
9, A3(z) = Fgy——— cos |wz~ +tan" ¢ — }
()= B0 o w2
(20)
We have neglected a term of order (wz,) ' since
wwp > 1. This implies with the gauge condition:
B 7‘2?2 | L|2
A%(z) = UO% sin [w(t —z)+tan"tg — xw2 g] .
(21)
Therefore A%(z) = —A3(x).
Calculating the electric field using B3 = —9; A3 — 9, A°

and Et = —0, A% = 0, A3, and neglecting terms of
O ((wzr)~*) we find:

E, ot 2 192
E?’:—ﬁe w2 COoS w:z:_—l—tan_lg— |xw|2§ ,
S
13
- F
Et = — (22)

which agree with recognised B] expressions for a
Gaussian-focused axicon beam. We can see directly from
Eq. ([22) that they produce the characteristics associ-
ated with an axicon beam: maximum longitudinal E-field
component in the centre and the absence of a transverse
E-field on-axis.

III. LORENTZIAN BEAM
A. Method

We seek a beam description that is representative
of observations in high intensity experiments showing
that the transverse intensity profile is not always well-
described by a Gaussian distribution but instead can
have wide tails [d, [d]. The suggestion by [31] is that
a Cauchy/Lorentzian distribution would be more repre-
sentative. We note that the wide tails can be seen by
calculating the average root mean square (RMS) width,

4

which for a Gaussian exp [—(z/w)?], is (/(22) = w/V/2)
whereas for a Lorentzian of the form 1/(1 + (z/w)?) di-
verges (1/(z2) — o).

We implement a simple variation into our ansatz,
demonstrating the flexibility of the method. The function
5c(I*) represents the focusing as it did in the Gaussian
case, but we alter its form from Gaussian to a distribu-
tion with wider tails. We seek a §.(I1) function that
produces an intensity profile with wide tails and satisfies
the condition (@]). We choose the Poisson kernel:

2¢ : > ds ixs—|se|flzie]
i 13%/ 2 © = ().
To acquire a beam that is symmetric under rotations
about the propagation axis, we set 2% to [+ - I+, square
the Poisson kernel and choose € = 1/wy. This leads to:

4 2
65(ZJ_) = WO 2 (23)
[1+(woz¢)2]
which, unlike the Gaussian beam case, does not

have a simple connection to the plane-wave limit as
lim. 0 0. (1%) = 6[(11)% + (1?)?].

We use the same polarisation set-up and method used
in the Gaussian beam derivation. Starting from Eq. (3)
with Eq. (23], we proceed in the same manner, finding:

At (2)=-2i Eyw? / dl® p(12)6(1%)e il 1=, (19, 2)
+c.c., (24)
where:
12°] —ibp®
pe 1
(10, 2) = 27 / dp Jo(lz*[p), (25)
0 [1+ (wop)?]*
with b = 2/2[1°|.
Expanding the Gaussian or Lorentzian in Eq. (28) for
small argument does not give a satisfactorily convergent
expression in regions close to the beam axis. However, we

can make use of the Bessel multiplication theorem ([50],
page 142):

D™ (z/2)™

D it

Jo(Az) = _ — Jotm(2).
(26)
Setting z = |x|/wo s0 A = wop:
= (w p —-nm
o) =3 & . ) )
m=0

L™ L
« (M) I (M)
Wo Wo



A benefit of this expansion is that only the m = 0 term

has a non-zero value at the origin. Therefore, we should
expect the lowest orders of this expansion to already
quite well approximate the paraxial case. Taking the
“paraxial” condition |zt | < wo, we acquire;

=

At(z) = 87EyJy <|I—>
0]

0 (70 —il%z~ 0 <
/dl p(1”) Im [e F <|l |W0,W>:| ,

(28)

where

—ivu?

n
F(u,v) = / du e 2
0
Although the integration can be written in terms of Si
and Ci functions, the result is not illuminating. For
this beam result we once again use delta functions for
the photon frequency spectrum p(I°) as in Eq. ([2)) and
similarly for a Lorentzian pulse we use a Gaussian dis-
tribution Eq. ([I6). The pulse calculation is not alto-
gether straightforward and requires careful manipulation
to produce an analytic paraxial result. With the benefit
of hindsight we find that by making the approximation
F(|i°,2) — F(w,z) we remove the [° dependence and
can perform the momentum integrals with ease. This
approximation is in excellent agreement with the exact
result and is based on the assumption that |I9] is peaked
around the central frequency w.
To analyse the properties of the beam we calculate the

energy density 79 from the energy-momentum tensor

i+ P 2

1 1
TP = i {gaﬂFuAFAB + ZgaﬁFuAFﬂA} .
T

The calculation is simplified by considering a linear po-

larisation and removing the A3 component due its negli-
gible contribution. This leads to:

10— L [0 + 0.4 + (20a)7] . (0
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FIG. 2: Comparison of Gaussian and Lorentzian profile
at ¢ = 0 and wg = X\ where the amplitudes have been
normalized.

stated) to accentuate any focusing effects. We first con-
firm from Fig. Bl that our choice to use a Lorentzian fo-
cusing function does indeed produce a beam with wider
tails than the Gaussian beam. We further compare with
the Gaussian beam by evaluating our paraxial approxi-
mation, which we expect to be good on-axis. Since the
only dependence on the transverse co-ordinate z was
found in the Bessel function Eq. (28) we find that the
“paraxial” result is very accurate on-axis, (Jo(0) = 1),
hence the second paraxial approximation using the Bessel

multiplication theorem Eq. (26]) does not apply. This is
shown in Fig.

