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Abstract 
This thesis is concerned with the development of a theoretical 

method for predicting the turbulent flow and heat transfer in the 
cavity between a rotating and a stationary cone. The motivation for 
the work stems from the need, in the design process for the gas 
turbine aero-engine, for a fast and reliable predictive method for 

such flows. The method developed here is the integral method, which 
reduces the governing partial differential equations to ordinary 
differential equations. A number of solution methods for these 
equations are described, and the optimum in terms of speed and 
accuracy is indicated. Predicted moment coefficients compare well with 
experimental data. for half-cone angles greater than approximately 60% 
but poorly for half cone angles,: lhss . 

t. häi1 approximately 45v. The poor 
agreement for small ' cone.. angl"ep- i"s.. - thought to be due to the presence 
of Taylor-type vortices, 'which cannot be incorporated into the 
integral methvd: 'Heat''f"ränsfer is incorporated into the method using 
the Reynolds analogy. Due to the lack of experimental data, heat 
transfer predictions are compared with those from a finite difference 
program and show encouraging agreement. 

A computer pro. gcpm... wla. ich. soIves the full Reynolds-averaged 
Navier-Stokes and energy equations in steady and axisymmetric form, 

using a finite-difference method is modified ffor use in the conical 
geometry. Comparison of the predicted moment coefficients with 
experimental data shows no marked improvement over the integral 
method. Examination of the secondary flow predicted by the program 
shows it to be similar to that of the integral method. The failure of 
the program to predict Taylor-type vortices may be attributed to the 
fact that they are non-axisymmetric and/or unsteady. The assumptions 
underlying the Integral method are investigated via the finite 
difference program and it is concluded that they are valid for half 

cone angles as small as 15'. Based on the results of the finite 
difference program, the Integral method Is modified to allow for a 
rectangular outer shroud, and a new model for the stator is described. 

It is concluded that both the integral method and the finite 
difference program can be used safely In rotor-stator systems where 
the half cone angle is greater than about 60'. 
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CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION. OBJECTIVES AND APPROACH 

The need to improve design techniques for gas turbine aero- 

engines has resulted in considerable effort being put into the 

development of methods for predicting the flow and heat transfer 

processes which occur in these engines. Such predictions play an 

essential part in the design of the internal air system of an aero- 

engine. This system has several important functions to perform, one of 

which is to cool certain internal components of the engine to ensure 

that they do not absorb heat to such an extent that their safe 

operation is jeopardised. The aero-engine designer requires estimates 

of quantities such as the torque and heat transfer experienced by 

components, such as turbine discs, and theoretical techniques are 

often used to provide such estimates since the temperatures in the 

engine are too great to be reproduced in the laboratory. 

The main features of the internal air flow occuring in a typical 

aero-engine are shown in Figure 1.1. Due to the complex geometries 

involved, as well as the high rotational velocities of many of the 

components, such as the compressors and turbine discs, the flow 

patterns are'complex and diverse. The task of predicting the flow and 

heat transfer is further complicated by phenomena such as tubulence, 

compressibility and possibly time-dependence. However as a first 

approximation, many of the flows which occur may be satisfactorily 
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modelled using fairly simple geometric configurations. Examples of 

such configurations are rotating disc systems, which may consist of 

either the co-rotating disc system (two parallel discs rotating about 

the same axis with equal angular velocities) or the rotor-stator disc 

system (a disc rotating next to a parallel stationary disc), both of 

which may be used to model flows occuring in the compressor and 

turbine. A consequence of the importance of rotating disc systems in 

aero-engines is that much effort has been put into developing 

theoretical techniques for predicting the flow and heat transfer in 

such systems. Another example of a simple configuration which may be 

used to model some of the internal air flows is that of a rotor-stator 

cone system; a configuration which has received relatively little 

attention. The objective of the work described in this thesis is to 

provide a theoretical method for the prediction of flow and heat 

transfer in the cavity formed between a rotating and a stationary cone. 

Ideally, for efficient design, a predictive method should be 

fast and accurate. In practice, this is not always achievable, but 

designers may still use theoretical predictions for guidance since 

even a qualitative understanding of the main factors influencing the 

flow is of value. A flow and heat transfer calculation for a conical 

rotor-stator system may only form a small part of a far more extensive 

computation, in which case a predictive technique that takes days to 

produce results is of little use. Depending on the situation, 

different compromises between speed and accuracy are required and so 

the development of a variety of predictive techniques would be 

beneficial. In this thesis, the emphasis Is placed on the development 

of a fast technique for the prediction of the flow and heat transfer 

in a rotor-stator cone system. The tecnique is known as the 'integral- 

method'. The Integral method has been used In fluid dynamics for many 
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years and it provides fast predictions since it only requires the 

solution of a system of ordinary differential equations rather than 

the solution of the full momentum, energy and continuity equations. 

This reduction to ordinary differential equations is possible when the 

flows considered exhibit a boundary layer character and it relies on 

the use of empirically based velocity profiles and surface shear 

stress formulae. In spite of the Inherent limitations, the integral 

method has been used very successfully to provide the theoretical 

predictions for a variety of rotating flows, as will be seen from the 

discussion in §2.3.2. 

A secondary aim of the work presented In this thesis Is to 

modify a computer program which solves the full (axisymmetric and 

steady) Reynolds-averaged Navier-Stokes and energy equations using a 

finite difference technique, so that it can be used for the conical 

geometry. Such programs are considerably slower than integral method 

programs, but since less assumptions are made, they have the advantage 

of having a wider range of application and, in general of being more 

accurate. The finite difference results will be used to provide 

further insight Into the flow and heat transfer mechanisms which the 

integral method alone can not provide. A summary of previous work 

using finite difference methods for rotating flows will be given in 

§2.3.3. 

The only way to effectively assess the predictive capability of 

a theoretical method is to compare its predictions with experiment. 

However, there is a scarcity of experimental data concerning 

rotor-stator cone systems. Experimentally obtained data for the moment 

experienced by the rotating cone appears, in fact, to be restricted to 

one source and there appears to be no relevant heat transfer data for 

rotor-stator disc or cone systems. To compensate for the lack of 
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experimental data, reliance is placed on the accuracy of the finite 

difference results to assess the predictive capability of the integral 

method. Clearly, this is not ideal and further experimental work is 

necessary to make a thorough assessment of both the integral method 

and the finite difference method. 

1.2 OUTLINE OF THESIS 

In chapter 2, three types of commonly occuring rotating disc 

systems are classified and the flows which are known to occur in such 

systems are described. Rotating disc systems are of relevance here, 

since they are a special case of a general cone system, and in 

developing the Integral method, the flow pattern occuring In a 

rotor-stator cone system is assumed to be similar to that occuring In 

a rotor-stator disc system. Relevant theoretical work on the 

prediction of flow in rotating disc and cone systems Is then reviewed 

so that the present methods may be put into context. 

