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 10 

Abstract 11 

This paper investigates the physical environmental (indoor and outdoor temperature and relative humidity, wind 12 

speed, solar radiation and rainfall) and contextual drivers (time of day) affecting occupants’ manual space heating 13 

override behaviour during the heating season based on measurements collected in ten UK dwellings. Logistic 14 

regression modelling is used to understand the probability of occupants manually overriding their scheduled 15 

heating periods. To the authors’ knowledge, these are the first stochastic models of manual heating override 16 

behaviour developed for residential buildings. The work reported in this paper suggests that occupants’ manual 17 

overrides are influenced by indoor and outdoor temperature, indoor relative humidity, and solar radiation. In 18 

addition, the effects of the physical environmental variables varied in relation to the time of day. At night, none 19 

of the physical environmental variables influenced manual overrides. In the morning, afternoon and evening, 20 

manual overrides were governed by a mix of indoor air temperature, indoor relative humidity and solar radiation. 21 

The models presented can be used in building performance simulation applications to improve the inputs for space 22 

heating behaviour in residential buildings and thus the predictions of energy use and indoor environmental 23 

conditions. 24 

Keywords: 25 

Domestic space heating, Occupant behaviour, Manual heating overrides, Scheduled heating periods, Stochastic 26 

modelling, Residential buildings. 27 



 28 

1. Introduction 29 

The housing sector is the second largest energy consuming sector in the UK, accounting for 29% of total final 30 

energy consumption [1]. The sector is responsible for about a quarter of the nation’s greenhouse gas (GHG) 31 

emissions [2]. In UK homes, space heating accounts for over two thirds of a typical household’s total energy 32 

consumption [1] and results in 11% of the UK’s GHG emissions [3]. These figures indicate that reducing domestic 33 

energy use, in particular that related to space heating, is imperative if the UK is to achieve its commitment to 34 

reduce national carbon emissions by 80% of 1990 levels by 2050 [4]. 35 

Occupant behaviour in buildings, which includes interaction with building systems, such as windows, lighting 36 

and heating, has been noted as the leading source of uncertainty in accurately predicting the indoor environmental 37 

conditions and energy performance of buildings [5–10]. Occupant behaviour in buildings is stochastic, complex, 38 

and related to a wide range of factors, both individually and as an interaction [11]. These factors are commonly 39 

referred to as “drivers” and are defined as “the reasons leading to a reaction in the building occupant and 40 

suggesting him or her to act (they namely “drive” the occupant to an action) [12]. The potential drivers have been 41 

divided into five groups: physical environmental, contextual, psychological, physiological and social factors. 42 

There has been significant progress in building performance simulation (BPS) in the last decades and it is 43 

increasingly used to predict and optimise energy and environmental performance of buildings. However, the 44 

stochastic nature of occupant behaviour is often poorly defined in simulation tools [13,14]. Fabi et al. [11] noted 45 

that in part the gap between simulated and actual energy consumption of buildings was the result of the unrealistic 46 

schedules used to represent occupant behaviour in simulation tools. In relation to occupant space heating 47 

behaviours in residential buildings, many simulation tools assume fixed heating settings for all dwellings [15] 48 

(e.g. Building Research Establishment Domestic Energy Model (BREDEM) assumes the  setpoint temperatures: 49 

21°C in living rooms and 18°C in all other zones and heating durations: nine hours on weekdays and 16 hours on 50 

weekends). Whereas, in reality, recent studies have shown that heating settings vary due to environmental factors 51 

[11,16–19], building characteristics [20–23] and occupant related factors [21–25]. Jones et al. [23] provide a 52 

detailed review of the typical input values for heating setpoint temperatures and periods that have been used in 53 

previous domestic energy modelling studies. 54 

Providing modellers with typical occupant behaviour profiles is the key to improving model inputs and the 55 

resulting accuracy of the outputs. Constructing models of typical occupant heating behaviour requires the 56 



quantification of real life occupant behaviour measured in real buildings, combined with an understanding of the 57 

underlying drivers of the behaviour. Accordingly, in 2014, the International Energy Agency launched IEA-EBC 58 

Annex 66 – Definition and Simulation of Occupant Behaviour in Buildings [26], which aims to help close the 59 

energy performance gap through the modelling and integration of occupants’ behaviour in building simulation 60 

software. Of particular relevance to the current paper is Subtask B: Occupant action models in residential 61 

buildings. 62 

In the last 15 years, probabilistic models have increasingly been developed to capture the stochastic nature of 63 

occupant behaviour [27–33]. Detailed reviews of the state-of-the-art in occupant behaviour modelling have been 64 

presented by Yan et al. [7] and Delzendeh et al. [14]. 65 

Regarding the modelling of space heating behaviour in dwellings, Fabi et al. [34], using logistic regression, 66 

inferred the probability of occupants adjusting the setpoint of Thermostatic Radiator Valves based on indoor and 67 

outdoor environmental conditions in 13 Danish dwellings. The study found that depending on the type of TRV 68 

user (i.e. active, medium or passive), outdoor temperature, indoor relative humidity, time of day and wind speed 69 

were influencing factors for increasing, and solar radiation, time of day and wind speed for decreasing TRV 70 

settings. Studies by Guerra et al. [18] and Haas et al. [35] have shown that the most influential physical 71 

environmental driver of heating setpoint temperatures is indoor temperature. Furthermore, Yang et al. [24] have 72 

reported that physiological (e.g. gender) and psychological (e.g. attitudes to energy use and perceived thermal 73 

comfort) factors also help to explain heating behaviours. 74 

Specifically for manual overrides of scheduled heating settings, the UK Energy Follow-Up Survey (EFUS) [36] 75 

showed that 60% of households with a central heating system controlled by an automatic timer, also manually 76 

switched on their heating for additional periods of heating at least once a week and 18% did so every day. Only 77 

one previous study has modelled manual heating override behaviour based on data from four office buildings [37]. 78 

