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Abstract 106 

Tropical forests are global centres of biodiversity and carbon storage.  Many tropical countries aspire 107 

to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation 108 

strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-109 

carbon storage relationship.  Assessing this relationship is challenging due to the scarcity of 110 

inventories where carbon stocks in aboveground biomass and species identifications have been 111 

simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots 112 

located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, 113 

allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-114 

carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents 115 

are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 116 

1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of 117 

clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-118 

centred conservation strategies alone would inevitably miss many high diversity ecosystems. As 119 

tropical forests can have any combination of tree diversity and carbon stocks both will require explicit 120 

consideration when optimising policies to manage tropical carbon and biodiversity.    121 

 122 
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Introduction 130 

Biodiversity is threatened by the conversion of natural habitats and climate change 1-3. Tropical forests 131 

are under particular pressure, whilst also being among the most diverse biomes on the planet 4. By 132 

legally protecting areas, tropical countries can safeguard ecosystems with high biodiversity value 5, 133 

and so address their policy targets to reduce biodiversity loss 6. Likewise, carbon losses from the 134 

conversion of forest to other land-uses represent major emission sources for many tropical countries 7, 135 

and so incentives such as the UN REDD+ policy framework have emerged to help safeguard areas 136 

with high carbon stocks 8. Yet the potential for protection of carbon-rich areas to directly benefit 137 

biodiversity, and vice versa, depends critically on the relationship between biomass carbon and tree 138 

diversity, at relevant scales. A positive relationship would indicate potential synergies while a 139 

negative relationship would indicate difficult trade-offs between biodiversity and carbon conservation 140 

9.  In the absence of any relationship, optimal solutions for protected area placement need to carefully 141 

and separately consider the distribution of carbon stocks and the distribution of biodiversity 10. 142 

Understanding these distributions and potential carbon-biodiversity trade-offs is important, as 143 

protecting some forest can divert threats onto other unprotected areas 11.  144 

The expected form of diversity-carbon relationships in tropical forests and the strength and scale-145 

dependence of any underlying mechanisms are uncertain. Numerous experimental studies have 146 

demonstrated that plant diversity promotes biomass production, with niche partitioning and positive 147 

species interactions allowing diverse communities to exploit available resources more efficiently 12,13. 148 

Diversity can also increase productivity through selection effects, where communities that contain a 149 

larger sample of the species pool are more likely to contain high functioning species that contribute 150 

strongly to ecosystem productivity 14. Positive diversity-productivity relationships have been found in 151 

low diversity mid-latitude forests 15-17, potentially due to increased canopy packing through 152 

complimentary canopy architecture in higher diversity forests 18. Yet, it is unclear how significant 153 

such mechanisms are in diverse tropical forests, as experimental and theoretical work indicates that 154 

the positive effect of diversity may saturate at high species richness 12,19. Furthermore, additional traits 155 

associated with high-productivity species could conceivably lead to a positive diversity-biomass 156 
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mortality relationship, as highly productive stands tend to be composed of trees with shorter biomass 157 

residence times 21. Overall, this alongside high-productivity stands consisting of smaller, lighter-158 

wooded trees 20, may lead to a negative diversity-biomass carbon storage relationship. 159 

Previous studies investigating the tree diversity-carbon stock relationship in tropical forests have 160 

reported a positive relationship at fine spatial scales 22,23. However, the form of the relationship at the 161 

stand-level (i.e. among 1 ha plots) is less clear (Table 1), as some studies report a continued positive 162 

diversity-carbon relationship among sampling locations 23-25, while one other did not detect a 163 

relationship among 1 ha subplots within 25 larger plots 22. Thus, while there is some evidence that 164 

higher tree diversity promotes higher carbon stocks per unit area in diverse tropical forests 22-24, it is 165 

unclear whether any positive effect is strong enough for carbon and diversity to co-vary at scales 166 

relevant to conservation planning.   167 

Here we analyse a unique dataset of 360 inventory plots across the three major tropical forest blocs in 168 

the Americas, Africa, and the Sundaland biogeographic region in Southeast Asia (subsequently 169 

referred to as Asia). Importantly, this dataset greatly improves sampling of the two most extensive 170 

contiguous areas of tropical forest in the world, centred on the Amazon and Congo Basins (Table 1). 171 

