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Abstract

Two expressions for the nonlinear dispersion relation for gravity waves on water of constant
depth are derived. One for wave-fields with discrete amplitude spectra, the other for wave-fields
with continuous wave-number energy spectra. Numerical examples for wave quartets and for
two-dimensional Pierson-Moskowitz spectra are given, and an important possible application
is discussed.

1 Introduction

The studies of nonlinear waves initiated by Stokes in the middle of the 19th century (Stokes, 1847)
focused on finite-amplitude effects for a single wave train. In this case, the mechanism of nonlinear
interaction between waves which appears at third order in the steepness is not readily appar-
ent. Work of Tick (1959), Phillips (1960) and Longuet-Higgins (1962) investigating the interaction
between several wave trains first shed light on the importance of this resonant energy exchange
mechanism, and elucidated how waves of small steepness change their amplitudes and frequencies
in the presence of other such waves.

The mutual effects on the phase speed of two interacting wave trains were first studied explicitly
by Longuet-Higgins & Phillips (1962), by means of classical asymptotic expansion techniques. A
unified method for treating arbitrarily many modes, or indeed a continuum of modes, is provided
by the Zakharov equation (Zakharov, 1968), which was employed by Hogan et al. (1988) to extend
Longuet-Higgins & Phillips’ analysis to capillary-gravity waves. A thorough comparison of the two
methods was made by Zhang & Chen (1999) for collinear waves in deep water. Madsen & Fuhrman
generalized the theory to include the effects of finite depth and an ambient current for bi-directional
waves (2006), and subsequently for multi-directional, irregular waves (2012).

In what follows, an investigation into the nonlinear corrections on the frequencies is undertaken
using the Zakharov equation. General forms for the corrected frequency are thus available for
continuous 1D and 2D energy density spectra, giving an analogue to the Stokes’ correction for any
wave of a spectral sea-state. These are applied to a number of calculated examples in deep water.
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The theoretical background is developed in section 2. Results for some simple cases, as well as
for Pierson-Moskowitz (PM) spectra in 1D and 2D are presented in section 3. The main conclusion
on the importance of these results to wave-forecasting is indicated in the final section 4. Some com-
ments on the robustness of the results are also given in appendix A, which deals with deterministic
and random quartets of waves.

2 Theoretical Background

For a wave field with a discretized spectrum Zakharov’s equation with the complex amplitudes
Bn = B(kn, t) reads

i
dBn
dt

=

N∑
p,q,r=1

Tnpqrδ
qr
npe

i∆npqrtB∗pBqBr, n = 1, 2, . . . , N, (1)

where Tnpqr = T (kn,kp,kq,kr) are the kernels defined in Mei et al. (2018), δqrnp is a Kronecker delta
function such that

δqrnp =

{
1 for kn + kp = kq + kr,

0 otherwise,

and ∆npqr = ωn+ωp−ωq−ωr. The ∗ denotes a complex conjugate. Here ωi are the frequencies (in
rad/s), g is the constant acceleration of gravity (taken to be 9.8 m/s2 in computations), t is time
(in s), and k = (kx, ky) is the wave-number.

ω2
n = g|kn| tanh(|kn|h) (2)

is the linear dispersion relation for gravity waves in water of constant depth h. The relation of the
complex amplitudes Bn to the free surface elevation η is given, to leading order, by

η =
1

2π

∑
n

(
ωn
2g

)1/2 (
Bne

i(kn·x−ωnt) + *
)
. (3)

Substituting Bn = |Bn| exp(i argBn) into (1) and separating the real and imaginary parts:

d|Bn|
dt

=
∑
p,q,r

Tnpqrδ
qr
np|Bp||Bq||Br| sin(θnpqr), (4a)

d(argBn)

dt
= −|Bn|−1

∑
p,q,r

Tnpqrδ
qr
np|Bp||Bq||Br| cos(θnpqr), (4b)

where
θnpqr = ∆npqrt− argBn − argBp + argBq + argBr. (4c)