In three of the office buildings, overrides were executed centrally upon hot and cold complaints and in the fourth, 79 

the occupants themselves could adjust the setpoint temperatures. Using multivariate logistic regression, models 80 

for predicting the frequency of setpoint changes were developed. The results showed that the frequency of manual 81 

overrides was higher when occupants had control, however, the magnitude of change in settings was greater when 82 

it was based on complaints. The regression analysis showed that when based on complaints, both indoor and 83 

outdoor temperatures were significant predictors of manual overrides. However, only indoor temperature was 84 

found to influence manual overrides when the occupants had control. 85 



 86 

2. Current study 87 

The aim of this work was to develop stochastic models of occupants’ manual overrides of their scheduled heating 88 

periods in residential buildings. The study uses multivariate logistic regression to understand the probability of a 89 

manual heating override event occurring according to physical environmental drivers (indoor and outdoor 90 

temperature and relative humidity, wind speed, global solar radiation and rainfall) and according to contextual 91 

drivers (time of day). The study uses indoor air temperatures measured in the living room of the dwellings to 92 

determine when the heating system is in scheduled operation or is manually overridden by the dwelling occupants 93 

throughout the heating season. 94 

The study benefits from having a small sample where a fine-grained description of the homes can be produced in 95 

order to evaluate the complex factors that influence occupant heating behaviour. The paper responds to a number 96 

of key gaps identified in the literature. To date, manual override events have only been assessed as part of a 97 

questionnaire survey, the EFUS. For UK residential buildings, no other study has attempted to identify these 98 

events and to differentiate between them and scheduled heating periods. To the authors’ knowledge, for residential 99 

buildings, no previous studies have investigated the probability of occupants manually overriding their heating 100 

schedules and consequently there are no available models to explain this occupant behaviour. 101 

 102 

3. Data and methods 103 

3.1 The dwellings 104 

Measurements were undertaken in the living room of ten purpose built rented dwellings - seven flats and three 105 

end-terrace houses (Fig. 1) located on a new-build housing estate in Torquay, a town in the South West of the UK. 106 

Table 1 provides a summary of the main features of the dwellings and an in-depth description of the structural 107 

characteristics of the dwellings has been presented in Appendix A, Table A.1 in Jones et al. [33]. The stated 108 

orientation relates to the direction of the façade containing the living room window. The Code for Sustainable 109 

Homes (CSH) was a voluntary UK national standard for the sustainable design and construction of new homes 110 

[38]. Level 4 of the code relates to a 44% improvement over the Target Emission Rate (TER) as determined by 111 

the 2006 Building Regulation Standards (BRS) and Level 5 of the code relates to a 100% improvement over the 112 

2006 BRS [39]. 113 



All the dwellings have a gas-fired central heating system, which is the typical domestic heating system found in 114 

over 91% of UK homes [40]. The heating system is made up of a central boiler, a pump and individual radiators. 115 

A central thermostat and a timer/programmer control the boiler and pump and TRVs control the individual 116 

radiators. The thermostat and timer/programmer (Fig. 2) was located in the corridor of the dwellings. It turns the 117 

boiler on and off according to a predefined heating setpoint temperature, and the timer/programmer is used to set 118 

the on/off times, thus defining the heating duration. 119 

 120 

Figure 1 Case study dwellings: CSH Level 4 flats (left) and CSH Level 5 end-terrace houses (right) 121 

Table 1 Dwelling characteristics 122 

Dwelling 

index 

Performance 

standard 

Floor area 

(m2) 

Orientation Airtightness 

(m3/hr.m2) 

Wall U-value 

(W/m2K) 

Window U-

value 

(W/m2K) 

Flats 1-4 CSH Level 4 80.5 South East 2 0.10 1.20 

Flats 5-6 CSH Level 4 80.5 North West 2 0.10 1.20 

Flat 7 2006 BRS 80.5 North West 5 0.24 1.80 

Houses 1-2 CSH Level 5 140 North West 2 0.10 0.70 

House 3 2006 BRS 140 South East 5 0.26 1.80 

 123 

Figure 2 Thermostat and timer/programmer installed in the dwellings 124 

The programmer allows multiple, scheduled heating periods to be set – i.e. multiple time periods within a day and 125 

different time periods for each day of the week (e.g. for weekday/weekend time periods). The programmer also 126 



allows occupants to manually control (i.e. to set the main heating on/off pattern) or override (i.e. to set departures 127 

from the scheduled heating periods to either increase or decrease heating requirement) the heating duration and 128 

setpoint temperature. However, the programmer installed in the case study homes are not smart thermostats or 129 

meters and therefore they do not store the data on heating controls and/or household gas consumption (which will 130 

represent energy used in space heating, water heating and cooking). None of the dwellings had mechanical 131 

cooling, which is typical for UK dwellings. They were however equipped with either exhaust air ventilation (EAV) 132 

or mechanical ventilation with heat recovery (MVHR) systems. The domestic hot water is also provided by the 133 

gas central heating system. 134 

 135 

3.2 Measurements 136 

An automated monitoring system was installed in all ten dwellings. The monitoring system captured indoor 137 

environmental conditions and gas and electricity use. The sensor data was transmitted by radio frequency every 138 

10 minutes to data hubs located in the loft spaces of the dwellings. The data hubs exported the data to a remote 139 

server every hour using General Packet Radio Service (GPRS), which was accessed by the researchers on the 140 

Internet. The data used in this study were collected as part of a larger Post Occupancy Evaluation (POE) to assess 141 

the actual operational performance of the dwellings [33,41,42]. 142 

Two indoor environment variables were measured every 10 minutes: Air temperature (◦C) and Relative humidity 143 