In chapters 3,4 and 5 an integral method to predict the flow and 

heat transfer In a rotor-stator cone system is developed. In chapter 

3, the Isothermal flow equations are derived and the assumptions 

required for the integral method are described. In this thesis, unlike 

previous authors, extra terms are Included when modelling the flow in 

a narrow-angled rotor-stator system. Chapter 4 is concerned with the 

methods of solution of the isothermal flow equations derived In 

chapter 3. A number of methods are described In the chapter, and the 

preferable method which optimises accuracy and speed is indicated. The 

chapter Is also concerned with assessing the effect of the extra terms 

retained in the governing equations and the problem of indeterminacy 
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of initial conditions is considered by examining asymptotic solutions 

to the equations. The chapter concludes with an assessment of the 

predictive capability of the method by comparing its predictions with 

available experimental data. 

In chapter 5, heat transfer is incorporated into the isothermal 

integral method described in chapters 3 and 4. This is achieved by 

using the 'Reynolds analogy' which relates the surface heat flux to 

the surface shear stress. Also in chapter 5a review of previous 

authors' work on modifying the Reynolds analogy in order to generalise 

its applicability is carried out. The work in this chapter represents 

the first attempt at using the Reynolds analogy to predict the heat 

transfer in rotor-stator disc or cone systems where the specified flow 

rate through the cavity Is relatively small. To the author's 

knowledge, there is no relevant experimental data with which to verify 

the heat transfer method described in chapter 5, and so the chapter 

concludes by assessing the predictive capability of the method by 

comparing its predictions with those obtained from the finite 

difference program. 

Chapter 6 describes the use of a finite difference method to 

solve the Reynolds-averaged Navier-Stokes and energy equations in the 

cavity between a rotating and a stationary cone. The work involves the 

modification of a computer program which solves the equations 

describing flow and heat transfer in rotating plane disc systems. 

Included in the chapter Is a description of the program along with a 

section describing the consistency checks made. to ensure the 

modifications were coded correctly. The chapter concludes with a 

comparison of the predicted results with the available experimental 

data and a comparison of the results with those predicted by the 

integral method in chapter 4. 

5 



In chapter 7, the results of the finite difference program are 

used to assess the validity of the assumptions used in the integral 

method described in chapter 3, and in particular, to assess whether 

the assumptions which are based on those used in rotor-stator disc 

systems may also be used in rotor-stator cone systems. Modelling of 

the stator boundary layer in the integral method has caused some 

difficulty in the past and an alternative model based on the present 

finite difference results is described in chapter 7. The chapter 

concludes with a simple modification to the integral method to account 

for the effect of varying the shape of the outer-shroud which channels 

fluid from the rotor to the stator. 

Finally in chapter 8, the important conclusions which may be 

drawn from the work presented in the thesis are summarised and 

recommendations for further work are stated. 
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CHAPTER 2 

THEORETICAL METHODS FOR THE PREDICTION 

OF ROTATING FLOWS 

2.1 INTRODUCTION 

In this chapter, three rotating flow geometries of particular 

relevance to rotor-stator cone systems will be classified, and the 

flow patterns encountered in each case will be described. The flow 

patterns have features In common and this has led to similarities in 

the attempts to descibe them by the integral method. Theoretical work 

related to the three types of flow is then reviewed in §2.3, where it 

is seen that the integral method has been Improved and extended by 

various authors in a logical way. The review provides a basis for the 

particular type of integral method to be used for rotor-stator cone 

systems in chapter 3 and also enables the finite difference method of 

attack on the problem to be set in context. 

2.2 CLASSIFICATION OF ROTATING FLOW SYSTEMS 

There are essentially three related flow problems of relevance 

to the work contained in this thesis which have received both 

theoretical and experimental attention. These configurations are 

(i) free-rotating systems, (ii) co-rotating systems and (iii) rotor- 

stator systems. Most of the published theoretical and experimental 
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work on these systems has been confined to a consideration of plane 

discs and so the descriptions of the flows which occur in the three 

configurations will be restricted to plane disc flows. It will be 

assumed in chapter 3 that the secondary flow pattern which occurs in a 

rotor-stator cone system is the same as that which occurs in a 

rotor-stator disc system. The results from the finite difference 

method described in chapter 6 will be used to support this assumption. 

The above three configurations will now be defined and the flows which 

occur in each case will be described. 

(1) Free-rotating systems. 

Here the disc is rotating in an otherwise undisturbed fluid of 

infinite expanse. 

The fluid near to the surface of a rotating disc rotates because 

of the no-slip condition and it moves both radially and 

cicumferentially along the surface in a spiral motion. The outward 

radial motion is compensated for by flow in the axial direction which 

is entrained into a boundary layer on the disc. This entrained fluid 

is then in turn carried and ejected centrifugally. A diagram of this 

flow induced by a free-rotating disc, which is known as the 'disc 

pumping effect' is shown in Figure 2.1(a). 

(ii) Co-rotating systems. 

Here two identical and parallel discs are rotating with the same 

constant angular velocity about the same axis. Fluid is pumped between 

the discs or'cones at a specified constant flow rate. 

For an isothermal co-rotating disc system, the flow pattern 

which occurs between the discs has been well established by theory and 

experiment (see for example Owen and Pincombe (1980) and Chew, Owen 

8 



and Pincombe (1984)) and is shown in Figure 2.1(b). The source region, 

is defined by a<r< re, where a is the inner radius of the discs, r 

is the local radius and re denotes the radial location of the end of 

the source region. In this region, incoming fluid Is entrained Into 

boundary layers on the discs in a manner similar to the entrainment 

described above for a free-rotating disc. In the source region, the 

mass flow rate increases continually with increasing r in the boundary 

layers until the sum of the mass flow rates In the two boundary layers 

equals the mass inflow rate, in. This criterion Is reached at the 

radial location denoted by re. In the core region, defined by r> re, 

the boundary layers are non-entraining, I. e. the mass flow rate in the 

boundary layers Is constant. Between these boundary layers and the 

sink boundary layer which forms over the outer shroud, there Is a 

rotating core of fluid in which the axial and radial velocity 

components can be taken to be approximately zero. 

(iii) Rotor-stator systems. 

Here a disc rotates next to a stationary, parallel disc with a 

constant angular velocity. 

The isothermal flow pattern which occurs In the cavity formed by 

a rotor-stator disc system has been studied theoretically and 

experimentally by, for example, Daily and Nece (1960), Daily et al 

(1964) and Chew (1987), and Is shown in Figure 2.1(c). In the source 

region, a<r< re, which occurs when there is a non-zero throughflow 

rate, fluid is entrained into a boundary layer on the rotor in a 

manner similar to that described above for a free-rotating disc. In 

the source region, the stator does not significantly influence the 

flow. The source region extends to the point where all of the 

specified throughflow is entrained Into the rotor boundary layer. 
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Beyond this point, for r >re, there Is the core region where, in 

contrast to the co-rotating system, there Is a continual entrainment 

of fluid into the rotor boundary layer. In the core region, then, the 

outflow rate on the rotor is greater than the throughflow rate at the 

inlet. At rub, the fluid on the rotor is channelled across the outer 

shroud into a stator boundary layer. This fluid then travels radially 

Inwards back down the stator and thus compensates for the surplus mass 

outflow on the rotor. In the core region, between the boundary layers 

on the rotor, stator and outer shroud there Is a rotating core of 

fluid in which there is a weak axial flow from the stator to the 

rotor, but, to a good approximation, there Is again no radial flow. 