TOO
Ey?
12
---- Paraxial
— Exact

A

L

-50 5

A

100(p

FIG. 3: Comparison between the paraxial and exact

which can also be written as 7% = (E? + B?) /8, which
is the the mod-square of the Poynting vector.

B. Results

In this section we analyse the properties of our
Lorentzian beam, all plots show the energy density 7°°
with minimum beam waist wy A (unless otherwise

Lorentzian beam solutions on-axis (z* = 0), where
Y =wr .

Off-axis however, there are significant variations be-
tween the paraxial and exact result. Firstly we observe
from Fig. [ that the paraxial transverse energy den-
sity profile has wide oscillating tails representative of the
Bessel function Jy(z"/w), whereas the exact beam re-
sult Fig. Blexhibits a definite width and is non-oscillatory.
This is to be expected since the paraxial approximation
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FIG. 4: Cross section plots of 79 for paraxial
Lorentzian beam at ¢t = 0 and with wg = A.

we made had the effect of removing the transverse mo-
mentum dependence from the integrand but gave the
paraxial approximation with a Jy(z*/wq) envelope.

TOO
E2
12 — z=0
- Z=Z,
z =3z
‘ . / L Xz
-10 -5 10 )

FIG. 5: Cross section plots of T for exact Lorentzian
beam at t = 0 and with wg = .

The paraxial approximation presented is leading order,
but including higher order terms in the Bessel approxima-
tion would have a damping effect on the oscillations off-
axis. It is worth noting that the first paraxial approxima-
tion Eq. (@) has little effect for wo = X as is the case for
the Gaussian beam Fig. [6l Hence to improve the paraxial
Lorentzian result significantly, higher order terms in the
Bessel approximation should be included. This Bessel
envelope has a significant effect on the beam shape. As
observed from Fig. [ the exact solution has the expected
shape of a focused beam (a narrowing width towards the
focus), however for the paraxial case we observe that 7
seems to be bigger than it should be at an appreciable
transverse distance from the focus, near the temporal
peak. This has the effect of a beam broadening towards
the centre, i.e. the beam will have a convex rather than
concave shape. This brings into question the validity of
using this leading-order paraxial approximation for de-
scribing any off-axis phenomena. Therefore, we consider
more closely whether the paraxial approximation is rep-
resentative within a certain regime. In Fig. B we plot
how the field depends on transverse co-ordinate, in the

FIG. 6: Profile of (a) paraxial and (b) exact Gaussian
beams with wg = A.

FIG. 7: Profile of (a) paraxial and (b) exact Lorentzian
beams with wg = A.

plane of constant longitudinal co-ordinate, for three dif-
ferent cases. We see that the main peak at the centre
of the paraxial profile is a good approximation within
one Rayleigh length (z,). However due to the absence of
width broadening for the paraxial case, we see that the
approximation becomes poorer for z > z,.. Fig. dis-
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FIG. 9: Energy density profile of Lorentzian beam at (a) z =0, (b) z ~ z, and (¢) z ~ 3z, for wo = 3\ at t = 0.

plays profiles of the Lorentzian beam for the same beam

IV. CONCLUSION

We have used a flexible approach based on the Fourier
transform of the vector potential in order to derive the
fields of focused laser pulses. Using an exact solution to
the wave equation, one is able to specify the frequency
and transverse momentum distributions to produce the
spatio-temporal form of the required focused beam or
pulse. Having reproduced the well-known linearly and
radially-polarised Gaussian beam results, we applied the
method to study a beam with a Lorentzian transverse
momentum distribution, as an example of a laser back-
ground with wider tails, which is representative of mea-
surements in high intensity laser experiments [6, [7, [31].
A paraxial approximation was found, which showed ex-
cellent agreement with the exact numerical result within
the Rayleigh range of the focal spot. The further away

cross sections.

from the focal spot, the less accurate the approximation
became, and even within the Rayleigh range, oscillating
transverse tails were predicted beyond the width of the
exact solution.

The Fourier-transformed vector potential formulation
of well-known laser pulse backgrounds is particularly
useful for QED calculations of laser-particle interac-
tions in the perturbative regime. In particular, the ap-
proach demonstrated allows for a flexible and accurate
description of high-intensity fields observed in experi-
ment [6, [7, [31].
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