(RH) (%). In addition, five outdoor environment variables were measured using an onsite meteorological station 144 

every 10 minutes: Air temperature (◦C); RH (%); Wind speed (m/s); Global solar radiation (W/m2); and Rainfall 145 

(mm). 146 

The indoor environment variables were measured using HWM Radio-Tech Ecosense internal loggers. The loggers 147 

were installed in the living room of each dwelling and were sited away from heat sources and direct sunlight. The 148 

outdoor environmental variables were collected from a meteorological station setup on the housing estate where 149 

the dwellings were located. All the indoor and outdoor sensors were newly calibrated by the manufacturer. The 150 

measurement range and accuracy of the sensors are shown in Table 2. 151 



Table 2 Details of internal and external sensors 152 

Sensor Variables Measurement range Accuracy 

Indoor environment Air temperature -20°C – 65 °C ±0.3 °C 

 Relative humidity 0% - 100% ±1.8% 

Outdoor environment Air temperature -40 °C – 75 °C ±0.3 °C 

 Relative humidity 0% - 100% ±1.8% 

 Wind speed 0 – 76m/s ±1.1m/s 

 Global solar radiation 0 – 1800W/m2 ±5% of full scale 

 Rainfall 0 – 100mm per hour ±1% at up to 20mm per hour 

of rainfall 

All variables were measured continuously from 28th October 2013 to 2nd November 2014 (370 days). The data 153 

used in this paper was a subset of the full measurement time period (i.e. the heating season). 154 

 155 

3.3 Preparation and processing of data 156 

For each dwelling, average daily indoor air temperatures were plotted and the profiles were scrutinised by eye to 157 

identify and remove outliers. The outliers were temperatures below 10 °C indicating possible sensor placement 158 

very close to an open window or vent and temperatures above 35 °C indicating placement very close to a heating 159 

source. Temperature changes of more than 7 °C within 30 minutes were also considered errors as this may also 160 

indicate proximity of a heating source or the direct incidence of sunlight. These outliers were removed from the 161 

dataset before analysis. 162 

All the indoor and outdoor environment variables were considered explanatory variables and were included in the 163 

dataset as continuous values. The manual override actions (determined from the indoor air temperature) were 164 

binary responses and were introduced into the dataset as 1 or 0, where 1 was assigned to “a manual override - 165 

changing the state of the heating system from off to on” and 0 was assigned to “no manual override, i.e. heating 166 

system remained off”. 167 

In addition to the continuous indoor and outdoor environment variables used in the inference of the stochastic 168 

models of manual heating overrides, a time of day variable was also computed based on the data’s time series. 169 

This was to account for changes in some of the drivers of heating operation according to the time of the day 170 

(morning, afternoon, evening, night). The variable was considered as a categorical variable. 171 



The measured gas consumption was used to verify the method for identifying the scheduled heating periods. Gas 172 

consumption was measured at 30 minute intervals, in m3 and was converted to energy in kWh1 to produce daily 173 

profiles of heating energy consumption. 174 

The dataset was managed and analysed using Microsoft Excel and IBM SPSS Statistics 24. 175 

 176 

3.4 Identifying heating days 177 

A number of methods for identifying heating days have been discussed in previous studies [20,22,43]. In the 178 

current study, outdoor temperature was used to select the days where the dwellings were most likely to be heated. 179 

The meteorological station was located onsite hence it was assumed that throughout the study, all the homes 180 

experienced the same weather conditions as measured. As previously suggested by Huebner et al. [43], a 181 

maximum outdoor temperature of 15.5 °C was selected as the cut-off criteria below which the heating systems 182 

were assumed to be turned on in the dwellings. Based on this criteria, the identified heating season was from 01 183 

November 2013 to 30 April 2014 (181 days). All the days in this period were classified as heating days as the 184 

average daily temperatures were below 15.5 °C. 185 

 186 

3.5 Identifying scheduled heating periods and manual heating override events 187 

The active heating times on weekdays and weekends were estimated from the measured living room air 188 

temperatures. Active heating was defined by Shipworth et al. [20] as times when the heating system is supplying 189 

heat to the dwelling. Based on Huebner et al.’s [43] method for identifying heating periods, the measured 190 

temperatures were translated into statements regarding whether the heating system was on. If the magnitude of 191 

change in a sequence of 30 minute temperatures was 0.3 K or higher, it was considered to be a change in the state 192 

of the heating system, from off to on. An example is shown in Fig. 3 where the half-hourly temperature changes 193 

in House 2 on weekdays (129 days) and weekends (52 days) give an indication of the heating profile. Each 194 

coloured data point represents one single day, hence at each half hour there is a maximum of 129 data points for 195 

                                                           
1 The standard conversion from m3 of gas consumed to kWh multiplies the volume of gas consumed by a 

calorific value of gas (39.2, which was estimated from the average values of gas supplied to the South West of 

England between 2012 and 2015) and by an industry standard conversion factor (1.02264, which accounts for 

air pressure) and dividing by 3.6 (which is the kWh conversion factor). 



weekdays and 52 data points for weekend days. The continuous line is the 0.3 K temperature increase that indicates 196 

active heating. In this dwelling, there is no temperature increase of 0.3 K or more between 00:30 and 05:30 on 197 

weekdays and between 02:30 and 05:30 on weekends. Hence there was no active heating at these times. 198 

 199 

Figure 3 Half-hourly indoor air temperature changes on weekdays (left) and weekend days (right) in House 2 200 

Based on the approach derived by Kane et al. [22], scheduled heating periods and heating times were estimated. 201 

A scheduled heating period was defined here as the most common occurring times for heating ‘off-on’ periods, 202 

where a limit of 10% of the total days in the heating season is used. The start of the scheduled heating period was 203 

assumed to be the first 30 minute period for which the temperature increase was at least 0.3 K for 10% or more 204 

of the total days in the heating season. The end time of the scheduled heating period was determined as the last 205 

