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ANISOTROPY OF HEAT CONDUCTION IN FIBRE-REINFORCED COMPQOSITES

S. M. Grove

ABSTRACT

Fibre-reinforced composites usually exhibit anisotropy of
thermal as well as mechanical properties. For example, 1n

a unidirectional carbon fibre-reinforced plastic of 60%
volume fraction, the longitudinal thermal conductivity may
be greater than that in the transverse direction by a factor
of 50, and greater than that of the unreinforced polymer by

"more than two orders of magnitude.

In order to evaluate the engineering applications of thermal
anisotropy, this thesis concentrates on the development and
validation of a generalised finite element model of heat
conduction in an anisotropic medium. This uses a varia-
tional formulation of the anisotropic time-dependent heat
conduction equation, and is implemented for two and three-
dimensional quadratic finite elements. The model may be
used for the solution of problems having any combination of
steady or time-dependent boundary conditions (fixed
temperature, convection, radiation, heat flux and internal
heat generation), as well as nonlinear properties. Aniso-
tropy is specified by the components of the two or three-
dimensional thermal conductivity tensor; efficient represen-
tation of nonhomogeneous materials is achieved by the
specification of properties at element integration points.

Theoretical validation of the model is carried out by means
of a number of mathematical solutions to orthotropic and
anisotropic problems. Experimental validation is performed
by comparison of calculations with measured steady-state
surface temperatures on a cylindrical specimen of unidirec-
tional carbon fibre-reinforced epoxy resin. The thermal
property data for this exercise are obtained from measure-
ments of principal thermal conductivities on absolute and

comparative steady-state apparatus.

The use »f the finite element model in two industrial
applications is briefly described. These concern thermal
cycling during composite fabrication with reinforced
thermoplastic tape, and an analysis of heat transfer in a

composite propeller blade.
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CHAPTER 1 : INTRODUCTION

There are many possible definitions of a composite, but at
the macrostructural level it may be regarded as consisting
of two or more physically distinct materials which have been
combined in some controlled manner. The resulting mixture

1s characterised by properties which are, according to
previously-defined criteria, more useful than those
possessed by any one of the constituents in isolation. The
concept dates from the earliest of the ancient civilisations,
when straw and other fibrous material was used for reinforce-
ment and crack prevention in the manufacture of clay pottery
and bricks. In addition, many naturally-occurring materials
are composites, such as wood, bone and muscle. In this
thesis, 'composite materials' are taken to be polymer-based
compounds containing gaseous, particulate or fibrous matter.
The range of such materials which has found applications
across the spectrum of engineering disciplines 1s vast,
ranging from foamed plastics in building and packaging to
high-performance carbon fibre-reinforced resins in the aero-

space industry.

Polymers are conveniently divided into two broad categories.
End-to-end joining of basic molecules (mers) produces a long,
chain-like linear polymer. The individual chains are not
chemically bonded, and the so-called 'thermoplastic' polymer
will melt on heating. The commonest examples are poly-
ethylene (PE), polypropylene (PP), polyvinylchloride (PVC),
and polystyrene (PS); together these account for about 90%

of thermoplastics production in the U.K. (Central Statistical
Office, 1984). Network polymers are based on mers which

form chemical bonds at sites in addition to the ends of the
molecules, thus giving rise to covalently-bonded three-
dimensional networks. Cross—-linking of the polymer chains
may be effected by heating or bv chemical means, and the
process is irreversible. Among the 'thermoset' and
‘chemiset' plastics are phenolic and epoxy resins, urea-
formaldehyde and polyurethane. Rubber polymers are examples

of a network system, and the curing or ‘vulcanizing' process

uses sulphur to form a bridge between long molecules which

-1



would otherwise be thermoplastic in character.

1.1 MECHANICAL PROPERTIES OF POLYMERS AND COMPOSITES

Several attributes of polymers are responsible for their
importance as engineering materials. They display a useful
range of durability in environments hostile to many tradi-
tional materials; they are of low density, leading to
valuable weight reduction in certain components; they are

easily processed, being formed into products of complex

shape at low cost. Stiffness and strength, however, are
not characteristic features of plastics; typical elastic
moduli are of the order of 10° N/m? and tensile strengths
are only about 107 N/m?. (In metals, tensile moduli and

strengths are greater by factors of 50-200 and 10-50

respectively.)

There are two broad approaches to the problem of achieving
higher performances, both of which require considerable
skill on the part of the engineer. The first requires
detailed analysis of stresses and loads in a particular
structure, and leads to the design of a component which
possesses the necessary strength or stiffness by virtue of
its geometry, rather than the inherent properties of the
material. The processing characteristics of plastics are
of particular importance here, since stiffening features
such as ribs or struts may be incorporated with ease. There
are many examples of this approach in such mass-produced

items as stacking crates, trays and furniture.