This same substitution in (3) yields

η =
1

2π

∑
n

(
ωn
2g

)1/2 (
|Bn|ei(kn·x−ωnt+argBn) + *

)
. (5)
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From (5) it is clear that the wave amplitudes an and the frequencies Ωn are:

an =
1

π

(
ωn
2g

)1/2

|Bn|, (6a)

Ωn = ωn −
d

dt
(argBn) . (6b)

Splitting the sums in (4a)–(4b) into two parts, where enp = 1 for n = p and enp = 2 for n 6= p, and
noting that sin(θnpnp) = 0 and cos(θnpnp) = 1, we find

d|Bn|
dt

=
∑
p

∑
q 6=n

∑
r 6=n

Tnpqrδ
qr
np|Bp||Bq||Br| sin(θnpqr), (7)

d(argBn)

dt
= −

∑
p

enpTnpnp|Bp|2 − |Bn|−1
∑
p

∑
q 6=n

∑
r 6=n

Tnpqrδ
qr
np|Bp||Bq||Br| cos(θnpqr). (8)

In cases without resonant, or without nearly resonant quartets, sin(θnpqr) and cos(θnpqr) oscillate
on a fast time-scale, and the integration over time of (7) and (8) yields at leading order

|Bn(t)| = |Bn(0)|, (9)

arg(Bn) = −

(∑
p

enpTnpnp|Bp|2
)
t+ arg(Bn(0)). (10)

Substituting (10) into (6b) gives the discrete nonlinear dispersion relation

Ωn = ωn +
∑
p

enpTnpnp|Bp|2. (11)

For a continuous wave-number energy spectrum Ψ(k) it is assumed that the number of modes
N tends to infinity. In the limit they become densely distributed over the relevant domain in the
wave-number plane. This passage to a continuum of modes is accompanied by the assumption that
the phases, i.e. argBn, to leading order are uncorrelated and uniformly distributed over (−π, π];
they are denoted below by ε(k).

The limit of a continuous wave-number energy spectrum Ψ(k) is approached by considering a
square grid of wave numbers with spacing dk, so that

a2
n/2 = Ψn = Ψ(k)dk. (12)

Using (6a)–(6b) and (12) and taking the limit dk→ 0, (5) is rewritten as

η(x, t) =

∫
cos(k · x− Ωt+ ε(k))

√
2Ψ(k)dk (13a)

(see (Kinsman, 1984, Ch. 8)), and (11) is rewritten as

Ω(k) = ω(k) + 4π2g

∫
ek,k1T (k,k1,k,k1)

Ψ(k1)

ω(k1)
dk1, (13b)
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where

ek,k1 =

{
1 for k = k1,

2 otherwise.

Equation (13b) is the continuous nonlinear dispersion relation. The kernel T (ki,kj ,ki,kj) for
finite depth is given in (3.9a,b) and (4.11) of Stiassnie & Gramstad (2009). The applicability of
(13a, 13b) depends on the validity of the transition from (7, 8) to (9, 10). For continuous spectra
the above transition must be based on the assumption that the ensemble averages of sin(θnpqr)
and cos(θnpqr) remain zero, which is true only as long as the phases argBn maintain their random
independence. Note that this is exactly the condition used to ensure the applicability of the kinetic
equation, and implies a separation between the time-scale of nonlinear interaction and that of phase-
mixing, more details of which may be found in (L’vov & Nazarenko, 2010, Sec. 2) or (Zakharov et
al, 1992, Sec. 2.1.4–5). In particular, this means that the spectrum must be sufficiently broad for
this approach to be strictly applicable.