30 minute period for which the temperature increase was at least 0.3 K for 10% or more of the heating season 206 

days. Using this methodology, average weekday and weekend heating durations for all homes were 8.8 h and 9.8 207 

h respectively. 208 

At times where the heating was on for less than 10% of the heating days, it was assumed to be a manual heating 209 

override event, i.e. a departure from the scheduled heating times. All the days in the identified heating season 210 

were considered in the analysis. Fig. 4 provides an illustration of the identified scheduled heating periods in one 211 

of the dwellings. The dashed lines on the plots indicate the 10% limit used to establish regular heating periods. 212 

As a significant proportion of gas is used for space heating, the 30 minute gas use profile measured in the homes 213 

was used to verify the estimated scheduled heating periods. This is indicated by the blue line on the plots in Fig. 214 

4. As expected, the gas consumption profile followed the calculated active heating profile. Across all the case 215 

study homes, the daily average space heating energy consumption corresponding to the weekday and weekend 216 

heating durations were 10.6kWh and 12.1kWh respectively. 217 
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 218 

Figure 4 Estimated daily heating and gas consumption profiles on weekdays (left) and weekends (right) in 219 

House 2 220 

Manual override events were identified in all ten homes and there were temporal patterns associated 221 

with their occurrence. In the full season (181 days), a total of 649 manual override events were recorded 222 

across the ten homes. The maximum number of manual override events were recorded in the morning 223 

period (06:00 – 11:59 = 232 events) and the least number of events were at night (00:00 – 05:59 = 64 224 

events). The number of manual override events recorded in the afternoon (12:00 – 17:59) and evening 225 

(18:00 – 23:59) periods were 194 and 159 respectively. The number of manual overrides identified in 226 

individual dwellings ranged from 37 events to 103 events with an average of 65 events during the 227 

heating season. On average, manual overrides are estimated to increase weekday and weekend heating 228 

duration by 2.4 h and 1.5 h respectively, equating to an increase in space heating energy demand of 229 

2.9kWh (21.5%) on weekdays and 1.9kWh (13.6%) on weekend days. 230 

3.6 Statistical analysis 231 

Logistic regression was used as the modelling method for the manual heating override events. In occupant 232 

behaviour modelling, logistic regression is used to describe the probability of an action occurring, which is a 233 

categorical variable (i.e. the outcome/dependent variable), based on either single (univariate) or multiple 234 

(multivariate) explanatory variables (predictor/independent variables), which can be either categorical or 235 

continuous. In this study, the outcome variable is the manual heating override event (i.e. turning the heating on 236 

outside the scheduled heating periods) and the predictor variables are the measured indoor and outdoor 237 
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environment conditions and time of day (Table 3). A log transformation of global solar radiation was computed 238 

in order to obtain a better distribution.2. The description of the transformation is shown in Table 3. 239 

Table 3 List of continuous and categorical variables used to infer the manual heating override event models 240 

Variable type Variable Unit 

Continuous Indoor air temperature (ti) °C 

 Indoor RH (RHi) % 

 Outdoor air temperature (to) °C 

 Outdoor RH (RHo) % 

 Wind speed (WS) m/s 

 Log(Global solar radiation+1) (Log(Rad)) Log(W/m2) 

 Rainfall (RF) mm 

Categorical Night 00:00 – 05:59 

 Morning 06:00 – 11:59 

 Afternoon 12:00 – 17:59 

 Evening 18:00 – 23:59 

The relationship between the outcome variable and a single predictor is described in Eq. (1) (a univariate model). 241 

The relationship between the outcome variable and multiple predictors is described in Eq. (2) (a multivariate 242 

model). 243 

𝑃(𝑥) =
1

1+𝑒−(𝛼+𝛽𝑥) (1) 244 

ln (
𝑝

1−𝑝
) = 𝛼 + 𝛽0𝑥0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛 (2) 245 

Where 𝑃 is the probability of the outcome (i.e. a manual heating override action occurring in the next 30 minutes); 246 

𝑥 is the predictor variable (e.g. indoor and outdoor environment conditions); 𝛼 is the constant; 𝛽 is a coefficient. 247 

The multivariate logistic regression method has been used for modelling occupant behaviour in a range of previous 248 

studies, (e.g. [27,28,33,44]). 249 

In the multivariate analysis, the predictors were determined based on a forward and backward selection procedure 250 

using Akaike Information Criterion (AIC) [45,46]. The procedure produced a model containing only explanatory 251 

variables that had a consistent effect on the probability function. A step by step explanation of the statistical 252 

analysis is described in Jones et al. [33]. 253 

One assumption of logistic regression is that there should be little or no correlation between the continuous 254 

predictor variables. Correlation between the variables is referred to as multicollinearity and it causes inflation of 255 

                                                           
2 The original solar radiation data ranged from 0 to 997W/m2 with an average of 68W/m2. Solar radiation levels 

over 200W/m2 constituted 12% of the data. The solar radiation was transformed using the natural logarithm. 



the estimated variance of the inferred coefficients of the model [46]. In each model, generalised variance inflation 256 

factors (GVIF) were calculated for the coefficients to estimate the inflation of the variance due to multicollinearity. 257 

A GVIF of 1 indicates that a model’s predictors are not correlated, between 1 and 5, the predictors are moderately 258 

correlated and over 5 means they are highly correlated. The GVIF1/(2.Df) was calculated to assess the inflation of 259 

the variance as a result of multicollearity, compared to a model with no multicollinearity. Table 4 presents the 260 

results of the multicollinearity analysis conducted to assess the correlation between the environment variables. 261 

All the GVIF values were less than 5 indicating that the inflation of the estimated variance of the inferred 262 

coefficients were acceptable. 263 

Table 4 Results of the VIF and GVIF analyses for the variables in the manual heating override event models 264 