An alternative (or, in some cases, complementary) technique
of increasing stiffness and strength is to incorporate stiff,

strong fibres. Glass fibres are commonly used, being cheap
and readily available, and have moduli between 50 and 100

times that of the polymer; carbon fibres have moduli of more
than 200 x 10° N/m2, although their relatively high cost
limits their application. However, fibre reinforcement
achieves its function most effectively when loads are
applied in the direction of the longitudinal axis, and the

ultimate performance of a composite depends critically on
the degree of alignment of the fibres. Moreover, a composite

—J-



of highly aligned fibres will display considerable anisotropy
- for loads applied at right angles to the longitudinal axis,
the modulus may be only slightly higher than the unreinforced

plastic.

Powell (1983) has emphasised the two extremes which are to
be found in designing with composites. One is to reduce

the directionality by distributing fibres randomly in the
plane of a sheet material, thus reducing the anisotropy and
enabling isotropic analysis to be used in design. Although
simple in concept, the utilisation of fibres 1is highly
inefficient, since most will be loaded at an angle to their
axis. Such materials also have poor out-of-plane properties,
and interlaminar shear must be avoided. The second approach
involves both detailed analysis and careful control of
production technique - fibres are positioned to respond
most efficiently to particular applied loads, and the
response of a component in any given circumstances will

have been predicted beforehand. The essential difference
between the two approaches is that the former seeks to
minimise the anisotropy of fibre-reinforced composites,
while the latter regards the directional pr0pefties as a

positive design feature which may be exploited for the

effective and efficient use of material.

1.2 HEAT TRANSFER IN COMPOSITES

Fibre reinforcement has found widespread application as a

means for improving the mechanical properties of plastics.
Accordingly, most of the research into such materials may
be regarded as composite mechanics, and 1is concerned with
the theoretical and experimental analysis of anisotropic
elasticity and strength. In recent years, however, there
has been a growing awareness of the importance of heat
transfer in composite materials. The impetus for many
recent investigations in this area has been supplied by

the aerospace industry, where novel materials, selected
for their superior mechanical properties such as strength-
to-weight ratio, began to find applications in which their

thermal properties were also of direct relevance, such as

rocket nozzles and heat shields. This led to a number of

-3~



research programmes, particularly in the U.S.A., which
sought to develop the theoretical approach to heat conduc-
tion in composites and to evaluate their performance in
severe thermal environments, such as space re-entry vehicles
(Clayton and others, 1968).

More recently, attention has turned to the processing of
polymers and composites, prompted by the growing real cost
of energy and by the introduction of new techniques (Edwards
and Ellis, 1982). At least one cycle of heating and cooling
is necessary in the manufacture of many polymer-based
materials, whether to promote cross-linking in a thermo-
setting resin, or to mould or weld a thermoplastic. A
knowledge of the thermal properties of both polymers and
composites, together with suitable models of relevant heat
transfer processes, are prerequisites for the design of

efficient manufacturing and processing plant.

It is relevant at this point to emphasise the fundamental
difference between the thermosetting and thermoplastic
materials and, in consequence, the rather different problems
associated with heat transfer. Thermosets are usually
liquid at room temperature, and become solid only after a
suitable process which combines the addition of a chemical
catalyst and an increase of temperature to allow rapid cross-
linking of the long molecules. This chemical process 1is
irreversible, and it is necessary that curing should occur
uniformly; in some moulding techniques excess resin must be
expelled while still a liquid, and, particularly 1if a

reinforcement is present, it will require unimpeded passage

through the mould. Having cured, the resin must be cooled,
and this process must also be carefully controlled to avoid
residual stresses. Thermoplastics, on the other hand, are
characterised by a melting temperature (typically 80-120°C
for high-volume plastics such as polyethylene, but exception-

ally 300-400°C for some advanced engineering plastics). On

heating to its melting temperature, the plastic softens, and
may then be moulded into the required shape or welded to
similar material. On cooling, the moulded shape is retained,
but again the rate must be controlled, since rapid cooling

may prevent the formation of crystalline regions in some

—4-



polymers, and hence affect the mechanical properties.
Measurement and analysis are thus important both in the
design and operation of processing equipment and in the

effects of the process on the material itself.

1.3 ANISOTROPY OF THERMAL CONDUCTIVITY

Just as a mechanically-anisotropic composite results from
fibre and matrix having different stiffnesses and strengths,
so thermal properties may be direction-dependent. The
property in question is thermal conductivity (k), which,
according to the Fourier law of conduction, relates the
magnitude of the heat flux vector (g) to the temperature

gradient VT: .
-q = kVT (1.1)

Fig. 1.1 shows a section through a composite containing
long, straight fibres, which are regularly-spaced and per-
fectly bonded to the polymer matrix. This is an orthotropic
lamina, having different but independent thermal conductivi-
ties in the three principal directions shown: parallel (1)
and perpendicular (2) to the fibres, and through the lamina
(3). In this idealisation, it is possible to relate the
thermal conductivities in each of the principal directions
(K, K, and K3;) to those of the fibre (kg) and the matrix
(k,,) and to the fibre volume fraction (¢). In the longitudi-
nal direction, thermal resistance 1is provided by continuous
lengths of fibre and matrix in parallel, and simple mixture

theory gives |
Ky = ¢keg + (1-d)kp = ¢keg 1if kg > kp (1.2)

In the two transverse directions, the situation is more
complicated, since the thermal resistance to heat flow arises
from a combination of material in series and parallel, and

is thus dependent on the precise packing geometry. A lower

bound to the effective thermal conductivity is obtained by

assuming a completely series arrangement:

N kKek ok, .
K = Kij }m—ﬁlfkf > km (1.3)

TO a good approximation, the lamina may be considered

isotropic in the plane perpendicular to the reinforcement.