Although the above derivation is valid for finite depth, taking the deep-water limit simplifies
the kernels dramatically. In this case, substituting ω2

n = g|kn| into the kernel yields

T (ki,kj ,ki,kj) = − 1

16π2(|ki||kj |)1/2

[
3(|ki||kj |)2

+(ki · kj)(ki · kj − 4(|ki|+ |kj |)(|ki||kj |)1/2)

+
2(ωi − ωj)2(ki · kj + |ki||kj |)2

g|ki − kj | − (ωi − ωj)2
+

2(ωi + ωj)
2(ki · kj − |ki||kj |)2

g|ki + kj | − (ωi + ωj)2

]
, (14)

see Leblanc (2009). The examples to be treated subsequently are given for deep-water only. Note
that an early derivation of (11) and (13b) was outlined in a conference in 1988 (see Stiassnie (1991)),
as well as by Dyachenko & Zakharov (1994) and Zakharov (1999). Appendix A provides some fur-
ther justification of the assumptions underlying (11) and (13b), via direct numerical computations
for a quartet of waves.

3 Results

3.1 Simple cases, based on (11)

The simplest example that shows the corrections to frequency due to nonlinearity is the third-order
Stokes’ wave (Stokes, 1847, p. 450), with the well known frequency correction

Ω = ω +
1

2
ωk2a2,

where a is the wave amplitude, k is the wavenumber, and ω the linear frequency. The collinear
bi-modal case, where the spectrum consists of two wave trains with wavenumbers ka and kb, likewise
has a simple form:

Ωa = ωa

(
1 +

1

2
ε2a +

ωb
ωa
· k

2
a

k2
b

· ε2b
)
, (15a)

Ωb = ωb

(
1 +

1

2
ε2b +

ωa
ωb
· kb
ka
· ε2a
)
. (15b)
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Here kb > ka, and εa = kaaa, εb = kbab are the slopes of the two waves involved. It is readily
observed that the longer wave has a substantial effect on the shorter wave, but not vice versa. Note
that when k = (kx, 0) and k1 = (k1x, 0), the Zakharov kernel simplifies to

T (k,k1,k,k1) =

{
kxk

2
1x

4π2 for k1x < kx,
k2xk1x
4π2 for k1x ≥ kx,

(16)

see equation (4.18) in Zakharov (1992). Expressions similar to (15a) and (15b), albeit with more
modes, have been obtained by Qi et al. (2018), and used to improve the performance of their
nonlinear phase-resolved reconstruction method.

3.2 Pierson-Moskowitz spectra, based on (13b)

A more realistic case, with energy distributed over a continuum of modes, consists in taking a
unidirectional Pierson-Moskowitz (PM) spectrum, which is given in terms of wavenumber k by

Ψ(k) =
0.004

k3
exp

(
−0.554g2U−4k−2

)
, for k > 0, (17)

where U is the wind velocity at ten meters above the sea surface, blowing in the x−direction. In
the unidirectional setting we assume that all wavevectors k have no component in the y−direction,
and are written as scalar wavenumbers, so that ki = (ki, 0) is denoted by ki. Substituting (17) with
(16) into (13b) and integrating over k1 gives:

Ω(k) = ω(k) + 2k

(∫ k

0

k1ω(k1)Ψ(k1)dk1 + k

∫ ∞
k

ω(k1)Ψ(k1)dk1

)
, (18)

which can be evaluated analytically to yield

Ω = ω
(
1 + 0.004

[
κ−0.25Γ(0.25, κ) + κ−0.75γ(0.75, κ)

])
(19)

where κ = 0.554g2U−4k−2, and Γ, γ are incomplete gamma functions, see (Gradshteyn & Ryzhik,
1980, p. 941). Equation (19) enables one to obtain a value for the relative correction of the phase
speed due to the presence of other waves in the spectrum. Denoting the linear/nonlinear phase
speed by c/C respectively, c = ω/k and C = Ω/k gives

C − c
c

= 0.00405
(
κ−0.25Γ(0.25, κ) + κ−0.75γ(0.75, κ)

)
. (20)

The dashed line in Figure 1 shows (C − c)/c as a function of the dimensionless wave-number k/kp,
where kp = 0.6657(g/U2) is the peak of the PM spectrum (17). For k = kp the nonlinear correction
for the phase speed (C − c)/c is only 0.4%, but this grows to 12.8% for k = 100kp.