Variable VIF Df GVIF1/(2.Df) 

Indoor air temperature (°C) 1.4 1 1.2 

Indoor RH (%) 1.6 1 1.3 

Outdoor air temperature (°C) 1.6 1 1.3 

Outdoor RH (%) 1.5 1 1.2 

Wind speed (m/s) 1.1 1 1.0 

Global solar radiation (W/m2) 1.0 1 1.0 

Rainfall (mm) 1.2 1 1.1 

To interpret the regression parameters, the sign and the size of the coefficient and the range of the corresponding 265 

predictor have to be taken into account. The sign of the coefficient gives the direction of the effect of the predictor 266 

on the probability. A positive coefficient means that the predictor directly influences the probability of the action, 267 

therefore, an increase in the predictor causes an increase in the probability. A negative coefficient has the inverse 268 

effect; an increase in the predictor will cause a decrease in the probability of the action. The product of the size of 269 

the coefficient and the range of the predictor gives an indication of the effect of a predictor. This is known as the 270 

magnitude of the predictor. 271 

Appendix A Table A.1 presents the descriptive statistics of all the measured indoor and outdoor environment 272 

variables in the models. 273 

 274 

4. Results 275 

4.1 Modelling of manual heating override events 276 

The manual heating override events are classed as irregular departures from the scheduled heating periods and 277 

hence are stochastic behaviours of the occupants. Manual override events were identified in all ten dwellings. In 278 



the full heating season, a total of 649 manual override events were identified from all the dwellings. The highest 279 

number of events occurred in the morning period (06:00-11:59 = 232 events), followed by the afternoon (12:00-280 

17:59 = 194) and the evening (18:00-23:59 = 159). The least number of events was recorded at night (00:00-05:59 281 

= 64 events). 282 

This section presents the results of the logistic regression analysis to describe the probability of a manual override 283 

event occurring due to the prevailing indoor and outdoor environment variables occurring at the time of the event 284 

as well as the time of day. 285 

 286 

4.1.1 Univariate logistic regression models 287 

Table 5 presents the constants, coefficients and magnitudes for each predictor obtained from the univariate logistic 288 

regression analysis. For the full heating season, according to the magnitudes of each environmental predictor 289 

variable, the most influential factor driving manual override events is indoor air temperature. The negative 290 

coefficient indicates that as indoor air temperature decreases, the probability of a manual override event (turning 291 

the heating on) increases. Regarding the contextual drivers (i.e. day of the week and time of day), there were no 292 

significant differences between the probability of a manual override event on a weekday or weekend (p = 0.606). 293 

Furthermore, using the night-time period as a reference, there were significant differences between events 294 

occurring in the other time periods (p < 0.05). 295 



Table 5 Coefficients and magnitudes of the univariate logistic regression models for manual heating override 296 
events 297  

Variable Constant Coefficient Magnitude 

All season Indoor air temperature (°C) -3.306 -0.079 1.70 
 

Outdoor air temperature (°C) -5.079 0.023 0.51 
 

Log(Solar + 1) (Log(W/m2) -4.714 -0.164 0.47 
 

Rainfall (mm) -4.912 0.010 0.28 
 

Indoor RH (%) -5.014 0.003 0.21 
 

Wind speed (m/s) -4.913 0.009 0.20 
 

Outdoor RH (%) -4.777 -0.001 0.05 
 

Weekend (reference)* -4.921 
  

 
Weekday 

 
0.045 (p = 0.606) 

 

 
00:00 - 05:50 (reference)* -5.824 

  

 
06:00 - 11:50 

 
1.295 (p < 0.05) 

 

 
12:00 - 17:50 

 
1.115 (p < 0.05) 

 

 
18:00 - 23:50 

 
0.914 (p < 0.05) 

 

Night Indoor air temperature (°C) -4.315 -0.073 1.51 
 

Indoor RH (%) -5.13 -0.013 0.79 
 

Wind speed (m/s) -5.763 -0.026 0.41 
 

Outdoor air temperature (°C) -5.983 0.023 0.29 

 Log(Solar + 1) (Log(W/m2) -6.002 0.177 0.19 

 External RH (%) -6.186 0.004 0.11 

 Rainfall (mm) -5.822 0.009 0.09 

Morning Indoor air temperature (°C) -2.13 -0.121 2.48 
 

Wind speed (m/s) -4.425 -0.041 0.91 
 

Indoor RH (%) -4.964 0.009 0.63 
 

Rainfall (mm) -4.514 -0.011 0.28 
 

Log(Solar + 1) (Log(W/m2) -4.439 -0.077 0.22 
 

Outdoor RH (%) -4.846 0.004 0.18 
 

Outdoor temperature (°C) -4.513 -0.001 0.02 

Afternoon Log(Solar + 1) (Log(W/m2) -4.203 -0.535 1.51 

 Rainfall (mm) -4.753 0.016 0.44 
 

Outdoor RH (%) -5.284 0.008 0.42 
 

Indoor air temperature (°C) -4.268 -0.02 0.39 
 

Wind speed (mm) -4.767 0.017 0.36 
 

Indoor RH (%) -4.852 0.004 0.25 
 

Outdoor air temperature (°C) -4.788 0.008 0.14 

Evening Indoor air temperature (°C) -3.2 -0.079 1.63 
 

Indoor RH (%) -4.451 -0.009 0.57 
 

Outdoor air temperature (°C) -4.664 -0.028 0.49 
 

Outdoor RH (%) -5.728 0.01 0.47 
 

Rainfall (mm) -4.858 -0.015 0.42 
 

Log(Solar + 1) (Log(W/m2) -4.817 -0.076 0.15 
 

Wind speed (mm) 4.858 0.007 0.10 

* For the models with categorical factors, the constants are provided on the row of the selected reference factor 298 

