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BAYESIAN HIERARCHICAL MODELS FOR LINEAR NETWORKS

ZAINAB ABDULHUSSEIN ABDULLAH AL-KAABAWI

Abstract

A motorway network is handled as a linear network. The purpose of this study is to highlight

dangerous motorways via estimating the intensity of accidents and study its pattern across the

UK motorway network. Two mechanisms have been adopted to achieve this aim. The first, the

motorway-specific intensity is estimated by modelling the point pattern of the accident data using

a homogeneous Poisson process. The homogeneous Poisson process is used to model all intensities

but heterogeneity across motorways is incorporated using two-level hierarchical models. The data

structure is multilevel since each motorway consists of junctions that are joined by grouped segments.

In the second mechanism, the segment-specific intensity is estimated by modelling the point pattern

of the accident data. The homogeneous Poisson process is used to model accident data within

segments but heterogeneity across segments is incorporated using three-level hierarchical models. A

Bayesian method via Markov Chain Monte Carlo simulation algorithms is used in order to estimate

the unknown parameters in the models and a sensitivity analysis to the prior choice is assessed. The

performance of the proposed models is checked through a simulation study and an application to

traffic accidents in 2016 on the UK motorway network. The performance of the three-level frequentist

model was poor. The deviance information criterion (DIC) and the widely applicable information

criterion (WAIC) are employed to choose between the two-level Bayesian hierarchical model and the

three-level Bayesian hierarchical model, where the results showed that the best fitting model was the

three-level Bayesian hierarchical model.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Background

Traffic crashes have considerable impacts on human, economics and the society. To improve road

safety, traffic accidents research often seek to determine prediction methods of traffic accidents.

Traditional crash prediction models, such as generalized linear model, are widely used in traffic

safety studies. However, these models are not able to consider multilevel data structure that is

extensively existed due to technique used to collect or cluster traffic data (Huang and Abdel-Aty,

2010). Ignoring hierarchical nature of data may produce unreliable estimates of model parameters and

statistical inference. This issue can be overcome by using hierarchical models. Hierarchical modelling

is a statistical approach that is used to properly take account of multilevel data structure (Gelman

and Hill, 2007; Huang and Abdel-Aty, 2010). Currently, hierarchical modelling has been employed in

many research fields such as sociology, education, political science and public health. Shankar et al.

(1998) are the first who employed hierarchical modelling in a traffic crash study. They showed that

the explanatory power of crash models had been improved when site-specific random effects and

time indicator were incorporated into the negative binomial regression model. Jones and Jørgensen

(2003) expounded and discussed possible applications of hierarchical models in road traffic accidents

in Norway. Then, the use of hierarchical modelling technique to represent multilevel data structure

in crash prediction has been growing. In some research, hierarchical models were used to predict

crash frequency (Mitra and Washington, 2007; Chin and Quddus, 2003; MacNab, 2003; Kim et al.,

2007; Li et al., 2008; Quddus, 2008; Huang et al., 2009; Haque et al., 2010) and in other research,

hierarchical models were developed to identify factors affecting crash severity (Jones and Jørgensen,

2003; Lenguerrand et al., 2006; Huang et al., 2008).
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Huang and Abdel-Aty (2010) proposed five-level hierarchical approach to represent a framework

of multilevel data structure in traffic safety. A five-level hierarchy represents traffic entity levels

which are geographical region level, traffic site level, traffic crash level, driver vehicle unit level and

occupant level. The geographical region level could represent a number of regions, countries, states

or cities. Traffic site level could be road segments (link) or road junctions (node). Traffic crash level

is characterized by crash severity, collision type or possible crash causes. Driver vehicle unit level

is related to driver behaviour and vehicle maneuver. Different involved units in this level could

be various drivers and characteristics of vehicle. Occupant level represents drivers and passengers

involved in vehicle crash. Spatiotemporal level includes the geographic distribution of the regions

or traffic sites and a number of time periods for pre-selected for a sites within regions.

1.1.2 Contributions

In traffic safety, there are no studies take account of hierarchical nature of traffic accident data on

the UK motorway network. Instead, traditional crash prediction models such as generalized linear

regression model are used to analyse traffic accidents on motorways. The UK motorway network

is a linear network. However, current research on estimating an intensity on linear networks are

limited to the maximum likelihood method. The main aim of this thesis is to develop a methodology

for analysing traffic accident data on the UK motorway network. The contributions of this work are

the development of Bayesian hierarchical models for estimating the intensity of traffic accidents and

determination of dangerous motorways that have the highest intensity of accidents. These models

are able to capture the heterogeneity in the intensity of accidents across grouped segments within a

motorway and across motorways. The proposed models are evaluated through a simulation study.

1.2 Bayesian Inference

Bayesian inference is a major approach to statistical inference. Generally, one of tasks of Bayesian

inference is to estimate unknown parameters or missing data (Congdon, 2007). Bayesian inference pro-

vides tools to create knowledge from data to update beliefs about parameters and missing data (Con-

gdon, 2007). In Bayesian approach, parameters and missing observations are considered random

variables. Let P(θ) denote the prior beliefs about a parameter θ, and P(x|θ) represents the probability

or likelihood of the data, conditional on the prior beliefs about θ (Congdon, 2007). Using Bayes

theorem, the posterior density function is

π(θ|x) =
P(x, θ)

P(x)
=

P(x|θ)P(θ)
P(x)

, (1.1)
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where P(x) =
∫

P(θ)P(x|θ)dθ or
∑

P(θ)P(x|θ) is a normalizing constant (sometimes named the

marginal likelihood), and the probabilityπ(θ|x) represents the updated or posterior probability beliefs

about θ given the data (Congdon, 2007). The posterior density up to a normalising constant is

π(θ|x) ∝ P(x|θ)P(θ). (1.2)

The posterior distribution is a product of likelihood and the prior distribution. The posterior distri-

bution is the updated information about the parameter θ after having observed data (Gelman et al.,

2003).

1.2.1 Prior Distribution

Prior distribution gives a summary of the prior information on θ. In other words, the information that

is ready-made on parameter θ prior to the notice of an independent and identical random variables

x1, x2, ..., xn (Marin and Robert, 2014). In Bayesian statistics, the choice of the prior distribution is

a main matter since inference can be affected by the selection of the prior distribution (Marin and

Robert, 2014). The decision to choose the prior distribution does not depend on powerful individual

beliefs or crushing prior information but it relies on practical reasons (Marin and Robert, 2014). There

are many types of prior distribution as described below.

1.2.1.1 Conjugate Prior

Conjugate prior distribution means that prior and posterior distributions have the same parametric

family. In this case, likelihood structure is harmonious with prior. Parameters associated with prior

distribution are called hyper parameters. For example, x1, x2, ..., xn are independent and identically

distributed sample from the exponentially distribution with unknown mean λ (parametric model)

and Gamma (α0, β0) as prior distribution of λ, where α0 and β0 are hyper parameters. Using Bayes’

theorem the posterior distribution is Gamma (n + α0,β0 +
∑

xi). As you can see the prior distribution

and posterior distribution have the same parametric family, so the prior distribution is conjugate

prior distribution.

1.2.1.2 Non-informative Prior

The simplicity is the main cause to choose conjugate prior as our prior. However, the fixing of hyper

parameter can cause difficulties in some settings and influence on the resultant inference (Marin

and Robert, 2014). Therefore, one can use non-informative prior instead of conjugate prior. Non-
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informative prior can be defined as cohesive extensions of the uniform distribution (Marin and Robert,

2014). Generally, the non-informative prior distribution expresses not having prior knowledge about

model parameters before observing the data (Glickman and van Dyk, 2007) . In fact, a reference

measure that is supplied by non-informative prior has the least amount of the possible impact on the

resulting inference (Marin and Robert, 2014). However, the non-informative prior is suitable if the

integral
∫

P(θ)dθ is finite (Marin and Robert, 2014). For example, suppose that the parameter space

is bounded and continuous that is Θ = [a, b], −∞ < a < b < ∞, so the uniform distribution

P(θ) =
1

b − a
, a < θ < b, (1.3)

is non-informative distribution for θ. The case be ambiguous when the parameter space is unbound

Θ = (−∞,∞). In this case, the prior distribution takes the form

P(θ) = k, any k > 0, (1.4)

and this distribution seems inappropriate as prior distribution because
∫

P(θ)dθ = ∞ (Carlin and

Louis, 1997). This prior distribution is improper. But the posterior distribution can be found by using

this improper distribution, if
∫

P(x|θ) dθ = c where c is some finite value.

π(θ|x) =
P(x|θ)∫

P(x|θ) dθ
=

P(x|θ)
c

. (1.5)

This is called proper posterior distribution (Carlin and Louis, 1997). The proper posterior will not

always arise, so the use of the improper prior should be done with caution (Carlin and Louis, 1997).

The non-informative prior distribution is also called objective, vague, diffuse and sometimes a

reference prior distribution (Glickman and van Dyk, 2007).

Actually, the non-informative prior distribution has some problems (Glickman and van Dyk, 2007).

The numerous criteria to construct the non-informative prior distribution seldom give the same

unique non-informative prior distribution (Glickman and van Dyk, 2007). In addition, some used

methods to construct the non-informative prior distribution always assume that the uniform is the

distribution for parameter model and this lead to a salient contradiction (Carlin and Louis, 1997).

Indeed, the uniform prior distribution is not invariant under re-parametrization, so it is not a good

non-informative (Carlin and Louis, 1997). For example, suppose that, one from the used method

to construct non-informative prior distribution is performed on a data model with parameter θ,

and then reparameterization is done to the same data model, where the parameter of this model is
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γ = log(θ). It would be desirable that the distributions on θ and γ were representing equivalent

probabilistic information. It turns out that this is a difficult criterion to satisfy. The same used method

to construct non-informative prior is applied to the reparameterized model (Carlin and Louis, 1997).

If the prior of the reparameterized model is not uniform, then the uniformity cannot be considered

as comprehensive definition of non-informative prior (Carlin and Louis, 1997).

1.2.1.3 Jeffreys Prior

Jeffreys prior is used in case that the prior distribution is not invariant under transformation (Carlin

and Louis, 1997). Jeffreys prior relates with Fisher information matrix where there is one model

parameter and it has the following form

I(θ) = −Eθ

[
∂2 log P(X|θ)

∂θ2

]
, (1.6)

and Jeffreys prior for θ has the following form

P(θ) = |I(θ)|
1
2 , (1.7)

where |I(θ)| represents the determinant of the matrix I(θ) (Marin and Robert, 2014). Under transfor-

mation the Jeffreys prior for γ is

P(γ) = |I(θ)|
1
2

∣∣∣∣∣dθdγ
∣∣∣∣∣ , (1.8)

where
∣∣∣∣∣dθdγ

∣∣∣∣∣ is the usual Jacobian transformation to the γ parameter (Carlin and Louis, 1997). In case

that there were more than one parameter; Fisher information matrix takes the following form

Ii j(θ) = −Eθ

[
∂2 log P(X|θ)
∂θi∂θ j

]
, (1.9)

Equations (1.7) introduces the form to obtain non-informative prior, but in case of the high dimesions,

this approach may not be suitable. When forming the non-informative prior under transformation,

two important spacial cases appear (Carlin and Louis, 1997). First case, the density of X with

parameter θ has the form P(x|θ) = P(x − θ). In this case the parameter θ is named a location

parameter and the density P is called a location parameter family (Berger, 1985). To find an invariant

prior for θ under the location transformation of the form Y = X + c, the uniform along the θ domain

is the invariant non-informative prior on θ . Therefore, P(θ) = k, θ ∈ R, k > 0 is the non-informative

prior for a location parameter (Carlin and Louis, 1997).

In the second case, the density function of X has the form P(x|σ) =
1
σ

P(
x
σ

), then σ > 0 is named a
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scale parameter and P is called a scale parameter family (Carlin and Louis, 1997). To obtain invariant

prior for σ under scale transformation of the form Y = cX, for c > 0, So P(σ) =
k
σ
, σ > 0, k > 0

forms the non-informative prior for a scale parameter (Carlin and Louis, 1997). Our previous priors

are improper prior because
∫
∞

0 P(θ)dθ = ∞ (Carlin and Louis, 1997). If the density function of X

has the form P(x|θ, σ) =
1
σ

P
(x − θ
σ

)
, then P is called location-scale family (Carlin and Louis, 1997).

In this case, the non-informative prior can be constructed using the previous non-informative priors

and the independence concept, therefore, P(θ, σ) =
k2

σ
, θ ∈ R, σ > 0 is the non-informative prior for

location-scale parameters (Carlin and Louis, 1997).

1.2.2 Monte Carlo Integration

It is challenge to calculate the normalising constant explicitly, so we need MC integration. Monte

Carlo integration uses simulation to solve integration problems. The first appearance of the idea of a

MC integration was by Comte de Buffon in 1777, where random experiment was used to empirically

examine Comte Buffon’s probability calculation for the famous Buffon’s needle experiment (Rizzo,

2008). Indeed, real development of Monte Carlo methods was after the second world war (Liu, 2001),

when it was used in different scientific disciplines. One issue which arises in statistical inference and

in other many branches of mathematics is integration problems, where in some cases, the integral

cannot be evaluated analytically (Robert and Casella, 1999). In the Bayesian statistics, one can use

Monte Carlo integration to find summary statistics of posterior distribution such as mean of posterior.

The use of Monte Carlo integration is to evaluate definite integral
∫

D g(x)P(x)dx, where P(x) is a density

function of a random variable x and g(x) is a function in x. The mathematical expectation of g(x) is

E(g(x)) =
∫

D g(x)P(x)dx. If D is an interval (a, b), then P(x) =
1

b − a
is the probability density function

of a uniform distribution. The basic idea to find this integral is generation of n random variables xi

from uniform distribution unif(a, b), so an unbiased estimator of E(g(x)) is a sample mean. In case

that θ =
∫ 1

0 g(x)dx, and x1, x2, ..., xn is a random sample from unif(0, 1), so by using the Strong Law of

Large Numbers, the Monte Carlo estimator of E(g(x)) is θ̂ =

∑
g(xi)
n

. In the different case, when limits

of integral is from a to b, then we used change variables such that they are transformed to from 0 to

1. If y =
x − a
b − a

and dy =
( 1
b − a

)
dx are used as linear transformation, then

∫ b

a
g(x)dx =

∫ 1

0
g(y(b − a) + a)(b − a)dy,
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or for any uniform distribution unif(a, b), we can write integral as

∫ b

a
g(x)dx = (b − a)

∫ b

a
g(x)

1
b − a

dx.

Algorithm 1.1 shows steps to find the Monte Carlo estimate of definite integral
∫ b

a g(x)dx.

Algorithm 1.1 Algorithm to evaluate definite integral by Monte Carlo integration.
1- Generate x1, x2, ..., xn random sample from unif(a, b).
2- Compute θ̂ = (b − a)

∑
g(xi)
n .

1.2.3 Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo (MCMC) methods include a general framework to analyse numerous

complex problems using simulation (Gilks et al., 1996). Precisely, MCMC can be defined as Monte

Carlo integration using Markov Chains (Gilks et al., 1996). MCMC has been used in different statistical

areas, but it has been largely used in Bayesian inference (Geyer, 1992). The main idea of Markov Chain

Monte Carlo is drawing a sample from stationary distribution P(.) to form irreducible ergodic Markov

chain, where the chain is performed to enough time such that the chain becomes convergent to its

stationary distribution (Rizzo, 2008). Markov chain is constructed by methods such as Metropolis-

Hastings and Gibbs sampler (Rizzo, 2008). In Bayesian inference, observation, unknown parameters

and missing data are considered random variables (Gilks et al., 1996). Suppose that X = (X1,X2, ...,Xn)

represents the observed data and θ represents parameters and missing data. The joint probability

distribution P(X, θ) is the product of the prior distribution P(θ) and the likelihood P(X|θ), that means

P(X, θ) = P(X|θ)P(θ). (1.10)

Now using observed data X and Bayes Theorem, the distribution of θ given observed data X ( the

posterior distribution of θ conditional on X) can be formed as

π(θ|X) =
P(θ)P(X|θ)∫
P(θ)P(X|θ)dθ

. (1.11)

Then the conditional expectation of a function g(θ) with respect to the posterior density is

E
[
g(θ)

]
=

∫
g(θ)π(θ|X)dθ

=

∫
g(θ)P(θ)P(X|θ)dθ∫

P(θ)P(X|θ)dθ
. (1.12)
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To state the problem in more general terms,

E
[
g(θ)

]
=

∫
g(u)π(u)du∫
π(u)du

, (1.13)

in Bayesian inference π(.) denotes the posterior density. The expectation (1.13) can be evaluated even

if π(.) is known only up to a constant. This simplifies the problem because in practice the normalizing

constant for a posterior density π (θ|X) is often difficult to evaluate. Indeed, integrations in equation

(1.13) are impossible to evaluate using analytical approaches and for inaccuracies in case of high

dimensions. It is also difficult to evaluate them by numerical approaches, but Markov Chain Monte

Carlo can be used to evaluate such integrations (Gilks et al., 1996).

Markov Chain Monte Carlo methods use Monte Carlo integration to estimate the integral in equa-

tion (1.12) or equation (1.13) such that random observation (X1,X2, ...) is simulated from target distri-

bution π(.) to be a realization of an irreducible ergodic Markov chain with stationary distribution π(.)

and by the generalized strong law of large numbers, so g(X)n = 1
n
∑n

0 g(Xi) converges with probability

one to E[(g(X))] as n −→ ∞. The chain needs to be generated for a period of time before it reaches a

stationary behaviour. The period before stationarity for simulated chain is called the burn-in period

or the initial transient phase of the Markov chain. This period is discarded, since the chain effect

by initial values. Knowing chain validity to be a good approximation of the target distribution is

through knowing the convergence of its distribution to the target distribution, where some form of

statistical analysis is carried out to assess the convergence. This procedure is called convergence

diagnostics (Brooks and Roberts, 1998).

1.2.3.1 The Metropolis-Hastings Algorithms

The Metropolis-Hastings algorithm is a technique for sampling from posterior distributions (target

distribution) P(x) using Markov Chain Monte Carlo method (Gelman et al., 2003). The idea behind

The Metropolis-Hastings approaches is to construct the Markov Chain {Xs; s = 0, 1, 2, ...} from proposal

distribution q(.|X) that can be interpreted, that if a process is at the state Xs, then a candidate state

Y is simulated from the proposal density (Chib and Greenberg, 1995). In case of the acceptance of

candidate state Y the process will move from state Xs to state Xs+1 and Xs+1 = Y, or that the process

remains at state Xs and Xs+1 = Xs (Rizzo, 2008). The choice of proposal distribution must lead to

obtain the Markov chain such that it is irreducibility, positive recurrence, and aperiodicity, and it

should have stationary distribution such that its stationary distribution must converge to the target

distribution (Rizzo, 2008). Note that these conditions are called regularity conditions. The proposal
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distribution may rely on the previous value Xs of the chain, and should have the same support set of

the target distribution (Rizzo, 2008). Algorithm 1.2 is intended from Rizzo (2008) to illustrate how to

simulate Markov chain from proposal distribution q(.|Xs) using Monte Carlo integration.

Algorithm 1.2 Metropolis-Hastings algorithm.
1- Set a proposal distribution q(.|Xs).
2- Draw X1 from a proposal distribution q.
for all s from 1 to m do

(a) Draw candidate value Y from q(.|Xs).
(b) Draw u from unif(0, 1).
if u ≤ P(Y)q(Xs|Y)

P(Xs)q(Y|Xs)
then

Accept Y and deliver Xs+1 = Y
else if u > P(Y)q(Xs|Y)

P(Xs)q(Y|Xs)
then

Deliver Xs+1 = Xs
end if

end for

1.2.3.2 Independence Sampler

In independence sampler, a transition of a next position of chain does not rely on a previous position,

so the proposal distribution q(Xs|Y) takes the form q(Xs) and q(Y|Xs) the form q(Y)(Rizzo, 2008).

Independence sampler is used to simulate independent samples from proposal distribution which

should be very close to the posterior distribution (Tierney, 1994). The acceptance probability of

candidate point Y is α(Xs,Y) = min
(
1, P(Y)q(Xs)

P(Xs)q(Y)

)
. Algorithm 1.3 is presented from (Robert and Casella,

1999) to generate Markov chain with stationary distribution, which should be very close to the

posterior distribution.

Algorithm 1.3 Independence sampler.
1- Define the proposal distribution q(x).
2- Initialize X1
for all s in 2:m do

(a) Generate u from unif(0,1).
(b) Generate Y from proposal distribution q(x).
if u ≤ P(Y)q(Xs−1)

P(Xs−1)q(Y) then
Xs = Y

else if u > P(Y)q(Xs−1)
P(Xs−1)q(Y) then

Xs = Xs−1
end if

end for

1.2.3.3 Gibbs Sampler

The Gibbs sampler is a technique to simulate a chain from the target distribution P(x). Gibbs sampler

is considered a special case of Metropolis-Hastings sampler, and the first use of the term Gibbs sam-
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pler was by Geman and Geman (1984), where they use Gibbs distribution to restore images. Indeed,

Gibbs sampler is considerably used in classical statistics, but it has been widely used in Bayesian

inference (Casella and George, 1992). In Bayesian analysis, Gibbs sampler generates a chain of a

random variables from joint posterior distribution by sampling indirectly from marginal posterior

distributions of joint posterior distribution (Casella and George, 1992). The target distribution is

known up to the normalizing constant
∫

P(x)dx, and the prior distribution is chosen to be conjugate

with likelihood (Gelfand, 2000). Applying Gibbs sampler needs using the multivariate target dis-

tribution, suppose that X = (X1,X2, ...,Xn) is a vector, and P(X) is the joint posterior distribution

(target distribution) of X. Gibbs sampler generates a chain (X(1),X(2), ...,X(m)), where every element

in the chain is a vector and to simulate these vectors, the conditional densities are fully defined.

Suppose that X(0) = (X(0)
2 , ...,X

(0)
n ) represents a starting point, then elements of vector X are simulated

as following:

X(1)
1 from conditional density P(X1|X

(0)
2 ,X

(0)
3 , ...,X

(0)
n ).

X(1)
2 from conditional density P(X2|X

(1)
1 ,X

(0)
3 , ...,X

(0)
n ).