-5



Fig. 1.1

Directions of the three mutually perpendicular principal
thermal conductivities (K;, K, and K3) in an orthotropic
lamina.



Laminated composites comprise a bonded stack of laminae, and
the directions of fibres in adjacent sheets may be different.
Several authors (for example, Tsou and others, 1974, and
Harris, 1980) have applied mixture theories to such materials
showing that, provided that the thickness of each lamina 1is

small, the laminate may be regarded as a homogeneous solid

with three (macroscopic) principal thermal conductivities.

As a result of aniSotropy, the heat flux produced 1n
response to a given temperature gradient depends on the
direction within the solid. Moreover, in cases where a
temperature difference is applied 'off-axis' (that is, not
parallel to any of the principal axes), the heat flux 1is
not necessarily in the same direction as the temperature
gradient. The situation is similar to the coupling between

direct stress and shear strain when an anisotropic laminate

is loaded off—-axis.

Polymers are generally classified as poor conductors of

heat, and as shown in Fig. 1.2, the thermal conductivity at
room temperature is between 0.1l and 0.5 W/m K, with semi-
crystalline polymers having somewhat higher values than
amorphous types. The axial thermal conductivity of a high
modulus carbon fibre, on the other hand, may be a few

hundred W/m K. A plastic reinforced with long, unidirectional
carbon fibres may thus display considerable thermal aniso-
tropy, with k, / k; = 50; the longitudinal thermal
conductivity of such a composite may be comparable with a
mild steel, being some 200-300 times greater than that of

the polymer. Glass fibre-reinforced plastics generally
display an anisotropy ratio of less than 2, due to the much

- &

lower thermal conductivity of glass.

l.4 THEORY OF HEAT CONDUCTION IN POLYMERS AND FIBRES

Elementary kinetic theory gives the thermal conductivity of

an ideal gas from the Debye equation:

k =3CVe (1.4)
where C is the specific heat of the constituent particles,
V their mean group velocity and % their mean free path. 1In
solids, the gas is thought of as a 'gas' of phonons (energy

-7~



thermal conductivity

(W/mK) high modulus
/ carbon fibre

100 //’/‘

\ unidirectional cfrp
( longitudinal )

10
unidirectional cfrp
/ (transverse)
| //__________
high density PE
A
0-1
200 300 400

temperature (K)

Fig. 1.2

Typical thermal conductivities of carbon fibre, polymer
and composite.



quanta of lattice vibrations) which drift down the tempera-
ture gradient, colliding with one another and with any

lrregularity which may be present in the solid. The values
of C and v are roughly comparable in all solids, so the very
low values of k in polymers (and amorphous materials 1in
general) can be explained by low values of the mean free
path which in turn result from the disorder in the solid.

Vv is equivalent to the velocity of sound in the solid.

In crystalline materials, the regularity of the atomic
structure leads to much larger mean free paths, so that
values of thermal conductivity are considerably higher than
in amorphous materials. Semi-crystalline polymers have a
range of thermal conductivity which is approximately double
that found in amorphous polymers, and this is broadly
consistent with predictions based on a simple law of mixtures.
Drawing or extrusion of a polymer may result in crystallite
or molecular orientation in the direction of elongation, and
results in an anisotropy of thermal conductivity which is

an order of magnitude greater for semi-crystalline polymers
than for amorphous ones. Parallel to the orientation

direction, the conductivity is proportional to the draw

ratio (Greig, 1982).

A detailed explanation of the temperature dependence of
thermal conductivity in polymers relies on more sophisticated
arguments, but it is interesting to note that all amorphous
solids can be represented by the same relationship between

k and temperature (Choy, 1977). This is because, at all
normal temperatures (above a few K) the mean free path is

roughly the same as the magnitude of the disorder; as shown
above, the thermal conductivity is determined by the product

of the specific heat and the velocity of sound, both of
which are approximately the same for all solids. The
thermal conductivity of an amorphous polymer is thus propor-
tional to specific heat, and hence approximately constant
from room temperature to the melting point. In crystalline
materials, the mean free path increases more rapidly than
the specific heat falls with decreasing temperature,
resulting in an increase of thermal conductivity at lower

temperatures.