 299 



4.1.2 Multivariate logistic regression models 300 

Following on from the univariate models, the impact of multiple variables on the predictive value of the models 301 

were assessed. Eq. (3) describes the multivariate logistic regression model for manual heating overrides for the 302 

full heating season. Eqs. (4)-(6) describe the morning, afternoon and evening models respectively. Weekday and 303 

weekend models are not presented as no statistical difference was identified. For the full heating season model, 304 

indoor air temperature, indoor relative humidity, outdoor air temperature and global solar radiation were the 305 

significant factors retained in the model. In the morning model, only indoor air temperature was an influencing 306 

factor. In the afternoon, the model indicates that solar radiation was the only environmental parameter influencing 307 

manual overrides. In the evening, indoor air temperature and indoor relative humidity were the key driving factors. 308 

It should be noted that none of the indoor or outdoor environment variables were found to influence manual 309 

heating overrides during the night and thus a model is not described. 310 

Full heating season: ln (
𝑝

1−𝑝
) = −2.107 − 0.107𝑡𝑖 − 0.015𝑅𝐻𝑖 + 0.038𝑡𝑜 − 0.155𝐿𝑜𝑔(𝑅𝑎𝑑) (3) 311 

Morning: ln (
𝑝

1−𝑝
) = −2.072 − 0.123𝑡𝑖  (4) 312 

Afternoon: ln (
𝑝

1−𝑝
) = −4.170 − 0.531𝐿𝑜𝑔(𝑅𝑎𝑑) (5) 313 

Evening: ln (
𝑝

1−𝑝
) = −0.835 − 0.123𝑡𝑖 − 0.029𝑅𝐻𝑖  (6) 314 

 315 

5. Discussion 316 

5.1 Models describing manual heating override events 317 

The analysis undertaken in this study provides a method for calculating the probability that a manual heating 318 

override event will occur in the next 30 minutes. Manual overrides could be explained by a change in 319 

environmental conditions and the time of day. 320 

The state of the heating system (i.e. on or off) will have an impact on the physical indoor environment conditions. 321 

For example, when the heating is on, the indoor air temperature will rise. Hence to analyse the factors that 322 

influence a manual override event, it makes sense to use environmental conditions occurring just before the action 323 

(in this case turning on from an off state). Indoor and outdoor environment conditions measured 30 minutes prior 324 



to the heating system being turned on were therefore assigned as the potential factors influencing the manual 325 

override events. Models for different times of the day were produced as time influences the prevailing environment 326 

conditions as well as occupant activities. As recommended by O’Brien and Gunay [47], contextual factors should 327 

be reported and accounted for in occupant models so potential users of models can judge their suitability for their 328 

own modelling purposes. Thereby ensuring a more accurate application and results. In this context, the models 329 

reported in this study may be most useful for predicting occupants’ interactions with gas central heating systems 330 

in UK residential buildings during the heating season (when the outdoor temperature is 15.5°C or below). 331 

From the analysis, there was no evidence that manual override behaviour differs depending on the day of the week 332 

(i.e. weekday or weekend). Huebner et al. [48] previously found statistical differences between weekday and 333 

weekend heating profiles, but the absolute size of the differences were very small. The models developed in this 334 

study (Eqs. 4 – 6) can therefore be implemented for any day of the week. 335 

This study identified the drivers of heating override behaviour for the full heating season as well as for different 336 

times of day. Indoor air temperature, indoor RH and solar radiation were the physical environmental variables 337 

that influenced manual override events at different time periods. 338 

The analysis revealed that there was no impact of physical environmental factors at night, implying that other 339 

factors drive manual override behaviour at this time. Note, living room conditions were used to generate the 340 

models, but at night, it is expected that occupants will be sleeping in the bedroom and therefore the environmental 341 

conditions in these two rooms may be different. There is limited research on thermal environments and thermal 342 

comfort in bedrooms. Previous studies have shown that occupants prefer cooler conditions in bedrooms compared 343 

to living rooms (e.g. [15, 22, 49]). Lan et al. [50] undertook a detailed review of thermal environment and sleep 344 

quality and describe a bed microenvironment as a space where occupants use sleepwear and bedding, such as a 345 

mattress, sheets and duvet, to create thermal comfort conditions which are different to the air temperature at night. 346 

Lan et al. [50] discussed that thermal neutral temperature is often higher at night when occupants are sleeping. 347 

Therefore, even though the measured temperature in the room may be low, occupants may be feeling thermally 348 

comfortable in their warmer microenvironment and do not need to turn the heating on. When thermally 349 

uncomfortable, occupants have the capacity to adapt themselves [51]. This is also applicable when sleeping – 350 

adaptation does not only have to be a conscious act. At night if occupants should get cold whilst they are sleeping, 351 

they are able to move a duvet or blanket to cover up and fine tune throughout the night. This adaptation will be 352 

quicker and cause less disruption to their sleep than to get out of bed to turn the heating on as an adaptive measure. 353 



Furthermore, if the heating is turned on, it will have to be turned off when it gets uncomfortably hot and unless 354 

the occupant sets the timer during the manual override event, they will have to get out of bed again to turn the 355 

system off. This may be inconvenient and cause further disruption to sleep and could explain why there are so 356 

few manual overrides at night. Lan et al. [50] recognised that there are few studies that have evaluated thermal 357 

responses during sleep and thus causal relationships between thermal physiology and sleep cannot be developed 358 

yet. The current study suggests that factors other than environmental variables, e.g. household characteristics and 359 

occupancy patterns, may need to be assessed in future studies to explain manual heating override events at night. 360 

In the morning and evening, indoor temperature influenced manual override probabilities. Temperature is usually 361 

considered “the most important environmental variable affecting thermal comfort” [52]; therefore changes to 362 

temperature are likely to trigger adaptive actions. In relation to manual heating override events, the work presented 363 

in this paper supports this statement, as in both the mornings and evenings, as indoor air temperature decreased, 364 

the probability of manually overriding the heating system to turn it on increased. 365 