X(1)
3 from conditional density P(X3|X

(1)
1 ,X

(1)
2 ,X

(0)
4 , ...,X

(0)
n ).

and so on up to

X(1)
n from conditional density P(Xn|X

(1)
1 ,X

(1)
2 , ...,X

(1)
n−1), and in the same way, it is used the vector X(1) for

simulating the vector X(2), and so on up to the vector X(m) (Gelfand, 2000). The distribution of chain

(X(1),X(2), ...,X(m)) is stationary and converges to the target distribution, if it satisfies the regularity

conditions of Markov chain (Gelman and Rubin, 1992b). Algorithm 1.4 is presented from (Marin and

Robert, 2014, p. 90)to illustrate how to simulate a Markov chain using Gibbs sampler.

Algorithm 1.4 Gibbs sampler.

1- Initialize starting point X(0) = (X(0)
1 ,X

(0)
2 , ...,X

(0)
n ).

2- For iteration s from 1 to m
3- Generate X(s)

1 from P(X1|X
(s−1)
2 ,X(s−1)

3 , ...,X(s−1)
n ).

4- Generate X(s)
2 from P(X2|X

(s)
1 ,X

(s−1)
3 , ...,X(s−1)

n ).
:
5- Generate X(s)

n from P(Xn|X
(s)
1 ,X

(s)
2 , ...,X

(s)
n−1).

1.2.3.4 Random Walk Metropolis

In random walk metropolis, the proposal distribution is symmetric, that means q(Y|Xs) = q(Xs|Y) =

q(|Xs−Y|) so the proposal distribution is cancelled from the acceptance rate which becomes α(Y,Xs) =

P(Y)
P(Xs)

. In addition, simulation of the next value of a chain relies on the current value of a chain.

Algorithm 1.5 is presented from (Robert and Casella, 1999) to simulate posterior distribution using

random walk metropolis sampler.
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Algorithm 1.5 Random walk Metropolis sampler.
1- Given Xs.
2- Generate Y ∼ q(|Xs − Y|).
3- Xs+1 = Y with probability min(1, P(Y)

P(Xs)
).

4- Xs+1 = Xs otherwise.

1.3 Outline of the Thesis

The structure of this thesis is organized as follows:

In Chapter 2 we present the definition of a line segment. We introduce homogeneous Poisson pro-

cesses and inhomogeneous Poisson processes on a line segment. We use maximum likelihood and

Bayesian methods to estimate the intensity and illustrated the methods by using simulated data.

Chapter 3 presents two-level hierarchical models. The intensity of accidents is assumed homogeneous

within motorway but heterogeneous across motorways. We introduce one-stage fully Bayesian hier-

archical model, and two-stage semi-Bayesian hierarchical model. Two-stage frequentist hierarchical

model is also presented. Bayesian and frequentist non-hierarchical models are compared. We conduct

a simulation study to assess the performance of the proposed models. An application to the traffic

accident data is presented.

In Chapter 4 we present three-level hierarchical models. We consider the intensity of accidents

homogeneous within grouped segments whilst heterogeneous across grouped segments. We use a

Bayesian method and frequentist approach for estimating the intensity of accidents. The performance

of proposed models is assessed by a simulation study and application to traffic accidents data on the

UK motorway network. In addition, we employ the deviance information criterion (DIC) and the

widely applicable information criteria (WAIC) to choose between the two-level Bayesian hierarchical

model and the three-level Bayesian hierarchical model. We classify the motorways into different risk

categories according to the estimated accident intensity.

In chapter 5, we summarize the work in this thesis and introduce some proposed ideas for future

research to extend Bayesian hierarchical models.
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Chapter 2

Point Process on the Line Segment

2.1 Introduction

In this chapter, the focus is on a line segment as a study area of a spatial point pattern. Definitions

of the line segment and related topics are introduced. We provide a description of models that are

used to fit events on the line segment in particular homogeneous and inhomogeneous Poisson point

processes. In this context, an intensity function of a spatial Poisson point process is defined on the

line segment and realizations of the spatial Poisson point process on the line segment are generated.

Statistical methods are considered for estimating the intensity function of the spatial point process

on the line segment, including maximum likelihood estimation and Bayesian approach. This chapter

aims to pave of the spatial point process on the linear network that will be introduced in the next

chapter.

2.2 Definitions

As stated chapter 1, a point pattern is a collection of points or observed events over the study region. In

this chapter, the line segment is considered as the study region. A line segment in the plane consists

of two endpoints x and y and has a mathematical form L =
{
rx + (1 − r)y : 0 ≤ r ≤ 1 and x, y ∈ R2

}
where |L| denotes its length which is the Euclidean distance between the endpoints (Ang et al., 2012).

The definition of a Poisson point process on the line segment is the same definition of a Poisson point

process on the plane, but the difference is that an intensity function of the Poisson point process

represents the expected number of points per unit length instead of per unit area. The number of

events (points) falling in the line segment L is denoted by N(L) which is a random variable and has

the Poisson distribution with mean E (N(L)) = E (s ∩ L), where s = {s1, s2, ..., sn} represents a set of
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realizations of points on the line segment. Note that the locations of events are also random variables

and the probability density function depends on the point process model.

Suppose a homogeneous Poisson point process on line segment with constant intensity function

λ > 0. The number of points N(L) within the study region L follows a Poisson distribution with mean

λ|L|. Given the number of observed points in the line segment n, events locations are realisations

from the uniform distribution over an interval (0, |L|). An inhomogeneous Poisson point process

on the line segment is one-dimensional point process, where the intensity function varies over the

line segment. In this point process model, the intensity function is higher in some parts of the

line segment than others. In this case, the number of points N(L) has Poisson distribution with the

mean Λ(s) = E(N(L)) =
∫
|L|

0 λ(u)d1u, we use the d1u to indicate that the integration is done over

one dimensional line segment where λ(s) is the intensity function of events on the line segment

L, namely, N(L) ∼ Poisson(
∫
|L|

0 λ(u)d1u). Given N(L) = n, the probability of every location event is
λ(s)

E(N(L)) , 0 ≤ s ≤ |L|.

2.3 Simulation of Inhomogeneous Process on the Line Segment

In this section, a simulation is done of an inhomogeneous Poisson point process with intensity

function λ(s) on a line segment L by rejection (Lewis and Shedler, 1978). Let s represent a distance

from the beginning of the line segment. Following the method of Lewis and Schedler approach,

N∗(L) is generated with intensity function λ∗ ≥ max {λ(s) : 0 ≤ s ≤ |L|} such that the number of

points N∗(L) has a Poisson distribution with mean λ∗|L|. The points of the process X∗1,X
∗

2, ...,X
∗

N∗

represent locations of events on the line segment L. Then, by thinning the points, the points are

deleted with probability 1−
λ(X∗i )
λ∗

. The remaining points with the number of points N(L) represent an

inhomogeneous Poisson point process with intensity functionλ(s) on line segment L and f (s) = λ(s)/λ∗

as the probability density function of retained points. In more detail, the inverse transform method

is used for generating the points X∗i , i = 1, ..,N∗, on the line segment L (Rubinstein and Kroese, 2016).

This method includes using the cumulative distribution function F(s) =
∫ s

0 f (u)d1u. The inverse of

the cumulative distribution function is F−1(x) = s, 0 ≤ x ≤ 1, so that x ∼ unif(0, 1) (Rubinstein and

Kroese, 2016). Algorithm 2.1 shows the simulation of the inhomogeneous Poisson point process with

intensity λ(s) = exp (α0 + α1s) on the line segment L (Lewis and Shedler, 1976).
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Algorithm 2.1 Simulation of an inhomogeneous Poisson process on line segment by rejection.
1. Generate N∗ ∼ Pois (λ∗|L|).
2. Generate x ∼ unif(0,F(|L|)).
3. Generate u ∼ unif(0, 1) independently of x.
4. Set candidate point X∗ = F−1(x).
if u ≤ λ(X∗)/λ∗ then

Keep X∗.
else if u > λ(X∗)/λ∗ then

Go to step 1.
end if

In the simulation, an assumption is made that the intensity function has a form λ0(s) = exp (3 + 2s).

Figure 2.1 shows the plots of this intensity function and the simulation of the points from the inho-

mogeneous Poisson point process on the line segment [0, 1] using the thinning method described in

algorithm 2.1.

(a) (b)

Figure 2.1: (a) plot of an intensity functionλ(s) = exp (3 + 2s) and (b) simulated points from the inhomogeneous
Poisson process.

2.4 Estimation

2.4.1 Maximum Likelihood Estimation

In the spatial point processes models, spatial covariates may affect the intensity function of events.

These covariates could be coordinates for events or covariate values on event locations (Baddeley

et al., 2012). A model that allows us to reflect the relationship between spatial point process and

spatial covariate is an inhomogeneous Poisson process with intensity function in the spatial covari-

ates (Waagepetersen, 2008). In this section, a description is given of the maximum likelihood method

for estimating the parameters of such models on a line segment. It is assumed that the intensity

function λ(s) of the inhomogeneous Poisson process {N(s), 0 < s < |L|} with a sample of locations
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s = {s1, ..., sn} of events in the line segment L depends on a spatial covariate X(s) in the following way

λ(s;α0, α1) = exp (α0 + α1X(s)) , 0 ≤ s ≤ |L|, (2.1)

where Θ = {α0, α1} are unknown parameters to be estimated and X(s) is a known covariate func-

tion at observed locations in the study region L. According to Cressie (1993), the likelihood of the

inhomogeneous Poisson process is

LL(Θ|s) = exp
(
−

∫
|L|

0
λ(u;α0, α1)d1u

) n∏
i=1

λ(si;α0, α1),

= exp
(
−

∫
|L|

0
exp (α0 + α1X(u)) d1u

) n∏
i=1

exp (α0 + α1X(si)) ,

= exp
(
−

∫
|L|

0
exp (α0 + α1X(u)) d1u

)
exp

nα0 + α1

n∑
i=1

X(si)

 ,
= exp

nα0 + α1

n∑
i=1

X(si) −
∫
|L|

0
exp (α0 + α1X(u)) d1u

 , (2.2)

where the d1u is one-dimensional integration over the line segment. The covariate X(s) is only

observed at locations of events, but not in the entire study region (Waagepetersen, 2008). Therefore,

the integral in equation (2.2) cannot be calculated precisely. Berman and Turner (1992) overcame this

problem by developing a numerical quadrature method in order to approximate likelihood function

in equation (2.2). This method includes the approximation of the integral in equation (2.2) by a finite

sum according to quadrature rule,

∫
|L|

0
exp (α0 + α1X(u)) d1u =

m∑
j=1

w(u j) exp
(
α0 + α1X(u j)

)
, (2.3)

where w(u j), i = 1, ...,m, are quadrature weights such that its sum is equal to the length of the line

segment |L|. Let q = {u1, ...,um} denote a set of quadrature points on the line segment L. The set

of quadrature points is the union of the observed points s and a set of dummy points d which is a

homogeneous dummy points process of constant intensity function. The choice of quadrature points

should satisfy that observed points s = {s1, ..., sn} ⊂ q. The substitution of equation (2.3) into equation

(2.2) gives the approximation of the likelihood function,

LL(Θ|s) = exp

nα0 + α1

n∑
i=1

X(si) −
m∑

j=1

w(u j) exp
(
α0 + α1X(u j)

) . (2.4)
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The log of the likelihood function in the equation (2.4) is:

`L(Θ) = nα0 + α1

n∑
i=1

X(si) −
m∑

j=1

exp
(
α0 + α1X(u j)

)
w(u j). (2.5)

The R function optim is used to maximise the approximate log-likelihood in the equation (2.5). The

function optim offers the approximate maximum log-likelihood estimates of α0 and α1.

2.4.2 Simulated Example

To demonstrate a maximisation of the likelihood function in equation (2.4), a simulated example is

used. It is supposed that there is only one spatial covariate related with an intensity of events in

equation (2.1) and the values of the covariate can be produced from the following function,

X(s) =


2 if 0 ≤ s ≤ 0.2,

3 if 0.2 < s ≤ 0.7,

4 if 0.7 < s ≤ 1.

(2.6)

In fact, the values of covariate must be known in all line segment (Rathbun et al., 2007). Therefore,

dummy points are simulated in the line segment. The number of dummy points k is the product of p

and the number of observed points, where p is a proportion of dummy points compared with observed

points. In general, p can take values such that it leads to smaller standard error (Waagepetersen, 2008).

In fact, when the number of dummy points is large, this gives accurate estimates. Here, p is chosen to

be 0.25 and the dummy points are generated with probability density function unif(0,1). The number

of observed points that are simulated on the line segment [0,1] is n. In the simulation of observed

points s, true values of model parameters in equation (2.1) are α0 = 3 and α1 = 1. Let q = s
⋃

d

denote a set of quadrature points. To produce quadrature weights w j, segment [0,1] is divided into

k sub-segments L1, ...,Lk such that each sub-segment only includes one dummy point and it may or

may not contain data points. All quadrature points u j ∈ q within a given sub-segment L j receive the

same weight w j. The quadrature weight w j for a quadrature point u j ∈ q falling in a sub-segment L j is

the length of L j divided by the number of quadrature points u j falling in L j. Algorithm 2.2 illustrates

the method to simulate the inhomogeneous point process with the intensity function depending on

the covariate function and the simulation of the dummy points.
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Algorithm 2.2 Simulation of the inhomogeneous Poisson process with intensity depending on co-
variate X(s), simulation of dummy points and evaluation of log-likelihood.

1- Initialize α0 = 3 and α1 = 1.
2- Set Λ1 = 0.2 exp (α0 + 2α1), Λ2 = 0.5 exp (α0 + 3α1) and Λ3 = 0.3 exp (α0 + 4α1).
3- Simulate three homogeneous Poisson processes N1, N2 and N3 with means Λ1, Λ2 and Λ3
respectively.
4- Simulate locations of events as s1 ∼ unif(N1, 0, 0.2), s2 ∼ unif(N1, 0.2, 0.7) and s3 ∼ unif(N3, 0.7, 1).
5- Set s = s1 ∪ s2 ∪ s3.
6- Simulate dummy points d from runif(0, 1), where p=0.25.
7- Divide the line segment [0,1] into k sub-segments such that every sub-segment receives one
dummy point.
8- Let q = s ∪ d.
9- Weight for each point in sub-segment L j is W j =

the length of L j

the number of points in L j
.

10- Use the function optim to maximise log-likelihood in equation (2.5).

The MLE estimates are α̂0 = 2.9901 and α̂1 = 1.0058. Figure 2.2 shows the sketch of log-likelihood

profiles. Table 2.1 displays estimated values and 95% confidence intervals of parameters α0 and α1.

Figure 2.2: Plots of maximised likelihood function in equation (2.4) of parameters α0 and α1 for the intensity
function in equation (2.1).

Parameter True value Estimated value Standard Error 95% CI

α0 3 2.9901 0.2532 (2.4938, 3.4863)

α1 1 1.0058 0.0706 (0.8674, 1.1442)

Table 2.1: The maximum likelihood estimates, standard errors and 95% confidence intervals of parameters α0
and α1. The data are simulated from a nonhomogeneous spatial point process with intensity exp (3 + X(s)) in
the line segment [0, 1].
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2.4.3 Bayesian Estimation

In this section, Bayesian methods will be used for estimating α0 and α1 in the likelihood specified

in equation (2.4). The basic idea of the Bayesian estimation is to update the belief about model

parameters Θ by combining the prior belief about parameters with the observed data s = {s1, ..., sn}.

The independent prior distributions of the model parametersα0 andα1 and updated belief are defined

as the joint prior distribution P(Θ) = P(α0)P(α1) and the joint posterior distributionπ(Θ|s) respectively

and the observed data are represented by the likelihood function L(Θ|s). Using Bayes theorem, the

posterior distribution of Θ is given by

π(Θ|s) =
L(Θ|s) P(Θ)∫

|L|
0 L(Θ|s) P(Θ)d1Θ

, (2.7)

where the integral in the denominator is called a normalising constant. Since the output of the integral

is a function in the observed data s, so the posterior distribution can be written as

π(Θ|s) ∝ L(Θ|s) P(Θ). (2.8)

From equation (2.4), the likelihood function is

L(Θ|s) = exp

nα0 + α1

n∑
i=1

X(si) −
m∑

j=1

exp
(
α0 + α1X(u j)

)
w(u j)

 . (2.9)

We specify Gamma(a, b) and Gamma(c, d) as independent prior distributions for the unknown

parameters α0 and α1. The joint posterior probability density for unknown parameters α0 and α1 is

given by

π(Θ|s) = L (Θ|s) P (Θ)

= P(s|α0, α1)P(α0)P(α1)

= exp

nα0 + α1

n∑
i=1

X(si) −
m∑

j=1

exp
(
α0 + α1X(u j)

)
w(u j)

 αa−1
0 exp (−bα0) αc−1

1 exp (−dα1)

= αa−1
0 αc−1

1 exp

−bα0 − dα1 + nα0 + α1

n∑
i=1

X(si) −
m∑

j=1

exp
(
α0 + α1X(u j)

)
w(u j)

 . (2.10)

Then, the conditional posterior distributions are derived as,

π(α0|α1, s) = αa−1
0 exp

−bα0 + nα0 −

m∑
j=1

exp
(
α0 + α1X(u j)

)
w(u j)

 , (2.11)
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and

π(α1|α0, s) = αc−1
1 exp

−dα1 + α1

n∑
i=1

X(si) −
m∑

j=1

exp
(
α0 + α1X(u j)

)
w(u j)

 . (2.12)

Both conditional posterior distributions in equations (2.11) and (2.12) do not have a known form.

Hence, it is not possible to use the Gibss sampler. Instead, Metropolis-Hastings within Gibbs sampler

is used to simulate chains from proposal distributions q1 and q2 of parameters α0 and α1, respec-

tively. Algorithm 2.3 shows that Metropolis-Hastings within Gibbs sampler is implemented such that

candidate values of both model parameters are accepted according to the following probabilities:

r1

(
α(t−1)

0 , ά0

)
= min

 π
(
ά0|α

(t−1)
1

)
q1

(
α(t−1)

0 , ά0

)
π

(
α(t−1)

0 |α(t−1)
1

)
q1

(
ά0, α

(t−1)
0

) , 1 . (2.13)

r2

(
α(t−1)

1 , ά1

)
= min

 π
(
ά1|α

(t)
0

)
q2

(
α(t−1)

1 , ά1

)
π

(
α(t−1)

1 |α(t)
0

)
q2

(
ά1, α

(t−1)
1

) , 1 . (2.14)

Algorithm 2.3 Metropolis-Hastings within Gibbs sampler.

Set initial values, α(0)
0 and α(0)

1 .
For each iteration t, t = 1, ...,T
Step 1. Update α0.

• Generate a proposed value ά0 ∼ q1(., α(t−1)
0 ).

• Calculate the probability r1

(
α(t−1)

0 , ά0

)
specified in equation (2.13).

• With probability r1, set α(t)
0 = ά0, otherwise set α(t)

0 = α(t−1)
0 .

Step 2. Update α1.

• Generate a proposed value ά1 ∼ q2(., α(t−1)
1 ).

• Calculate the probability r2

(
α(t−1)

1 , ά1

)
specified in equation (2.14).

• With probability r2, set α(t)
1 = ά1, otherwise set α(t)

1 = α(t−1)
1 .

2.4.4 Simulated Example

In this section, algorithm 2.3 is applied to the simulated data of section 2.4.2. The simulated data

represent points of the inhomogeneous spatial Poisson process {N(s); 0 < s < |L|} with the intensity

function λ(s) = exp (α0 + α1X(s)) on the line segment L = [0, 1]. Here, X(s) is a covariate function

that is defined in equation (2.6). True values of α0 = 3 and α1 = 1 were chosen. The proposal

distributions q1 of α0 and q2 of α1 are respectively N(α(t−1)
0 , 0.04) and N(α(t−1)

1 , 0.003 ), where α(t−1)
0 and

α(t−1)
1 represent the current values of the simulated chains for α0 and α1. The values of parameters

37



of prior distributions are a = b = c = d = 0.01. Algorithm 2.3 is run for 500,000 iterations with

discarding 50,000 iterations as a burn-in period as well as a thinning interval of 100. The sample size

was sufficient to ensure that the chain had converged and that there was enough samples after the

burn-in to ensure reasonable estimates. Figure 2.3 shows a trace plot, autocorrelation function and

histogram as well as imposed posterior density for the parameters of α0 and α1. In this figure, the first

row displays the trace plots of parameters after thinning. The second row offers the autocorrelation

function plots of parameters after thinning. The final row presents the histograms and imposed

posterior density plots of parameters after thinning. Table 2.2 also shows an actual input value,

posterior mean and median, standard error and 95% credible interval (CI) after thinning for each

parameter. Simulated chains are well mixed and autocorrelation plots of thinning chains show that

correlation within produced samples decays fast at lag 6 as it can be seen in Figures 2.3(c) and 2.3(d).

The posterior means and medians are comparable to the input values and the 95% credible interval

are reasonably tight so that no problem is apparent in the MCMC implementation of the model. The

acceptance rates of α0 and α1 chains are 0.32 and 0.24 and these acceptance rates are within the range

of (0.24, 0.40) (Gelman et al., 1996).

Parameter True value Posterior mean Posterior median Standard deviation 95% CI.
α0 3 2.9795 2.9799 0.2457 (2.5015, 3.4503)
α1 1 1.0229 1.0236 0.0681 (0.8908 , 1.1560)

Table 2.2: Summary of the posterior sample of α0 and α1.
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Figure 2.3: Trace plots, autocorrelation function, histgram and density plots of MCMC chain for α0 and α1.
Dashed red and black lines, respectively, represent medians of simulated chains and true values of α0 and α1.
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2.5 Discussion

The main object of this chapter is preparation for the spatial point process on a linear network that

consists of a set of line segments in the plane linked to each other by nodes. Therefore, definitions were

provided of a line segment in the plane, spatial Poisson point processes in the line segment involving

homogeneous and inhomogeneous point processes. Methods that are parametric for estimating

an intensity of events on the line segment were displayed. The parametric method includes the

maximum likelihood and the Bayesian estimations. In the Bayesian framework, Metropolis-Hastings

within Gibbs sampler is used. In implementation, simulation studies are fitted to spatial point process

models on the line segment. In these studies, algorithms were introduced to simulate inhomogeneous

spatial point processes with intensity depending on coordinates of events as well as with intensity

depending on a spatial covariate in the line segment. The sampler performed well, and has converged

to the target distribution (the posterior distribution of α0 and α1). When the findings from Bayesian

and maximum likelihood estimations were compared, it could be seen that the performance for both

methods is well and similar. Therefore, the question is which method should be used? The choice

between two methods depends on the inferential framework and computational issues (Farrell and

Ludwig, 2008). The main difference between approaches lies in the their philosophical idea. Bayesian

modelling is interested in presenting the posterior distribution by multiplying prior and likelihood.