When the throughflow rate is zero, there is no source region and 

the core region fills the entire cavity. In this case it is known from 

experiment (Daily and Nece (1960)) that the fluid core between the 

boundary layers rotates almost as a solid body at about 40% to 50% of 

the rotor angular velocity. When there is a non-zero throughflow rate, 

the finite difference results of Chew (1987) show that the rotational 

speed of the core may vary quite strongly with radius. If the 

throughflow rate is high enough, the source region shown In Figure 

2.1(c) will extend so as to fill the entire cavity and the core region 

will not exist. 

2.3 PREDICTIVE METHODS 

The problem of predicting the flows which occur in the above 

three configurations has attracted the attention of workers for many 

years. Early workers confined their attention to exact solutions to 

simplified forms of the governing equations, but more recently with 
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the advances in computer power, attention has switched to numerical 

solutions of the full flow and energy equations. 

The nature of the rotating flows has made possible the 

application of certain assumptions to simplify the governing 

equations. Firstly, it is often assumed that the flows are 

axisymmetric. Secondly, it is normally assumed that a steady state has 

been reached, so that all the terms involving time derivatives may be 

omitted. Thirdly, due to the boundary layer character of the flows 

adjacent to the surfaces, 'boundary layer theory' may be used to 

further simplify the equations. 

In the next three sub-sections, important theoretical 

contributions to problems of predicting the flows occuring in the 

three configurations described in §2.2 will be discussed. The three 

sub-sections are concerned with three different theoretical 

techniques: analytical solutions for laminar flow, integral method 

solutions for turbulent flow and finite difference solutions of the 

Navier-Stokes equations for both laminar and turbulent flow (using 

Reynolds-averaging and a turbulence model in the latter case). 

2.3.1 Analytical Solutions of the Laminar Equations 

Analytical solutions to the laminar flow equations are not 

normally directly relevant to the aero-engine environment, where, due 

to high rotational speed, the flows are usually turbulent. 

Nevertheless, analytical solutions can give a useful insight into the 

flow. 

Von Karman (1921) obtained a set of ordinary differential 

equations from the partial differential equations governing the 
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steady, axisymmetric, incompressible, laminar flow over a 

free-rotating disc. He achieved this by assuming that the velocity 

components and pressure were separable Into arbitrary functions of the 

independent variables, r and z, where r denotes the radial co-ordinate 

and z the axial co-ordinate in a cylindrical polar co-ordinate system. 

After substituting for the velocity components and pressure, von 

Karman recognised that for simple functions of r, the equations 

reduced to a set of ordinary differential equations with z as the 

Independent variable. This resulting set of ordinary differential 

equations was later solved numerically by Cochran (1934). The von 

Karman-Cochran solution is now regarded as one of the classical 

solutions of the Navier-Stokes equations and it has been extended by 

Wu (1959) to apply to the flow over a free-rotating cone. For a 

free-rotating cone with a large cone angle, Wu showed that the 

boundary layer equations were reducible to a set of ordinary 

differential equations identical to those obtained by von Karman 

(1921), with the exception of the equation governing the pressure 

field. Wu concluded that Cochran's (1934) numerical solution may be 

applied to the cone equations and that the pressure equation may be 

solved separately. 

In laminar flow the heat transfer from a heated free-rotating 

cone has been studied theoretically by Tien (1960) and Hering and 

Grosh (1963), using an approach similar to the isothermal approach of 

von Karman (1921). Tien assumed that the temperature in the boundary 

layer energy equation was separable into a function of r and a 

function of z. Substituting for this function of r, Tien similarly 

reduced the energy equation to an ordinary differential equation along 

with the continuity and momentum equations. Tien deduced that the 

incompressible solutions are also valid In the compressible case 
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provided viscous dissipation has a negligible effect in the energy 

equation. Hering and Grosh (1963) extended the analysis of Tien (1960) 

to cases where the cone has a small rotational speed so that bouyancy 

forces have a significant effect. 

The above solutions have been confined to free-rotating systems. 

However, another important solution was given by Ekman (1905) which is 

relevant to co-rotating and rotor-stator systems where, in the core 

region, the tangential velocity at the boundary layer edge is 

significant. Ekman obtained solutions to the laminar boundary layer 

equations when the flow is assumed to be a small perturbation from 

solid body rotation. The approximate solutions he obtained have been 

shown by comparison with experiment to have a surprisingly large range 

of validity. 

2.3.2 Integral Methods in Turbulent Flow 

Integral methods have been used to predict turbulent rotating 

flows for many years. The attractions of these methods is that they 

produce results very quickly compared with finite difference methods 

and that analytical solutions are possible in certain cases. The 

methods can also be readily extended-to include heat transfer, 

although detailed discussion of this aspect of the methods will be 

left until chapter 5. The review in this section will again be carried 

out with reference to the flow configuarations (i), (ii) and (iii) 

described in §2.2, since the approaches used by many of the authors 

cited are extensions of von Karman's (1921) solution for the 

free-rotating disc. 
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(1) Free-rotating systems 

The first integral method solution to the equations governing 

the incompressible, turbulent boundary layer flow induced by a 

free-rotating disc was that of von Karman (1921). Von Karman 

integrated the boundary layer equations across the boundary layer to 

obtain a set of simultaneous ordinary differential equations. He 

achieved this by assuming power law velocity profiles and surface 

shear stress formulae which were obtained empirically from experiments 

on pipe flows. A detailed discussion of the derivation of these 

relations will be given in §3.4. For the case of a disc with a zero 

inner radius, von Karman then obtained exact analytical solutions to 

the set of ordinary differential equations. 

Despite the apparently questionable assumption of using 

empirical relationships based on experiments for pipe flows, von 

Karman's method has proved to be very successful and it has been 

extended to predict the flow in a variety of rotating systems. In 

particular, von Karman's analysis has been extended to investigate the 

incompressible, turbulent boundary layer flow over a free-rotating 

cone by Kreith (1966) and Chew (1985a). Chew shows that for 

sufficiently large cone angles, the boundary layer equations 

describing the flow over a free-rotating cone may be integrated to 

give an identical set of ordinary differential equations to those 

obtained by von Karman for the free-rotating disc, provided the cone 

angle is accounted for in the non-dimenstonal isat! on of the equations. 