For 2D sea-states, the directional spreading of the spectrum may be controlled by

D(θ1) =

{
A1 cosm(θ1) for |θ1| ≤ π/2,
0 for |θ1| > π/2,

(21)

where A1 = Γ(1+m/2, 0)/(
√
πΓ(0.5+m/2, 0)) is a normalization coefficient (see (Holthuijsen, 2007,

p. 164), and note that Γ(x, 0) denotes the complete gamma function). The directional spectrum is
then given by D(θ1)Ψ(k1), where Ψ(k1) is the unidirectional PM spectrum given in (17).
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Figure 1: Plot of relative corrections to phase speed for a unidirectional and 2D PM spectrum
with directional spreading coefficient m = 25, on a logarithmic scale. Given is (C − c)/c for a
unidirectional spectrum (black, dashed line) and values for angles θ from 0◦ (the principal direction
of wave propagation of the 2D spectrum) to 67.5◦.

Substituting D(θ1)Ψ(k1) into (13b) yields

Ω(k) = ω(k) + 4π2

∫ π/2

−π/2

∫ ∞
0

ek,k1T (k,k1,k,k1)
ω(k1)

k1
Ψ(k1)D(θ1)dk1dθ1 (22)

where k1 = (k1 cos(θ1), k1 sin(θ1)), and k = (k cos(θ), k sin(θ)). This allows for a numerical calcula-
tion of the frequency correction for waves k travelling at an angle to the principal direction of wave
propagation (at θ1 = 0). The relative corrections to the phase speeds derived from the corrected
frequency are given in Figure 1, where Ω(k) = Ω(k, θ). With most of the energy concentrated about
θ1 = 0 (given m = 25) the corrections are largest for small angles (nearly collinear waves, or θ close
to zero). For a wave travelling at a large angle to the principle direction of wave propagation the
corrections are less significant.

4 Relevance to wave-forecasting, based on (13b)

According to eq. (6.4.9) in Holthuijsen (2007) the balance of spectral energy given by a slowly
varying wave-number spectrum Ψ(k, t,x) in deep water is given by:

∂Ψ

∂t
+ cg(k) · ∇xΨ = S(k, t,x). (23)

The source term
S = Sin + Snl + Sd (24)
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Figure 2: Plot of relative corrections to group speed for a unidirectional and 2D PM spectrum with
directional spreading coefficient m = 25, on a logarithmic scale. Given is the correction (Cg−cg)/cg
for a unidirectional spectrum (black, dashed line) and values for angles θ from 0◦ (the principal
direction of wave propagation of the 2D spectrum) to 67.5◦.

represents wave generation by the wind, nonlinear wave interaction (by a stochastic generalization
of Zakharov’s equation), and dissipation by wave breaking, respectively. In (23) cg(k) is the linear
group velocity:

cg(k) =
dω

d|k|
k

|k|
=

1

2

√
g

|k|
k

|k|
. (25)

A more accurate formulation of the convective left hand side of (23) would be to replace the linear
group velocity cg by the nonlinear counterpart:

Cg =
dΩ

d|k|
· k

|k|
. (26)

We call the magnitude of the linear/nonlinear group velocity cg/Cg the linear/nonlinear group
speed and refer to it by cg = |cg| or Cg = |Cg| respectively. In the case of a 1D PM spectrum,
an analytical expression can be found by differentiating (19) with respect to k to yield dΩ/dk, and
thus

Cg − cg
cg

= 0.0081κ−0.25Γ(0.25, κ) + 0.0162κ−0.75γ(0.75, κ). (27)

From the black dashed line in Figure 2, which is calculated from (27), the nonlinear correction
to the group speed is about 1.5% for k = kp, and it grows to 7.7% for k = 10kp, and to 26.8% for
k = 100kp.

For a directional Pierson-Moskowitz spectrum, with directional spreading given in (21), it is
possible to give the analogous relative corrections to the group speed using (26) together with (13b).
Figure 2 gives this relative correction to the group speed for a directional spreading coefficient
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m = 25, for waves k travelling at various angles to the principle direction of wave propagation.
We believe that these changes are significant enough to be included in modern wave-forecasting
software.