While maximum likelihood approach is interested in point estimates of parameters. In addition, in

the Bayesian analysis, we need to set the prior distributions of parameters that require knowledge

in the models. These priors allow for the addition of related information into our models. The

other difference includes the ease application and implementation of these methods. The maximum

likelihood estimation only require the likelihood function and minimising routine that is available

and straightforward for models fitting of data on the line segment.
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Chapter 3

Two-Level Hierarchical Models

3.1 Introduction

The objective of traffic safety studies is to determine danger spots on road networks that involve a

high density of traffic accidents (Okabe and Sugihara, 2012). In the early studies of traffic accidents,

count data were used to identify the distribution of the danger spots. For this type of road accidents

data, observations are non-negative integer values (Ahmed et al., 2014). For example, the number of

accidents is count data such that it is calculated with respect to road segments and then the number

of traffic accidents is used to produce the density of accidents on each road segment in order to

investigate the risk spots (Okabe and Sugihara, 2012). In this approach, a road network should be

divided into road segments. Some studies considered different road segment lengths (Ceder and

Livneh, 1978; Ng and Hauer, 1989; Stern and Zehavi, 1990; Miaou, 1994). Other studies considered the

same road segment lengths (Golob et al., 1990; Thomas, 1996; Black, 1991; Erdogan et al., 2008; Yamada

and Thill, 2010). In spatial analysis, there is a problem called modifiable areal unit (Openshaw, 1979;

Thomas, 1996). This term means that statistical results could be affected by the scale of spatial unit,

namely, the lengths of road segments may lead to different results (Okabe and Sugihara, 2012). To

avoid the modifiable areal unit problem resulting from the use of count data in traditional statistical

analysis, the individual data of accidents on the road network can be used (Okabe and Sugihara,

2012).

In this chapter, the motorway network is considered as a linear network and road accidents as a

spatial point pattern involving the spatial locations of accidents. Baddeley et al. (2015) studied point

processes on the linear network where they defined the linear network as vertices that are joined

by straight line segments in two dimensions. A point process on a linear network has the same

properties as the point process in two dimensions except for an intensity of points along the network
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where it represents the expected number of points per unit length of network (Baddeley et al., 2015).

For this study, the unit length is a meter. Let X denote the point process on the linear network L

with the intensity λ and B is a subset of L. The parameter λ is called a homogeneous intensity if

the expected number of points falling in B is E (X ∩ B) = λ|B| where |B| is the length of B (Baddeley

et al., 2015). An intensity function λ(s) at all locations s on L is called an inhomogeneous intensity

if the expected number of points falling in the subset B of L is E (X ∩ B) =
∫

L λ(u)d1u where the d1u

is one-dimensional integration over the line segment (Baddeley et al., 2015). Methods used in order

to estimate the intensity function on a linear network include point process models that are used to

fit the point pattern dataset. This requires specifying the form of the intensity function where the

parameters of the model are estimated using the maximum likelihood method (Baddeley et al., 2015).

Currently, there are no published papers which use Bayesian inference to analyse a spatial point

pattern on the linear network. Therefore, in this chapter, the aim is to estimate the intensity function

of accidents and study its pattern across the UK motorway network using a Bayesian approach.

The motorway-specific intensity function is estimated by modelling the point pattern of the accident

data using a homogeneous Poisson process. The homogeneous Poisson process is used to model all

intensity functions but heterogeneity is incorporated across motorways using a hierarchical approach.

The parameters in the hierarchical models are estimated by one-stage fully Bayesian, two-stage

semi-Bayesian and frequentist approach. The non-hierarchical model involves both Bayesian and

frequentist approaches. In the Bayesian approach, a sensitivity analysis is conducted by using

different priors. The performance of the proposed models is evaluated using a simulation study. The

dataset used in this chapter is obtained from the website of the Department for Transport in Great

Britain. The data include locations of accidents on 49 motorways in the UK for 2016. The intensity is

defined as the expected number of traffic accidents per unit length (meter).
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3.2 One-Stage Fully Bayesian Hierarchical Method (Model 1)

3.2.1 Model Definition

The analysis of traffic accident data from all motorways in a single step is called a one-stage approach.

Let m denote the total number of motorways. The number of accidents ni on the motorway i (i =

1, ...,m) follows a Poisson distribution with mean λiLi where Li represents the length of motorway

i and λi is the accidents intensity on the motorway i per unit length. Here λiLi is the expected

number of accidents on the motorway i and it can vary from motorway to motorway because each

motorway could have different conditions and features. Let αi = logλi denote the log-intensity

function and assume it follows a normal distribution N
(
α, τ2

)
. Thus, the model for traffic accidents

on the motorway is:

ni ∼ Pois(λiLi), i = 1, ...,m,

αi ∼ N(α, τ2). (3.1)

Here α is the overall log-intensity and τ2 is the between-motorway variance. In this model, each

accident’s location follows uniform distribution on interval (0,Li).

3.2.2 Likelihood Function

Let N = {ni, i = 1, ...,m} represent the accident count and Θ =
{
α1, α2, ..., αm, α, τ2

}
the model parame-

ters. The likelihood for model (3.1) is given by,

L (N|Θ) ∝
m∏

i=1

exp
(
niαi − Li exp (αi)

)
×

m∏
i=1

(
1

√

2πτ2

)
exp

(
−

(αi − α)2

2τ2

)
. (3.2)

For details about deriving the likelihood function see Appendix A.1.1.

3.2.3 Prior Distribution

A prior distribution is an important part in the Bayesian approach. The specification of the prior

distribution depends on available information about unknown parameters. If the prior information

is not enough or unavailable, then the useful choice of the prior distribution is a non-informative

prior. Another option is a vague prior with a large variance. The vague prior distribution is selected

when the amount of data is not small (Stojanovski et al., 2011). On the other hand, an informative

prior takes into account any belief or knowledge about unknown parameters. Furthermore, the prior

distribution leads to a posterior distribution which has the same distribution family as the prior (Gel-
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man et al., 2014). This type of prior is called conjugate prior. A conjugate prior with a large variance

leads to the vague prior. The strategy for specifying prior distributions for the parameters in the

hierarchical model includes conjugate, vague and weakly-informative priors.

For α, conjugate normal prior N
(
µ0, σ2

0

)
is assigned. We consider a conjugate inverse gamma prior

with shape α0 and rate β0 for τ2. We specify a uniform prior unif (0, a) , a > 0 as prior distribution

on the between-motorway standard deviation (τ) (Lambert et al., 2005). The half-normal prior is

specified as τ ∼ HN
(
0, θ2

)
, where θ2 =

π

2σ2 and σ > 0 as detailed in Klaus et al. (2015).

3.2.4 Posterior Distribution

Posterior if the prior distribution on τ2 is an inverse gamma distribution

The posterior distribution is the product of the likelihood and the prior distribution. Therefore, the

joint posterior density function for parameters given data is

π(Θ|N) =

m∏
i=1

exp
(
niαi − Li exp (αi)

)
×

m∏
i=1

(
1

√

2πτ2

)
exp

(
−

(αi − α)2

2τ2

)
×

1√
2πσ2

0

exp

− (
α − µ0

)2

2σ2
0

 × βα0
0

Γ(α0)

(
τ2

)−α0−1
exp

(
−β0/τ

2
)
. (3.3)

The conditional posterior distribution of αi is given by,

π
(
αi|α, τ

2,N
)
∝ exp

(
niαi − Li exp (αi)

)
× exp

(
−

(αi − α)2

2τ2

)
. (3.4)

For details about deriving the conditional posterior distribution of αi see Appendix A.1.2.1.

The conditional posterior distribution of α is a normal distribution N
(
µα, σ2

α

)
with mean and variance:

µα =

∑m
i=1 αi

τ2 +
µ0

σ2
0

m
τ2 +

1
σ2

0

, σ2
α =

1
m
τ2 +

1
σ2

0

. (3.5)

For details about deriving the conditional posterior distribution of α see Appendix A.1.2.2.

The conditional posterior distribution of τ2 is given by,

π(τ2
|α, α1, ..., αm,N) ∝

(
τ2

)−(α0 +
m
2

) − 1
exp

−
β0 +

∑2
i=1 (αi − α)2

2
τ2

 . (3.6)
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Hence, τ2 has an inverse gamma distribution with shape a = α0 +
m
2

and rate b = β0 +

∑m
i=1(αi − α)2

2
.

For details about deriving the conditional posterior distribution of τ2 see Appendix A.1.2.3.

Posterior if the prior distribution on τ is a uniform distribution

The joint posterior density of parameters given data is

π(Θ|N) ∝
m∏

i=1

exp
(
niαi − Li exp (αi)

)
×

m∏
i=1

(
1

√

2πτ2

)
exp

(
−

(αi − α)2

2τ2

)
×

1√
2πσ2

0

exp

− (
α − µ0

)2

2σ2
0

 . (3.7)

The conditional posterior distributions of αi, i = 1, ...,m and α are as in equations (3.4) and (3.5). The

conditional posterior density of τ is given by,

π(τ|α1, ..., αm, α,Y) ∝
(

1
√

2πτ2

)m

exp

− m∑
i=1

(αi − α)2

2τ2

 . (3.8)

Posterior if the prior distribution on τ is a half-normal distribution

The joint posterior distribution of parameters given data is

π(Θ|N) =

m∏
i=1

exp
(
niαi − Li exp (αi)

)
×

m∏
i=1

(
1

√

2πτ2

)
exp

(
−

(αi − α)2

2τ2

)
×

1√
2πσ2

0

exp

− (
α − µ0

)2

2σ2
0

 × 2θ
π

exp
(
−
τ2θ2

π

)
. (3.9)

The conditional posterior distributions of αi, i = 1, ...,m and α are the same as in equations (3.4) and

(3.5). The conditional posterior distribution of τ is

π(τ|α1, ..., αm, α,N) ∝ τ−m exp

− m∑
i=1

(αi − α)2

2τ2 −
τ2θ2

π

 , τ > 0. (3.10)

For details on the derivation of the conditional posterior distribution of τ, see Appendix A.1.2.4.

3.2.5 Estimation

In equations (3.5) and (3.6), the conditional posterior distributions of α and τ2 given other parameters

have a known form, but the conditional posterior distributions ofαi, i = 1, ...,m given other parameters

in equation (3.4) do not have known forms. Therefore, Metropolis-Hastings within Gibbs sampler
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is used to generate samples (Markov chain) of αi, i = 1, ...,m, α and τ2. The Metropolis-Hastings

sampler does not directly generate samples from the full conditional distribution. Instead, a proposal

distribution is chosen given the current value of the parameter, α(t−1)
i , where t is iteration index.

The proposal distribution q1(., α(t−1)
i ) for the proposed value άi is the normal distribution with mean

equalling to current value α(t−1)
i and variance is chosen such that an acceptance rate of άi is between

0.24 and 0.40 (Gelman et al., 1996). Then the Metropolis-Hastings is defined by two steps: firstly,

generate a proposed value, άi, from the proposal distribution, q1(., α(t−1)
i ); secondly, the proposal value

is accepted as the next value with the probability

r1(α(t−1)
i , άi) = min

 π
(
άi|α(t−1), τ2(t−1)

)
q1

(
α(t−1)

i , άi

)
π

(
α(t−1)

i |α(t−1), τ2(t−1)
)

q1

(
άi, α

(t−1)
i

) , 1 . (3.11)

If the proposed value is rejected, then the current value is taken as the next value in the Markov

chain. The uniform prior distribution on τ leads to the posterior distribution on τ that is given in

equation (3.8). This posterior distribution does not have a closed form, therefore, the Metropolis-

Hastings sampler is used. In order to move into the next state, the following two steps are defined:

firstly, draw a proposal value, τ́, from the proposal distribution q2

(
., τ(t−1)

)
. The proposal distribution

q2

(
., τ(t−1)

)
is a normal distribution with current state τ(t−1) as mean and variance 0.9. Secondly the

proposed value is accepted with the probability

r2(τ(t−1), τ́) = min

 π
(
τ́|α(t), α(t)

1 , ..., α
(t)
m

)
q2

(
τ(t−1), τ́

)
π

(
τ(t−1)|α(t), α(t)

1 , ..., α
(t)
m

)
q2

(
τ́, τ(t−1)) , 1

 . (3.12)

The conditional posterior in equation (3.10) is produced by using half-normal prior distribution and

it does not have a closed form. Therefore, the Metropolis-Hastings sampler is utilized to simulate

Markov chain of τ. This sampler includes generating the proposed value τ́ from the proposal

distribution q2

(
., τ(t−1)

)
and accepting this value with the probability r2

(
τ(t−1), τ́

)
which is described

in equation (3.12). The proposal distribution q2

(
., τ(t−1)

)
is a normal distribution with current state

τ(t−1) as mean and variance 0.09. Hence, the algorithm for estimating parameters of Model 1 with the

three prior distributions is given in Algorithm 3.1.
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Algorithm 3.1 Sampling from the full conditional posterior distributions of parameters for the two-
level Bayesian hierarchical model (Model 1) using Metropolis-Hastings within Gibbs sampling.

Set initial values, α(0) = (α(0)
1 , ..., α

(0)
m ), α(0) and τ2(0).

For each iteration t.

Step 1: Update α one by one.

[1.1] Generate a proposed value, άi ∼ q1(., α(t−1)
i ).

[1.2] Calculate the probability r1(α(t−1)
i , άi) specified in equation (3.11).

[1.3] With probability r1, set α(t)
i = άi, otherwise set α(t)

i = α(t−1)
i .

[1.4] Repeat steps 1.1 to 1.3 for all αi, i = 1, ...,m.

Step 2: Update full conditional posterior density π
(
α(t)
|α(t)

i , τ
2(t−1)

,N
)
, i = 1, ...,m, specified in equa-

tion (3.5).

Step 3: Update τ.

[3.1] Generate a proposed value, τ́ ∼ q2(., τ(t−1)).

[3.2] Calculate the probability r2(τ(t−1), τ́) specified in equation (3.12).

[3.3] With probability r2, set τ(t) = τ́, otherwise set τ(t) = τ(t−1).
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3.3 Two-Stage Semi-Bayesian Hierarchical Method (Model 2)

In the two-stage method, traffic accidents from each motorway are analysed separately in order to

obtain summary statistics (such as point estimates and their standard deviations), then, they are

combined by hierarchical models (Burke et al., 2017).

3.3.1 Model Definition

In a two-stage approach, the log-intensity will be estimated for each motorway separately in stage

one using a frequentist approach. The resulting estimates from stage one are then used as data in

stage two, where log intensities are assumed to arise from a common population distribution with

an unknown mean and variance. At stage one, firstly all motorways are analysed independently to

estimate the log-intensity of accidents αi (i = 1, ...,m) for the motorway i. The accident location si j is

assumed to follow a uniform distribution on interval (0,Li),

si j ∼ unif (0,Li) , i = 1, ...,m, j = 1, ...,ni (3.13)

where Li represents the length of motorway i and ni is the total number of accidents on the motorway

i. The number of accidents ni follows the Poisson distribution with mean λiLi. Let N = {ni, i = 1, ...,m}.

The likelihood function is:

L (N|αi) = P (si) × P (ni)

=
1

Lni
i

×
(λiLi)

ni exp (−λiLi)
ni!

∝ exp
(
niαi − Li exp (αi)

)
, (3.14)

where si =
(
si j, i = 1, ...,m, j = 1, ...,ni

)
. The estimated log-intensity of accidents and its standard

deviation for each motorway i are obtained using maximum likelihood estimation. The MaxLik

function in the MaxLik package is used (Chandler et al., 2013).

In the second stage, the Bayesian approach is used to estimate the overall log-intensity. The second

stage of the model can be formulated as:

yi ∼ N
(
αi, σ

2
i

)
,

αi ∼ N
(
α, τ2

)
, (3.15)
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where yi = α̂i is the maximum likelihood estimate of the log accidents intensity of motorway i and σ2
i

its corresponding variance. In this model, yi and σ2
i for all i = 1, ...,m are known from stage one. The

parameters αi for all i = 1, ...,m are unknown nuisance parameters. α represents an overall mean. τ2

represents the variability between motorways (heterogeneity). This model is termed a random effects

model because it allows the log-intensity function to vary from one motorway to the other.

3.3.2 Likelihood Function

Setting y = (y1, ...,ym) and Θ = (α1, ..., αm, α, τ2), the likelihood function is given by:

L
(
y|Θ

)
=

m∏
i=1

1√
2πσ2

i

exp

−
(
yi − αi

)2

2σ2
i

 ×
m∏

i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
. (3.16)

For details about deriving the likelihood function see Appendix A.2.1.

3.3.3 Posterior Distribution

The same prior distributions for α and τ2 as the ones described in section 3.2.3 are considered.

Posterior if the prior distribution on τ2 is an inverse gamma distribution

To produce the joint posterior density function, the likelihood in equation (3.16) is combined with the

prior density function of α and the prior density function of τ2. The joint posterior distribution of the

parameters given data is given by:

π
(
Θ|y

)
=

m∏
i=1

1√
2πσ2

i

exp

−
(
yi − αi

)2

2σ2
i

 ×
m∏

i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)

×
1√

2πσ2
0

exp

− (
α − µ0

)2

2σ2
0

 × βα0
0

Γ(α0)

(
τ2

)−α0−1
exp

(
−β0/τ

2
)
. (3.17)

For details about deriving the joint posterior distribution see Appendix A.2.2.

Using equation (3.17), the conditional posterior density of αi given other parameters is obtained:

π
(
αi|α, τ

2,y
)
∝ exp

− (
αi − µαi

)2

2σ2
αi

 , (3.18)
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and this is a normal distribution with mean µαi =

yi

σ2
i

+
α

τ2

1
σ2

i

+
1
τ2

and variance σ2
αi

=
1

1
σ2

i

+
1
τ2

.

For details about deriving the conditional posterior density of αi see Appendix A.2.3.1.

Using equation (3.17), the conditional posterior density of α is obtained by considering α as a random

variable and αi, τ2 as known. Hence,

π(α|α1, ..., αm, τ
2,y) ∝ exp

− (
α − µα

)2

2σ2
α

 , (3.19)

where this represents the normal distribution for α with mean µα =

∑m
i=1 αi

τ2 +
µ0

σ2
0

m
τ2 +

1
σ2

0

and variance

σ2
α =

1
m
τ2 +

1
σ2

0

.

For details about deriving the conditional posterior density of α see Appendix A.2.3.2.

Using equation (3.17), the conditional posterior density of τ2 given other parameters is derived.

Hence:

π
(
τ2
|α1, ..., αm, α,y

)
=

βα0
0

Γ(α0)

(
τ2

)−(α0 +
m
2

) − 1
exp

−
β0 +

∑m
i=1 (αi − α)2

2
τ2

 . (3.20)

The above density represents the density function of an inverse gamma distribution with a = α0 +
m
2

and b = β0 +

∑m
i=1(αi − α)2

2
. For more details about deriving the conditional posterior distribution of

τ2 see Appendix A.2.3.3.

Posterior if the prior distribution on τ is a uniform distribution

The joint posterior distribution of parameters given data can be written as follows:

π
(
Θ|y

)
∝

m∏
i=1

1√
2πσ2

i

exp

−
(
yi − αi

)2

2σ2
i

 ×
m∏

i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)

×
1√

2πσ2
0

exp

− (
α − µ0

)2

2σ2
0

 . (3.21)
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The conditional posterior distributions of αi and α are the same as the distributions in equations (3.18)

and (3.19), while the conditional posterior distribution of τ is :

π
(
τ|α1, ..., αm, α,y

)
∝

( 1
τ2

)m
2 exp

(
−

∑m
i=1(αi − α)2

2τ2

)
. (3.22)

Posterior if the prior distribution on τ is a half-normal distribution

The joint posterior distribution of parameters given data is

π
(
Θ|y

)
∝

m∏
i=1

1√
2πσ2

i

exp

−
(
yi − αi

)2

2σ2
i

 ×
m∏

i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)

×
1√

2πσ2
0

exp

− (
α − µ0

)2

2σ2
0

 × 2θ
π

exp
(
−
τ2θ2

π

)
. (3.23)

The conditional posterior distribution of αi and α are the same as in equations (3.18) and (3.19). The

conditional posterior distribution of τ is

π
(
τ|α1, ..., αm, α,y

)
=

( 1
τ2

)m
2 exp

−∑m
i=1 (αi − α)2

2τ2 −
τ2θ2

π

 . (3.24)

3.3.4 Estimation

When the conditional posterior distribution is in a closed form, Gibbs sampler is used to generate

Markov chain of the parameter. To simulate from the conditional posterior on τ in (3.22), the

Metropolis-Hastings within Gibbs sampler is used. A symmetric proposal distribution q(., τ(t−1))is

chosen given the current value of the parameter, τ(t−1), where t is an iteration index. We chose

N
(
τ(t−1), σ2

)
with variance σ2 = 0.09 as proposal distribution of proposed value τ́. To move from

the current state to the next state, we define the following two steps. Firstly, generate a proposed

value, τ́, from the proposal distribution ,q(., τ(t−1)); secondly, the proposed value is accepted with the

probability

r(τ(t−1), τ́) = min

 π
(
τ́|α(t), α(t)

1 , ..., α
(t)
m

)
q
(
τ(t−1), τ́

)
π

(
τ(t−1)|α(t), α(t)

1 , ..., α
(t)
m

)
q
(
τ́, τ(t−1)) , 1

 . (3.25)

If the proposed value is rejected, then the current value is accepted. The form of the conditional

posterior on τ in equation (3.24) is unknown, so the Metropolis-Hastings within Gibbs sampler

is used to generate the Markov chain from the conditional posterior distributions of αi, α and τ.