Each plot was surveyed by standardised methods and is of uniform size, allowing robust 172 

quantification of co-located aboveground live carbon and tree diversity estimates. We analyse this 173 

standardised, multi-continental dataset at three spatial scales. Firstly, we explore forest carbon and 174 

diversity patterns within South America, Africa and Asia, in order to characterise among-continent 175 

variations in tree alpha diversity, beta diversity, and carbon stocks. Secondly, we assess stand-level (1 176 

ha) diversity-carbon relationships within each of the continents, initially by looking at the bivariate 177 

association of tree diversity metrics and carbon stocks per unit area, and then re-examining the 178 

relationships after controlling for potentially confounding environmental variation and residual spatial 179 

autocorrelation. Finally, we investigate fine-scale relationships between tree diversity and carbon 180 

within 0.04 ha subsections of 1 ha plots, where environmental differences that may obscure a positive 181 

diversity effect on carbon are accounted for. This approach allows us to (1) examine basic patterns of 182 

diversity and carbon across the biome, (2) test if more diverse tropical forests are also in fact more 183 
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carbon dense, and (3) explore whether relationships between diversity and carbon-storage, after 184 

accounting for the effect of potentially confounding variables, are consistent with tree diversity 185 

having a positive effect on carbon in tropical forests. We conduct additional analyses to assess support 186 

for the operation of selection effects and niche complementarity at different spatial scales. We focus 187 

on carbon in aboveground live biomass derived using allometric relationships, and diversity metrics 188 

relating to taxon richness. We also repeat analyses using alternative diversity metrics that consider 189 

species abundance and functional diversity for which results and inferences are similar (see 190 

Supplementary Information). 191 

   192 

Results  193 

Pantropical forest carbon and diversity 194 

 Our standardised methods of inventory reveal great variation in both aboveground live carbon stocks 195 

and tree diversity within continents and across the humid tropical forest biome. While it is possible to 196 

find almost any combination of both parameters (Fig. 1), the plots reveal large differences in carbon 197 

and diversity amongst the three continents (Table 2). African tropical forests are characterised by high 198 

carbon storage per unit area and consistently low alpha-diversity (even the most species-rich African 199 

plot had fewer species than the median species richness recorded in South America and Asia). By 200 

contrast, in South American plots carbon storage per unit area was lower than in African forests (Fig. 201 

1). Nevertheless both diversity and carbon vary greatly within South America, as reflects previously 202 

reported gradients in species richness 26 and biomass 27,28, with some stands in the Guiana Shield 203 

region containing carbon stocks comparable to forests in the paleotropics (Fig. 1). Asian forests differ 204 

again, having on average both high carbon storage per unit area and high tree diversity. These 205 

differences in diversity amongst continents remain when diversity metrics are standardised per 300 206 

stems (Table 2), and when the analysis was repeated only including plots with >90% of stems 207 

identified to species level (Supplementary Table 3), thus are robust to differing stem numbers (lower 208 

in Africa, negative binomial GLM χ2 = 188.6, P < 0.001), and are unaffected by levels of tree 209 



Sullivan et al. Tropical diversity – carbon relationships 
 

9 
 

identification (not different amongst continents, Kruskal-Wallis test H = 2.1, P = 0.335). This 210 

pantropical assessment of forest carbon stocks and diversity is consistent with previous reports from 211 

individual continents, indicating high biomass in forests in Africa 29 and Borneo 30,31, high diversity in 212 

central and western Amazonia 32 and low diversity in Africa 33,34. Our analysis demonstrates that 213 

forests across the Sundaland region of Southeast Asia are not only amongst the most diverse in the 214 

tropics, as noted elsewhere33, but also amongst the most carbon-dense.  215 

Beta-diversity also showed contrasting patterns amongst continents. Tree communities in 216 

neighbouring forests were least similar in Asia and most similar in Africa, where diversity rapidly 217 

saturates over geographic distance and plots (Fig. 2, Supplementary Fig. 11). However while 218 

similarity in species composition decayed most strongly with distance in South America, there was 219 

weaker distance decay in Asia (Fig. 2, Supplementary Fig. 12). As a result, while adjacent stands 220 

differ most in Asia, at distances >1,000 km plots in Asia are no more dissimilar than equidistant plot 221 

pairs in South America. Differences in beta diversity could have been driven by differences in gamma 222 

diversity 35. However, local tree communities remained more similar in Africa than other continents 223 

when null models were used to account for variation in gamma diversity (Supplementary Fig. 13). 224 

Gamma diversity was comparable in South America and Asia 33, so was unlikely to drive differences 225 

in the distance decay of tree community similarity in those continents. 226 

Large-scale diversity-carbon relationships 227 

Notably, aboveground carbon stocks in live biomass per unit area was unrelated to tree species 228 

richness amongst 1 ha plots, whether analysed within continents or when combining all data in a pan-229 

tropical analysis (Fig. 1, Table 3). Correlations with other diversity metrics varied in sign but were 230 

also non-significant (Table 3, Supplementary Fig. 14). Thus, in tropical forests high values of 231 

diversity and biomass carbon are associated neither at the biome nor the continental scale; instead 232 

they vary independently. We note that while in both South America and Africa there is sufficient 233 

statistical power to detect even small effects of diversity had they existed, in Asia power was only 234 

sufficient to detect relatively large effect sizes (Table 2).  235 
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Since confounding environmental variables might obscure any underlying effect of tree diversity on 236 

carbon stocks, we next applied multiple regression including climate and edaphic variables as 237 

covariates to statistically control for environmental variation that might otherwise obscure the effect 238 

of diversity. In ordinary least squares multiple regression models, there was a consistent negative 239 

relationship between diversity and carbon in South America, and no significant relationship in Africa 240 

and Asia (Fig. 3b). When the analysis was repeated using simultaneous autoregressive error models to 241 

account for spatial autocorrelation, diversity was not supported as a predictor in South America or 242 