Carbon fibres are produced from various organic precursors,
such as polyacrylonitrile (PAN) or rayon, which are
subjected to a controlled heat treatment at temperatures up
to a few thousand K. A vital stage of the process is
stretching or spinning, which promotes a high degree of
orientation of the graphite crystals; in the axial direction
the strong covalent bonds between carbon atoms predominate,
giving a theoretical tensile modulus of almost 1012N/m2. 1In
practice, the degree of perfection and alignment depends on
the details of the manufacturing conditions, and these may

be varied to optimise particular properties; commercial

tfibres are usually categorised as ‘'high modulus', with
tensile moduli between 300 and 690 GN/m? and strengths of
1.9 to 2.8 GN/m?, or 'high strength', with moduli between
140 and 260 GN/m? and strengths of 1.4 to 4.2 GN/m?

(Lovell and Pamington, 1982). As a result of the

crystal structure, the fibres are highly anisotropic, and,
perpendicular to the longitudinal axis, moduli may be lower

by a factor of 20 or 30.

Johnson and Watt (1967) pointed out that other physical
properties are influenced by the crystal orieniation, in
particular the thermal conductivity. Graphite is a lattice
conductor, so Equation 1.4 applies, and the authors were

able to deduce a longitudinal thermal conductivity of about

60 W/m K for a high modulus (400 x 10°N/m?) carbon fibre.
Transverse thermal conductivities are between % and § of the
longitudinal value, and this is roughly what would be
expected from the smaller scale of crystal structure (and

hence lower mean free path) in this direction.

l.5 MACROSCOPIC HOMOGENEITY

It will be assumed in this thesis that the microstructural

scale of a fibre-reinforced plastic is small enough for the

material to be regarded as macroscopically homogeneous.
Although, in reality, the composite is a heterogeneous
mixture of two very different substances, the typical
dimensions of interest in engineering applications (= 10™Z?m
and above) are several orders of magnitude greater than the

scale of the mixture itself (reinforcing fibres have a

-10-



diameter of a few tens of microns, that is of the order of
107°m). The fibre-reinforced plastic is thus considered as

a thermally anisotropic but homogeneous material; the details
of the microstructure, such as variable void content, are
only of interest insofar as they influence the macroscopic
thermal properties. There is, however, an intermediate

scale at which inhomogeneity will be considered, and is
typified by a composite containing curved or divergent long
fibres. In such cases, the thermal conductivity becomes
dependent on position within the solid, which may be

regarded as macroscopically homogeneous, yet non-uniform.

A few authors, such as Balageas and Luc (1983), have paid
particular attention to the assumptions of macroscopic
homogeneity, partly because they are concerned with applica-
tions of composites in particularly severe environments
involving very large thermal shocks. They emphasise the
importance of determining the limits of validity of the

homogeneous model, and, if necessary, progressively
increasing the level of sophistication. Some situations
involving severe transient heating may require, for example,
a model in which each component of the composiﬁe is

considered separately homogeneous, with the interface

characterised by a coupling term.

Fig. 1.3 shows a section through an idealised one-dimensional

composite, comprising equal amounts of fibre and matrix. As
indicated in 1.3, various mixture theories may be invoked to
derive an effective thermal conductivity (ke) and heat
capacity ((pC,)e) for transient conduction parallel to the
reinforcementﬁ(the X-direction in Fig. 1l.3). The gquestion
arises as to whether an effective thermal diffusivity,
defined by ae = ke/(pCple, is physically valid. Theoretical
and experimental studies on these simplified systems (for
example, Horvay and others, 1973; Truong and Zinsmeister,
1978) have indicated that the use of an average diffusivity

can lead to significant errors in calculated temperature

distributions close to a boundary condition which is

periodic and changing at a high frequency. Similar discrepan-
cies may be expected a short time after a thermal shock at a

boundary, such as a step change in temperature or heat flux.
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Fig. 1.3

Section through idealised one-dimensional composite,
consisting of equal volumes of fibre and matrix.
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The validity of the homogeneous assumption in transient
situations may be examined by considering a time scale (T)
characteristic of heat transfer wnerpendicular to the laminate.
With typical thermal diffusivities of fibre and matrix of

ae = 10 °m?/s and a, = 107’ m?/s, and assuming the transverse
dimension of the microstructure to be £ = 107°m, time scales
appropriate for fibre and matrix are

_ R°

2
T = ~ 107> s, and Tp = L el

O Om
This suggests that macroscopic homogeneity will be a
reasonable assumption in such a composite for time t > 107° s,
when the lateral temperature gradient will have decayed

sufficiently for the use of a one-dimensional effective

thermal diffusivity to be valid.

1.6 OBJECTIVES AND SCOPE OF THE PROBLEM

The primary objective of the work described in this thesis

is the development of a numerical model of heat conduction
in two and three-dimensional anisotropic materials, with the
aim of analysing the temperature distribution in engineering
composite components. The ability of carbon fibres not only
to increase the thermal conductivity of a polfmer matrix but
also to impart highly directional properties was thought

to be of considerable importance, and not yet fully exploited
by polymer engineers in industry. It was felt that 1in
addition to a thermal analysis of existing composite
components, such a model could serve as a generalised design
tool, and encourage the use of carbon fibre-reinforced

plastic as a heat transfer material in its own right. For
these reasons, effort was directed towards a model which was
specific to the problems of heat transfer, yet general in its

potential applications.