Algorithm 3.2 shows the Metropolis-Hastings within Gibbs sampler to generate from conditional

posterior distributions in equations (3.18), (3.19), (3.22) and (3.24).
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Algorithm 3.2 Sampling from the full conditional posterior distributions of parameters for the two-
level semi-Bayesian hierarchical model (Model 2) using Metropolis-Hastings within Gibbs sampling.

Initialise α(0) and τ2(0)

For each iteration t,
1. Update αi by Gibbs sampler, α(t)

i ∼ N(µ(t−1)
αi

, σ2(t−1)
αi

), i = 1, ..,m that is defined in (3.18).
2. Update α by Gibbs sampler, α(t)

∼ N(µ(t−1)
α , σ2(t−1)

α ), i = 1, ...,m that is defined in (3.19).
3. Update τ.

• Generate a proposed value, τ́ ∼ q(., τ(t−1)).

• Calculate the probability r(τ(t−1), τ́) specified in equation (3.25).

• With probability r, set τ(t) = τ́, otherwise set τ(t) = τ(t−1).

3.4 Two-Stage Frequentist Hierarchical Method (Model 3)

This section describes a two-stage approach to fit the intensity of accidents on the UK motorway

network.

In stage one, the intensity function for each motorway is estimated using the maximum likelihood

method to obtain the estimated log-intensity function yi and the corresponding standard deviation

σi.

In stage two, the log-intensity function across motorways is combined to produce an overall log-

intensity estimate. The model can be formulated as:

yi ∼ N(αi, σ
2
i ),

αi ∼ N(α, τ2). (3.26)

Here yi represents the estimated intensity on log scale for motorway i, αi represents the true log-

intensity and σ2
i is the within-motorway variance corresponding to yi; α is the overall intensity on

log scale and τ2 represents the between-motorway heterogeneity.

The model was set up as in (3.26) above with distributional assumptions of normality for yi and

αi. The marginal distribution of each estimated log-intensity yi is therefore normal with mean α

and variance
(
σ2

i + τ2
)−1

(Hardy and Thompson, 1996). Hence the contribution of motorway i to the

likelihood for α and τ2 is given by,

Li

(
α, τ2

)
=

1√
2π

(
σ2

i + τ2
) exp

−
(
yi − α

)2

2
(
σ2

i + τ2
)
 . (3.27)
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For m independent motorways, the likelihood is given by the product of the individual motorway

likelihoods, so the likelihood on all motorways is

L
(
α, τ2

)
=

m∏
i=1

1√
2π

(
σ2

i + τ2
) exp

−
(
yi − α

)2

2
(
σ2

i + τ2
)
 . (3.28)

In order to estimate α and τ, we use the R function rma that employs the maximum likelihood method

(ML).

3.5 Non-hierarchical Bayesian and Frequentist Methods (Model 4 and 5)

In this section, a non-hierarchical Bayesian model is considered for the accidents on the whole UK

motorway network for comparison to hierarchical models. In this model, the number of accidents on

the whole network is considered as a homogeneous process. The total number of accidents N has a

Poisson distribution with a mean |L| exp (α), where λ = exp (α) represents the intensity of accidents

on the network and |L| is the network length:

N ∼ Pois(λ|L|). (3.29)

The likelihood function is given as:

L (N|α) ∝ exp
(
Nα − |L| exp(α)

)
. (3.30)

N(µ0, σ2
0) is chosen to be a non-informative prior distribution for the parameter α which is the log-

intensity of accidents on the motorway network. So the posterior density function of α is

π(α|N) = exp
(
Nα − |L| exp(α)

)
exp

 (α − α0)2

2σ2
0

 . (3.31)

The posterior density of α does not have a closed form, so the Metropolis-Hastings sampler is used to

make inference about the posterior distribution of α. Also the maximum likelihood method is used

to analyse the non-hierarchical model in equation (3.30).

3.6 Estimation Results for Motorway Data

Non-informative and weakly-informative prior distribution

One could choose a conjugate normal prior N (0, 100) of α. We consider a conjugate inverse gamma
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prior forτ2 with shape and rateα0 = β0 = 0.001. The weakly-informative prior isτ2
∼ Inv-Gamma(0.1, 0.1).

This prior is chosen to assess the sensitivity to the choice of prior parameters. Another option is a

non-informative prior distribution for τ which is a uniform prior unif (0, 100) (Lambert et al., 2005).

Finally, the non-informative half-normal distribution HN(0, 0.02) may be specified as prior on τ (Lam-

bert et al., 2005).

Results

In this section, results from analysis the observed accident data described in section 3.1 are provided.

For models 1, 2 and 3, two parameters which are the overall log-intensity (α) of accidents per meter

and the heterogeneity between motorway (τ) are estimated. The MCMC simulation process requires

specifying starting points for the parameters. Therefore, the initial values α = 0 and τ = 0.1 are

specified. The MCMC algorithm was run of Model 1 for 100,000 iterations with burn-in 10,000 and

thinning interval 10 and of Model 2 for 50,000 iterations with burn-in 5,000 and thinning interval 10.

The first 10% of the iterations are discard in order to minimize the effect of the initial values on the

posterior inference.

Table 3.1 displays estimation results for three hierarchical models given various prior distributions.

In the frequentist hierarchical method (Model 3), overall log accidents intensity (α) across all mo-

torways is estimated to be −6.811 with a standard deviation of 0.099 and a 95% confidence interval

(−7.004,−6.618). The heterogeneity between motorway (τ) was estimated to be 0.641 with a standard

deviation of 0.096 and a 95% confidence interval (0.535, 0.885). For all prior distributions specified

for Model 2, results from hierarchical models 2 and 3 are similar. In more detail, estimates of the

overall log-intensity of accidents of Model 2 including the mean posterior and its standard deviation

as well as 95% credible interval are similar to overall log-intensity of accidents estimated from Model

3. In the same way, estimates of the heterogeneity between motorway are similar for both models 2

and 3. Regarding Model 1, the posterior mean and its standard deviation are slightly different from

models 2 and 3 where the difference is obvious in estimates of α and τ with respect to all specified

prior distributions. Results from Model 1 show that the prior distribution has a slight influence on

the posterior.

On the other hand, Table 3.2 shows that non-hierarchical Bayesian and maximum likelihood meth-

ods gave different estimates for parameters of models 4 and 5 where the posterior mean of Model

4 parameter is −6.489 and a point estimate of Model 5 parameter is −6.289. For non-hierarchical

models, there was no difference between the range of Bayesian credible intervals and the likelihood

confidence interval. A comparison of Tables 3.1 and 3.2 shows the disagreement in results of hierar-

chical and non-hierarchical models, where there is a variability in the posterior mean estimates and
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corresponding standard deviations of models 4 and 5 versus models 1, 2 and 3.
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Figure 3.1 illustrates the posterior means (point estimates) and corresponding 95% credible intervals

for the estimates of the log-intensity of accidents αi on each motorway i and the overall log-intensity

of accidents α from the analysis of hierarchical models 1, 2 and 3 using prior distributions τ2
∼

Inv-Gamma(0.001, 0.001) and α ∼ N(0, 102). From Figure 3.1, it is clear that the posterior mean and

the point estimate of the overall log-intensity α of accidents are similar for models 2 and 3 and the

width of the 95% credible interval is similar. The estimates of the posterior mean and the 95% credible

interval of Model 1 are slightly different. The posterior mean of the log-intensity of accidents on each

motorway is comparable between models 2 and 3, but there is a variability in the posterior means and

the width of 95% credible intervals of the log-intensity of accidents on the motorways M45, M56, M58

and M898. Model 1 appears to have a different performance in the inference regarding the estimation

of width of 95% credible interval for some αi. Findings from Model 1 are similar to those from models

2 and 3 in point and credible interval estimates of αi for motorways M25, M27, M606, M60, M1, M3,

M20, M8, M18, M5, M55, M876, M69, M181, M67, M77, M49, M48, M54 and M50.

Figure 3.1 shows that three motorways with the highest intensity of traffic accidents are M25, M27 and

M606. The M25 has the highest intensity of traffic accidents where the expected number of accidents is

3.59 per one kilometer. The M27 has the second highest intensity of traffic accidents with the expected

number of accidents 3.03 per one kilometer. The M606 completes the top three with the expected

number of accidents 2.36 per one kilometer. In addition, Figure 3.1 shows that three motorways with

the lowest intensity of accidents are M50, M74 and M180. The lowest intensity of accidents is on the

M50 with the expected number of accidents 3.32 per 10 kilometers of the M50. In terms of the lowest

for intensity of traffic accidents, the M74 occupies the second rank where the expected number of

accidents is 4.18 per 10 kilometers. The third rank for the lowest accidents intensity is for the M180

with the expected number of accidents 4.35 per 10 kilometers.
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Similarly, Figure A.14 in Appendix shows that a prior distribution has no effect on the findings from

Model 2 where point and credible interval estimates of overall log-intensity are similar for all specified

prior distributions. Whereas, the effects of the prior distribution on estimates of Model 1 parameters

are not present (very weak) as a non-informative gamma prior gave a very similar point estimate of

the overall log-intensity (Figure 3.1 and Appendix Figure A.13).

In Figure 3.2, a comparison is made among the posterior mean, point estimate and 95% credible

interval of the parameter α from models 1, 2 and 3 using a hierarchical model with those obtained

from models 4 and 5 using a non-hierarchical model. This figure shows the discrepancies between

hierarchical models and non-hierarchical models

Models
model5
model4
model2
model3
model1

Overall Log−Intensity(95% CI)
−6.29 [−6.31, −6.26]
−6.49 [−6.52, −6.46]
−6.81 [−7.01, −6.62]
−6.81 [−7.00, −6.62]
−6.82 [−7.01, −6.64]

−7 −6.9 −6.8 −6.7 −6.6 −6.5 −6.4 −6.3

Overall Log−Intensity

Figure 3.2: The posterior mean and 95% credible interval for the overall log-intensity α using Model 1, Model
2, Model 3. The Bayesian method for estimating the log-intensity of non-hierarchical model (Model 4) and the
maximum likelihood estimation of the log-intensity of non-hierarchical model (Model 5).

Plotting residuals considered the common diagnostic technique to assess the appropriateness of the

model. Let Ni represent the observed number of accidents on motorway i and N̂i denote the predicted

value of the number of accidents on motorway i. Let λ̂i represent Bayesian estimate of the accidents

intensity N̂i = λ̂iLi (Baddeley et al., 2015). The residual (Ri) of the observed data can be defined as

Ri = Ni − N̂i. Here, λ̂i(i = 1, ...,m) are the estimated intensities of motorways in Figure 3.1(a).

59



●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

0 100 200 300 400 500 600

−6
−4

−2
0

2
4

6

The observed number of accidents

R
es

id
ua

l

l

l

l

l

ll

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l

l

ll

l

0 100 200 300 400 500 600

−6
−4

−2
0

2
4

6

The predict number of accidents

R
es

id
ua

l

Figure 3.3: Residuals plots. The predicted value of the number of accidents is calculated using the two-level
Bayesian hierarchical model fitted to the traffic accidents on the UK motorway network for 2016.

The predicted intensities of accidents, λ̂i (i = 1, ...,m), after fitting Model 1 for the UK motorway

network data were divided into five levels. Level one includes λ̂i < 0.5 pointing out a very low-risk.

Level two includes 0.5 ≤ λ̂i < 1 pointing out a low-risk. Level three includes 1 ≤ λ̂i < 2 pointing out

a moderate-risk. Level four includes 2 ≤ λ̂i < 3 pointing out a high-risk. Level five includes λ̂i ≥ 3

pointing out a very high-risk. Figure 3.4 shows that a general level of the intensity of accidents on the

UK motorway network is the moderate-risk where the moderate-risk motorways are M32, M1, M3,

M20, M8, M6, M65, M62, M11, M4, M271, M42, M61, M2, M40, M57, M23, M60, M56, M898, M66,

M602, M18 and M5. Motorways M25 surrounding almost all of Greater London, England, except

North Ockendon, in the United Kingdom and M27 in Hampshire, England, starting west-east from

Cadnam to Portsmouth, have a very high-risk level. The expected numbers of accidents are 3.59 per

one kilometer of M25 and 3.03 per one kilometer of M27. The motorways M54, M180, M74 and M50

form the lowest risk motorways and their estimated intensities are 4.4, 4.4, 4.2, 3.3 per 10 kilometers.

Figure 3.4, moreover, illustrates that the risk intensity level for motorways M606, M621 and M275

is high and the expected number of accidents is 2.36 per one kilometer of M606 and 2.09 per one

kilometer of both M621 and M275.
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Figure 3.4: An intensity of traffic accidents (λi) per one kilometer on the UK motorway network including 49
motorways. This plot is produced using the traffic accidents data for year 2016. Prior distributionsα ∼ N(0, 100)
and τ2

∼ Inv-Gamma (0.001, 0.001).
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The important issue in the MCMC analysis is an assessment of convergence. There are several

diagnostic tools to investigate whether the simulated Markov chain converges to the stationary

distribution. The most popular diagnostic tool is a visual inspection involving trace, autocorrelation

and density plots (van de Schoot and Depaoli, 2014). Figures 3.5 and 3.6 show the trace plots,

autocorrelation functions (ACF) and histograms for the parameters α and τ of both models 1 and 2

with prior distribution τ2
∼ Inv-Gamma(0.001, 0.001). For each of these figures, the first row includes

the trace plots of all model parameters, where the blue colour represents the generated samples

and the dashed red line is the posterior mean. The second row represents ACF plots of all model

parameters. The third row represents the marginal density histograms of all model parameters. The

dashed red line is the posterior mean. As can be seen from the results in Table 3.1 and Figures 3.5

and 3.6, the samplers perform well in estimating the true plots of parameter α suggesting that there

is no correlation between the samples produced by the samplers; with regard to ACF plots of τ,

autocorrelation decays quickly in all figures across both models. More specifically, both the α and τ

parameters appear to have a slight correlation at the first lags and then begin to fade quickly. This

was easily treated by thinning. Figures A.1, A.2, A.3, A.4, A.5 and A.6 in Appendix show that the

trace plots, autocorrelation functions and histograms for the parameters α and τ of models 1 and 2

for the three remaining prior distributions are insensitive to priors.
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Figure 3.5: Trace plots, ACF functions and histograms of posterior parameters of the fully Bayesian hi-
erarchical model. The model is fitted using algorithm 3.1 with prior distributions α ∼ N(0, 100) and
τ2
∼ Inv-Gamma(0.001, 0.001). The graphs in the first row represent the trace plots of the parameters α

and τwith 10,000 samples discarded burned-in from 100,000 samples and the horizontal red dashed line in the
trace plots shows the posterior mean. The graphs in the second row show the ACF functions of the parameters
α and τ. The graphs in the third row show the histograms of the parameters α and τ. The vertical red dashed
line shows the posterior mean.
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Figure 3.6: Trace plots, ACF functions and histograms of posterior parameters of the semi-Bayesian hi-
erarchical model. The model is fitted using algorithm 3.2 with prior distributions α ∼ N(0, 100) and
τ2
∼ Inv-Gamma(0.001, 0.001). The graphs in the first row represent the trace plots of the parameters α

and τ with 5,000 samples discarded burned-in from 50,000 samples and the horizontal red dashed line in the
trace plots shows the posterior mean. The graphs in the second row show the ACF functions of the parameters
α and τ. The graphs in the third row show the histograms of the parameters α and τ. The vertical red dashed
line shows the posterior mean.
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However, the visual inspection to assess the convergence does not guarantee that the chain has a sta-

tionary distribution (Hamra et al., 2013). Therefore, Gelman-Rubin or Geweke diagnostic inspections

are used. The Gelman-Rubin statistic evaluates a difference between the variance within multiple

chains and the variance between multiple chains through calculating the Gelman-Rubin statistic

R̂ (Gelman and Rubin, 1992a). To implement Gelman-Rubin diagnostic, two MCMC simulations are

run with two different overdispersed starting values (α, τ) = (−10, 0.25) and (10, 3) using algorithms

3.1 and 3.2 . The first row in Figures 3.7 and 3.8 shows that the trace plots of the two chains with

different starting values of parameters α and τ are stationary. The second row in Figures 3.7 and

3.8 shows that the Gelman-Rubin statistic is less than 1.2. In the same context, from graphs in the

first row of Figures A.7, A.8, A.9, A.10, A.11 and A.12 in Appendix, it is clear that the Gelman-Rubin

statistics of the MCMC chains of the parameters α and τ of both models 1 and 2 across the other prior

distributions are less than 1.2.

The convergence is also investigated using the Geweke diagnostic for each parameter across Model

1 and Model 2. The Geweke diagnostic splits a chain into two parts of iterations and measures the

similarity between the mean of the first part of the iterations and the mean of the last part of the

iterations by standard normal statistic Z (Geweke, 1991; Cowles and Carlin, 1996). The third row in

Figures 3.7 and 3.8 shows the Geweke statistic Z versus the first part of the iteration. The Z score is

within the interval (−1.96, 1.96) (Best et al., 1995). From all diagnostic results, it is concluded that the

MCMC chain of parameters α and τ across both models have the stationary distribution.
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Figure 3.7: The diagnostic convergence graphs of posterior parameters of the fully Bayesian hierarchi-
cal model. The model is fitted using algorithm 3.1 under prior distributions α ∼ N(0, 100) and τ2

∼

Inv-Gamma(0.001, 0.001). The graphs in the first row represent the trace plots of the parameters α and τ.
The blue trace plot is performed with initial values of α = −10 and τ = 0.25 and the red trace plot is performed
with starting values of α = 10 and τ = 3. The graphs in the second row represent the plots of the Gelman-Rubin
statistic of the generated Markov chains of the posterior parameters of α and τ. The black solid and red dashed
lines in the Gelman-Rubin diagnostic represent median and 97.5% quantile of the sampling distribution for the
resulting shrink factor to stabilize around value of 1 for the last 50,000 samples of the Markov chains of α and
τ. The graphs in the third row represent plots of the Geweke’s diagnostic involving Z-scores. The horizontal
black dashed lines in the Geweke’s diagnostic plot are tails of a standard normal distribution which are ±1.96.
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Figure 3.8: The diagnostic convergence graphs of posterior parameters of the semi-Bayesian hierarchi-
cal model. The model is fitted using algorithm 3.2 under prior distributions α ∼ N(0, 100) and τ2

∼

Inv-Gamma(0.001, 0.001). The graphs in the first row represent the trace plots of the parameters α and τ.
The red trace plot is performed with initial values of α = −10 and τ = 0.25 and the blue trace plot is performed
with starting values of α = 10 and τ = 3. The graphs in the second row represent the plots of the Gelman-Rubin
statistic of the generated Markov chains of the posterior parameters of α and τ. The black solid and red dashed
lines in the Gelman-Rubin diagnostic represent median and 97.5% quantile of the sampling distribution for the
resulting shrink factor to stabilize around value of 1 for the last 25,000 samples of the Markov chains of α and
τ. The graphs in the third row represent plots of the Geweke’s diagnostic involving Z-scores. The horizontal
black dashed lines in the Geweke’s diagnostic plot are tails of a standard normal distribution which are ±1.96.
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3.7 Simulation Study

3.7.1 Simulation Design

In this section, a simulation study is conducted to assess the performance of the models described

in sections 3.2-3.5. The design of this simulation study includes three steps. Firstly, the true values

of model parameters α and τ should be specified, where α is the overall log-intensity of accidents

per meter and τ is the between-motorway standard deviation. For this simulation, six scenarios are

considered for the true values of parameters α and τ. The true values of α are taken to be -7 and -1. If

the overall log-intensity is chosen to be α < −9, then the number of accidents on the motorway will be

equal to zero. The between motorways standard deviation τ is set to be 0.3, 0.8 and 1.5 to reflect the

variation between motorways. A magnitude of 0.3 would indicate that there is not much variation

in the motorway specific log-intensity while a magnitude of 1.5 would result in much more variation

between motorways. These true values of parameters α and τ are chosen to be close to the results

for the observed data set. Secondly, the log-intensity αi on motorway i (i = 1, ...,m) is drawn from a

normal distribution with mean α and standard deviation τ. Thirdly, the data set which represents the

number of accidents ni (i = 1, ...,m) on the motorway i is generated from a Poisson distribution with

mean Li exp(αi), where Li is the length of the motorway i. The second and third steps were repeated

1,000 times for each scenario.

The performance and precision of the simulation are measured by comparing the simulated results

with the true values that were used to produce the simulated data (Burton et al., 2006). Because

of the potential variation of results across criteria, three performance criteria are tested: bias, mean

square error (MSE) and coverage probability (CP) of parameter estimates (Collins et al., 2001). Here, an

explanation of criteria is briefly presented. The average of the estimates over all simulations is utilized

to calculate the bias in the parameter estimate which represents the difference between the average of

the estimates (mean) over all simulations and the true value of parameter used to produce simulated

data (Collins et al., 2001). The second criterion, the mean square error of the parameter estimate is a

useful tool to measure the overall accuracy and it is equal to the squared bias of estimate plus its

variance (Collins et al., 2001); MSE = Bias (α̂, α)2 + Var (α̂). The coverage probability is the percentage

of 95% credible intervals that contain the true value of parameter (Burton et al., 2006). The coverage

probability should be close to 95% (Kontopantelis and Reeves, 2012).
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3.7.2 Simulation Results

This section describes and discuss simulation results. Tables 3.4, 3.6, 3.8, 3.10 and 3.12 show that for

scenarios with true value of α = −7, the performance of means for each of the overall log-intensity and

of the between motorway standard deviation for the fully Bayesian hierarchical model is better than

those for the other models across all prior distributions. For scenarios with true value α = −1, means

values for each of the three hierarchical models are similar and accurate across all prior distributions

except the uniform prior distribution within range (0, 100). For this prior with true value τ = 1.5,

the mean of τ obtained for fully Bayesian hierarchical model is better than those obtained for semi-

Bayesian and frequentist hierarchical models. Findings for Bayesian and frequentist non-hierarchical

models are similar for all scenarios and the mean of the log-intensity is poor in some scenarios. For

example, for scenario with α = −1 and τ = 1.5 the mean of the overall log-intensity α is very inaccurate

and it is not close to the true value of α, also for scenario with true values of α = −1 and τ = 0.8 the

mean of α is far from the true value of α. Means of α and τ indicate that the fully Bayesian approach

performs slightly better than the semi-Bayesian and frequentist approaches. The performance of

non-hierarchical models is poor compared with the performance of hierarchical models because of

ignoring heterogeneity in non-hierarchy structure.