Chew thus concluded that the free-rotating disc solutions may be 

applied directly to the free-rotating cone. 

Notable alternative approaches to that of von Karman are those 

of Goldstein (1935) and Murthy"(1973). Rather than use power law 

velocity profiles, Goldstein assumed that logarithmic velocity 

14 



profiles were valid within the incompressible, turbulent boundary 

layer formed over a free-rotating disc. The disadvantage of his method 

is that the set of ordinary differential equations obtained is 

complicated and simple solutions are only possible for a special case. 

Murthy examined the incompressible turbulent boundary layer formed 

over a free-rotating cone. He claims that there is a disagreement 

between the theoretically predicted and experimentally obtained radial 

velocity over a free-rotating disc and thus uses an alternative 

expression to that used by von Karman or Goldstein for the velocity 

distribution. Murthy uses Van Driest's (1955) expression for eddy 

diffusivity to find the velocity distribution across the boundary 

layer, but he makes the assumption that the shear stress within the 

boundary layer equals the value obtained at the cone surface. This 

assumption seems to be questionable, since, by definition, the shear 

stress at the edge of the boundary layer is zero. Nevertheless, Murthy 

obtains some excellent agreement with experiment for heat transfer 

calculations. 

(ii) Co-Rotating Systems 

The integral method has been used to predict the turbulent flow 

occuring in the cavity formed between co-rotating discs by Owen et al 

(1985) and by Chew and Rogers (1988). Both these publications are 

based on an extension of the work of von Karman (1921), since von 

Karman's velocity profiles and surface shear stress formulae (suitably 

modified to allow for a non-zero boundary layer edge velocity) are 

assumed to be valid in the boundary layers formed on the two discs. 

Owen et al (1985) examined solutions to both the linear and the 

non-linear boundary layer equations. These authors define 'Ekman- 

layer' solutions as the solutions to the boundary layer equations in 
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which the non-linear inertial and centrifugal terms have been 

neglected. The resulting linear equations are then solved exactly 

using von Karman's velocity profiles and shear stress formulae. The 

non-linear equations, i. e. the unsimplified integrated boundary layer 

equations were obtained by Owen et al by integrating the momentum 

equations across the boundary layer again using von Karman's velocity 

profiles and surface shear stress formulae. These non-linear ordinary 

differential equations were then solved numerically. Owen et al found 

that for small values of the core rotation, the numerical solutions to 

the full integrated boundary layer equations showed a better agreement 

with experiment than the linear 'Ekman-layer' solutions. However, in 

Owen et al's non-linear approach, the terms involving axial velocities 

in the boundary layer equations were omitted. This is not justified 

from the usual boundary layer simplifications and these terms were 

included in the analysis of Chew and Rogers (1988). Chew and Rogers 

also extended the method of Owen et al to include heat transfer. 

(iii) Rotor-Stator Systems 

Integral methods have been applied by several workers to 

incompressible, turbulent flow in the space between a rotating and a 

stationary disc. Early workers, i. e. Schultz-Grunow (1935), Daily and 

Nece (1960) and Dorfman (1963) confined their attention to sealed 

rotor-stator systems in which there Is zero net radial outflow. These 

authors use von Karman's velocity profiles and surface shear stress 

formulae, suitably modified to allow for the different boundary 

conditions, for both the rotor and stator boundary layers. Daily and 

Nece use slightly modified versions of the radial velocity profiles in 

both the rotor and the stator boundary layers. These authors assume 

that the core between the boundary layers is rotating with a constant 
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angular velocity and calculate its value from an overall angular 

momentum balance. Schultz-Grunow (1935) and Dorfman (1963) neglect the 

effects of the outer shroud on the angular momentum balance whereas 

Daily and Nece include its effect by assuming the boundary layer 

thickness on the outer shroud is the same as that occuring on the 

rotor at the same radial location. All the above mentioned authors 

neglect the axial velocity terms in the boundary layer equations, an 

assumption which, again, is not justified from the usual boundary 

layer assumptions. 

More recently, Polowski (1984) and Owen (1988) have considered 

rotor-stator systems allowing for a net radial outflow of fluid. 

Polowski again assumes that the core rotates with a constant angular 

velocity and uses an overall angular momentum balance to calculate its 

value. He assumes that the shear stress on the outer shroud is the 

same as that on the rotor or stator (depending on whether the shroud 

is rotating or stationary) at the same radius. Polowski claims to have 

included all the axial velocity terms in the boundary layer equations, 

but it appears that some of these terms have still been omitted. 

Owen's approach is similar to that of Owen et al (1985) in that he 

uses a linear 'Ekman-layer' solution for the flow over the stator. 

Owen neglects the variation of the core angular velocity with radius 

and finds its value from a consideration of conservation of mass 

within the rotor and stator boundary layers. Owen does not account for 

the influence of the outer shroud and does not justify his linear 

approach for the stator. Nevertheless, he, and the other authors 

mentioned above do find some good agreement with experiment. 

Based on an analysis of analytical solutions to the integrated 

boundary layer equations and finite difference results (Chew (1987)), 

Chew (1989) argues that von Karman's (1921) radial velocity profile is 
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Inappropriate for the stator boundary layer. These considerations fed 

to Chew developing an integral method for rotor-stator disc systems 

employing a modified treatment for the stator boundary layer. In his 

model, the radial momentum equation for the stator is dropped and it 

is replaced by an equation which fixes the limiting flow angle as the 

stator surface is approached. Chew allows for a variation of the core 

velocity with radius and finds the values of this velocity at a number 

of radial locations using an iterative procedure which solves for mass 

conservation at each location. Chew Incorporates the effects of the 

outer shroud into his model by using a constant friction factor which 

he calculates from the rotor boundary layer at the radial location of 

the outer shroud. The important aspects of Chew's (1989) work will be 

described in detail in chapter 3. 

2.3.3 Finite Difference Methods 

In recent years, there has been an increase in. the number of 

publications concerning the use of numerical techniques to solve the 

Navier-Stokes and energy equations governing both laminar and 

turbulent flow (using Reynolds-averaging and turbulence modelling in 

the turbulent case) in rotating systems. To date most of the published 

work has been for plane disc geometries where the flow is assumed to 

be steady and axisymmetric; assumptions which result in a considerable 

saving in computer time. The difficulties encountered in applying 

numerical techniques to rotating disc flows have been caused mainly by 

numerical problems associated with the strong coupling that exists 

between the radial and tangential momentum equations in these flows 

and also by difficulties with the turbulence model. The more common 
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turbulence models used and some of the difficulties encountered will 

be briefly mentioned below. A more thorough discussion of numerical 

methods which have been used to solve the full governing equations may 

be found in Chew (1990), but some of the recent work of relevance to 

the development of the finite difference program described in chapter 

6 will now be briefly discussed. 