Africa (Fig. 3c). In Asia, while there were significant positive relationships between carbon and both 243 

Fisher’s α and species richness (Fig. 3c), environmental variables were more important predictors of 244 

carbon stocks based on their occurrence in low AICC models (Supplementary Table 5) and other 245 

diversity metrics were not supported as predictors of carbon stocks (Fig. 3c). Thus, overall no 246 

consistent pan-tropically applicable relationship between diversity and carbon stocks was observed. 247 

Instead, carbon stocks per unit area was influenced by climate and soil (Supplementary Fig. 15, 248 

Supplementary Table 5). In South America and Africa annual cumulative water deficit was the 249 

strongest environmental predictor of carbon stocks, as indicated by high ∑ AICC weights (≥ 0.98), and 250 

in South America a positive effect of soil fertility was also evident (Supplementary Fig. 15, 251 

Supplementary Table 5 ). In Asia, where no plots experienced cumulative water deficit, carbon stocks 252 

per unit area increased with mean annual precipitation (∑ AICC weights = 1) and declined with mean 253 

annual temperature (∑ AICC weights = 0.65).  254 

Carbon stocks per unit area was also related to structural attributes, increasing with basal area and 255 

basal area-weighted mean wood density, but not with stem density (Supplementary Fig. 16). While 256 

consistent with previous studies23, this is hardly surprising as both wood density and basal area are 257 

constituents of biomass estimates. Critically, these two structural attributes of carbon stocks per unit 258 

area were themselves largely unrelated to species richness (Supplementary Fig. 16), indicating that 259 

diversity is not a correlate of the key structural factors that lead to high biomass in some tropical 260 

forest stands. Stem size inequality, which has been posited as a mechanism linking diversity and 261 

carbon in boreal forests 36, was positively related to carbon but unrelated to species richness 262 



Sullivan et al. Tropical diversity – carbon relationships 
 

11 
 

(Supplementary Fig. 17). Inclusion of mean wood density (a proxy for stem turnover) in multiple 263 

regression models did not affect diversity-carbon relationships (Supplementary Table 6), indicating 264 

that the lack of a consistent diversity-carbon relationship is unlikely to be due to variation in 265 

mortality. Finally, we also used structural equation modelling to examine the relationship between 266 

diversity and carbon while explicitly modelling the effect of climate and soil on both tree species 267 

richness and carbon stocks. In this modelling framework, there were non-significant positive 268 

relationships between species richness and carbon in Africa and Asia and a significant negative 269 

relationship in South America (Supplementary Figure 18).  270 

Fine-scale diversity-carbon relationships    271 

Amongst 0.04 ha subplots within each plot most environmental differences in climate and soil are 272 

implicitly accounted for. Here, relationships between species richness and carbon were on average 273 

significantly positive when considering all 266 × 1 ha plots for which we had subplot-scale data (one-274 

sample Wilcoxon test, P =0.007), and significant for plots within Africa (n = 111 plots, one-sample 275 

Wilcoxon test, P = 0.022) and South America alone (n = 118 plots, one-sample Wilcoxon test, P = 276 

0.013, Fig. 4).  Within these plots, 148 (55.6%) had a positive richness-carbon relationship and 118 277 

(44.4%) a negative relationship (Fig. 4). Overall the richness-carbon relationship was weak but 278 

positive (β = 0.096 ± 0.048 SE). This implies that doubling species richness per 0.04 ha would 279 

increase carbon stocks by 6.9%, with similar relationships for other diversity metrics (Supplementary 280 

Table 7). This is consistent with an independent within-plot study of 25 plots which showed a 7% 281 

effect size of diversity on aboveground biomass at the 0.04 ha spatial scale, but no relationship at the 282 

1 ha scale 22.  283 

Examining support for niche complementarity and selection effects 284 

There was a statistically significant positive relationship between a multivariate metric of functional 285 

diversity incorporating wood density and maximum diameter traits and carbon stocks at the 0.04 ha 286 

scale (linear mixed effects model, P < 0.001, Supplementary Figure 1), but this relationship was not 287 

significant in any continent at the 1 ha scale (linear regression models, P ≥ 0.139, Supplementary 288 
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Figure 1). Carbon stocks increased with the community weighted means of both wood density and 289 

maximum diameter traits at both 0.04 ha (linear mixed effects models, P < 0.001, Supplementary 290 