For the scenario with true value α = −1, the bias in α for the fully Bayesian hierarchical model is

similar to those for semi-Bayesian hierarchical model across all prior distributions. In Tables 3.3

and 3.5, the bias in τ for the frquentist hierarchical model is slightly larger than the bias obtained

for the fully Bayesian and semi-Bayesian hierarchical models for the prior distributions of τ2, Inv-

Gamma(0,001, 0.001) and Inv-Gamma(0.1, 0.1). Tables 3.7 and 3.9 show that the bias in τ obtained

for the fully Bayesian and semi-Bayesian models using unif(0, 102) and HN(0, 0.02) as prior distri-

butions of τ is larger than the bias obtained for the same models but using Inv-Gamma(0.001, 0.001)

and Inv-Gamma(0.1, 0.1) as prior distributions of τ2. This indicates a sensitivity of τ to the prior

specifications.

For the true value of α = −7, Tables 3.4, 3.6, 3.8 and 3.10 show that estimates of α and τ for the fully

Bayesian hierarchical model have less bias compared with those for other hierarchical models used.

With regards to the non-hierarchical models, the magnitude of the bias in α for both non-hierarchical

models is larger than the magnitude of the bias in α for all hierarchical models, as can be seen in

Tables 3.11 and 3.12.

Tables 3.3-3.10 show that the MSE of α and τ for the three hierarchical models are similar. The MSE

of the non-hierarchical models for α is larger than the MSE obtained for the hierarchical models as

can be seen in Tables 3.11 and 3.12.
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A 95% credible interval is calculated for each simulated data set for each scenario, then the coverage

probability is estimated. For the true value α = −1, the performance of the coverage probability of

α and τ for the hierarchical models is similar, where in some cases coverage probabilities are just

slightly below 0.95. In this scenario there is no general direction of the coverage probability of both

parameters α and τ through all used prior distributions. However, the coverage probability of α for

the hierarchical models across all the prior distributions used, increases as the heterogeneity between

motorways increases.

For scenario with true value α = −7, the coverage probability of both parameters α and τ for the fully

Bayesian hierarchical model is better than those of the semi-Bayesian and frequentist hierarchical

models and it is closest to 0.95, as can be seen in Tables 3.4, 3.6, 3.8 and 3.10. In addition, across prior

distributions Inv-Gamma(0.1, 0.1), unif(0, 102) and HN(0, 0.02), the fully Bayesian hierarchical model

gave coverage that does not exceed 0.96 or drop under 0.94.

Tables 3.11 and 3.12 show that the performance of the parameter α for the non-hierarchical model is

very poor and is not comparable with those for the hierarchical models. In general, the fully Bayesian

hierarchical model performed better than other hierarchical models in terms of bias and coverage.

The performance of the mean and MSE for the fully Bayesian hierarchical model was similar to other

hierarchical models. Finally, the performance of the non-hierarchical models was extremely poor in

terms of mean, bias, MSE and coverage probability.

Regarding the computing time, for all scenarios and across all prior distributions, Model 1 took from

11593 seconds to 18516 seconds; Model 2 took from 806 seconds to 1469 seconds and Model 3 took

from 34 seconds to 44 seconds. Model 4 took from 317 seconds to 325 seconds, while Model 5 took

few seconds. Thus, it is clear that Model 1 takes the longest computing time.
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Model 4 Model 5
True τ Parameters Mean Bias MSE CP Time Mean Bias MSE CP Time

0.3 α -0.96 0.0444 0.0075 1.5% 319 -0.96 0.0444 0.0075 1.5% 3

0.8 α -0.68 0.3235 0.15 0.4% 323 -0.68 0.3235 0.15 0.4% 3

1.5 α 0.02 1.0235 1.2569 0% 325 0.02 1.0235 1.2569 0% 2

Table 3.11: Simulation results using Bayesian method (Model 4) under prior distribution α ∼ N(0, 102) and
maximum likelihood method (Model 5) with true value α = −1 where time is recorded in seconds. Note: MSE
represents mean square error and CP represents the coverage probability.

Model 4 Model 5
True τ Parameters Mean Bias MSE CP Time Mean Bias MSE CP Time

0.3 α -6.96 0.042 0.0071 34.1% 319 -6.96 0.042 0.0071 34.1% 5

0.8 α -6.69 0.307 0.1362 4.6% 317 -6.69 0.307 0.1362 4.6% 4

1.5 α -6.01 0.9887 1.1828 0.2% 321 -6.01 0.9887 1.1828 0.2% 4

Table 3.12: Simulation results using Bayesian method (Model 4) under prior distribution α ∼ N(0, 102) and
maximum likelihood method (Model 5) with true value α = −7 where time is recorded in seconds. Note: MSE
represents mean square error and CP represents the coverage probability.
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3.8 Discussion

In this chapter, five models are proposed for the traffic accident data on the UK motorway network

involving 49 motorways. These models are one-stage fully Bayesian hierarchical model (Model

1), two-stage semi-Bayesian hierarchical model (Model 2), two-stage frequentist hierarchical model

(Model 3), non-hierarchical Bayesian model (Model 4) and non-hierarchical frequentist model (Model

5). The use of the hierarchical model allows the following parameters to be estimated: the intensity

of accidents for each motorway, the overall intensity of accidents on the whole motorway network

and the between-motorway standard deviation. For the fully Bayesian and semi-Bayesian models,

Model 1 and Model 2, various prior distributions have been specified for the between-motorway

variance to investigate the sensitivity for the choice of the prior. These prior distributions are either

non-informative or weakly-informative. The Metropolis Hastings within Gibbs sampler is introduced

to estimate the Model 1 and Model 2 parameters, and two sampling algorithms have been provided.

The performance of the proposed models has been assessed and compared using a real applica-

tion and simulated data. The real application includes fitting the five described models to traffic

accident data for the 49 motorways in the UK for 2016. Results of the real application have been

summarised in the form of the posterior mean/ point estimate, standard deviation/standard error

and 95% credible/confidence interval for the log-intensity of accidents for each motorway, the overall

log-intensity of accidents and the between-motorway standard deviation. In the hierarchical models

context, from the forest plots of the posterior mean and 95% credible interval for each motorway,

it is clear that the motorway M25 has the highest log-intensity of accidents (see Figure 3.1 for more

details ). The parameters estimates α̂i, i = 1, ...,m that were obtained using models 2 and 3 were

not exactly consistent with those obtained using Model 1. For example, the forest plot produced

from using the frequentist model illustrates that the M180 has the second lowest log-intensity of

accidents, whereas the forest plot of Model 1 shows that M180 has the third lowest log-intensity of

accidents (see Figure 3.1 for more details). As for the non-hierarchical models, their performance was

slightly different. In general, the hierarchical models indicate a much better performance compared

with the non-hierarchical models. This is because the hierarchical structure takes into account the

heterogeneity in the intensity of accidents across the motorway network, while the non-hierarchy

models ignore this. In addition, a simulation study was conducted to assess the performance of all

the models. In this simulation study, two true values of the log-intensity α of accidents and three

different true values of the heterogeneity between motorway τ were chosen in order to ensure the

simulation robustness. These values are α = −7 and −1 and τ = 0.3, 0.8 and 1.5 that lead to 6 scenarios

of simulated data. The simulation study compares the different specific models using four criteria
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that include the average of the posterior mean/point estimate over all simulations where this average

represents a parameter estimator α̂. The second criterion is the bias in the parameter estimator. The

third criterion is the mean square error of the parameter estimator. The last criterion is the coverage

probability (CP) which is the actual probability that the 95% credible interval contains the true value

of the parameter. The results of the simulation study show that for some scenarios Model 1 gave

accurate mean estimates for α and τ that are less biased compared with those obtained from Models

2 and 3. The results of the simulation study also show that Models 2 and 3 have a lower coverage

probability compared to Model 1 for all the parameters when the data are simulated with a large true

value of the intensity and the between-motorway standard deviation. The performance of Model 1 is

better than Model 2 and Model 3 for data with a high intensity of accidents. However, all three models

give similar results for MSE and the mean for all the parameters. It can be seen that the Bayesian

hierarchical model has a smaller bias, a lower MSE and a better coverage probability compared to

a frequentist hierarchical model. The results of the simulation study show that the performance of

non-hierarchical models is not comparable with that of hierarchical models since the bias and MSE

of the log-intensity of accidents are quite large. In addition, the coverage probability is less than the

accepted ratios and at times it is close to zero.

Based on results for simulated data sets, the hierarchical models (Models 1, 2 and 3) perform better

than the non-hierarchical models (Models 4 and 5). The performance of the hierarchical models is

good in terms of the point estimate, bias of point estimate, MSE and actual coverage of interval

estimates (see Tables 3.3-3.10 for more details), but the performance of the non-hierarchical models

was poor with respect to these evaluation criteria (see Tables 3.11 and 3.12 for more details). In the

Bayesian methods context, hierarchical Bayesian approaches (Models 1 and 2) perform well and they

have produced accurate results compared with the non-hierarchical Bayesian model (Model 4) when

estimating the log-intensity of accidents α. The advantage of using Models 1 and 2 is represented by

the decreasing bias and MSE of the overall log-intensity of accidents estimator of α and acceptable

levels of the coverage probability. The non-hierarchical Bayesian method faced difficulty in attaining

the required level of actual coverage. In addition, this model produced a biased estimator of the

overall log-intensity of accidents with large MSE. Practically, when the interest is estimation and the

number of observations is large then there seems not to be a great difference in selecting hierarchical

over non-hierarchical models (Farrell and Ludwig, 2008). In the context of frequentist methods, the

non-hierarchical frequentist model performed poorly in terms of the bias, MSE and actual coverage

(see Tables 3.11-3.12 for more details). Thus, when comparing Bayesian and frequentist approaches,

the Bayesian hierarchical models appeared better than the frequentist hierarchical model in terms
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of the coverage probability and bias (see Table 4.1, 3.6 and 3.10). From the above discussion, we

can conclude that the best models for the UK motorway accidents data are the Bayesian hierarchical

models (models 1 and 2).

The current findings are noteworthy and enable the highlighting of dangerous motorways in the UK

network, in terms of intensity of traffic accidents. The findings from Model 1 analysis suggest that

motorways M25 and M27 have the highest accident intensity on the UK motorway network for 2016.

The estimated intensity values are 3.59 and 3.03 per one kilometer of M25 and M27. Findings also

revealed that motorways M54, M180, M74, M50 appear to have the lowest intensity of accidents with

estimated values of intensity 4.4, 4.4, 4.2, 3.3 per 10 kilometers. Results from the analysis of models

2 and 3, however, indicate that the expected numbers of accidents, λ̂, are 2.89, 3.98, 4.06 and 4.10 per

10 kilometers of M50, M180, M74 and M54. Estimated intensities for M25 and M27 are 3.59 and 3.09

per one kilometer.
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Chapter 4

Three-Level Hierarchical Models

4.1 Introduction

One the most common approaches to study crash data is the crash prediction model. Classical

prediction models for crashes (e.g. generalized linear model) do not take into account a multilevel

structure of data leading to a limitation of models (Huang and Abdel-Aty, 2010). According to Huang

and Abdel-Aty (2010), this limitation is in the estimated method, each crash or vehicle involvement

harmonizes with individual situation resulting in independent residuals, but the assumption of

residuals independence may be invalid. This is due to traffic data collection and the clustering

process leading to a multilevel structure of data. Consequently, it may produce inaccurate estimates

of model parameters and statistical inference. Hierarchical models are used to address the multilevel

data structure. Actually, hierarchical modelling has been employed in many research fields such as

sociology, education, political science, and public health, but the first employment of hierarchical

models in a traffic safety field was by Shankar et al. (1998). They show that the explanatory power

of crash models had been improved when site-specific random effects and time indicators were

incorporated into the negative binomial regression model. Jones and Jørgensen (2003) explained and

discussed possible applications of hierarchical models in road traffic accidents in Norway. Researchers

have shown an increased interest in the hierarchical modelling approach to account for the multilevel

data structure in crash prediction (Huang and Abdel-Aty, 2010). Some researchers used hierarchical

models to predict crash frequency, whereas other researchers presented hierarchical modelling to

recognize factors affecting crash severity.

In the previous chapter, the two-level hierarchical model has been proposed to analyse traffic accident

data on the UK motorway network. In this model, a heterogeneity across motorways was only

considered. This means, the intensity of accidents was considered constant within each motorway, but
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varied among motorways. However, each motorway consists of junctions that are joined by grouped

segments. These grouped segments are called links. Each link consists of start and end points.

Each link has a uniquely referenced Count Point (CP) that is called ”Mark”. Some heterogeneities

across-link may exist due to multilevel data structure. That is, the intensity of accidents may be

inhomogeneous across-link and homogeneous within-link. Ignoring these heterogeneities adds a

variance to the accident data and the case over-dispersion. Thus, without convenient methods to

calculate the cross-grouped segments, heterogeneities may produce the underestimated estimates

of the standard error in the intensity of accidents. The heterogeneity across-link can be taken into

account using the three-level hierarchical model.

Bayesian inference via Markov Chain Monte Carlo methods are used to estimate the unknown

parameters in the proposed model. We conducted a sensitivity analysis to different priors choices.

The frequentist approach is also used for estimating model parameters. The proposed model was

fitted to accident data on the UK motorway network for 2016. We evaluated the performance

of the proposed models using a simulation study. We compare between the two-level Bayesian

hierarchical model described in the previous chapter and the three-level Bayesian hierarchical model

using information criteria and simulation study.

4.2 Three-Level Hierarchical Model

4.2.1 Model Definition

The number of accidents in each grouped segments is assumed as a homogeneous process and is

assumed a non-homogeneous process across segments. Let m denote the total number of motorways

and ni (i = 1, ...,m) the number of grouped segments for each motorway i. Suppose that the intensity

of accidents per meter is λi j, i = 1, ...,m and j = 1, ...,ni, where i is the index of motorway and j is the

index of grouped segments. The number of accidents ni j on each grouped segments follows a Poisson

distribution with mean λi jLi j, where Li j represents the length (in meter) of the grouped segments j

for motorway i. Let αi j = logλi j denote the log-intensity function. The three-level hierarchical model

is written as follows,

ni j ∼ Poisson
(
λi jLi j

)
, i = 1, ...,m; j = 1, ..,ni,

αi j ∼ N
(
αi, τ

2
i

)
,

αi ∼ N(α, τ2). (4.1)
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The second level includes the log-intensity of accidents, αi j on each grouped segments and the log-

intensity of accidents, αi on each motorway as well as the between grouped segments heterogeneity,

τ2
i . The third level includes the overall log-intensity of accidents, α and the between motorway

heterogeneity, τ2. The intensity of accidents is constant on grouped segments that have the same

mark, but it varies across grouped segments and motorways.

4.2.2 Likelihood Function

Let N =
{
ni j, i = 1, ..,m and j = 1, ...,ni

}
be the accident count. Let Θ denote model parameters{

α11, ..., αmnm , α1, ..., αm, τ2
1, ..., τ

2
m, α, τ

2
}
. Let γ =

{
α11, ..., αmnm

}
, α = {α1, ..., αm} and τ 2 =

{
τ2

1, ..., τ
2
m

}
. It

is assumed that the accidents are uniformly distributed within each groped segments.

The likelihood function for the proposed model (4.1) is given by,

L (N|Θ) = P (N|γ) × P
(
γ |α, τ 2

)
× P

(
α|α, τ2

)
∝

m∏
i=1

ni∏
j=1

exp
(
ni jαi j − Li j exp

(
αi j

))

×

m∏
i=1

ni∏
j=1

1√
2πτ2

i

exp

−
(
αi j − αi

)2

2τ2
i

 ×
m∏

i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
. (4.2)

For details about deriving the likelihood function see Appendix B.1.

4.2.3 Prior Distribution

The prior distribution reflects the available information about model parameters (Lesaffre and Law-

son, 2012). In the Bayesian analysis of hierarchical models, the choice of the prior distribution for

variance parameters is an important issue (Daniels, 1999). Different prior distributions were used for

τ2. A common choice of prior for variance parameters is an inverse gamma distribution and it is a

conjugate distribution of the normal distribution (Gelman et al., 2013). An inverse gamma prior was

assigned for τ2 with shape α0 and rate β0 where parameters α0 and β0 of the prior distribution are

hyper-parameters. The alternative priors are uniform prior unif (0, a) , a > 0 for τ and half-normal

prior for τ with mean 0 and variance θ2 =
π

2σ2 , σ
2 > 0.

For the τ2
i (i = 1, ...,m), we use Inv-Gamma(a0, b0) as prior distribution with shape a0 and rate b0. As

the prior distribution for α, N(µ0, σ2
0) was used. A good choice of prior should minimize standard

errors of the parameter estimates.
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4.2.4 Posterior Distribution

Posterior if the prior distribution on τ2 is an inverse gamma distribution

A joint posterior distribution for parameters Θ is given by,

π (Θ|N) ∝
m∏

i=1

ni∏
j=1

exp
(
ni jαi j − Li j exp

(
αi j

))
×

m∏
i=1

ni∏
j=1

1√
2πτ2

i

exp

−
(
αi j − αi

)2

2τ2
i


×

m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
×

m∏
i=1

ba0
0

Γ(a0)

(
τ2

i

)−a0−1
exp

−b0

τ2
i


×

1√
2πσ2

0

exp

− (
α − µ0

)2

2σ2
0

 × βα0
0

Γ(α0)

(
τ2

)−α0−1
exp

(
−β0

τ2

)
. (4.3)

For details about joint posterior distribution of parameters Θ see Appendix B.2. The conditional

posterior distribution of αi j is given by,

π
(
αi j|α, τ

2,N
)
∝ exp

(
ni jαi j − Li j exp

(
αi j

))
exp

−
(
αi j − αi

)2

2τ2
i

 . (4.4)

The conditional posterior distribution ofαi is a normal distribution N(µαi , σ
2
αi

) with mean and variance:

µαi =

∑ni
j=1 αi j

τ2
i

+
α

τ2

ni

τ2
i

+
1
τ2

and σ2
αi

=
1

ni

τ2
i

+
1
τ2

. (4.5)

For details about deriving the conditional posterior distribution of αi see Appendix B.3.1. The

conditional posterior distribution of τ2
i is given by,

τ2
i ∼ Inv-Gamma

ni

2
+ a0,

ni∑
j=1

(
αi j − αi

)2

2
+ b0

 . (4.6)

For details about deriving the conditional posterior distribution of τ2
i see Appendix B.3.2.

The conditional posterior distribution of α is a N(µα, σ2
α) with mean and variance:

µα =

∑m
i=1 αi

τ2 +
µ0

σ2
0

m
τ2 +

1
σ2

0

and σ2
α =

1
m
τ2 +

1
σ2

0

. (4.7)
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For details about deriving the conditional posterior distribution of α see Appendix B.3.3. The condi-

tional posterior distribution of τ2 is given by,

τ2
∼ Inv-Gamma

m
2

+ α0,

∑m
i=1 (αi − α)2

2
+ β0

 , (4.8)

which is an inverse gamma distribution. For details about deriving the conditional posterior distri-

bution of τ2 see Appendix B.3.4.

Posterior if the prior distribution on τ is a Uniform distribution

The probability density function of the uniform prior distribution on τ is constant, so it does not

appear in the joint posterior distribution. Hence, the joint posterior distribution is given by,

π (Θ|N) ∝
m∏

i=1

ni∏
j=1

exp
(
ni jαi j − Li j exp

(
αi j

))
×

m∏
i=1

ni∏
j=1

1√
2πτ2

i

exp

−
(
αi j − αi

)2

2τ2
i


×

m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
×

m∏
i=1

ba0
0

Γ(a0)

(
τ2

i

)−a0−1
exp

−b0

τ2
i


×

1√
2πσ2

0

exp

− (
α − µ0

)2

2σ2
0

 . (4.9)

The conditional posterior distributions of αi j, αi, τ2
i , i = 1, ...,m; j = 1, ...,ni and α are the same in

equations (4.4)-(4.7). The conditional posterior distribution of τ is given by,

π(τ|α, α,N) ∝
(

1
√

2πτ2

)m

exp

− m∑
i=1

(αi − α)2

2τ2

 . (4.10)

Posterior if the prior distribution on τ is a half-normal distribution

The joint posterior distribution is given by,

π (Θ|N) ∝
m∏

i=1

ni∏
j=1

exp
(
ni jαi j − Li j exp

(
αi j

))

×

m∏
i=1

ni∏
j=1

1√
2πτ2

i

exp

−
(
αi j − αi

)2

2τ2
i

 ×
m∏

i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)

×

m∏
i=1

ba0
0

Γ(a0)

(
τ2

i

)−a0−1
exp

−b0

τ2
i

 × 1√
2πσ2

0

exp

− (
α − µ0

)2

2σ2
0


×

2θ
π

exp
(
−
τ2θ2

π

)
, τ > 0. (4.11)
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The conditional posterior distributions of αi j, αi, τ2
i , i = 1, ...,m; j = 1, ...,ni and α are the same in

equations (4.4)-(4.7). The conditional posterior distribution of τ is given by,

π(τ|α, α,N) ∝ τ−m exp

− m∑
i=1

(αi − α)2

2τ2 −
τ2θ2

π

 , τ > 0. (4.12)

4.3 Bayesian Estimation

In this section, Bayesian estimation of model (4.1) is performed using Metropolis-Hastings within

Gibbs sampler. We generate random samples from conditional posterior distributions of α, αi,

τ2
i , i = 1, ...,m which are closed forms. Conditional posterior distributions of αi j, i = 1, ...,m; j = 1, ...,ni

are not closed forms. In this case, MCMC is used. Normal proposal distributions are specified for

αi j, i = 1, ...,m; j = 1, ...,ni with mean α(t−1)
i j and variance σ2

i j, where t (t = 1, ...,M) is iteration index.