The study identified solar radiation to influence manual override events, but this variable was only significant in 366 

the afternoon and not in the evening when solar radiation is at its minimum during the heating season. The results 367 

showed that an increase in solar radiation resulted in a decrease in the probability of a manual override event. This 368 

observation could be because of the relationship between solar radiation and time of day, whereby occupants may 369 

attempt to increase the indoor thermal conditions towards the end of the day as there is less perceived solar thermal 370 

gain to increase indoor temperatures. Solar radiation was the only influencing environmental factor in the 371 

afternoon, despite being the period with the second largest number of override events. This suggests that manual 372 

overrides in the afternoon may also be due to factors other than environmental variables, for example household 373 

activities such as drying laundry. Again, more information on household routines and activities will have to be 374 

recorded and assessed in future studies to provide further insight into manual override behaviour. 375 

This study also identified that indoor relative humidity had an inverse relationship with occupants’ manual 376 

override behaviour. The measured RH in the evening ranged from 19.8% to 82.9% with an average of 49.5%. The 377 

range of RH, 40% - 70%, which is recommended for comfort [52] made up 94.5% of the measurements. RH 378 

affects thermal sensation and has an impact on thermal comfort, and is one of the variables included in Fanger’s 379 

Predicted Mean Vote (PMV) model [53] and may explain why it affects the probability of manual override 380 

behaviour. In the evenings, household activities such as cooking will increase temperature and RH. The dwellings 381 

in the current study are made up of seven flats which are identical in layout. The flats comprise an open-plan 382 



kitchen-living room, hence the measured conditions in the living room will be affected by the activities carried 383 

out in the kitchen area. It may be hypothesised that in the absence of activities such as cooking, thermal conditions 384 

may be too cool and uncomfortable for the occupant, thus prompting a manual heating override event. 385 

 386 

5.2 Applications for the research 387 

A key finding from this research is that all of the households manually override their scheduled heating periods 388 

to demand additional heat. This is an important finding for energy modellers who often use fixed heating schedules 389 

for modelling the energy and indoor environmental performance of buildings. The prevalence of manual override 390 

events are unlikely to be reflected in the fixed heating profiles and will result in limitations in capturing the 391 

diversity of heating behaviours observed throughout a day. Manual overrides will increase household gas energy 392 

consumption. In these case study households, manual overrides, on average, increased weekday and weekend 393 

space heating energy consumptions by 21.5% and 13.6% respectively. A better understanding of occupant heating 394 

behaviours will enable improvements in the prediction of heating energy demand in energy models and 395 

consequently reduce the energy performance gap between design and actual consumption. 396 

The findings obtained in this work can also be used by government policy makers to target demand side energy 397 

efficiency response interventions. Interventions can be aimed at improving the understanding of heating 398 

behaviours at home and their impact on heating energy demand. Future demand side interventions will require 399 

flexible heating behaviours and the first step to investigating the flexibility of heating behaviours is to explore and 400 

understand how households are currently heating their homes. 401 

Furthermore, to meet the 2050 carbon reduction target, it has been recognised that heating needs to move rapidly 402 

away from natural gas to low carbon sources and this will mainly result in the electrification of heating [54]. The 403 

results provided in this paper will be valuable for energy supply companies and energy distribution operators who 404 

need to understand the profiles and temporality of heating energy demand. It could be useful for informing 405 

decisions about transitions to future energy systems with a high proportion of low carbon heat sources. For 406 

example, regarding improvements or changes to electricity networks, until battery storage becomes common 407 

place, electricity generation from renewable sources has to match demand. With manual override events, the 408 

electricity network must be designed to match these short-term demand peaks. 409 

 410 



5.3 Limitations and Future work 411 

The results obtained in this study are based on an indirect method using indoor air temperature measurements. 412 

The use of an indirect method to estimate heating periods does however have a limitation as from the temperature 413 

data alone it is unclear whether increases in indoor air temperature are due to the heating system being turned on 414 

or other heat sources, such as secondary heating or internal heat gains from occupancy and household activities 415 

like cooking. To address this issue, the current study also used 30 minute gas consumption measurements to verify 416 

the calculated heating periods. The 30-minute gas consumption profiles were found to provide a good indication 417 

of the start and end times of the heating periods, which were consistent with those identified using the indoor 418 

temperature measurements. In between the scheduled heating periods, gas consumption decreased significantly 419 

but was not zero, as there was still some heating due to the manual overrides. Gas demand was lower at night, 420 

where there were no scheduled heating periods. This validation method provided assurance that the increases in 421 

indoor temperature were due to the heating system and no other sources of heat. 422 

Direct methods such as those implemented by Andersen et al. [19], Hanmer et al. [55] and Huchuk et al. [56] 423 

could also be used to overcome this limitation. For example, Andersen et al. [19] used custom made TRVs to 424 

record zonal setpoint temperatures selected by householders. The TRVs were equipped with a variable electronic 425 

resistance so that the electrical resistance varied with the TRV setpoint. The electrical resistance was measured 426 

and stored using a data logger. In addition, heat flow meters installed in the dwellings could also potentially be 427 

used to directly monitor heating operation. 428 

The authors believe that the advent of smart, internet-connected heating programmers and their inherent 429 

centralised data collection will provide future studies with an easier means for direct measurements of heating 430 

behaviours and their potential drivers. Smart programmers will provide a new stream of data, including real time 431 

data on heating settings, i.e. on/off times indicating regular scheduled heating periods and manual overrides, gas 432 

consumption and even physical environmental measurements, where they are connected to environmental sensors. 433 