Figure 4) and 1 ha scales (linear regression models, P ≤ 0.049, Supplementary Figure 4), indicating 291 

that carbon stocks was positively related to the functional dominance of potentially large and dense 292 

wooded species. The probability of sampling a species with large maximum size or dense wood 293 

increased through the range of species richness values typical of 0.04 ha subplots, but tended to 294 

saturate by the species richness values typical of 1 ha plots, with the exact form of this relationship 295 

depending on the threshold used to define a large or dense wooded species and whether the null model 296 

used to sample species randomly selected species from the pool available within a continent or 297 

sampled species according to their relative frequency of occurrence (Supplementary Figures 5 – 10). 298 

For example, the expected probability of sampling a tree species with maximum diameter ≥ 70 cm, as 299 

assessed using a null model randomly selecting species from the pool of species recorded in plots 300 

within each continent, increased from 0.760 to 0.878 over the interquartile range of species richness 301 

found in 0.04 ha subplots (i.e. 11 to 18 species), but was 0.999 by the lower quartile of species 302 

richness in 1 ha plots (i.e. 72 species). Likewise, there was a positive relationship between the 303 

observed occurrence of potentially large tree species and species richness in 0.04 ha subplots 304 

(binomial generalised linear mixed effects models, P < 0.001, Supplementary Figure 6), while at 1 ha 305 

scale this relationship was no longer evident as all but one 1 ha plot contained a potentially large 306 

species. Further details and interpretation of these analyses are given in Supplementary Discussion. 307 

Discussion 308 

By analysing a large, standardised, pan-tropical dataset of inventory plots we were able to explore 309 

large-scale patterns in tropical forest above-ground carbon stocks per unit area and tree diversity, and 310 

the large-scale and fine-scale relationships between the two.  Carbon and diversity both exhibit 311 

remarkable variation across the tropical forest biome. Each continent has a distinctive signature of 312 

alpha diversity, beta diversity and carbon-density, and tropics-wide it is possible to find all 313 

combinations of diversity and carbon. Yet, these two fundamental attributes of tropical forests are also 314 
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found to be largely unrelated to one another among stands, whether analysed among-continents or 315 

within each one.  316 

Our results contrast with those from an earlier examination of pan-tropical diversity-biomass 317 

relationships reporting a positive relationship with genus level diversity 24 (Table 1). Although both 318 

studies statistically control for the effect of climate, we also restricted our analysis to lowland plots 319 

and statistically controlled for the effect of soil, which may have improved our ability to account for 320 

the effect of environmental variation when examining the effect of diversity on carbon stocks. 321 

Additionally, our results are based on an order of magnitude more extensive sampling of the biome 322 

(166 locations and 360 plots in this study, compared to 11 locations and 59 plots in 24).  Positive 323 

stand-scale diversity-carbon stock per unit area relationships have also been reported in the neotropics 324 

23 and in some Central African forests 25, but these positive relationships were once again not evident 325 

with improved sampling across the whole domain and once spatial autocorrelation is accounted for. 326 

Our neotropical dataset differs from Poorter et al. 23 by being concentrated in the Amazon basin rather 327 

than including Central America and the Caribbean Islands, and by not including plots in dry forest; 328 

these differences may have reduced the effects of environmental and biogeographic variation in our 329 

data.   330 

Our best sampled regional domains - the world’s two largest contiguous regions of tropical forest - 331 

show no within-continent diversity-carbon relationship at the 1 ha scale. In our dataset, tropical 332 

carbon remained positively but weakly related to diversity in Asia, and this was the exception among 333 

major tropical forest regions. Importantly, this lack of a consistent positive relationship between 334 

diversity and carbon is robust to analysis method, persisting whether data are analysed using simple 335 

bivariate correlations, or with multiple regressions to account for environmental drivers, or by 336 

simultaneous autoregressive models to also account for spatial autocorrelation, or when constructing 337 

structural equation models to account for environmental effects on diversity. Instead, we found that 338 

moisture availability (annual cumulative water deficit in South America and Africa, mean annual 339 

precipitation in Asia where plots did not experience cumulative water deficit) was the most important 340 
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and pantropically consistent environmental driver of spatial variation in aboveground biomass carbon 341 

stocks per unit area.  342 

Although tree diversity and carbon stocks were uncorrelated at the stand-level, they were positively 343 

correlated within forest stands, so our results are consistent with tree diversity having a positive local 344 

effect on carbon in tropical forests, supporting previous studies documenting positive fine-scale 345 

relationships 22,23 (Table 1). The presence of a weakly positive (overall, South America, Africa) 346 

relationship at 0.04 ha but not at 1 ha scale (overall, South America, Africa) could indicate that the 347 

mechanisms driving the diversity-carbon relationship are scale dependent, or could be due to 348 

environmental variation acting at larger spatial scales obscuring the mechanistic effects of diversity 22. 349 

Although our multiple regression models applied at 1 ha scale statistically control for important 350 

variation in climate, soil texture and soil chemistry, it is clearly not possible to capture all 351 

environmental variation that may influence carbon stocks, such as local disturbance history, so we 352 

cannot rule out the latter explanation. However, we conducted additional analyses (full details in 353 