Many workers have used variations of Patankar and Spalding's 

(1972) finite difference (or finite volume) pressure correction 

method to study axisymmetric steady flow in both laminar and turbulent 

regimes. To improve the convergence properties of the algorithm a 

number of measures in addition to the use of standard under-relaxation 

have been employed. Gosman et al (1976a) introduced an extra damping 

term in the radial momentum equation which may be shown to act as a 

distributed under-relaxation factor on the radial velocity. This extra 

term has been found by other workers to improve convergence. The 

accuracy to which the pressure correction equation is solved has also 

been shown to affect convergence (Chew (1984a)). Further large 

improvements in computing time have resulted from the use of multigrid 

acceleration techniques (Lonsdale (1988), Vaughan et al (1989)). 

The mixing length model of turbulence based on that adopted by 

Koosinlin et al (1974) for boundary layer flows on free-rotating discs 

and cones has proved to be successful for flow predictions in co- 

rotating systems and rotor-stator disc systems. In this model, 

computations extend into the viscous sub-layer regions adjacent to the 

walls. The model has been shown to give reasonable agreement with 

experiment for flow predictions in co-rotating disc systems and 

rotor-stator disc systems (see Chew (1985b, 1987), Vaughan and Turner 

(1987) and Chew and Vaughan (1988)). The Koosinlin et al turbulence 

model will be described in §6.3. 
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The k-f turbulence model has been used to predict turbulent 

rotating flows with varying degrees of success. A high turbulence 

Reynolds number version of the k-e model with the use of logarithmic 

wall function in the near-wall region was used by Cosman et al (1976a, 

1976b) for rotor-stator disc systems. These authors obtained some 

encouraging results, but Chew (1984b) later found the disc moment 

predictions to be sensitive to the near-wall mesh spacing. Poor 

results were obtained by Morse (1988) when using the model to predict 

the radial outflow between co-rotating discs. A low turbulence 

Reynolds number version of the k-e model has been applied with mixed 

results to rotating disc flows. Launder and Sharma (1974) and Sharma 

(1977) obtain very good agreement with experiment for flow and heat 

transfer predictions for a free-rotating disc, but Chew (1984b) and 

Ong (1988) report that the model predicts laminar flow in conditions 

known from experiment to be turbulent. Morse (1988,1989a, 1989b) has 

developed k-e models for co-rotating disc and rotor-stator disc 

systems including transitional flows. Agreement with experiment is 

generally good although some fine tuning of the model is necessary. 

2.4 SUMMARY AND CONCLUSIONS 

A review of relevant theoretical work on the prediction of 

rotating flows has been carried out. It Is evident from the integral 

method work mentioned in §2.3.2 that the most common and successful 

approaches have been based on extensions of von Karman's (1921) 

free-rotating disc method. Previous work in conical rotating systems 

has been limited to invest igatIons' of the flow induced by a 

free-rotating cone, and the analysis has been based on a recognition 
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of the fact that, for large cone angles, there is a similarity between 

the disc and cone equations of motion. In studying the flow occuring 

in co-rotating and rotor-stator disc systems, most authors have 

assumed that von Karman's velocity profiles and surface shear stress 

formulae may be applied to the boundary layers in these cases. 

However, in the case of rotor-stator systems, the analysis of many of 

the authors is questionable since they have neglected certain terms in 

the boundary layer equations. Chew (1989) includes these terms in his 

analysis and he concludes that some aspects of von Karman's model are 

unsatisfactory for the stator boundary layer. Chew's alternative 

stator model has the advantage over previous models of being based on 

the evidence of finite difference solutions to the full momentum 

equations. The integral method adopted by Chew would seem to be the 

most sophisticated to date, since some justification is given for most 

of the assumptions made. The same method is used here in chapter 3 and 

it is assumed that the model may be generalised to a conical geometry. 

The results from the finite difference method described in chapter 6 

will be used to support this assumption. 

In solving the full momentum equations for rotating flows, the 

mixing length turbulence model has been found to be particularly 

successful in reproducing experimental results. The model also has the 

advantage over other models (such as the k-e model) of requiring less 

equations to be solved and therefore of being computationally more 

efficient. The finite difference program described in chapter 6 is 

that of Vaughan et al (1989), which has been modified here to solve 

the equations describing the flow in a conical geometry. The program 

uses various techniques to improve convergence, such as the use of the 

extra under-relaxation term of Cosman et al (1976) and the use of 

multigrid acceleration techniques (Lonsdale (1988)). Compared with the 
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Integral method, the finite difference method requires less 

assumptions to be made about the flow and Is therefore expected to 

produce better predictions. In view of this, the results of the finite 

difference program will be used to examine the flows in more detail 

than the integral method solutions alone can provide. 
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CHAPTER 3 

FORMULATION OF THE ISOTHERMAL EQUATIONS 

3.1 INTRODUCTION 

The purpose of this chapter Is to explain the theory and 

assumptions leading to the derivation of the Integrated boundary layer 

equations describing turbulent flow in the cavity between a rotating 

and a stationary cone. The method of solution of the equations will 

be left until chapter 4. The work described In this chapter is an 

extension of the work of Chew (1989) on the flow between a rotating 

and a stationary disc. Chew assumes the flow to be fully turbulent 

and assumes that the gap width between the discs is sufficiently large 

for two distinct boundary layers to form on the discs. A 

straightforward extension of von Karman's (1921) method is used by 

Chew to formulate the integrated boundary layer equations for the 

rotor, but he concludes the method is unsatisfactory for the stator. 

Chew uses results obtained from finite difference work and experiment 

to improve the model for the stator. 

In §3.2, the full governing equations are presented and in §3.3 

the standard boundary layer assumptions are described and they are 

applied to a conical surface. Two sets of boundary layer equations are 

derived; one of these accounts for the case where the inner radius or 

the cone angle is large and the other accounts for the case where the 

cone angle and inner radius of the cone are both small. In §3.4, the 

velocity profiles and shear stress formulae necessary for the 

implementation of the integral method are derived and the assumptions 

23 



made by von Karman (1921) in deriving these equations are explained. 

Some important aspects of the postulated flow pattern in a rotor- 

stator cone system are described in §3.5, and their consequences on 

the boundary conditions are explained. In §3.6, the integrated rotor 

boundary layer equations are obtained and in §3.7 Chew's (1989) stator 

model is explained, and thus the integrated stator boundary layer 

equations are derived. Finally in §3.8, the treatment of the outer 

shroud which channels fluid from the rotor to the stator Is described. 

3.2 GOVERNING EQUATIONS 

The geometry of the rotor-stator cone system considered is shown 

in Figure 3.1. The outer radius of the cone is of length b and the 

inner radius is of length a (which may be zero). The perpendicular 

distance between the rotor and stator is d. The rotor is rotating 

about an axis at r-0 with constant angular velocity iZ and a 'tilted' 

cylindrical polar co-ordinate system (s, O, n) is used. The half cone 

angle is denoted by X. 