The variance σ2
i j is chosen such that an acceptance rate is within the range of (0.24, 0.40) (Gelman et al.,

1996). Suppose that q1 (.) denotes the proposal distribution. A value άi j generated from the proposal

distribution q1

(
., α(t−1)

i j

)
is accepted or rejected with probability

r1(α(t−1)
i j , άi j) = min


π

(
άi j|α

(t−1)
i , τ2(t−1)

i

)
q1

(
α(t−1)

i j , άi j

)
π

(
α(t−1)

i j |α(t−1)
i , τ2(t−1)

i

)
q1

(
άi j, α

(t−1)
i j

) , 1
 , (4.13)

where the conditional posterior distributions (4.10) and (4.12) of τ are not available as closed forms,

we simulate τ using MCMC. This requires the specification of a proposal probability distribution

q2

(
., τ(t−1)

)
of τ́. A normal distribution was chosen with mean equalling to current value τ(t−1) and

variance 0.09. A new value τ́ is generated from the proposal distribution q2

(
., τ(t−1)

)
with acceptance

probability

r2(τ(t−1), τ́) = min

 π
(
τ́|α(t), α(t)

1 , ..., α
(t)
m

)
q2

(
τ(t−1), τ́

)
π

(
τ(t−1)|α(t), α(t)

1 , ..., α
(t)
m

)
q2

(
τ́, τ(t−1)) , 1

 . (4.14)

We present the Metropolis-Hastings within Gibbs algorithm (4.1) in a general formulation for sam-

pling from the posterior distributions defined in section 4.2.4.
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Algorithm 4.1 Sampling from the full conditional posterior distributions of parameters for the three-
level Bayesian hierarchical model using Metropolis-Hastings within Gibbs sampling.

Set initial value, α(0)
i j , α(0)

i , τ2(0)
i , α(0) and τ2(0), i = 1, ...,m, and j = 1, ...,ni.

For each iteration t.

Step 1: update αi j one by one.

1.1 Generate a proposed value, άi j ∼ q1(., α(t−1)
i j ).

1.2 Calculate the probability r1(α(t−1)
i j , άi j) specified in equation (4.13).

1.3 With probability r1(α(t−1)
i j , άi j), set α(t)

i j = άi j, otherwise set α(t)
i j = α(t−1)

i j .

1.4 Repeat steps 1.1 to 1.3 for all αi j, i = 1, ...,m and j = 1, ...,ni.

Step 2: Update full conditional posterior densityπ
(
α(t)

i |α
(t)
i j , τ

2(t−1)
i , α(t−1), τ2(t−1),N

)
, i = 1, ...,m and j =

1, ...,ni specified in equation (4.5).

Step 3: Update full conditional posterior density π
(
τ2(t)

i | α(t)
i j , α

(t)
i ,N

)
, i = 1, ...,m and j = 1, ...,ni

specified in equation (4.6).

Step 4: Update full conditional posterior density π
(
α(t)
| α(t)

i , τ
2(t−1),N

)
, i = 1, ...,m specified in equa-

tion (4.7).

Step 5: Update τ.

5.1 Generate a proposed value, τ́ ∼ q2(., τ(t−1)).

5.2 Calculate the probability r2(τ(t−1), τ́) specified in equation (4.14).

5.3 With probability r2(τ(t−1), τ́), set τ(t) = τ́, otherwise set τ(t) = τ(t−1).
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4.4 Frequentist Estimation

In this section, the maximum likelihood method is performed on three stages in order to estimate

parameters of the hierarchical model (4.1).

In stage one, the log-intensity of accidents
(
αi j

)
is estimated for each grouped segments where the

first part of likelihood function in equation (4.2) is used

Li j

(
αi j; N

)
= exp

(
ni jαi j − Li j exp

(
αi j

))
. (4.15)

The log-likelihood function is

`i j

(
αi j; N

)
= ni jαi j − Li j exp

(
αi j

)
. (4.16)

The maximum likelihood estimate (M.L.E.) of αi j is the value that maximises `i j

(
αi j; N

)
. The M.L.E.

can be found by differentiating `i j with respect to αi j and equalling derivative of `i j to zero. Thus the

point estimate of αi j is given by,

α̂i j = log ni j − log Li j. (4.17)

To calculate the standard error of α̂i j we use the Fisher information matrix I(α̂i j) that is a scalar

containing the entry

I(α̂i j) = −E
[
H

(
α̂i j

)]
= −E

∂2`i j

∂α2
i j

 = Li j exp
(
αi j

)
, (4.18)

where H
(
α̂i j

)
represents the Hessian matrix. The square root of the inverse of the Fisher information

scalar is an estimator of the standard error for α̂i j

SE
(
α̂i j

)
=

√
I−1(α̂i j) =

(
Li j exp

(
αi j

))− 1
2 . (4.19)

In stage two, the log-intensity of accidents αi ( i = 1, ...,m) is estimated for each motorway. Here, the

point estimates α̂i j, i = 1, ...,m and j = 1, ...,ni are substituted in the likelihood function in equation

(4.2). The relevant part of the likelihood function is given by,

Li

(
α, τ 2; γ̂

)
=

m∏
i=1

ni∏
j=1

1√
2πτ2

i

exp

−
(
α̂i j − αi

)2

2τ2
i

 . (4.20)
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The log-likelihood function is

`i

(
α, τ 2; γ̂

)
=

m∑
i=1

−ni

2
log τ2

i −

∑ni
j=1

(
α̂i j − αi

)2

2τ2
i

 . (4.21)

The maximum likelihood estimates of αi and τ2
i are values that maximise `i

(
α, τ 2; γ̂

)
. The maximum

likelihood estimates α̂i and τ̂2
i can be found by partial derivative with respect to αi and τ2

i respectively

and equalling the partial derivative of `i to zero. Hence, the point estimates of αi and τ2
i are given by,

α̂i =

∑ni
j=1 α̂i j

ni
and τ̂2

i =

∑ni
j=1

(
α̂i j − α̂i

)2

ni
. (4.22)

To obtain the standard errors of α̂i and τ̂2
i , we use the Fisher information matrix that is (2 × 2) matrix

containing entries

I
(
α̂i, τ̂

2
i

)
= −E

[
H

(
α̂i, τ̂

2
i

)]
= −E


∂2`i

∂α2
i

∂2`i

∂αi∂τ2
i

∂2`i

∂τ2
i ∂αi

∂2`i

∂(τ2
i )2

 =


ni

τ2
i

0

0
ni

2τ4
i

 , (4.23)

where H
(
α̂i, τ̂2

i

)
represents the Hessian matrix. For more details about obtaining the elements of the

Hessian matrix and finding the elements of the Fisher information matrix see Appendix B.4. The

inverse of the Fisher information matrix is given by,

I−1
(
α̂i, τ̂

2
i

)
=


τ2

i

ni
0

0
2τ4

i

ni

 . (4.24)

The standard errors of α̂i and τ̂2
i are the square root of diagonal elements, and hence are given by,

SE (α̂i) =

√
τ2

i

ni
. (4.25)

SE
(
τ̂2

i

)
=

√
2τ4

i

ni
. (4.26)

In stage three, α and τ2 are estimated. The relevant part of likelihood is

L(α, τ2; α̂i) =

m∏
i=1

1
√

2πτ2
exp

(
−

(α̂i − α)2

2τ2

)
. (4.27)

87



The estimated values α̂i and SE (α̂i) are used as data. The M.L.E. is obtained by rma.

4.5 Estimation Results for Motorway Data

Non-informative and weakly informative prior distributions

A non-informative prior distribution reflects the lack of prior information about parameter (Lesaffre

and Lawson, 2012). In this case, the prior distribution is dominated by the likelihood function. As

a result, the prior distribution has negligible to influence the posterior distribution of parameter.

The choice of the non-informative prior requires selecting parameters of prior so that the variance

of prior is large enough. A conjugate prior could be non-informative, or weakly-informative, such

as Inv-Gamma(0.001, 0.001) (non-informative prior) and Inv-Gamma(0.1, 0.1) (weakly-informative

prior) for τ2. As a sensitivity analysis, we use the uniform prior unif(0, 100) and a half-normal prior

distribution HN (0, 0.02) for τ, both are non-informative priors on τ (Thompson et al., 1997; Lambert

et al., 2005). As for Inv-Gamma(a0, b0) prior on τ2
i (i = 1, ...,m), we place a0 = b0 = 0.001. Finally, a

non-informative normal prior distribution was used with mean µ0 = 0 and variance σ2
0 = 100 for α.
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Informative prior distributions

An informative prior describes specific pre-existing information about parameter (Lesaffre and Law-

son, 2012). Consequently, the prior distribution has impacts on the posterior distribution of parameter.

The informative Inv-Gamma
(
α0, β0

)
prior is specified for τ2 and N

(
µ0, σ2

0

)
for α. This requires speci-

fying parameters of priors. The maximum likelihood estimates of τ2 and α and their standard errors

of traffic accident data from an earlier year (e.g. 2015) will be used for specifying the informative

priors in 2016 data. More specifically, the parameters for gamma prior are calculated from solving

the following equation:

E
(
τ2

)
=
α0

β0
= τ̂2

ML

var
(
τ2

)
=
α0

β2
0

= SE(τ̂2
ML), (4.28)

where τ̂2
ML is the maximum likelihood estimate, 0.3162 and SE(τ̂2

ML) is the standard error of τ̂2
ML,

0.0738, both are obtained from analysing the accident data in 2015. Solving the equations in (4.28),

we obtain α0 = 18.36 and β0 = 58.06. Thus, the informative prior for τ2 is Inv-Gamma(18.36, 58.06).

Similarly, µ0 = −6.65 and σ2
0 = 0.092.

Results

The three-level hierarchical model is used to analyse the observed accident data for 2016. The model

parameters include the overall log-intensity of traffic accidents, α, on the UK motorways and the

standard deviation between-motorway, τ. The MCMC is run for 500,000 iterations with discarding

50,000 iterations as a burn-in period and a thinning interval of 100.

Table 4.1 shows that in a Bayesian framework, the posterior mean, median, standard deviation and

95% credible interval for α and τ are similar between non-informative and weakly-informative priors

of τwhere informative prior distribution of τ is used, the length of the credible interval of α is shorter

than the corresponding credible intervals of α based on the non and weakly-informative priors. In

addition, the standard deviation for α̂ based on informative priors is smaller than that based on

another priors. Table 4.1 displays the overall intensity of accidents (λ) per one kilometer. It is clear

that results for λ from Bayesian methods are similar, except for the informative prior where λ is

greater, but close to the estimate from the frequentist method.
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Methods λ
Prior distribution Parameter Mean Median SD 95% CI Mean 95% CI

Bayesian τ2
∼ Inv-Gamma(0.001, 0.001) α -6.93 -6.93 0.11 (-7.15, -6.71) 0.98 (0.79, 1.22)

τ 0.65 0.65 0.09 (0.49, 0.85)
τ2
∼ Inv-Gamma(0.1, 0.1) α -6.93 -6.93 0.11 (-7.15, -6.71) 0.98 (0.79, 1.22)

τ 0.66 0.65 0.09 (0.50, 0.85)
τ ∼ unif(0, 100) α -6.93 -6.93 0.11 (-7.16, -6.71) 0.98 (0.78, 1.22)

τ 0.67 0.66 0.09 (0.51, 0.87)
τ ∼ HN(0, 0.02) α -6.93 -6.93 0.11 (-7.16, -6.71) 0.98 (0.78, 1.22)

τ 0.67 0.66 0.09 (0.51, 0.87)
α ∼ N(−6.65, 0.092) α -6.70 -6.70 0.08 (-6.86, -6.55) 1.23 (1.05, 1.43)

τ2
∼ Inv-Gamma(18.36, 58.06) τ 1.34 1.33 0.11 (1.15, 1.57)

Frequentist α -6.64 - 0.08 (-6.80, -6.49) 1.31 (1.12, 1.53)
τ 0.51 - 0.06 (0.41, 0.66)

Table 4.1: Posterior summary and frequentist estimates of parameters α, τ and λ of traffic accidents for 2016
year. λ = exp (α) is the intensity of accidents per one kilometer. The prior of α is N(0, 100). SD: standard
deviation and CI: credible interval or confidence interval. HN represents the half-normal distribution.

Figure 4.1 shows that the highest intensity of accidents is on M25 where the expected number of

accidents (λ) is 3.12 per one kilometer. The second highest intensity is on M606 with λ = 3.09 per one

kilometer. The third highest intensity is on M27 where it equals to 2.69 per one kilometer. However,

M50, M74 and M49 have the lowest intensity of accidents such that the expected numbers of accidents

are respectively 1.7, 2.7 and 3.0 per 10 kilometers. Some motorways have the similar value of the

intensity of accidents such as M2 and M11 both with λ = 1.39 per one kilmeter, M53 and M55 both

with λ = 9.5 per 10 kilometers, M73 and M77 both with λ = 5.8 per 10 kilometers and M54 and M180

both with λ = 3.2 per 10 kilometers.
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Motorway
M25
M606
M27
M275
M32
M20
M3
M6
M271
M8
M1
M4
M65
M621
M62
M2
M11
M40
M56
M57
M898
M61
M23
M26
M42
M602
M60
M5
M53
M55
M66
M80
M69
M876
M18
M181
M73
M77
M67
M9
M90
M58
M48
M45
M54
M180
M49
M74
M50

Summary

Log−Intensity (95% CI)
−5.77 [−5.99, −5.56]
−5.78 [−6.60, −5.12]
−5.92 [−6.35, −5.60]
−5.95 [−6.74, −5.31]
−6.13 [−7.12, −5.44]
−6.28 [−6.64, −5.97]
−6.29 [−6.68, −5.94]
−6.40 [−6.62, −6.21]
−6.41 [−7.88, −5.30]
−6.42 [−6.79, −6.09]
−6.44 [−6.65, −6.24]
−6.46 [−6.67, −6.25]
−6.48 [−6.87, −6.16]
−6.52 [−7.43, −5.75]
−6.54 [−6.81, −6.29]
−6.58 [−7.16, −6.08]
−6.58 [−7.02, −6.20]
−6.67 [−6.85, −6.50]
−6.70 [−6.98, −6.46]
−6.71 [−7.33, −6.26]
−6.74 [−8.66, −5.01]
−6.76 [−7.39, −6.36]
−6.77 [−7.78, −5.87]
−6.80 [−7.94, −5.48]
−6.81 [−7.36, −6.43]
−6.87 [−8.09, −5.81]
−6.89 [−7.33, −6.53]
−6.90 [−7.13, −6.70]
−6.96 [−7.37, −6.62]
−6.96 [−7.99, −5.92]
−7.02 [−8.44, −5.86]
−7.05 [−7.46, −6.71]
−7.14 [−7.89, −6.59]
−7.16 [−8.15, −6.43]
−7.25 [−8.03, −6.60]
−7.32 [−9.03, −5.33]
−7.46 [−8.95, −6.24]
−7.46 [−8.01, −7.00]
−7.56 [−8.82, −6.41]
−7.66 [−8.12, −7.31]
−7.70 [−8.19, −7.27]
−7.91 [−8.79, −7.17]
−7.96 [−8.99, −6.78]
−8.02 [−9.39, −6.35]
−8.05 [−8.77, −7.46]
−8.05 [−8.79, −7.44]
−8.10 [−9.99, −5.39]
−8.20 [−8.89, −7.63]
−8.69 [−9.71, −7.83]

−6.70 [−6.86, −6.55]

−9 −8 −7 −6

Log−Intensity

(a) log-intensity of accidents α and αi (i = 1, ...,m)

Motorway
M25
M606
M27
M275
M32
M20
M3
M6
M271
M8
M1
M4
M65
M621
M62
M2
M11
M40
M56
M57
M898
M61
M23
M26
M42
M602
M60
M5
M53
M55
M66
M80
M69
M876
M18
M181
M73
M77
M67
M9
M90
M58
M48
M45
M54
M180
M49
M74
M50

Summary

Log−Intensity (95% CI)
3.12 [2.50, 3.85]
3.09 [1.36, 5.98]
2.69 [1.75, 3.70]
2.61 [1.18, 4.94]
2.18 [0.81, 4.34]
1.87 [1.31, 2.55]
1.85 [1.26, 2.63]
1.66 [1.33, 2.01]
1.65 [0.38, 4.99]
1.63 [1.12, 2.27]
1.60 [1.29, 1.95]
1.56 [1.27, 1.93]
1.53 [1.04, 2.11]
1.47 [0.59, 3.18]
1.44 [1.10, 1.85]
1.39 [0.78, 2.29]
1.39 [0.89, 2.03]
1.27 [1.06, 1.50]
1.23 [0.93, 1.56]
1.22 [0.66, 1.91]
1.18 [0.17, 6.67]
1.16 [0.62, 1.73]
1.15 [0.42, 2.82]
1.11 [0.36, 4.17]
1.10 [0.64, 1.61]
1.04 [0.31, 3.00]
1.02 [0.66, 1.46]
1.01 [0.80, 1.23]
0.95 [0.63, 1.33]
0.95 [0.34, 2.69]
0.89 [0.22, 2.85]
0.87 [0.58, 1.22]
0.79 [0.37, 1.37]
0.78 [0.29, 1.61]
0.71 [0.33, 1.36]
0.66 [0.12, 4.84]
0.58 [0.13, 1.95]
0.58 [0.33, 0.91]
0.52 [0.15, 1.65]
0.47 [0.30, 0.67]
0.45 [0.28, 0.70]
0.37 [0.15, 0.77]
0.35 [0.12, 1.14]
0.33 [0.08, 1.75]
0.32 [0.16, 0.58]
0.32 [0.15, 0.59]
0.30 [0.05, 4.56]
0.27 [0.14, 0.49]
0.17 [0.06, 0.40]

1.23 [1.05, 1.43]

1 2 3 4 5 6

Log−Intensity

(b) intensity of accidents λ and λi (i = 1, ...,m)

Figure 4.1: Results from three-level hierarchical Bayesian model for accident data on the UK motorways
for 2016 year. Prior distributions α ∼ N(−6.65, 0.092) and τ2

∼ Inv-Gamma(18.36, 58.06). Results include
the posterior mean and the corresponding 95% credible interval for the log-intensity of accidents αi on each
motorway and the overall log-intensity of accidents α in (a) and the intensity of accidents λi = 1000 × exp (αi)
per one kilometer on each motorway and the overall intensity of accidents λ per one kilometer in (b). Square
shapes represent posterior means of αi, i = 1, ...,m in (a) and posterior means of λi, i = 1, ...,m in (b). The
diamond shape is used to represent the posterior mean of the overall log -intensity of accident α in (a) and
the posterior mean of the overall intensity of accident λ in (b). Horizontal lines denote 95% credible intervals
and the sold vertical line represents the posterior mean of the overall log-intensity of accidents α in (a) and the
posterior mean of the overall intensity λ in (b).
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Figure 4.2: Residuals plots. The predicted value of the number of accidents is calculated using the three-level
Bayesian hierarchical model fitted to the traffic accidents on the UK motorway network for 2016. GS represents
grouped segments.
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Figure 4.3: Residuals plots. The predicted value of the number of accidents is calculated using the three-level
Bayesian hierarchical model fitted to the traffic accidents on the UK motorway network for 2016. GS denotes
grouped segment.

Based on estimation results of three-level Bayesian hierarchical model for the UK motorway data, the

estimate of the intensity of accidents on the UK motorway network is classified into five categories.
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Category one (λ < 0.5) is referred to a very low risk; Category two (0.5 ≤ λ < 1) is referred to a low

risk; Category three (1 ≤ λ < 2) is referred to a moderate risk; Category four (2 ≤ λ < 3) is referred

to a high risk. Finally, category five (λ ≥ 3) is referred to a very high risk. The moderate-risk level

represents the general intensity of accidents level of the UK motorway network. Based on the results

in Figures 4.4, motorways: M27, M275 and M32 are at high risk, whereas motorways: M25 and

M606 form the highest risk motorways, where the expected number of accidents is above 3 per one

kilometer for both motorways. On the other hand, motorways: M9, M90, M58, M45, M48, M49,

M180, M54, M74 and M50 have the lowest risk such that the expected number of accidents is lower

than 0.5 for these motorways.
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Figure 4.4: Estimated intensities of traffic accidents (λi), i = 1, ..., 49 per one kilometer on the UK motorway
network including 49 motorways. This plot is produced using the traffic accident data in year 2016. The
intensity functions are estimated using Bayesian methods with prior distributions α ∼ N(−6.65, 0.092) and
τ2
∼ Inv-Gamma(18.36, 58.06).
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In this section, two approaches are used to assess the convergence of MCMC. In the first approach,

mixing within a single chain was examined. This approach involves inspecting trace plots and

autocorrelation function (ACF) plots of MCMC samples for the parameter. The trace plots are used

for the visual diagnostics of convergence. Trace plots for two parameters α and τwith four proposed

prior distributions (the non-informative and weakly-informative priors) for τ, each has a good mixing

as shown in the first row of Figure 4.5 and in the first row of Figures B.5, B.6 and B.7 in Appendix B.5.

It is known that MCMC methods produce correlated samples, but samples with smaller correlation

indicate that algorithm is more efficient. The second row of Figure 4.5 and the second row of Figures

B.5, B.6 and B.7 in Appendix B.5 show that the autocorrelation (ACF) for both parameters α and τ is

low across four proposed prior distributions for τ. The third row in Figure 4.5 and the third row in

Figures B.5, B.6 and B.7 in Appendix B.5 show histograms of both parameters under four different

prior distributions for τ. There is no big effect for different prior distributions on the correlation of

the simulated chains.
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Figure 4.5: The trace plots, autocorrelation function (ACF) and posterior density histgrams for three-level hi-
erarchical model parameters α and τ under a non-informative prior distributions τ2

∼ Inv-Gamma(0.001, 0.001)
and α ∼ N(0, 100). 500,000 samples are generated using initial values for α = 0 and τ = 0.1 with a burn-in of
50,000 samples and a thinning interval of 100 samples. The first row’s graphs represent the trace plots of the
parameters α and τ. The second row’s graphs are the ACF of the parameters α and τ. The third row’s graphs
refer to the histograms of the densities of the parameters α and τ. The red dashed line is the posterior mean.

The second approach for checking the convergence of the MCMC sampling involves checking multiple
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chains for each parameter (Gelman and Rubin, 1992a). Two chains were simulated for each parameter

with over-dispersed starting points which are α = −10, 10 and τ = 0.25, 3. The number of iterations

for each chain is 500, 000. The Gelman-Rubin statistic (R̂) is calculated. This diagnostic compares

between the within-chain variance and the between-chain variance. As discussed in Chapter 5, if

R̂ < 1.2, then the MCMC algorithm is converged. In three-level Bayesian hierarchical model, the

Gelman-Rubin statistics are less than 1.2 across four different prior distributions and this is confirmed

by plots in the second row in Figure 4.6 and in the second row in Figures B.8, B.9 and B.10 in Appendix

B.5 that show median and 97.5% quantile of the sampling distribution of the R̂. The first row in Figure

4.6 shows the trace plots for parameters α and τ. Each trace plot illustrates that two chains started

from different positions and they converged to the same posterior distribution.