Fig. 1.4 is an attempt to depict the various areas of study
relevant to heat conduction in composites, and the ways in

which they are interrelated.

Both mathematical analyses and experimental measurements may
contribute directly to an understanding of heat transfer in
a composite component (as indicated by the broken lines in

Fig. 1.4), but their use in the present context is confined
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Related areas of study in heat conduction in composites.
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to validation of the numerical model. Before the introduc-
tion of modern composite materials in the 1960's, the
mathematical theory of heat conduction in anisotropic solids
hadkfound only limited application in the study of crystals.
Since the early 1970's, however, many solutions to initial-
value and boundary-value problems have appeared in the
literature, and, although of limited use in practical
engineering situations, they are of considerable importance
in the validation of numerical techniques. Experimental
measurements on actual components can give 1insight to
specific problems, but results are often difficult to

generalise and may be both expensive and time-consuming to

obtain.

A knowledge of composite thermal properties is essential
both for numerical modelling itself and for the interpreta-
tion of experimental data in the context of validation. As
indicated in Fig. 1.4, these may be obtained from direct
measurements on the composite material, or derived from

models of the effective macroscopic properties of the

system. In an anisotropic material, two or three mutually

perpendicular thermal conductivities may be reﬁuired,
together with specific heat and density over the temperature

range of interest. If the anisotropy ratio is high,
different experimental techniques, using specimens of
different geometry, may be necessary to measure conductivi-
ties differing by a factor up to 50. Polymer processing
involves changes of phase, and measurements of, for example,
latent heats of crystallisation are required. Other thermal
properties may be different in the molten phase, demanding

yet another measurement technigque. Apart from problems
associated with the vast range of material combinations in

composites, there is also the question of the representative-
ness of a single specimen. A given manufacturing process

may result in material of variable quality, and it is
important to subject all specimens to detailed microstructural

classification, since misalignment of fibres or the presence
of voids in the matrix can have a large effect on thermal

properties.

The microstructure of the composite material is also an
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important parameter in models which relate effective thermal
properties to those of the constituents. There are useful
analogies between thermal and mechanical properties (Springer
and Tsai, 1967), although many current theories derive from
the early work of Maxwell, who related permeability and
electromagnetic field strength. A definitive assessment of
rival models is hampered by the inadequacy of experimental
data, in which the scatter may be greater than the difference
between different theories. Some of the necessary data
simply does not exist, such as a direct measurement of the

transverse thermal conductivity of carbon fibres.

1.7 THESIS QUTLINE

Chapter 2 contains a brief review of the basic principles of

thermal conductivity measurement, and a discussion of the
particular problems associated with measurements in
anisotropic solids. Published thermal conductivities of
fibre-reinforced plastics are surveyed, and although the
particular interest in this thesis is carbon fibres, other
reinforcements are included. Overall, a substantial number
of conductivity measurements have been reported, but the
range of matrix and reinforcement materials 1is so large that
there are few data available on any one particular composite.
Moreover, the 'standard carbon fibre' does not exist, and
the products of different manufacturers all possess slightly
different properties. Further experimental scatter arises
from the variable quality with which composite specimens are
manufactured, and also from different designs of measurement
techniques; it is thus possible only to identify a range of
values for the principal thermal conductivities of carbon

fibre-reinforced plastics.

In order to interpret experimental measurements on a suitable
composite for the purposes of validating a numerical model,
reliable values of thermal conductivity are required.

Chapter 3 thus describes the laboratory manufacture of
specimens of unidirectional high strength carbon fibre-
reinforced epoxy resin composites, and the design of a steady-
state apparatus to measure longitudinal thermal conductivity

around room temperature. Specimens were also prepared for

~16-



complementary measurements of transverse thermal conductivity

on a commercial instrument.

The mathematical basis of heat conduction in an anisotropic
medium is presented in Chapter 4, and the available litera-
ture surveyed in order to extract analytic solutions to
problems which may serve in the validation of the numerical
model. The application of the finite element method to
thermal problems is discussed in this chapter, and a number

of advantages over other numerical techniques are identified.

Chapter 5 contains the derivation of a finite element model
of transient, anisotropic conduction in two and three space
dimensions, based on variational principles. (The implemen-
tation of these models as computer programs is discussed 1n
appendices to the thesis.) As indicated above, generality

of application to thermal problems was an important criterion,
and the model includes facilities for spatial variation and

temperature-dependence of material properties.

As the first stage of validation, the finite element model
was used to generate solutions to some of the idealised
conduction problems identified in Chapter 4. Comparisons
between analytic and numerical solutions are evaluated in
Chapter 6; only two-dimensional problems are discussed 1n
detail, but they include examples of steady and transient
conduction in non-linear and non-uniform (spatially-variable

conductivity) anisotrovic media.

Chapter 7 describes an experiment to measure the steady-
state temperature distribution in a large specimen of carbon
fibre-reinforced plastic in response to controlled boundary
conditions. Using the measured thermal conductivity of this
material (Chapter 3) the results provide not only additional
support for the validity of the numerical model, but also

give confidence that the composite material is in reasonable

conformity with its homogeneous idealisation.