M.S. is grateful for the support of the Israel Science Foundation, grant no. 261/17.

A Comparisons for four waves, based on (11)

If only a single quartet of waves is considered, the Zakharov equations written for these waves
ka,kb,kc, and kd become rather simple, and can be solved either analytically (Stiassnie & Shemer,
2005) in terms of elliptic functions, or by numerical integration. This allows for a direct comparison
of the corrected frequency (11) with (6b). For the latter, argBn are calculated from (7)–(8). Since
(11) is a leading order approximation valid in the absence of resonance, or for random waves, these
are the scenarios of interest. For quartets close to resonance, the large energy exchanges introduce
further fluctuations in the frequencies, albeit on the slow Zakharov equation time-scale T2 = ε2t.

The quartet

ka = [0.9806,−0.1961], kb = [0.9806, 0.1961]

kc = [1.2903− µ, 0.2747 + µ], kd = [0.6709 + µ,−0.2747− µ]

is used for computations, where µ allows for a move out of resonance. Figure 3 shows numerical
results for this quartet, where ωa = ωb = 3.1305, ωc = 3.7057, ωd = 2.4189 are the linear frequencies
in rad/s, given as dotted lines. The corresponding values of steepness are εa = 0.15, εb = 0.12, εc =
0.08, εd = 0.03, and µ = −0.15, so that min ∆abcd/ωi = 0.0547 > max ε2

i . The initial values are
then given by |Bi(0)| = πεi

√
2g/ωi/|ki| (see Stiassnie & Shemer (2005)) while the initial arguments

are taken to be zero.
The solid lines show Ωi, i ∈ {a, b, c, d} obtained from solutions to the Zakharov equations

(7)–(8), whereby Ωi is determined from (6b). The dashed lines show the leading order Stokes’
correction given in (11), which assumes constant magnitudes |Bi| (see (9)). The leading order
Stokes’ correction is in all cases in very good agreement with solutions obtained from the Zakharov
equation, and presents a substantial correction to the linear frequencies.

It is also possible to consider the case of a resonant quartet with random phases and amplitudes.
When µ = 0 in the above quartet, this is very close to exact resonance, with max ∆abcd/ω ≈ 10−6 <
min ε2i , with the same values of εi as above. Owing to this resonance, any single solution to the
Zakharov equation shows large oscillations in the amplitudes |Bi(t)| with time, and the leading
order corrected frequencies of (11), based on the initial values |Bi(0)|, are not in good agreement
with those obtained from solving the full Zakharov equation. However, the averaged results shown
in Figure 4 do agree very well with this leading order correction.

In this figure, the phases are chosen randomly and uniformly distributed over (0, 2π], the ampli-
tudes are chosen from a Rayleigh distribution with mean µi equal to the initial amplitude used for
the deterministic case, i.e. µi = |Bi(0)|. An average is taken over 2000 realizations for the resonant
quartet. The observed agreement demonstrates the applicability of (11) for a simple, discretized
spectrum containing four modes.
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Figure 3: Frequencies Ωi versus time t (in seconds) for each of the four modes ka, kb, kc, kd in the
nonresonant quartet. Solid lines are computed from (6b) by solving the Zakharov equation. Dashed
lines are computed from (11) using initial amplitudes |Bi(0)| = πεi

√
2g/ωi/|ki|. Dotted lines are

the uncorrected, linear frequencies ωi.
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Figure 4: Frequencies Ωi versus time t (in seconds) for each of the four modes ka, kb, kc, kd in
the resonant quartet. Solid lines are computed from (6b) after solving the Zakharov equation and
averaging over 2000 realizations with random phases and amplitudes. Dashed lines are computed
from (11) using initial amplitudes |Bi(0)| = πεi

√
2g/ωi/|ki|. Dotted lines are the uncorrected,

linear frequencies ωi.
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