Prior distributions Parameter Z-score
τ2
∼ Inv-Gamma(0.001, 0.001) α 0.6333

τ 1.9710
τ2
∼ Inv-Gamma(0.1, 0.1) α -0.2436

τ 1.0050
τ ∼ unif(0, 100) α 1.3680

τ -0.3274
τ ∼ HN(0, 100) α 1.5450

τ 0.2452
τ2
∼ Inv-Gamma(18.3574, 58.0563) α 0.8362

τ 0.03797

Table 4.2: Z-score (Geweke Statistic) resulting from fitting three-level hierarchical Bayesian model to traffic
accident data for 2016.

Geweke (1991) presented the other convergence diagnostic method. A single chain is divided into two

parts such that the first part represents 10% of iterations and the second part represents 50% iterations.

The sample mean and variance were calculated for each part. The Geweke convergence diagnostic

(Z-score) is the difference between these two means divided by the standard error of their difference.

When the length of the chain is large, the sampling distribution of the diagnostic statistic will be the

standard normal distribution. The simulated chain converges to the posterior distribution if Z-score

is between ±1.96 (Sahlin, 2011). Table 4.2 shows the Geweke convergence statistic of simulated chain

for both parameters model α and τ using Algorithm 4.1 with four different prior distributions. The

values of Z do not give evidence that simulated chains do not converge to the posterior distribution.

The third row in Figure 4.6 shows the plots of Z-scores versus the first 50% of iterations. There are

little values of Z-scores lie outside th 95% confidence interval. This indicates that samples of Z-scores

follow a standard-normal distribution. Hence, there is evidence indicating the convergence of MCMC

to the posterior distribution.
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Figure 4.6: The diagnostic convergence graphs of posterior parameters of the three-level hierarchical model
under prior distributions α ∼ N(0, 100) and τ2

∼ Inv-Gamma(0.001, 0.001). The graphs in the first row represent
the trace plots of the parameters α and τ. The red trace plot is performed with initial values of α = −10 and
τ = 0.25 and the blue trace plot is performed with starting values of α = 10 and τ = 3. The graphs in the
second row represent the plots of the Gelman-Rubin statistic of the generated Markov chains of the posterior
parameters of α and τ. The black solid and red dashed lines in the Gelman-Rubin diagnostic represent median
and 97.5% quantile of the sampling distribution for the resulting shrink factor to stabilize around value of 1
for the last 250,000 samples of the Markov chains of α and τ. The graphs in the third row represent plots of the
Geweke’s diagnostic involving Z-scores. The horizontal black dashed lines in the Geweke’s diagnostic plot are
tails of a standard normal distribution which are ±1.96.
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4.6 Simulation Study

4.6.1 Simulation Design

To evaluate the performance of methods, a simulation study was conducted. One thousand data sets

are generated and each data set was simulated according to the following model:

αi ∼ N(α, τ2),

αi j ∼ N
(
αi, τ

2
i

)
,

ni j ∼ Pois
(
Li j exp

(
αi j

))
, i = 1, ...,m; j = 1, ..,ni. (4.29)

Six different scenarios of simulation are considered with α = −5 and − 7, τ = 0.3, 0.7 and 1.5. The

three-level hierarchical model given in (4.1) is fitted for each generated dataset and both Bayesian

and frequentist approaches described in sections 4.3 and 4.4 are respectively used to estimate model

parameters α and τ. The three-level Bayesian and frequentist hierarchical models are evaluated and

compared based on mean square error (MSE) and coverage probability (CP).

4.6.2 Simulation Results

In Table 4.3, posterior mean for both α and τ is very close to the true value of parameter across all

prior distributions for τ and six scenarios. Estimates from frequentist method for both α and τ are

close to the true values of parameter across scenarios (α, τ) = (−5, 0.3), (−5, 0.7)and(−5, 1.5). Thus, the

Bayesian approach performs better than frequentist approach in the terms of parameter estimates.

In the Bayesian method, the absolute value of Bias is small in general. The absolute value of the

magnitude of bias of estimate of α slightly increases as the true value of τ increases from 0.3 to 1.5 as

in Table 4.3. The absolute value of the magnitude of bias of estimate τ slightly increases as the true

value of τ increases for scenarios with true values α = −5 and − 7 and across two priors uniform

and half normal distributions for τ. For non- and weakly-informative Inv-Gamma priors for τ2, the

absolute value of the amount of bias of τ estimate decreases when the true value of τ increases for

the true value −7. This means that τ slightly affect the amount of bias. The frequentiat approach

produced high biases of point estimates of α and τ across six scenarios, but it produced bigger bias

with the true value α = −7. In summary, Bayesian method seems to give less biased results than the

frequentist method.

Table 4.3 shows that the MSE for both model parameters slightly increases when τ increases for all

prior distributions of τ and all simulation scenarios. Magnitudes of the MSE for both α and τ are

100



similar across scenarios with true value α = −5 and α = −7 as shown in Table 4.3.

Note that for the true value α = −7, the frequentist approach produced larger MSE of α and τ com-

pared with those for the true value α = −5. In addition, the MSE of α and τ obtained from the

frequentist method is larger than those obtained from Bayesian method for the true value α = −7. It

can be concluded that the performance of the Bayesian method in terms of MSE is better than the

performance of the frequentist method. In general, the frequentist method was performing poorly in

terms of MSE.

Bayesian coverage probability values with all proposed prior distributions of τwere close to nominal

95% credible interval for both parameters. The frequentist method produced poor coverage prob-

ability values for the true value α = −7 and for both parameters, where it was 0 for α. Henderson

et al. (2000) shows that the separate analysis using the two-stage method is not performing well

compared with the one-stage method. Browne et al. (2006) showed that marginal quasi-likelihood

method produced zero value of the coverage probability for a random effect variance parameter (σ2
u)

in random-effects logistic regression (RELR) model. Marginal quasi-likelihood estimation method

also yielded very undercoverage probability of random-effect variance (σ2
V = 2.4) and the fixed effect

parameter (β2 = 17.6) in the RELR model. In the simulation study, for the true value α = −5, the

coverage probability values are better than those for α = −7, but they still under-coverage for both

parameters. In our Frequentist approach, the coverage probability of α decreases as the true value of

α decreases from -3 to -7 as shown in Tables B.1 and B.2 in Appendix B.5. In general, the performance

of the coverage probability in Bayesian method for the both model parameters is better than the

frequentist method. The inferior performance of frequentist method is because of biased estimates

and large standard deviations of estimates.
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4.7 Models Comparison

We present two methods to select the best fitting model from our two candidate models (two and

three-level Bayesian hierarchical models). Here, two- and three-level Bayesian hierarchical models are

only compared since simulation results in sections 3.7 and 4.6 show that the performance of Bayesian

method is better than the frequentist method. Specially, the three-level frequentist hierarchical model

performed poorly. Regarding Bayesian methods, the comparison of two- and three-levels hierarchical

models is done across all proposed prior distributions.

4.7.1 Models Comparison using Information Criteria

In this section, the most commonly used two criteria are described and employed to compare Bayesian

hierarchical models that are the deviance information criterion (DIC) developed by Spiegelhalter

et al. (2002) and the Watanabe-Akaike or widely applicable information criterion (WAIC) proposed

by Watanabe (2010).

Deviance Information Criterion (DIC)

The DIC is the sum of the two terms that are measures of a goodness of fit of the model (deviance

statistic) and a complexity (the number of free parameters in the model). The effective number of

parameters in the model is the posterior mean of the deviance minus the deviance at the posterior

estimates of the parameters. Thus, the effective number of parameters is given by,

PD = D(Θ) −D(Θ) = EΘ|data
[
−2 log {L (Θ; data)}

]
+ 2 log

[
L
(
Θ̂; data

)]
, (4.30)

where D(Θ) = −2 log {L (Θ; data)}+2 log
{
f (data)

}
is Bayesian deviance, D(Θ) = E

[
−2 log {L (Θ; data)}

]
+

2 log
{
f (data)

}
and Θ̂ is posterior mean of the parameter Θ. According to Spiegelhalter et al. (2002),

the deviance information criterion is given by,

DIC = D (Θ) + PD = −4E
[
log {L (Θ; data)}

]
+ 2 log

[
L
(
Θ̂; data

)]
. (4.31)

The D (Θ) represents the expected deviance. The L
(
Θ̂; data

)
represents the likelihood function with

Θ̂ posterior means. These posterior means are produced using MCMC.

Watanabe-Akaike or widely applicable information criterion (WAIC)

The WAIC is an improvement on the deviance information criterion. The WAIC avoids the existing

problems in the DIC and it is fully Bayesian since posterior estimates contribute to the formulation

of this criterion. Let Y =
(
y1, ...,yn

)
represent observed data. Let L (Y|Θ) be a likelihood function and
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π (Θ|Y) represent a posterior distribution. The WAIC also includes terms for the fit and the complexity

of a model. The measure of fit is the log pointwise predictive density (lppd) that is given by,

lppd = log
n∏

i=1

P
(
yi|Y

)
=

n∑
i=1

log EΘ

[
L
(
yi|Θ

)]
=

n∑
i=1

log
∫

L
(
yi|Θ

)
π (Θ|Y) dΘ. (4.32)

In practice, lppd can be calculated using simulated samples Θ(t), (t = 1, ...,M) from the posterior

distribution π (Θ|Y) that are generated using MCMC methods. So the log pointwise predictive

density is given by,

lppd =

n∑
i=1

log

 1
M

M∑
t=1

L
(
yi|Θ

(t)
) . (4.33)

The measure of complexity is an effective number of parameters that is also called bias correction (Gel-

man et al., 2014). According to Gelman et al. (2014) the bias correction of the WAIC is given by,

PWAIC = 2
n∑

i=1

[
log

(
EpostL

(
yi|Θ

))
− Epost

(
log L

(
yi|Θ

))]
. (4.34)

The above formula of PWAIC is rewritten where the expectations are replaced by the average over

the M posterior simulations Θ(t), that is

PWAIC = 2
n∑

i=1

log

 1
M

M∑
t=1

L
(
yi|Θ

(t)
) − 1

M

M∑
t=1

log L
(
yi|Θ

(t)
) . (4.35)

Using the log pointwise predictive density of data (lppd) in equation (4.33) and a bias correction

(PWAIC) in equation (4.35), the expected log pointwise predictive density of data (elppd) is given by,

êlppdWAIC = lppd − PWAIC. (4.36)

According to (Gelman et al., 2014), WAIC is given by,

WAIC = −2
(
êlppdWAIC

)
= 2

n∑
i=1

log

 1
M

M∑
t=1

L
(
yi|Θ

(t)
) − 4

n∑
i=1

1
M

M∑
t=1

log L
(
yi|Θ

(t)
)
. (4.37)

Table 4.4 shows that DIC and WAIC for the three-level Bayesian hierarchical model with the non-

informative prior Inv-Gamma(0.001, 0.001) are lower than those for two-level Bayesian hierarchical

model. This indicates that the three-level Bayesian Hierarchical is appropriate and closest to the real

model of observed data compared with the two-level Bayesian hierarchical model.
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Model 2LBHM 3LBHM
DIC 100408.3 85204.3

WAIC 89412.6 1049.9

Table 4.4: DIC and WAIC criteria. 3LBHM represents the three-level Bayesian hierarchical model and 2LBHM
represents the two-level Bayesian hierarchical model.

4.7.2 Models Comparison using Simulation Study

Simulation Design

The term ”model misspecification” means the wrongly fitted model to data (Yoo and Slate, 2005). The

model misspecification affects estimation results leading to the producing wrong or biased estimates.

To investigate the effects of model misspecification, we recall the same data sets generated in section

4.6.1 that are simulated depending on three-level hierarchical model (4.1), and fit data sets generated

using two-level Bayesian hierarchical model (3.1). We provide posterior mean, bias, mean square

error and coverage probability criteria described in chapter 3 section 3.7.1 to investigate whether

model (3.1) is able to analyse data when heterogeneity is incorporated across grouped segments of

motorway. The same prior distribution in section 3.6 and the same initial values in section 3.6 are

utilized in the Bayesian analysis, and 100,000 iterations were run with burn-in 10,000 and thinning

interval of 10 to get posterior samples for α and τ using algorithm 3.1.

Simulation Results

Tables 4.5 shows that the two-level Bayesian hierarchical model produced biased estimates, large

mean square errors and extremely bad coverage probability values for both model parameters. The

coverage probability values were 0 or close to 0 for τ and exactly equal or close to 100% for α when

the true value of the standard deviation between motorway τ = 0.3 and 0.7. This indicates that the

fitted model (two-level hierarchical Bayesian model) is incorrect.
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4.8 Discussion

A methodology for modelling accident data at the segment level of the UK motorway network is

proposed. The model is built up by sub-dividing the UK motorway network into grouped segments,

where the three-level hierarchical model was used to take into account the heterogeneity across

segments and motorways. The model has been applied to traffic accident data on the UK motorway

network in 2016 to classify the dangerous motorways. The Bayesian Markov Chain Monte Carlo

methods and frequentist method are used to estimate model parameters. In the Bayesian method,

a sensitivity analysis with different prior distributions specifications for τ2 has been performed to

investigate the effect of the prior choice on the resulting posterior distributions of α and τ. We

have used a non-informative, weakly-informative and informative priors. The analysis revealed that

Bayesian results are not sensitive to the choice of prior distributions. Gelman-Rubin statistic, Geweke

statistic, ACF and trace plots have been used to monitor the convergence of posterior distributions of

model parameters, α and τ. These convergence diagnostic methods have indicated the convergence

of the MCMC chains. Regarding the frequentist approach, the maximum likelihood method has been

separately used for each level of model. Information criteria (DIC and WAIC) and simulation study

were used to compare between the two-level and three-level Bayesian hierarchical models.

In a simulation study and a real application, we have examined the performance of Bayesian and

frequentist methods for fitting the three-level hierarchical model. The simulation results showed

that the performance of the three-level Bayesian hierarchical model is better than the frequentist

method in the most simulation scenarios proposed. Indeed, the frequentist method encounters

difficulty in attaining the nominal 95% coverage probability in the scenarios with true value α = −7

where it yielded very poor coverage probability for α (coverage probability = 0) and considerable

undercoverage for τ (coverage probability = 4.2% and 27.1%). This is due to a large bias in the

estimates of α and τ that also leaded to large MSE in the both parameters.

The Bayesian method produced mean estimates that were close to unbiased for both parameters,

α and τ, with all priors and with coverage probability close to 95% for all scenarios. Results from

simulation study demonstrated that the value of MSE and bias are sensitive to the choice of the τ

value. This means that an increase in the τ value results in an increase in the MSE and bias of α and τ.
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Based on DIC, WAIC and simulation study, the three-level Bayesian hierarchical model was chosen as

the best fitting model to traffic accident data on the UK motorway network since it yielded the lowest

DIC and WAIC. The three-level Bayesian hierarchical model provided good information about the

intensity of accidents on the UK motorway network for 2016. According to levels of accident intensity

risk (very low, low, moderate, high, very high), the moderate risk level was identified as the general

intensity of accident level of the UK motorway network. The very high-risk level was observed on

M25 and M606, whereas the very low-risk level on M9, M90, M58, M45, M48, M49, M180, M54, M74

and M50
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Chapter 5

Conclusion

5.1 Summary

This dissertation focused on Bayesian hierarchical models for analysing road accidents on the UK

motorway network. Work along this line has been gradated from a line segment to a linear network.

This work has determined which the most dangerous motorways in the UK network based on the

estimated intensity of traffic accidents.

Chapter 1 presented a general review of the Bayesian inference. In Bayesian inference, Bayes’s theo-

rem, prior distributions and MCMC methods were reviewed.

Chapter 2 defined a line segment and discussed homogeneous and inhomogeneous spatial Poisson

processes on the line segment. The discussion includes using the maximum likelihood and Bayesian

methods to produce useful estimation of the intensity function of simulated events from an inhomoge-

neous spatial Poisson process on the line segment. In the Bayesian approach, the Metropolis-Hastings

within Gibbs sampling was used to provide posterior summaries of the intensity of a spatial point

process. The two estimation methods gave similar summaries of an inhomogeneous Poisson model

parameters. The aim of chapter 2 was to pave the way for defining spatial point process on the linear

network.

Chapter 3 and 4 presented our main contributions where we proposed Bayesian hierarchical models

to account for the multilevel nature of data on the UK motorway network. These models have not

been used for the UK motorway network before. Using our proposed hierarchical models, we identi-

fied motorways with highest and lowest intensities of accidents, classified motorways into different

risk categories, and estimated the overall intensity of accidents.

Chapter 3 demonstrated the use of one-stage fully Bayesian hierarchical model, two-stage semi-

Bayesian hierarchical model, two-stage frequentist hierarchical model, Bayesian non-hierarchical
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model and frequentist non-hierarchical model for analysing traffic accident data on the UK motor-

way network. In the Bayesian approach, we conducted a sensitivity analysis to evaluate the impact

of the prior distributions. In general, our proposed hierarchical models were not sensitive to the

prior specification of the between-motorway standard deviation. We assessed the performance of all

proposed models using a simulation study and real application that includes traffic accident data on

the UK motorway network for 2016.

In the simulation study, different scenarios were conducted. We examined three performance criteria,

bias, mean square error (MSE) and coverage probability (CP) of parameter estimates. The simulation

results showed that the performance of the fully Bayesian hierarchical model is better than those

of the semi-Bayesian and frequentist hierarchical models in terms of bias and coverage probability

for some simulation scenarios. The performance of all the three models is similar in terms of MSE.

The results of the simulation study show that non-hierarchical models perform poorly in terms of all

the evaluation criteria. In the real application, the analysis of the fully Bayesian hierarchical model

showed that M25 and M27 seem to have the highest accident intensity on the UK motorway network

for 2016. Results also showed that motorways M180, M74, M50 appear to have the lowest intensity

of accidents.

Chapter 4 proposed using a three-level hierarchical model to incorporate a multilevel data structure.

We assume accident intensity is homogeneous within grouped segments but heterogeneous across

grouped segments. The three-level hierarchical model was evaluated using a simulation study and

traffic accident data on the UK motorway network for 2016. The simulation results showed that

the Bayesian three-level hierarchical model performed better than the frequentist model in the most

simulation scenarios proposed. The frequentist method faced difficulty in attaining the required level

of actual coverage in some scenarios because of a large bias in the estimates of the overall log-intensity

of accidents and the between motorway standard deviation. The results of the analysis of the model

showed that M25 and M606 have high intensity of accidents and M9, M90, M58, M45, M48, M49,

M180, M54, M74 and M50 have low intensity of accidents.

Information criteria (DIC and WAIC) and simulation study were used to compare between the

two-level and three-level Bayesian hierarchical models. The values of criteria DIC and WAIC for

three-level Bayesian hierarchical model are less than those for two-level Bayesian hierarchical model.

This means that the best fitting model is the three-level Bayesian hierarchical model.

110



5.2 Future work

In the published literature, point patterns were simulated on the two-dimensional space (Moller and

Waagepetersen, 2003; Ripley, 1991; Cressie, 1992; Symanzik, 2005). Points represent the locations of

events. The points are simulated either uniformly or non-uniformly (inhomogeneously) across the

study region. In the inhomogeneous case, the adjustment on the locations is made so that the point

pattern inhomogenously distributes across the study region in a two-dimensional space. However,

the UK motorway network is a linear network consisting of line segments. The methods for simulating

points in two-dimensional space cannot be directly applied to simulate locations of accidents on a

linear network. A possible future extension is to simulate an inhomogeneous Poisson process on a

linear network.

Spatial covariate on a linear network is a quantity that could imaginably be measured at any location

on the network (Baddeley et al., 2015). In the analysis of road traffic accidents, spatial covariate

may include road width, the distance to the nearest road intersection and the sighting distance along

the road. Future extension may include studying the effect of spatial covariates on the pattern of

accidents. Models may be extended to include accident data from different years to study how the

intensity of accidents change over time.
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Appendix A

Derivations and Plots of Chapter 3

A.1 One-Stage Fully Bayesian Hierarchical Method (Model 1)

A.1.1 Likelihood Function

The likelihood function is

L(N|Θ) = P (N|α1, ..., αm) P(α1, ..., αm|α, τ
2) f

(
s1, ..., sni

)
,

=

m∏
i=1

(λiLi)
ni exp (−λiLi)

ni!
×

1
Lni

i

×

m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
,

∝

m∏
i=1

λni
i exp

(
−Li exp (αi)

)
×

m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
,

∝

m∏
i=1

exp
(
niαi − Li exp (αi)

)
×

m∏
i=1

(
1

√

2πτ2

)
exp

(
−

(αi − α)2

2τ2

)
. (A.1)

A.1.2 Full Conditional Posterior Distributions

A.1.2.1 Conditional Posterior Distribution of αi

The conditional posterior distribution of αi is

π
(
αi|α, τ

2,N
)

= exp
(
niαi − Li exp (αi)

)
×

(
1

√

2πτ2

)
exp

(
−

(αi − α)2

2τ2

)
,

∝ exp
(
niαi − Li exp (αi)

)
× exp

(
−

(αi − α)2

2τ2

)
. (A.2)
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A.1.2.2 Conditional Posterior Distribution of α

The conditional posterior distribution of α is

π
(
α|α1, ..., αm, τ

2,N
)

=

(
1

√

2πτ2

)m

exp

− m∑
i=1
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2τ2

 × 1√
2πσ2

0

exp

− (
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0
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 ,
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− (
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0

−
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 ,
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(
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− 2αµ0 + µ2
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)
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 . (A.3)

Multiplying and dividing by
m
τ2 +

1
σ2

0

and letting µα =

∑m
i=1 αi

τ2 +
µ0

σ2
0

m
τ2 +

1
σ2

0

produces

π(α|α1, ..., αm, τ
2,N) ∝ exp
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1
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 (α2
− 2αµα

) . (A.4)

Completing square to obtain the mean for the normal distribution is formed by adding and subtracting

with µ2
α

π(α|α1, ..., αm, τ
2,N) ∝ exp

−1
2
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2
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1
σ2

0

 (α − µα)2

 . (A.5)

Therefore, α|α1, ..., αm, τ2,N follows the normal distribution with meanµα and corresponding variance

σ2
α

α|α1, ..., αm, τ
2,N ∼ N(µα, σ2

α), (A.6)
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where

µα =

∑m
i=1 αi

τ2 +
µ0

σ2
0

m
τ2 +

1
σ2

0

and σ2
α =

1
m
τ2 +

1
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0

.