Throughout this chapter, the flow is assumed to be fully 

turbulent and all quantities have been averaged over a suitably small 

time scale so that they denote turbulent mean quantities. The mean 

components of velocity are denoted by (u, v, w), the mean pressure by p 

and the mean density by p. The shear stresses shown below are the sum 

of laminar stresses and Reynolds stresses. The shear stresses are 

written in component form, so for example, Tsn is the stress which 

acts on the surface whose normal is in the s-direction and which acts 

in the n-direction. For generality the equations have been derived 

for compressible flow, although in later sections of this chapter 
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incompressibility will be assumed. The continuity and momentum 

equations which describe the flow in the cavity between the rotor and 

stator may then be written as 
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Following Boussinesq (1877), the Reynolds stresses of the above 

equations may be expressed in terms of gradients of the mean velocity 

components and a 'turbulent' viscosity. This turbulent viscosity may 

then be found from an application of a turbulence model, such as the 
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mixing length model or k-e model. The resulting equations would be 

very complex and they would be very expensive to solve numerically. 

However certain simplifications may be made to the above equations due 

to the nature of the flows encountered in rotor-stator cone systems 

which are of practical interest here. Firstly the flows can be 

assumed to be axisymmetric and steady, so that all terms involving 

derivatives of 0 and t will be zero. t Secondly due to the high 

rotational velocity of the rotor, boundary layers will be formed over 

the solid surfaces. This means that boundary layer theory may be used 

to simplify the above equations. 

3.3 APPLICATION OF BOUNDARY LAYER THEORY TO A CONICAL SURFACE 

The concept of a fluid forming a boundary layer when it flows 

over a solid surface was first described by Prandtl in 1904 and is 

supported by many experimental observations. Boundary layer theory is 

now well established and only a brief description of it will be given 

here. The novelty of this chapter is the application of boundary 

layer theory to a conical geometry and in particular its application 

to cases where the cone angle and inner radius are small. 

A boundary layer will be formed when the flow is at near zero 

incidence and is at a high velocity relative to the bounding surface 

so that the influence of viscosity is confined to a thin layer in the 

t These assumptions are certainly justified when examining flows in a 
rotor-stator disc system (the limiting case when X- 90) where the 
experimental and numerical work supports these assumptions. For the 
cases where X takes small values (< 60') certain types of flow may 
occur which would violate these assumptions. The occurence of these 
types of flows will be discussed in §6.4. 
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immediate neighbourhood of the surface. The boundary layer is the 

region in which the relative fluid velocity makes a transition from 

zero at the boundary to a finite 'free-stream' velocity In the main 

flow. The definition of the boundary layer thickness, 6, is not 

precise but may be expressed as the distance from the solid boundary 

to the point where the boundary layer velocity attains a certain 

percentage of the free-stream velocity. 

As stated above within the boundary layer, tangential fluid 

velocities will be much larger than those normal to the boundary. 

Since the relative fluid velocity changes from zero at the boundary to 

a finite value over a small distance of the order of the boundary 

layer thickness, spatial gradients of velocity in the normal direction 

will be larger than those in the tangential direction. These are the 

major simplifying assumptions of boundary layer theory, and they will 

now be applied to the flow close to the rotating or stationary 

surfaces in a rotor-stator cone system. 

In terms of the variables used to describe the flow In the 

boundary layer formed over the rotating or stationary cone, the 

following relationships are assumed: 

ýn» a 
v» w, (3.3.1) 

For rotationally dominated flow, within the boundary layer v is 

expected to be larger than U. However, since their relative orders of 

magnitude are not precisely known, it is assumed that 

u<v, (3.3.2) 

where the - symbol means 'of the same order of magnitude'. 
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The variables of equations (3.2.1) - (3.2.4) may be 

non-dimensionalised as follows: 

where, for example, V has the dimensions of velocity and has a 

magnitude of a typical tangential velocity within the boundary layer. 

The dashed variables are therefore dimensionless and are of equal 

orders of magnitude. 

Relationships (3.3.1) and (3.3.2) then translate to 

S»N, U»W, U<V. 

u- Uu' ,p- pp' ,s- Ss' 

v- Vv' , r- Rr' , p- pp' 

w- Ww' ,n- Nn' 

(3.3.3) 

(3.3.4) 

The boundary layer flow is now assumed to be axisymmetric and steady. 

Substitution of the above variables into the continuity equation 

(3.2.1) leads to 
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UN 
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The shear stress terms in equations (3.2.2) - (3.2.4) are scaled by 

first writing them in terms of their velocity components and effective 

viscosity, so that, for example, rss Is scaled as 
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where µe is the effective viscosity and ü has the dimensions of 

viscosity and the magnitude of a typical viscosity within the boundary 

layer. 

Substitution of equations (3.3.3) into the momentum equations (3.2.2) 

- (3.2.4) yields, on setting UsV, 
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where Re* is a Reynolds number for the flow which is defined as 

* ti US 
Re -p T- , (3.3.10) 

and it is assumed that Re* » 1. 

29 



An order of magnitude analysis may now be carried out on the 

individual terms of equations (3.3.7) - (3.3.9) provided that the 

magnitudes of the terms (S/N)2, (S/R)sinX and (N/R)cosX relative to 

Re* may be estimated. For boundary layer flow induced by either the 

rotor or stator, the relative sizes of S, N and R will depend on the 

geometry of the cone considered. N represents the distance over which 

velocities change significantly in the normal direction and may be 

represented by the boundary layer thickness, a. S represents the 

distance over which velocities change significantly in the 

longitudinal direction and may be represented by the longitudinal 

dimension of the cone, Q. 

As can be seen from Figure 3.1, r- ssinX + ncosX, so the 

following relationship between the scales S, N and R may be assumed 

R- SsinX + NcosX 
. (3.3.11) 

The size of R compared with S and N will therefore depend on the size 

of the cone angle, X, and since S depends on the inner radius, R will 

also depend on a. Two cone geometries, which are assumed to be 

realistic models for practical purposes are considered to facilitate 

the comparison of R with S and N. These two cases will now be 

examined individually and a different set of boundary layer equations 

will be derived for each case. 

Case (I) 

The cone angle and/or the inner radius are not small. In this 

case within most of the boundary layer, except maybe near the inner 

radius, SsinX » NcosX, so that 
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R- SsinX, 

and the following relationship holds: 

N 
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GG I. 

Setting R- SsinX in equations (3.3.7) - (3.3.9) gives 
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In equation (3.3.14) all the terms on the left hand side will then be 

of order of magnitude unity. On the right hand side, the pressure 

term and the middle stress term will be of order of magnitude unity if 
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S] 2 

p ti PU2 and UVl ^- Re*. The other two stress terms will be of order of 

magnitude 1/Re*. In equation (3.3.15) all the terms on the left hand 

side will be of order of magnitude unity except the last term which 

will be very small. On the right hand side the first stress term will 

be of order of magnitude 1/Re* whereas the second stress term will be 

of order of magnitude unity. In equation (3.3.16), the dominant term 

will be the pressure term which will be of order of magnitude Re*, 

whereas the other terms will be of order of magnitude unity or less. 