Chapter 8 discusses two recent industrial applications of
the finite element model. The first concerns the tape-laying
of a carbon fibre-reinforced thermoplastic in which the

17—



model was used to investigate the effect of the process on
the thermal history of the semi-crystalline polymer during
fabrication of thin sheet sections of unidirectional
composite. The second is the calculation of the temperature
distribution in a composite turbopropeller blade, in response

to convective heating in an exhaust gas stream.

The thesis concludes (Chapter 9) with a summary of the

findings and a discussion of avenues for future research and

development.
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CHAPTER 2 : REVIEW OF THERMAL CONDUCTIVITY
MEASUREMENT IN COMPOSITES

This chapter contains a general review of the principles of
thermal conductivity measurement, followed by a discussion
of the particular considerations arising from the use of
anisotropic materials. In 2.2 a survey is made of theoreti-
cal models describing the relationship between the macro-
scopic thermal properties of a composite and those of its
constituent materials. Finally, published data on the
thermal conductivity of fibre-reinforced plastics are

reviewed, with the emphasis on carbon fibre composites.

2.1 PRINCIPLES OF THERMAL CONDUCTIVITY MEASUREMENT

The measurement of thermal conductivity in solids has
concerned scientists for at least two centuries; experiments
to compare the ability of different materials to transmit
heat had taken place long before Fourier's classical presen-
tation of the mathematics of conduction in 1822. One of

the earliest practical investigations appears to have been
by Inger-Hansz (1789), who coated the surface of wvarious

rods with wax, placed one end in a furnace, and measured

the different lengths over which the wax melted.

Techniques of thermal conductivity measurement are
conveniently classified under the fundamental headings
'static' and 'dynamic'. The basis of the former category
is Fourier's law of heat conduction (Equation 1.1), and a
value of thermal conductivity is obtained from measurements
of the heat flux and the temperature gradient (in the
direction of the heat flux) under steady conditions. 1In
dynamic methods of measurement, the temperature distribution
in the sample varies with time; this requires a solution to
the complete differential equation of heat conduction, and
the technique generally yvields a value of the diffusivity
(@ = k/pCp). Some dynamic methods also give a measure of

the specific heat, so that the thermal conductivity can be

obtained indirectly.

The choice of the most suitable measurement technique is

determined by many factors, the most important of which are
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the temperatures at which data are required and the magnitude
of the thermal conductivity to be measured. Parrott and
Stuckes (1975) have provided a concise survey of alternative
methods, and their main conclusions are summarised below.
Detailed treatments of apparatus design are given by, for
example, Laubitz (1969) and Powell and Tye (1960) for steady-

state methods, and Danielson and Sidles (1969) for dynamic

methods.

2.1.1 Static Methods

The simplest form of static method involves one~-dimensional
heat flow down a sample of uniform cross-section (Fig. 2.1).
The heater is usually electrical, so the rate of heat
supplied to the sample may be measured with considerable
accuracy. The measurement of temperature difference is
less straightforward however, and the following points
require attention:

(1) thermometers must be installed without disturbance

to the heat flow, and heat leakage down connecting leads
must be avoided:

(ii) the temperature difference must be large enough to

be measured with acceptable accuracy, but small enough

to ascribe a meaningful average temverature to the

measurement.

In addition, the apparatus must incorporate features to
ensure that all the energy dissipated by the heater passes
down the sample, and that lateral heat losses are negligible
(otherwise the assumption of one-dimensional heat flow is

invalid). For this reason, the heater is usually surrounded

by a guard, the temperature of which can be matched to the

heater. The sample itself is surrounded by a shield (see
Fig. 2.1 b), down which the temperature gradient is matched

to that in the sample.

Laubitz (1969) performed a range of analytic and numerical
calculations on the basic linear, steady-state method, and
on the basis of these, made a number of general recommenda-

tions for the design of such apparatus. He suggested a ratio
Of sample length to diameter of about 10, with the outside
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diameter of the guard about twice that of the sample. The
space between sample and guard should be filled with an
insulator, and the ratio of sample conductivity to that of
the insulator should be between 102 and 103; this implies
a lower limit of about 1 W/m K to the value which can be

measured with this configuration.

The above arrangement is known as an absolute measurement,
since the value of thermal conductivity is obtained directly
from a heat flux and a temperature gradient. 1In comparative
measurements, the sample is inserted between two standard
materials of known (but similar) conductivity, and the
unknown conductivity is obtained by comparison of the three
temperature gradients (Fig. 2.2). This method is particularly
advantageous when samples are not sufficiently long for the
absolute system. However, the location of thermometers
between the samples is critical, and large errors may arise
from contact resistances (and hence spurious temperature
gradients) at the interfaces between sample and measuring
point. One way of avoiding this error is to install
miniature temperature sensors in the surfaces of the samples
themselves, provided that this can be achieved without

disturbing the linear heat flow.