Supplementary Discussion) to examine possible mechanisms underlying the diversity effects and 354 

explore their putative scale-dependency. Carbon stocks increased with the functional dominance of 355 

species with high wood density and large maximum diameter at both 0.04 ha and 1 ha scales 356 

(Supplementary Figure 4). The effect of functional dominance at 1 ha scale has been found before in 357 

tropical forests 24,37, and has been interpreted to support the role of selection effects 16,24. However, 358 

this analysis by itself is a test of the biomass ratio hypothesis 37. For selection effects to operate, the 359 

probability of sampling a high functioning species should also increase with species richness. We 360 

found that the probability of sampling species with high maximum diameters or high wood density 361 

increases with species richness at diversity levels found in 0.04 ha subplots, but saturates at diversity 362 

levels below those of 1 ha plots (Supplementary Figures 5 - 10), indicating that selection effects, as 363 

expected, appear to be scale-dependent. Additionally, the effects of niche complementarity may also 364 

saturate, as we found a positive relationship between a multivariate functional diversity metric 365 

(incorporating wood density and maximum diameter traits) and carbon only at the 0.04 ha scale 366 

(Supplementary Figure 1). The absence of a significant relationship between tree functional diversity 367 
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and carbon stocks per unit area at 1 ha scale is consistent with a previous analysis from three 368 

neotropical rainforests 37. Although the saturating probability of sampling a high functioning species 369 

with increasing species richness and the absence of carbon – functional diversity relationships at 1 ha 370 

are consistent with both selection effects and niche complementarity being scale-dependent, they are 371 

based on correlative analysis of observational data so causal inferences need to be taken cautiously. 372 

Neither do our analyses test other potentially important ecosystem impacts of diversity, such as on the 373 

resistance and resilience of biomass production to climate extremes 38.  Long-term large-scale 374 

experiments that manipulate tree diversity in tropical forests 39 will be required to provide additional 375 

mechanistic insights into potential positive effects of metrics of tree diversity and their potential 376 

saturation with scale.  377 

A caveat with this and other studies using allometric equations to estimate above-ground biomass 378 

carbon is that allometric equations do not allow variation in tree architecture with forest structure. For 379 

example, Banin et al. 40 found a weak negative relationship between tree height and stem density, 380 

meaning that allometric equations may overestimate carbon stocks in plots where stem density is 381 

highest. This could increase the chances of finding a spurious positive relationship between diversity 382 

and carbon, as we find a weak positive relationship between stem density and species richness 383 

(Supplementary Figure 16). This potential bias is unlikely to have impacted our results, as we still 384 

find a weak positive diversity-carbon relationship within plots and no relationship among plots when 385 

diversity metrics are standardised per n stems (Table 3, Supplementary Table 7). Such potential biases 386 

could be evaluated in the future if co-located LiDAR based aboveground biomass carbon estimates 387 

and ground-based tree diversity measurements are made at sufficient sites. The uncertainty in biomass 388 

carbon estimates due to using allometric equations could reduce the chance of finding diversity-389 

carbon relationships by adding noise to the data. Whilst this highlights the need to maximise statistical 390 

power with large datasets, we note that the two largest studies investigating diversity-carbon 391 

relationships (this study by number of sampling locations across the biome, 22 by area sampled, see 392 

Table 1) converge on a similar result with independent datasets; diversity and carbon are positively 393 

related at the 0.04 ha scale but unrelated at the 1 ha scale.   394 
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Conservation implications 395 

Despite the absence of a stand-level diversity-carbon relationship, some forest stands certainly do 396 

combine high tree diversity and biomass (Fig. 1), indicating that high value carbon and biodiversity 397 

conservation can be simultaneously achieved, but only with confidence if both are considered 9,10. We 398 

note that conservation strategies will also need to consider biodiversity of taxa other than trees, which 399 

may also be unrelated to carbon stocks 41, the conservation value of specific species assemblages 3, 400 

belowground carbon stores such as in tropical peat swamps 42, and spatial variation in opportunity 401 

costs 43. Methods to select protected areas that consider multiple metrics of conservation value (e.g. 402 

aboveground biomass carbon and aspects of biodiversity) are available 10. Our results support the use 403 

of such an approach over carbon-dominated prioritisation incentivised under REDD+ 9. Applying this 404 

in practice is challenging as it requires knowledge of spatial variation in tree diversity, composition 405 

and carbon stocks, highlighting the importance of careful identifications to species level during forest 406 

inventories. As tropical forests can have any combination of tree diversity and carbon both will 407 

require explicit consideration when optimising policies to manage tropical carbon and biodiversity.  408 

In sum, our large, pan-tropical analysis reveals that at small scales of less than 1 ha tree diversity is 409 

weakly positively correlated with aboveground carbon stocks, potentially due to both niche 410 

complementarity and sampling effects. Yet our results show that these processes do not translate to 411 

patterns at scales that matter practically for conservation:  tree diversity and carbon vary 412 

independently among sites, both within continents and across the whole tropical forest biome. Despite 413 

the general lack of association between diversity and carbon, our analysis demonstrates that forests in 414 