A.1.2.3 Conditional Posterior Distribution of τ2

The conditional posterior distribution of τ2 is

π(τ2
|α1, ..., αm, α,N) =
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1
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Therefore,
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)
. (A.8)

A.1.2.4 Conditional Posterior Distribution of τ

The conditional posterior distribution on τ can be derived as

π(τ|α1, ..., αm, α,N) =
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A.2 Two-Stage Semi-Bayesian Hierarchical Method (Model 2)

A.2.1 Likelihood Function

Setting y = (y1, ...,ym) , the likelihood function can be given as follows:

π
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2
)

= P
(
y|α1, ..., αm

)
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A.2.2 Joint Posterior Distribution

The joint posterior distribution is

π
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2
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A.2.3 Full Conditional Posterior Distributions

A.2.3.1 Conditional Posterior Distribution of αi

The conditional posterior density of αi is
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Multiplying and dividing by
1
σ2

i

+
1
τ2 and letting µαi =

yi

σ2
i

+
α

τ2

1
σ2

i

+
1
τ2

produces

π
(
αi|α, τ

2,y
)
∝ exp

−1
2

 1
σ2

i

+
1
τ2

 (α2
i − 2αiµαi

) . (A.13)

Completing square to obtain the mean for the normal distribution is formed by adding and subtracting

with µαi
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Therefore, αi|α, τ2,y follows the normal distribution with mean µαi and corresponding variance σ2
αi

i.e.
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A.2.3.2 Conditional Posterior Distribution of α

Using equation (3.17), the conditional posterior density ofα is calculated by consideringα as a random

variable and αi, τ2 as constants. Hence,
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Multiplying and dividing by
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Completing square to obtain the mean for the normal distribution is formed by adding and subtracting

with µ2
α
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Therefore, α|α1, ..., αm, τ2,y follows the normal distribution with mean µα and corresponding variance

σ2
α

α ∼ N(µα, σ2
α), (A.19)
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where
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A.2.3.3 Conditional Posterior Distribution of τ2

Using equation (3.17), we derive the conditional posterior density of τ2 given other parameters.

Hence,

π(τ2
|α1, ..., αm, α,y) =

m∏
i=1

1
√

2πτ2
exp

(
−

(αi − α)2

2τ2

)
×

βα0
0

Γ(α0)

(
τ2

)−α0−1
exp

(
−β0/τ

2
)
,

=
βα0

0

Γ(α0)

(
τ2

)−(α0 +
m
2

) − 1
exp

−
β0 +

∑m
i=1 (αi − α)2

2
τ2

 . (A.20)

Therefore

τ2
|α1, ..., αm, α,y ∼ Inv-Gamma (a, b) , (A.21)

where

a = α0 +
m
2

and b = β0 +

∑m
i=1(αi − α)2

2
.
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Figure A.1: Trace plots, ACF functions and histograms of posterior parameters of the fully Bayesian hierar-
chical model. The model is fitted using algorithm 3.1 with prior distributions α ∼ N(0, 100) and a weakly-
informative τ2

∼ Inv-Gamma(0.1, 0.1). The graphs in the first row represent the trace plots of the parameters α
and τwith 10,000 samples discarded burned-in from 100,000 samples and the horizontal red dashed line in the
trace plots shows the posterior mean. The graphs in the second row show the ACF functions of the parameters
α and τ. The graphs in the third row show the histograms of the parameters α and τ. The vertical red dashed
line shows the posterior mean.
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Figure A.2: Trace plots, ACF functions and histograms of posterior parameters of the fully Bayesian hierarchi-
cal model. The model is fitted using algorithm 3.1 with prior distributions α ∼ N(0, 100) and non-informative
τ ∼ HN(0, 0.02). The graphs in the first row represent the trace plots of the parameters α and τ with 10,000
samples discarded burned-in from 100,000 samples and the horizontal red dashed line in the trace plots shows
the posterior mean. The graphs in the second row show the ACF functions of the parameters α and τ. The
graphs in the third row show the histograms of the parameters α and τ. The vertical red dashed line shows the
posterior mean.
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Figure A.3: Trace plots, ACF functions and histograms of posterior parameters of the fully Bayesian hierarchi-
cal model. The model is fitted using algorithm 3.1 with prior distributions α ∼ N(0, 100) and non-informative
τ ∼ unif(0, 100). The graphs in the first row represent the trace plots of the parameters α and τ with 10,000
samples discarded burned-in from 100,000 samples and the horizontal red dashed line in the trace plots shows
the posterior mean. The graphs in the second row show the ACF functions of the parameters α and τ. The
graphs in the third row show the histograms of the parameters α and τ. The vertical red dashed line shows the
posterior mean.
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Figure A.4: Trace plots, ACF functions and histograms of posterior parameters of the semi-Bayesian hi-
erarchical model. The model is fitted using algorithm 3.2 with prior distributions α ∼ N(0, 100) and
τ2
∼ Inv-Gamma(0.1, 0.1). The graphs in the first row represent the trace plots of the parameters α and τ

with 5,000 samples discarded burned-in from 50,000 samples and the horizontal red dashed line in the trace
plots shows the posterior mean. The graphs in the second row show the ACF functions of the parameters α
and τ. The graphs in the third row show the histograms of the parameters α and τ. The vertical red dashed
line shows the posterior mean.
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Figure A.5: Trace plots, ACF functions and histograms of posterior parameters of the semi-Bayesian hierarchi-
cal model. The model is fitted using algorithm 3.2 with prior distributions α ∼ N(0, 100) and τ ∼ HN(0, 0.02).
The graphs in the first row represent the trace plots of the parameters α and τ with 5,000 samples discarded
burned-in from 50,000 samples and the horizontal red dashed line in the trace plots shows the posterior mean.
The graphs in the second row show the ACF functions of the parameters α and τ. The graphs in the third row
show the histograms of the parameters α and τ. The vertical red dashed line shows the posterior mean.
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Figure A.6: Trace plots, ACF functions and histograms of posterior parameters of the semi-Bayesian hierarchi-
cal model. The model is fitted using algorithm 3.2 with prior distributions α ∼ N(0, 100) and τ ∼ unif(0, 100).
The graphs in the first row represent the trace plots of the parameters α and τ with 5,000 samples discarded
burned-in from 50,000 samples and the horizontal red dashed line in the trace plots shows the posterior mean.
The graphs in the second row show the ACF functions of the parameters α and τ. The graphs in the third row
show the histograms of the parameters α and τ. The vertical red dashed line shows the posterior mean.
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Figure A.7: The diagnostic convergence graphs of posterior parameters of the fully Bayesian hierar-
chical model. The model is fitted using algorithm 3.1 under prior distributions α ∼ N(0, 100) and
τ2
∼ Inv-Gamma(0.1, 0.1). The graphs in the first row represent the trace plots of the parameters α and τ.

The blue trace plot is performed with initial values of α = −10 and τ = 0.25 and the red trace plot is performed
with starting values of α = 10 and τ = 3. The graphs in the second row represent the plots of the Gelman-Rubin
statistic of the generated Markov chains of the posterior parameters of α and τ. The black solid and red dashed
lines in the Gelman-Rubin diagnostic represent median and 97.5% quantile of the sampling distribution for the
resulting shrink factor to stabilize around value of 1 for the last 50,000 samples of the Markov chains of α and
τ. The graphs in the third row represent plots of the Geweke’s diagnostic involving Z-scores. The horizontal
black dashed lines in the Geweke’s diagnostic plot are tails of a standard normal distribution which are ±1.96.
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Figure A.8: The diagnostic convergence graphs of posterior parameters of the fully Bayesian hierarchical
model. The model is fitted using algorithm 3.1 under prior distributions α ∼ N(0, 100) and τ ∼ HN(0, 0.02).
The graphs in the first row represent the trace plots of the parameters α and τ. The blue trace plot is performed
with initial values of α = −10 and τ = 0.25 and the red trace plot is performed with starting values of α = 10 and
τ = 3. The graphs in the second row represent the plots of th Gelman-Rubin statistic of the generated Markov
chains of the posterior parameters of α and τ. The black solid and red dashed lines in the Gelman-Rubin
diagnostic represent median and 97.5% quantile of the sampling distribution for the resulting shrink factor to
stabilize around value of 1 for the last 50,000 samples of the Markov chains of α and τ. The graphs in the third
row represent plots of the Geweke’s diagnostic involving Z-scores. The horizontal black dashed lines in the
Geweke’s diagnostic plot are tails of a standard normal distribution which are ±1.96.
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Figure A.9: The diagnostic convergence graphs of posterior parameters of the fully Bayesian hierarchical
model. The model is fitted using algorithm 3.1 under prior distributions α ∼ N(0, 100) and τ ∼ unif(0, 100). The
graphs in the first row represent the trace plots of the parameters α and τ. The blue trace plot is performed with
initial values of α = −10 and τ = 0.25 and the red trace plot is performed with starting values of α = 10 and
τ = 3. The graphs in the second row represent the plots of the Gelman-Rubin statistic of the generated Markov
chains of the posterior parameters of α and τ. The black solid and red dashed lines in the Gelman-Rubin
diagnostic represent median and 97.5% quantile of the sampling distribution for the resulting shrink factor to
stabilize around value of 1 for the last 50,000 samples of the Markov chains of α and τ. The graphs in the third
row represent plots of the Geweke’s diagnostic involving Z-scores. The horizontal black dashed lines in the
Geweke’s diagnostic plot are tails of a standard normal distribution which are ±1.96.
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Figure A.10: The diagnostic convergence graphs of posterior parameters of the semi-Bayesian hierar-
chical model. The model is fitted using algorithm 3.2 under prior distributions α ∼ N(0, 100) and
τ2
∼ Inv-Gamma(0.1, 0.1). The graphs in the first row represent the trace plots of the parameters α and τ.

The red trace plot is performed with initial values of α = −10 and τ = 0.25 and the blue trace plot is performed
with starting values of α = 10 and τ = 3. The graphs in the second row represent the plots of the Gelman-Rubin
statistic of the generated Markov chains of the posterior parameters of α and τ. The black solid and red dashed
lines in the Gelman-Rubin diagnostic represent median and 97.5% quantile of the sampling distribution for the
resulting shrink factor to stabilize around value of 1 for the last 25,000 samples of the Markov chains of α and
τ. The graphs in the third row represent plots of the Geweke’s diagnostic involving Z-scores. The horizontal
black dashed lines in the Geweke’s diagnostic plot are tails of a standard normal distribution which are ±1.96.
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Figure A.11: The diagnostic convergence graphs of posterior parameters of the semi-Bayesian hierarchical
model. The model is fitted using algorithm 3.2 under prior distributions α ∼ N(0, 100) and τ ∼ HN(0, 0.02).
The graphs in the first row represent the trace plots of the parameters α and τ. The red trace plot is performed
with initial values of α = −10 and τ = 0.25 and the blue trace plot is performed with starting values of α = 10
and τ = 3. The graphs in the second row represent the plots of the potential scale reduction factor (PSRF)
of the Gelman-Rubin diagnostic of the generated Markov chains of the posterior parameters of α and τ. The
black solid and red dashed lines in the Gelman-Rubin diagnostic represent median and 97.5% quantile of the
sampling distribution for the resulting shrink factor to stabilize around value of 1 for the last 25,000 samples of
the Markov chains of α and τ. The graphs in the third row represent plots of the Geweke’s diagnostic involving
Z-scores. The horizontal black dashed lines in the Geweke’s diagnostic plot are tails of a standard normal
distribution which are ±1.96.
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Figure A.12: The diagnostic convergence graphs of posterior parameters of the semi-Bayesian hierarchical
model. The model is fitted using algorithm 3.2 under prior distributions α ∼ N(0, 100) and τ ∼ unif(0, 100). The
graphs in the first row represent the trace plots of the parameters α and τ. The red trace plot is performed with
initial values of α = −10 and τ = 0.25 and the blue trace plot is performed with starting values of α = 10 and
τ = 3. The graphs in the second row represent the plots of the Gelman-Rubin statistic of the generated Markov
chains of the posterior parameters of α and τ. The black solid and red dashed lines in the Gelman-Rubin
diagnostic represent median and 97.5% quantile of the sampling distribution for the resulting shrink factor to
stabilize around value of 1 for the last 25,000 samples of the Markov chains of α and τ. The graphs in the third
row represent plots of the Geweke’s diagnostic involving Z-scores. The horizontal black dashed lines in the
Geweke’s diagnostic plot are tails of a standard normal distribution which are ±1.96.
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Appendix B

Derivations and Plots of Chapter 4

B.1 Likelihood Function

L (N|Θ) = P (N|γ) × P
(
γ |α, τ 2

)
× P

(
α|α, τ2

)
,

=

m∏
i=1

ni∏
j=1

(
λi jLi j

)ni j
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)
ni j!
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i j
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B.2 Joint Posterior Distribution

π (Θ|N) = P (N|γ) P
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γ |α, τ 2
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P
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B.3 Full Conditional Posterior Distributions

B.3.1 Conditional Posterior Distribution of αi

Using equation (B.2), the conditional posterior density of αi is calculated given other parameters:

π
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αi|γ, τ
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Multiplying and dividing by
ni

τ2
i

+
1
τ2 and letting µαi =

∑ni
j=1 αi j
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+
α

τ2

ni
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Completing square to obtain the mean for the normal distribution is formed by summing and sub-

tracting with µαi

π
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Therefore, αi|γ, τ 2, α, τ,N follows the normal distribution with mean µαi and corresponding variance

σ2
αi

αi ∼ N(µαi , σ
2
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), (B.6)

where
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B.3.2 Conditional Posterior Distribution of τ2
i
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So the posterior distribution of τ2
i given other parameters is

τ2
i ∼ Inv-Gamma

aτ2
i

=
ni

2
+ a0, bτ2

i
=

ni∑
j=1

(
αi j − αi

)2

2
+ b0

 . (B.8)

B.3.3 Conditional Posterior Distribution of α

Using equation (B.2), the conditional posterior density of α is calculated by considering α as a random

variable and other parameters as constants. Hence:

π
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Multiplying and dividing by
m
τ2 +

1
σ2

0

and letting µα =

∑m
i=1 αi

τ2 +
µ0

σ2
0

m
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1
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0
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Completing square to obtain the mean for the normal distribution is formed by summing and sub-

tracting with µα

π
(
α|α, τ2,N

)
∝ exp
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 . (B.11)

Therefore, α|α, τ2,N follows the normal distribution with mean µα and corresponding variance σ2
α

α ∼ N(µα, σ2
α), (B.12)

where

µα =

∑m
i=1 αi

τ2 +
µ0

σ2
0

m
τ2 +

1
σ2

0

and σ2
α =

1
m
τ2 +

1
σ2

0

.

B.3.4 Conditional Posterior Distribution of τ2

Using equation (B.2), we derive the conditional posterior density of τ2 given other parameters. Hence:

π
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)
=

m∏
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 . (B.13)

Therefore, τ2
|α, α, τ 2,N follows the inverse gamma distribution with shape aτ2 =

m
2

+ α0 and scale

bτ2 =

∑m
i=1 (αi − α)2

2
+ β0.

B.4 Frequentist Estimation

The second part of the likelihood function is given by,

Li

(
α, τ 2; γ̂

)
=

m∏
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 . (B.14)
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The first and the second derivatives of the log-likelihood function with respect to αi and τ2
i are given

by,

`i

(
α, τ 2; γ̂

)
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 . (B.15)
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By equalling both
∂`i

∂αi
and

∂`i

∂τ2
i

to zero, maximum estimators of αi and τ2
i are given by,
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∑ni
j=1 α̂i j

ni
and τ̂2
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, (B.22)

and the Hessian matrix is given by,
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The Fisher information matrix is given by,
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since αi j ∼ N
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)
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hence
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Therefore the Fisher information matrix is given by,
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and the inverse of the Fisher information matrix is given by,
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The standard errors of α̂i and τ̂2
i are

SE (α̂i) =

√
τ2

i

ni
. (B.30)
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√
2τ4

i
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. (B.31)
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Figure B.1: Residuals plots. The predicted value of the number of accidents is calculated using the three-level
Bayesian hierarchical model fitted to the traffic accidents on the UK motorway network for 2016. GS represents
grouped segments.
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Figure B.2: Residuals plots. The predicted value of the number of accidents is calculated using the three-level
Bayesian hierarchical model fitted to the traffic accidents on the UK motorway network for 2016. GS represents
grouped segments.
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Figure B.3: Residuals plots. The predicted value of the number of accidents is calculated using the three-level
Bayesian hierarchical model fitted to the traffic accidents on the UK motorway network for 2016. GS represents
grouped segments.
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Figure B.4: Residuals plots. The predicted value of the number of accidents is calculated using the three-level
Bayesian hierarchical model fitted to the traffic accidents on the UK motorway network for 2016. GS represents
grouped segments.

144



0 1000 2000 3000 4000

−7
.2

−7
.0

−6
.8

−6
.6

Trace plot of a

Index

a

0 1000 2000 3000 4000

0.
4

0.
6

0.
8

1.
0

Trace plot of t

Index

t

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series of a

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Series of t

Posterior density of a

a

D
en

si
ty

−7.4 −7.2 −7.0 −6.8 −6.6

0.
0

1.
0

2.
0

3.
0

Posterior density of t

t

D
en

si
ty

0.4 0.6 0.8 1.0

0
1

2
3

4

Figure B.5: The trace plots, autocorrelation function (ACF) and posterior density histgrams for three-level
hierarchical model parametersα and τunder a weakly-informative prior distributionsτ2

∼ Inv-Gamma(0.1, 0.1)
and α ∼ N(0, 100). 500,000 samples are generated with a burn in of 50,000 samples and a thinning 100 samples
using initial values for α = 0 and τ = 0.1. The first row’s graphs represent the trace plots of the parameters α
and τ. The second row’s graphs are the ACF of the parameters α and τ. The third row’s graphs refer to the
histograms of the densities of the parameters α and τ. The red dashed line is the posterior mean.
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Figure B.6: The trace plots, autocorrelation function (ACF) and posterior density histgrams for three-level
hierarchical model parameters α and τ under a non-informative prior distributions τ ∼ unif(0, 100) and α ∼
N(0, 100). 500,000 samples are generated with a burn in of 50,000 samples and a thinning 100 samples using
initial values for α = 0 and τ = 0.1. The first row’s graphs represent the trace plots of the parameters α and τ.
The second row’s graphs are the ACF of the parameters α and τ. The third row’s graphs refer to the histograms
of the densities of the parameters α and τ. The red dashed line is the posterior mean.
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Figure B.7: The trace plots, autocorrelation function (ACF) and posterior density histgrams for three-level
hierarchical model parameters α and τ under a non-informative prior distributions τ ∼ HN(0, 0.02) and
α ∼ N(0, 100). 500,000 samples are generated with a burn in of 50,000 samples and a thinning 100 samples
using initial values for α = 0 and τ = 0.1. The first row’s graphs represent the trace plots of the parameters α
and τ. The second row’s graphs are the ACF of the parameters α and τ. The third row’s graphs refer to the
histograms of the densities of the parameters α and τ. The red dashed line is the posterior mean.
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Figure B.8: The diagnostic convergence graphs of posterior parameters of the three-level hierarchical model
under prior distributions α ∼ N(0, 100) and τ2

∼ Inv-Gamma(0.1, 0.1). The graphs in the first row represent
the trace plots of the parameters α and τ. The blue trace plots is performed with initial values of α = −10
and τ = 0.25 and the red trace plots is performed with starting values of α = 10 and τ = 3. The graphs in the
second row represent the plots of the Gelman-Rubin statistic of the generated Markov chains of the posterior
parameters of α and τ. The black sold and red dashed lines in the Gelman-Rubin diagnostic represent median
and 97.5% quantile of the sampling distribution for the resulting shrink factor for stabilize around value of 1
for the last 250,000 samples of the Markov chains of α and τ. The graphs in the third row represent plots of the
Geweke’s diagnostic involving Z-scores. The horizontal black dashed lines in the Geweke’s diagnostic plot are
tails of a standard normal distribution which are ±1.96.
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Figure B.9: The diagnostic convergence graphs of posterior parameters of the three-level hierarchical model
under prior distributions α ∼ N(0, 100) and τ ∼ unif(0, 100). The graphs in the first row represent the trace
plots of the parameters α and τ. The red trace plots is performed with initial values of α = −10 and τ = 0.25
and the blue trace plots is performed with starting values of α = 10 and τ = 3. The graphs in the second row
represent the plots of the Gelman-Rubin statistic of the generated Markov chains of the posterior parameters
of α and τ. The black sold and red dashed lines in the Gelman-Rubin statistic represent median and 97.5%
quantile of the sampling distribution for the resulting shrink factor for stabilize around value of 1 for the last
250,000 samples of the Markov chains of α and τ. The graphs in the third row represent plots of the Geweke’s
diagnostic involving Z-scores. The horizontal black dashed lines in the Geweke’s diagnostic plot are tails of a
standard normal distribution which are ±1.96.
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Figure B.10: The diagnostic convergence graphs of posterior parameters of the three-level hierarchical model
under prior distributions α ∼ N(0, 100) and τ ∼ HN(0, 0.02). The graphs in the first row represent the trace
plots of the parameters α and τ. The red trace plots is performed with initial values of α = −10 and τ = 0.25
and the blue trace plots is performed with starting values of α = 10 and τ = 3. The graphs in the second row
represent the plots of the Gelman-Rubin statistic of the generated Markov chains of the posterior parameters
of α and τ. The black sold and red dashed lines in the Gelman-Rubin diagnostic represent median and 97.5%
quantile of the sampling distribution for the resulting shrink factor for stabilize around value of 1 for the last
250,000 samples of the Markov chains of α and τ. The graphs in the third row represent plots of the Geweke’s
diagnostic involving Z-scores. The horizontal black dashed lines in the Geweke’s diagnostic plot are tails of a
standard normal distribution which are ±1.96.
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