The measurement of low thermal conductivity (less than about
1l W/m K) requires the use of thin samples in order to obtain
a suitably small temperature gradient. The standard method
is the 'guarded hot plate', and is the subject of BS 874
(1973) and ASTM C177 (1974). Two identical samples are
sandwiched either side of a heater, between two water-cooled
heat sinks (Fig. 2.3). The main heater is surrounded by an
annular gquard heater in order to eliminate radial heat losses.
For measurements above room temperature, auxiliary heaters
may be inserted between the samples and the heat sinks, and
the entire stack surrounded by a cylindrical guard heater.
The apparatus is capable of better than 1% accuracy, but the

requirements for precision of construction and temperature

control are considerable.

The problem of lateral heat losses in the linear static
methods described above may be eliminated by providing heat
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along the axis of a long cylindrical specimen, and measuring
a radial temperature gradient. However, as discussed in
2.1.3, this configuration is not suitable for materials with

anisotropic thermal properties in a cartesian geometry.

2.1.2 Dynamic Methods

Although steady-state methods of thermal conductivity
measurement are capable of a high degree of accuracy,
dynamic methods offer several advantages. Most importantly,
heat losses have less influence on the measured value, since

the experiment is performed over a short period of time
(typically of the order 10-100 sec.). Often, measurements

Oof power input to the sample are not required, and thermal
diffusivity is calculated from relative (as opposed to
absolute) changes in temperature as a function of position
and time. In consequence, temperature sensors are required

to have a linear response over small ranges, but need not be
accurately calibrated, since absolute measurements are not
required. The thermal inertia of the monitoring system is,
however, of importance, and temperature sensors should have

suitably small response times.

Dynamic methods may be classified as ‘'periodic' or
'transitory', depending on the manner in which energy is
supplied to the specimen. In the former category, one end

of a sample 1is heated at a known frequency, while measurement
of the amplitude and either the phase or the velocity of the
resultant 'temperature wave' enables the diffusivity to be
calculated. Transitory methods require the sample to be
initially in equilibrium with its environment, and then
subjected to a change in heat flux at some point; the
diffusivity 1is calculated either from the time rate of change
of temperature at a single point in the sample, or from the
difference in temperature between two points at a given time.

The change in heat flux may be in the form of a step change

or a single pulse of known duration.

In dynamic methods, it is not possible to guard the sample

against heat losses by matching temperature gradients. For

measurements on low conductivity materials, the sample should
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be in the form of a flat slab, which is relatively thin in
the direction of heat flow; in this case it may be regarded
as an 1infinite plate and the one-dimensional heat flow
equation is applicable. An alternative approach is to
include appropriate heat losses in the differential equation
describing the experimental configuration. Heat loss
coefficients then appear in the solution, and may be
eliminated by making a number of measurements under

different experimental conditions.

2.1.3 Measurements in Anisotropic Solids

The mathematical theory of heat conduction in an anisotropic
solid 1s considered in some detail in Chapter 4. For the
present 1t will be sufficient to state the general expression

for the cartesian components of the heat flux, namely

d

—dx = k11§§+ knz§%+ kna%%
dT oT oT

-qy = ko D% + kzz“""‘ay + K3 3z (2.1)
0T oT 0T

"z = Kagy *kagy *Rugg

where the quantities kjj are the components of a second order
tensor. As shown by Carslaw and Jaeger (1959), Equation 2.1

may be solved for the temperature gradients in terms of the

heat fluxes, giving

oT
- 3% - Rudy ¥+ Rudy + Rizq,
oT 2 9
--@--RZIqx+R22qy+R23qz (2. )
oT
- 3z - Ragy + R29y + R33q,

The constants Rjj are known as the resistivity coefficients.
A general expression relating resistivity and conductivity

coefficients is given by Ozisik (1980) as

s ..
Rij = (-1) "7 —E’-J (2. 3)
where A is a determinant defined by
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ki ko ki
A = lk21 Ko Koy,
K3y ki ki,

and aj; 1s a cofactor of A, obtained by omitting the i th

row and the j th column. For example,

Ko Koj
K31 ka3
A A

k (2.4)

Ry = (=1)°

I
N
A

I
~

As shown in 4.1, both resistivity and conductivity tensors

obey the reciprocity relation Rjij = Rji and kij = kji (i#]j).

In the fundamental experiment of linear heat flow down a
long rod, illustrated in Fig. 2.1, the heat flux is confined
to only one dimension. Putting dy = gz = 0 in Equation 2.2

gives
- 2= = . - 91 _ . - 9% _
an F ay R21q ’ 37z R3qu (2'5)

so that measurement of the heat flux and the temperature
gradient (in the direction of the flux) vields not a
conductivity, but a resistivity. If the sample is an
orthotropic solid, having three independent (principal)
thermal conductivities in mutually perpendicular directions,
and if these principal axes are aligned with the cartesian

axes, then the above expressions simplify to
_ 1
= ®.9, (2.6)

where K, is the principal conductivity in the direction of
the heat flux.