Asia are not only amongst the most diverse in the tropics but also amongst the most carbon-dense. 415 

Thus at a global scale a clear synergy emerges, with forests in Asia being both highly speciose and 416 

extremely carbon-dense. Asian forests are under substantial threat, particularly from conversion to oil 417 

palm plantations and more intensive logging than elsewhere in the tropics. As a triple hotspot for 418 

biodiversity, carbon and threat, there is a compelling global case for prioritising their conservation. 419 

Methods 420 
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To permit comparisons among and within continents we utilised 360 forest inventory plots, surveyed 421 

using uniform standardised protocols, from three networks, RAINFOR (Amazon Forest Inventory 422 

Network; www.rainfor.org, 44), AfriTRON (African Tropical Rainforest Observatory Network; 423 

www.afritron.org, 29) and T-FORCES (Tropical Forests in the Changing Earth System; 424 

www.tforces.net). The plots were all within closed-canopy lowland (maximum altitude 1217 m above 425 

sea level) humid terra firme forest (mean annual temperature, MAT, ≥ 20°C and mean annual 426 

precipitation, MAP, ≥1300mm), all were 1 ha, except four of 0.96 ha, and none exceeded 500 m in 427 

maximum dimension. The rationale for restricting the environmental domain sampled was to 428 

minimise the environmental differences among plots and thus reduce the confounding effect of 429 

environmental variation on the diversity-carbon relationship; this approach contrasts with previous 430 

studies that have sampled along larger elevation (and thus temperature) 24 and precipitation 23 431 

gradients In each plot at least 80% of stems were identified to genus and at least 60% of stems 432 

identified to species (mean = 90.3% stems identified to species; 84% of plots had at least 80% stems 433 

identified to species, 63% had at least 90% of stems identified to species). All stem diameter 434 

measurements follow standard (above buttress) methods (see Supplementary Methods for full 435 

protocols). All stems ≥ 10 cm d.b.h. were measured. Sampling was distributed across the world’s 436 

three largest tropical humid forest blocs, with 158 plots in South America, 162 in Africa and 40 in 437 

Asia (Fig. 3). These came from 166 discrete localities (South America 80, Africa 67, Asia 19), where 438 

a ‘locality’ is defined as clusters of plots with maximum inter-plot distance of 5 km. Plot data were 439 

curated in ForestPlots.net 45 or using equivalent offline procedures, with each plot following the same 440 

quality control and subsequent calculation protocol. Aboveground biomass (AGB) was estimated for 441 

each stem using the allometric equation AGB = 0.0673 x (ρD2H)0.976, from 46, where ρ is stem wood 442 

density (in g.cm-3) obtained from a world database 47,48, D is stem diameter (in cm) at 1.3m or above 443 

buttresses, and H is height (in m), the latter estimated using regional height-diameter Weibull 444 

equations 49. AGB values were converted to estimates of carbon using the mean carbon fraction for 445 

tropical angiosperms, 47.1%, from 50. Taxon richness was estimated as the sum of identified species 446 

and morphospecies plus the estimated number of unidentified taxa based on observed richness per 447 
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stem ratios (details in Supplementary Methods). Richness per 300 stems was estimated using 448 

individual based rarefaction. 449 

Differences in diversity and carbon among continents were assessed using analysis of variance. To 450 

meet model assumptions, carbon stocks per unit area was log-transformed and Fisher’s alpha square-451 

root transformed, while taxon richness was modelled using a negative binomial error distribution to 452 

account for overdispersion.  We used log-linear generalised linear models with binomial errors to 453 

model the relationship between Sørensen index (beta diversity) and geographical distance between 454 

plots in each continent, restricting this analysis to plots with >90% of stems identified to species level 455 

(227 plots). Relationships among 1 ha plots were assessed using [1] bivariate Kendall’s τ correlations 456 

and [2] multiple regressions of carbon as a function of diversity, climate (cumulative water deficit, 457 

MAT, MAP; 1 km resolution) and soil (total exchangeable bases, C:N ratio, soil texture; 0-30 cm 458 

depth). We ran all predictor subsets and averaged models where cumulative AICC weights summed to 459 

0.95. Residual spatial autocorrelation was present, so we repeated the analysis using simultaneous 460 

autoregressive error models to explicitly model spatially autocorrelated errors. We also repeated the 461 

analysis using structural equation models implemented in the R package lavaan 51. Relationships 462 

amongst 0.04 ha subplots in the 266 plots where subplot level data were also available were examined 463 

using multiple regressions of ln(carbon) against ln(diversity) and ln(stem density) for each plot 464 

individually, as well as for all plots using a random coefficients mixed effect model with plot identity 465 

as a random effect. Finally, we conducted a series of analyses to assess support for possible 466 

mechanisms driving diversity-carbon relationships, which are described in full in the Supplementary 467 