Smart programmers have been used by Hanmer et al. [55] and Huchuk et al. [56]. Hanmer et al. [55] obtained a 434 

dataset of heating settings collected by smart thermostats installed in 337 UK homes. Data included records of 435 

temperature setpoints selected by the householders. By analysing the households’ direct interaction with the 436 

controller the study identified how patterns of heating operation in individual homes contributed to daily patterns 437 

of space heating energy consumption. On a much larger scale, Huchuk et al. [56] used a dataset of more than 438 

10,000 smart thermostats installed across North America spanning multiple years. In this case, the thermostats 439 



were also connected to remote environmental sensors as well as the home’s heating, ventilation and air 440 

conditioning unit. The study assessed how a thermostat user’s behaviour changes as a function of seasonal 441 

variation, climatic regions and energy pricing. As noted by Huchuk et al. [56] findings from data obtained from 442 

smart thermostats are however restricted to that subset of the population, which represent a distinct, often early 443 

technology adopter demographic and are unlikely to be representative of the wider UK housing stock. Therefore, 444 

early findings obtained from such studies will be difficult to extrapolate to other households. 445 

 446 

6. Conclusions 447 

This paper presents the development of stochastic models of manual heating override behaviour based on physical 448 

environmental and contextual drivers. The data was collected in ten UK dwellings over a period of a year. 449 

The study used multivariate logistic regression to understand the probability of occupants manually overriding 450 

their scheduled heating periods (i.e. changing the state of the heating system from off to on) based on a range of 451 

indoor and outdoor environment factors (physical environmental drivers) and according to the time of the day 452 

(contextual drivers). To the authors’ knowledge, these are the first stochastic models of manual heating override 453 

events developed for UK residential buildings. 454 

The results reported in this paper support the recommendations of others that when analysing and modelling 455 

occupant behaviours in buildings, factors other than environmental drivers should also be taken into account. The 456 

results suggest that the drivers of manual heating override behaviour vary depending on the time of day, indicating 457 

the importance of capturing contextual drivers. However, the study found that the drivers of override behaviour 458 

did not change between weekdays and weekends. 459 

At night, none of the physical environmental factors were found to effect manual heating override behaviour, 460 

implying that factors other than indoor and outdoor environmental conditions influence the behaviour at that time. 461 

In general, only a small number of manual override events were recorded at night and this supports findings by 462 

others that when occupants are sleeping, they perhaps choose to improve their bed microclimate, for example by 463 

putting on a jumper or getting an extra blanket, instead of increasing the room air temperature with their heating 464 

system. 465 

In the other time periods, indoor temperature, indoor relative humidity and solar radiation were identified as the 466 

drivers influencing occupants to manually override their heating settings. 467 



The multivariate logistic regression models provided in this work can be used to calculate the probability that a 468 

manual heating override action will happen in the next 30 minutes. These models could be used in building 469 

performance simulation applications to improve the predictions of the energy use and indoor environmental 470 

conditions of residential buildings. It should be noted that the models proposed in this paper are however obtained 471 

from a study of ten UK dwellings and are therefore not representative of the wider housing stock. A larger national 472 

scale study of manual heating override behaviour, representative of the UK housing stock (i.e. dwelling and 473 

household characteristics) would be a valuable extension to the current work. 474 
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Appendix A. Descriptive statistics of the monitored variables 

Table A.1 Descriptive statistics of the monitored variables used to infer the models   
Indoor air 

temperature (°C) 

Indoor RH 

(%) 

Outdoor air 

temperature (°C) 

Outdoor RH 

(%) 

Wind speed 

(m/s) 

Global solar radiation 

(W/m2) 

Rain 

(mm) 

All heating season Min 11.5 18.1 -0.1 40.1 0.0 0.4 0.0 
 

Max 33.0 88.6 21.9 94.1 22.3 997.4 28.2 
 

Median 20.4 49.1 8.3 83.1 2.0 2.0 0.2 
 

Mean 20.4 50.0 8.5 81.5 2.6 67.7 2.1 
 

SD 2.12 7.07 3.15 8.02 2.37 137.9 3.97 

Night (00:00-05:59) Min 11.8 18.9 0.4 67.1 0.0 0.5 0.0 
 

Max 32.4 79.5 13.1 94.1 15.8 29.3 10.4 
 

Median 20.3 48.9 7.4 84.8 1.6 1.9 0.0 
 

Mean 20.1 49.8 7.2 84.4 2.1 2.0 0.4 
 

SD 1.85 6.90 2.53 4.51 2.16 1.05 1.19 

Morning (06:00-11:59) Min 11.5 18.1 -0.1 48.7 0.0 0.4 0.0 
 

Max 32.0 88.6 17.7 94.1 22.3 997.4 25.8 
 

Median 19.8 49.5 7.9 84.8 2.1 41.8 0.2 
 

Mean 19.8 50.5 8.0 83.5 2.7 115.8 1.4 
 

SD 1.99 7.12 2.92 6.49 2.57 163.6 3.0 

Afternoon (12:00-17:59) Min 12.9 18.9 4.1 40.1 0.0 0.5 0.0 
 

Max 32.3 81.9 21.9 93.0 21.1 987.4 27.4 
 

Median 20.4 49.2 9.9 77.2 2.7 81.8 0.6 
 

Mean 20.4 50.1 10.5 76.1 3.2 149.9 2.5 
 

SD 2.19 7.23 3.39 10.35 2.39 178.17 4.24 

Evening (18:00-23:59) Min 12.4 19.8 1.5 46.2 0 0.5 0 
 

Max 33.0 82.9 18.9 93.6 14.6 155.9 28.2 
 

Median 21.4 48.9 8.3 82.8 1.7 1.9 1.4 
 

Mean 21.2 49.5 8.3 81.9 2.3 3.3 3.8 
 

SD 2.2 7.0 2.7 6.8 2.2 9.2 5.3 
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