A similar generalisation may be applied to the 'gquarded hot

plate' configuration (Fig. 2.3). In this case, because the
sample is relatively thin, the direction of the temperature
gradient is fixed, so that, for example, %5 = %g = 0,

Equation 2.1 becomes
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and the measurement of heat flux and temperature gradient
yields a value for the coefficient k,;. As before, on a
sultably orientated orthotropic specimen the measurement

gives one of the principal conductivities.

Thus, the basic measurement techniques

described in 2.1.1 and 2.1.2 will be applicable to
anisotropic materials, provided that (i) the geometry of
the experiment is consistent with the anisotropy of the

specimen, and (ii) measurements are made in the direction

of the principal thermal conductivity axes.

The first point implies that methods which are based on the
radial flow of heat in a cylindrical sample would not be
appropriate for a material with anisotropic thermal
properties in a cartesian geometry (such as a unidirectional,
long fibre-reinforced plastic), since the temperature
gradient would not, in general, be perpendicular to the heat
flux. The experimental consequences of the second point are
indicated by Fig. 2.4, which shows the temperature distribu-
tions in the 'long bar' and 'thin slab' configurations for
anisotropic materials (compare Figs 2.1 and 2.j). In the
former case, the temperature will vary around the circum-

ference of the specimen (since o1 #0) , making it difficult

DY
to match the longitudinal temperature gradient in a sample
shield. In the thin slab arrangement, the isotherms become

distorted at the edges of the specimen, if the boundary
condition of no lateral heat loss is maintained, and the
sample aspect ratio must be sufficient for the presence of
the edges not to influence the measurement of the temperature

gradient.

A further experimental inconvenience arises from the magnitude
of the difference in principal conductivities in some fibre-
reinforced composites. As discussed in the introduction,

the thermal conductivity parallel to the reinforcement in a
composite containing high modulus carbon fibres may be 30 or
40 times greater than in the transverse direction. In some

cases, more than one experimental configuration may be
required to deal with this range of values. In any case,

the estimates of experimental accuracy will have to be
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revised to take the directional nature of heat flow into
account; a specimen prepared for the measurement of a low,
transverse thermal conductivity would be liable to greater

lateral heat losses than a similar isotropic specimen.

2.2 EFFECTIVE THERMAL CONDUCTIVITY OF COMPOSITES

Much of the experimental work to be reviewed in 2.3 has
been used to test various models of heat conduction in
composite materials. The motivation behind such analyses

is clear - if the macroscopic thermal properties of a
material which is microscopically inhomogeneous can be
reliably predicted from a knowledge of the constituents,
then a great deal of tedious experimental work could be
avoided. Alternatively, thermal property measurements could
be used as a (non-destructive) method of quality assessment,
since defects such as delamination or high void content

would be apparent through anomalous thermal properties.

Consider a composite material containing long, continuous
fibres (Fig. 1l.l1l). In the direction of the reinforcement,

direct analogy may be made with a parallel electrical
resistance network; this implies that the effective thermal
conductivity may be obtained by adding the component conduc-

tivities in proportion to the volume fraction of the

reinforcements (¢). This leads to the simple expression

kI, = oke + (1 - ¢)ky (2.8)

As long as matrix and reinforcement are continuous, Equation
2.8 is generally accepted to be valid, and, as discussed in
2.3, has been widely used for the estimation of the
longitudinal thermal conductivity of fibres.

At right angles to the reinforcement the situation is more

complicated, since in this plane the composite presents many
discontinuous paths for the passage of heat. The literature
abounds with theoretical approaches to the problem, and a

comprehensive review was made by Progelhof and others (1975).
Dawson and Briggs (1981) have categorised the models into

three basic groups, namely 'flux law', 'Ohm's law' and

~28-



‘empirical'. The first group of models derive from the
classical work of J.C. Maxwell, who used potential theory to
obtain an exact expression for the effective conductivity of
randomly distributed, non-interacting spheres in a continuous
medium. The critical assumption here is ‘'non-interacting'’
which requires that the composite be only sparsely-filled.
The theory has been applied to a regular array of particles
which may be in contact or dispersed, but the models are of

simplified geometry.

The Ohm's Law models derive from an analogy to a system of
electrical resistances, which comprises various components
in series and parallel, depending on the dispersion of the
reinforcement and its geometrical cross-section. If it is
assumed that the series and parallel components are arranged

randomly, then the geometric mean equation is appropriate:
ki = kdx ™) (2.9)

Dawson and Briggs (198l1) found this the most accurate
prediction of the thermal conductivity of porous alumina.

A lower bound to the effective conductivity is obtained by
assuming both components to be arranged in series. 1In this

case the Ohm's Law analogy gives

1 ¢, (1-¢)
T =t % (2.10)

e f m

The final group of models take the form of equations derived

either from experimental measurements on composites, or,
more recently, from numerical calculation of the heat flux

across an appropriate 'unit cell'.

Some of the models which have been or could be applied to
fibre-reinforced composites are briefly described here. It

1s 1mportant to note that not all are suitable either for
high reinforcement volume fractions or for composites in
which the filler has a thermal conductivity much greater

than the matrix.
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