Discussion. Briefly, we produced separate models of carbon stocks as a function of the community 468 

weighted mean (CWM) of wood density, the CWM of maximum stem diameter, the standard 469 

deviation of wood density and a functional diversity metric including both these traits. Relationships 470 

at 1 ha were modelled using linear regression, relationships at 0.04 ha were modelled using linear 471 

mixed effects models with plot identity as a random effect. We related the expected probability of 472 

sampling a species with large potential size or high wood density (defined as maximum diameter ≥ 70 473 

cm or wood density ≥ 0.8 g.cm-3 respectively, other thresholds were also examined) to species 474 
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richness using null models, and also used binomial generalised linear mixed-effects models to relate 475 

the occurrence of these species in 0.04 ha subplots to species richness. Significance testing is based on 476 

two-tailed tests, with α = 0.05 used to determine statistical significance. See Supplementary Methods 477 

for full details of methods. 478 
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Tables 687 

Table 1. Pan-tropical and continental studies assessing the diversity-carbon relationship. Sampling locations are groups of plots in close proximity to each 688 
other (individual large plots in 22, TEAM core study sites in 24, “forest sites” in 23, groups of plots within 5 km of each other in this study). The number of 689 
sampling locations in the largest blocs of forest in each continent are given, these are the Amazon basin and surrounding contiguous forest, the Congo basin 690 
and surrounding contiguous forest, and Borneo. + indicates a positive diversity-carbon relationship, = indicates no relationship, NA indicates the relationship 691 
was not studied at the given scale. In this study, 22 and 24 all stems ≥ 10 cm d.b.h. were measured, in 23 the minimum stem diameter measured varied among 692 
plots (either 5 cm or 10 cm).  693 

Study Geographical 
scope 

Number of plots Number of sampling locations Taxonomic 
level 

Diversity measures Minimum 
identification 

level 

Diversity-carbon 
relationship 

1 ha 0.04 ha Total Amazon Congo  Borneo Within 
stand 

Among 
stands 

This 
study 

Tropics 360 
 

6536  166 77 52 18 Species, 
genus and 
family 

Richness, rarefied 
richness, Shannon 
diversity, Simpson 
diversity, Fisher’s 
alpha and functional 
diversity 

60 % stems 
to species, 
80 % to 
genus 

+ = 

22 Tropical and 
temperate 

688a 

 
17200 a 25  2 1 1 Species Richness b Not stated + = c 

24 Tropics 59 NA 11  3 2 0 Genus Richness, Shannon 
diversity, functional 
diversity 

80 % stems 
to family 

NA + 

23 Tropical 
America 

294 
 

1975 d 59 47 0 0 Species Richness, rarefied 
richness and Shannon 
diversity 

Not stated + + e 

a Sample size not stated, so maximum possible number of 1 ha and 0.04 ha subplots given. 694 
b Stem density was included as a covariate in analysis. 695 
c Relationship analysed among 1 ha plots within sampling locations, not among sampling locations. 696 
d 0.1 ha not 0.04 ha. 697 
e Relationship among sampling locations.  698 



Sullivan et al. Tropical diversity – carbon relationships 
 

26 
 

Table 2. Mean carbon stocks per unit area and tree diversity in forest inventory plots in South 699 
America (n = 158), Africa (n = 162) and Asia (n = 40). 95% confidence limits derived from 10,000 700 
bootstrap resamples of the data (sampling with replacement) are shown in parentheses. Different 701 
letters indicate significant differences between continents (ANOVA and subsequent Tukey’s all-pair 702 
comparison, P < 0.05). Data for other diversity metrics shown in Supplementary Table 2. 703 

Variable South America Africa Asia 
Carbon (Mg ha-1) 140 (133 – 148) A 183 (176 – 190) B 197 (180 - 215) 

B 

Fisher’s α 80 (71 – 88) B 28 (26 – 30) A 84 (73 - 96) B 
Species richness (ha-1) 152 (141 – 163) B 74 (70 – 78) A 162 (147 - 177) 

B 

(300 stems-1)                              109 (102 – 116) B 65 (62 – 69) A 120 (111 - 130) 
B 

Genus richness (ha-1) 91 (86 – 96) B 59 (56 – 62) A 87 (81 - 93) B 
 (300 stems-1)                           72 (68 – 75) B 54 (51 – 56) A 71 (66 - 75) B 
Family richness (ha-1) 38 (37 – 39) B 28 (27 – 28) A 40 (38 - 42) B 

(300 stems-1)                            33 (32 – 34) B 26 (25 – 27) A 35 (34 - 37) B 

 704 
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Table 3. Correlations (Kendall’s τ) between carbon and tree diversity in South America (n = 158 723 
plots), Africa (n = 162) and Asia (n = 40). Power analysis was used to estimate the minimum effect 724 
size (presented as both τ and Pearson’s r ) detectable with 80% power.  Correlations with taxon 725 
richness per 300 stems are shown in parentheses. Correlations with other diversity metrics shown in 726 
Supplementary Table 4. 727 