If terms of order of magnitude unity are neglected compared with 

terms of order of magnitude Re*, and S tN angy 
Is assumed to be of order 

of magnitude 1/Re*, the following boundary layer equations may be 

obtained from equations (3.2.1) - (3.2.4): 
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Case (ii) 

Both the cone angle and the inner radius are small. In this 

case within most of the boundary layer SsinX ti NcosX, so that 

32 



R- SsinX 

and the following relationship holds 

N 
StanX '... I. 

(3.3.21) 

(3.3.22) 

In an 'extreme' case, i. e when both the cone angle and the inner 

radius are very small, then theoretically we may have NcosX » SsinX 

and Rh NcosX. This extreme case Is however considered to be too 

unrealistic to be used as a model for an aero-engine problem and is 

not considered here. Substituting R ti SsinX Into equations (3.3.7) - 

(3.3.9) gives equations (3.3.14) - (3.3.16) as before. 

An order of magnitude analysis may now be carried out on the 

terms in equations (3.3.14) - (3.3.16). If terms of order of 

magnitude unity are again neglected compared with terms of order Re*, 

equations (3.3.14) will produce boundary layer equation (3.3.18) as 

before. In equation (3.3.15) all the terms on the left hand side will 

be of order of magnitude unity. On the right hand side the first 

stress term will be of order of magnitude 1/Re* whereas the second 

stress term will be of order of magnitude unity. In equation 

(3.3.16), the dominant terms will be the pressure term and the v/r 

cosX term which will both be of order of magnitude Re*, whereas the 

other terms will be of order of magnitude unity or less. If terms of 

order of magnitude unity are neglected when compared with terms of 

order of magnitude Re*, the following alternative boundary layer 

equations are obtained from equations (3.3.15) and (3.3.16): 
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0-momentum (case (ii)) 

ia.., ,. 
la,,, 1a 

r2 (Pr`uv) + r2 Un (Pr`wv) 

n-momentum (case (ii)) 

-p 
V2 COSX + 

ap 
-0. 

s r2 7n (r2Tg) 
, (3.3.23) 

(3.3.24) 

3.4 VELOCITY PROFILES AND THEIR RELATIONSHIP WITH SHEAR STRESS 

What follows is a derivation of a relationship between surface 

shear stress and velocity for flow through a pipe of circular 

cross-section. An empirical relationship based on experiment is then 

used to find the velocity distribution across the boundary layer. 

Prandtl made the fundamental assumption that the velocity distribution 

in the boundary layer formed over a flat plate is identical to that 

between the axis and the surface in the flow inside a circular pipe 

(see Schlichting (. 1968)). According to Schlichting (1968), this 

assumption has been verified by experimental studies. The description 

of the above work is fairly well known, but its inclusion is necessary 

here for an understanding of the more unusual approach used for 

rotating flows. This approach is that of von Karman (1921) who 

assumed the flat plate velocity distribution may also be applied to a 

free rotating disc. He also assumed that the above mentioned 

relationship between surface shear stress and velocity was valid for a 

free rotating disc. As discussed in §2.3.2, many authors have since 

used von Karman-type assumptions for other types of rotating disc 
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flows and they are used here for rotor-stator cone system flows. 

The assumed velocity profiles will obviously not be an exact 

representation of the true velocity profiles. This fact Is clearly 

illustrated by the infinite shear stress that the assumed profiles 

predict at the boundary. However, the experimental results from which 

the power law profiles were obtained often involved integrals of the 

velocity. The integral method involves integrating the velocities 

across the boundary layer too, and so the power law profiles should 

provide good estimates for the purposes they are used for here. 

Consider the fully developed, turbulent flow of a fluid through 

a straight pipe of circular cross-section and diameter D. In a fluid 

cylinder of length L, the equilibrium of forces due to the shear 

stress ro on the circumference and pressure difference P1-P2 on the 

end faces gives: 

aDLro - 
ir42 (PI -Ps) 

so that 

(P'-P') D 
L4' 

where the subscript 'o' represents values at the pipe surface. 

(3.4.1) 

(3.4.2) 

Empirically determined 'laws of friction' for turbulent pipe flow are 

commonly stated in terms of the dimensionless coefficient of 

resistance, A, where 

P, -P, - .. I- -M 
L 2D 

and Um is the mean velocity of the fluid, defined as 

(3.4.3) 
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Um 
D2 

1 

where Q is the volumetric flow rate. 

Comparison of expressions (3.4.2) and (3.4.3) gives 

ro -A pUmz 

In 1911, Blasius made a survey of the then existing experimental 

results and established the following empirical equation 

Aa0.3164 (UfnDI-ä 
lvJ 

(3.4.4) 

(3.4.5) 

(3.4.6) 

where v is the kinematic viscosity (-µ/p), and which is known as the 

Blasius formula. 

Equations (3.4.5) and (3.4.6) may now be used to relate ro to 

the mean velocity Um. In 1932, Nikuradse carried out a very thorough 

experimental investigation into the laws of friction and velocity 

profiles in smooth pipes over a wide range of Reynolds numbers (4 x103 

< UmD/v < 3.2 x 106). Schlichting (1968) shows plots of u/Umax (where 

Umax is the maximum velocity in the cross section) against 2y/D (where 

y is the distance measured radially Inwards from the wall surface) 

from Nikuradse's results and shows that the following empirical 

equation is a close representation of the velocity profiles 

u 
Umax 

2 
Dy 

)'/m (3.4.7) 

where the exponent m varies slightly with Reynolds number. From this 
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equation, the ratio of the mean to the maximum velocity can be shown 

to be 

z 
Umax - (m+1)(2m+1) ° F(m) (3.4.8) 

Substitution of equation (3.4.6) Into equation (3.4.5) gives 

To - 0.03325pUm7/4 (D° ]' 
. (3.4.9) 

Throughout this chapter, m will be taken as 7, although in §7.2.3, the 

effect of using other power laws will'be discussed. The Blasius 

formula (3.4.6) was established for Reynolds numbers (calculated with 

the mean velocity and diameter of the pipe) up to a maximum of 105 

since at that time, measurements for higher Reynolds numbers were not 

available. For a Reynolds number of 105, Schlichting (1968) 

recommends using F(m) - 0.8, which corresponds approximately to 

ma7. If Um is obtained from equation (3.4.8) and substituted into 

equation (3.4.9) the following relationship is obtained: 

" ro - 0.0225pUmax7/4 2v 1v 11 (3.4.10) 

Von Karman (1921) assumed that for a free rotating disc a 

similar expression to (3.4.10) was valid near to the rotating 

surface. It is assumed here that a similar expression is valid near 

the surface of the rotor and stator In a rotor-stator cone system. 