Diversity metric South America Africa Asia 

  τ P-value τ P-value τ P-value 

Fisher’s α 0.083 0.12 0.012 0.821 0.115 0.302 
Species richness 0.084 

(0.092) 
0.12 
(0.087) 

0.014 
(0.031) 

0.788 
(0.573) 

0.132 
(0.151) 

0.230 
(0.174) 

Genus richness 0.066 
(0.059) 

0.223 
(0.272) 

-0.016 
(0.01) 

0.765 
(0.859) 

-0.006  
(-0.051) 

0.954 
(0.652) 

Family richness -0.007  
(-0.042) 

0.893 
(0.43) 

-0.051        
(-0.036) 

0.35 
(0.519) 

0.087 
(0.021) 

0.434 
(0.862) 

Detectable 
effect size 

τ = 0.14 
r = 0.22 

τ = 0.14 
r = 0.22 

τ = 0.28 
r = 0.43 
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Figures 747 

 748 

 749 

Figure 1. The relationship between carbon stocks per unit area and tree species richness across the 750 
tropical forest biome. Green circles = plots in South America (n = 158), orange squares = Africa (n = 751 
162) and purple triangles = Asia (n =40). Boxplots show variation in species richness and biomass 752 
carbon stocks in each continent. Both carbon and species richness varied significantly between 753 
continents (Table 2), but no significant correlation exists between carbon and species richness, 754 
whether within each continent (τ ≤ 0.132, P ≥ 0.12) nor across all three continents (linear regression 755 
weighted by sampling density in each continent, β <-0.001, t =0.843, P = 0.4, weights = 1.2 for South 756 
America, 0.6 for Africa and 1.8 for Asia). Relationships for other diversity metrics are similar 757 
(Supplementary Fig. S13).  758 
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 759 

Figure 2. Decay in similarity (Sørensen index) of tree communities with distance in South America 760 
(green), Africa (orange) and Asia (purple). Solid lines show fitted relationships of the form 761 
ln(similarity) = α + β × distance + ε. Estimated α and β parameters for each continent are given in 762 
Supplementary Fig. S12, ε denotes binomial errors. Differences in the α parameter indicate 763 
differences in the similarity of neighbouring stands, while differences in the β parameter indicate 764 
differences in the distance decay of tree community similarity.   Filled polygons show 95% 765 
confidence intervals derived from 10000 bootstrap resamples.  Data underlying these relationships are 766 
shown in insets, with contours (0.05 and 0.25 quantiles) overlain to show the density of points 767 
following kernel smoothing.  768 
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 769 

Figure 3. Stand-level effect of diversity on carbon stocks per unit area. (A) Location of clusters of 770 
forest inventory plots in South America (n = 158 plots), Africa (n = 162 plots) and Asia (n = 40 plots) 771 
(some cluster centroids are not visible due to over plotting). (B & C) Diversity metric coefficients in 772 
multiple regressions relating carbon to diversity, climate and soil. Results have been presented for (B) 773 
non-spatial (OLS) and (C) simultaneous autoregressive error (SAR) models. Bars show model-774 
averaged parameter estimates, with error bars showing standard errors. Asterisks denote variables that 775 
were significant in the average model (P < 0.05), with the summed AICC weights of models in which 776 
a variable appears shown beneath bars (where >0.75). Taxa/ stem denotes richness estimates per 300 777 
stems. SAR models indicate that increasing species richness by 1 SD (from 86 to 151 species.ha-1) 778 
increased carbon by 1.5 Mg.ha-1 in South America, 0.2 Mg.ha-1 in Africa and 15.8 Mg.ha-1 in Asia 779 
(note only the relationship in Asia was statistically significant). Green shading in (A) shows the extent 780 
of broadleaved evergreen and fresh water regularly flooded forest classes from 52. Model coefficients 781 
are given in Supplementary Table 5. Maps were created in R version 3.02 (http://www.R-project.org/) 782 
53 using base maps from maps package version 2.3-9 (http://CRAN.R-project.org/package=maps) 54. 783 
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 784 

Figure 4. Variation in the coefficient (β) of the relationship between species richness and carbon 785 
among 0.04 ha subplots within 266 1 ha plots. Coefficients come from multiple regression models 786 
also containing the number of stems as a second-order polynomial term to allow for a saturating 787 
relationship. Coefficients from plots in South America are shown in green, Africa in orange and Asia 788 
in purple. Mean values of coefficients are shown in the inset, with error bars showing 95% confidence 789 
intervals derived from 10000 bootstrap resamples (with replacement) of the dataset, with asterisks 790 
denoting significant differences from zero (one-sample Wilcoxon test, ** P < 0.01, * P < 0.05). 791 
Across all plots, doubling species richness increased carbon by 6.9 %. The horizontal line in the inset 792 
and bold vertical line in the main figure show where coefficients = 0. β is in units of ln(Mg.ha-1 793 
carbon) per ln(tree species).  794 