For the rotor or stator, D/2 is replaced by the normal distance near 

to the surface and Umax is replaced by the resultant relative velocity 

(Ures) near to the surface. Thus, for example, the resultant surface 
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shear stress for the rotor is given by 

ro-0.0225p 
rlHim0 

{ Ures 7/4 
lnJ 

A}" (3.4.11) 

Finally, following Von Karman (1921), it is assumed that near the 

wall, the direction of the shear stress is that of the resultant 

velocity relative to the wall. Hence it is assumed that 

Ls-a_I(U1 
70 

,0 
n-ý0 l v-vo J (3.4.12) 

Von Karman (1921) assumed that the velocity profile (3.4.7) was 

valid for the skewed boundary layer formed over a rotating disc. 

Other authors have since used similar profiles for the velocities in a 

variety of rotating disc flows. In particular, similar profiles where 

used by Chew (1989) for the velocities in the boundary layer formed 

over the rotating disc in a rotor-stator disc system. Chew (1989) 

claims that his finite difference results indicate that these assumed 

profiles give a good representation of the velocity profiles on the 

rotating disc. The same profiles are used here for the boundary layer 

formed over the rotating cone in a rotor-stator cone system and it 

will be shown in §7.2.4 that finite difference results support the use 

of such power law profiles. For reasons discussed in §3.7, it is not 

at this stage assumed that the velocity profile (3.4.7) is valid for 

the boundary layer formed over the stator. 

The velocity components u(s, n) and v(s, n) in the rotor boundary 

layer are obtained following von Karman's (1921) method for a 

free-rotating disc. Von Karman assumed that in the boundary layer 

formed over a free-rotating disc, the radial and tangential velocity 
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components were separable into a function of s and a function of n, 

and that the function of n took the form of a power law profile. Von 

Karman assumed that the profile for the tangential velocity was of a 

1/7th power law form similar to equation (3.4.7) but where the radius 

of the pipe, D/2, is replaced by the boundary layer thickness, &. He 

also assumed that the radial velocity component obeyed a 1/7th power 

law near to the disc surface and used a simple multiplying factor to 

force the radial velocity to zero at the boundary layer edge. In the 

next section, it will be shown from a consideration of the flow 

outside the boundary layer in a rotor-stator cone system that u(s, n) 

should not be zero at the boundary layer edge. However inclusion of a 

non-zero u(s, n) at the boundary layer edge leads to considerable 

complication of the governing equations and as an approximation it 

will be neglected. The magnitude of u(s, n) at the boundary layer edge 

is expected to be small relative to the velocity within the boundary 

layers since it results from a weak axial flow across the cavity, and 

this view will be supported by finite difference results In §7.2.1. 

The tangential velocity at the boundary layer edge-in a rotor-stator 

disc or cone system will however be of a comparable size to the rotor 

velocity (see the experimental results of Daily and Nece (1960)) and 

is therefore not neglected here. The following boundary conditions 

for u(s, n) and v(s, n) are used for the rotor boundary layer: 

u(s, 0) - u(s, b) - 0, v(s, 0) - vo(s), v(s, ö) - v(s), (3.4.13) 

where the overbar denotes a value at the boundary layer edge. 

Following von Karman, D/2 in equation (3.4.7) is replaced by b and m 

is set to 7 as appropriate for the 1/7th power law. Considering the 

boundary conditions of equation (3.4.13), the velocity components may 
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be written as: 

where 

and 

u(s, 77) - ü(s)f(77) 
, 

v(s, n) - v(s) - [v(s)-vo(s)]g(n) 
, (3.4.15) 

f(n) - n'/7(1-n), g(n) - 1- n'/> , (3.4.16) 

n- n/ö . 

(3.4.14) 

The surface shear stress components for the rotor in the 

rotor-stator cone system may now be obtained from equations (3.4.11) 

and (3.4.12), where the resultant velocity relative to the cone may be 

obtained from equations (3.4.14) and (3.4.15). Using 

To2 - TS, O 
+ T3, o 

the following stress components may be obtained: 

and 

(3.4.17) 

70 ,0a -0.0225p 
(VO-v) [ u2+(vo-v) 2 ]3/B 

TS, O 
sý U 

vo-v 
7 e, o . 

3.5 THE FLOW PATTERN AND BOUNDARY CONDITIONS 

(3.4.18) 

(3.4.19) 

The assumed velocity profiles (3.4.14) and (3.4.15) and the 

shear stress equations (3.4.18) and (3.4.19) allow the integration of 

40 



the boundary layer equations (3.3.17), (3.3.18), (3.3.19) and (3.3.20) 

or equations (3.3.17), (3.3.18), (3.3.23) and (3.3.24) through the 

boundary layer on the rotor. However, In equation (3.4.15), v(s) Is 

unknown and the boundary layer equations describing the flow over the 

stator have not been derived. In this section information will be 

obtained which will enable the derivation of the stator equations in 

§3.7, and enable the required relationships for v(s) to be deduced. 

The postulated flow pattern in the cavity formed between a 

rotating and a stationary cone is shown In Figure 3.2. It is assumed 

that the flow develops in a similar way to the flow between a rotating 

and a stationary disc, and in §7.2 It will be shown that finite 

difference results support this assumption. The pattern assumed to 

occur in the disc case has been confirmed by experimental work (Daily 

and Nece (1960), Daily, Ernst and Asbedian (1964)) and by finite 

difference results (Chew (1987)) and is shown in Figure 2.1(c). In 

the source region, fluid Is entrained Into a boundary layer on the 

rotor, any flow on the stator up to this point being negligible. In 

the core region, fluid Is 'centrifuged' up the rotor and back down the 

stator. Between these two boundary layers, there is a rotating core, 

in which there Is a weak axial velocity and negligible radial 

velocity. If there is no throughflow then there Is no source region 

and the core region fills the entire cavity (except for a thin 

boundary layer over the outer shroud). In this case the core between 

the rotor and stator boundary layers rotates with an approximately 

constant angular velocity. In the flow external to the boundary 

layers, viscous effects are not so important and it is consistent with 

previous authors, eg. Owen, Pincombe and Rogers (1985) and Chew (1989) 

to treat the flow in these regions as inviscid. 

In the inviscid source region outside the boundary layer on the 
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rotor, it is assumed that the flow obeys conservation of angular 

momentum and is incompressible. (Incompressibility will be assumed 

throughout the cavity in the next section and a discussion of this 

will be given there). At the boundary layer edge, therefore, the 

following relationship may be obtained: 

rV(r) - avln(a) ,a4r< re (3.5.1) 

where the subscript'in'indicates the inlet value, and re marks the 

edge of the source region. 

If it is assumed that In the core region between the rotor and 

stator boundary layers, the flow is inviscid, incompressible and 

rotationally dominated, then coriolis and centrifugal forces dominate 

inertial forces. There is therefore a balance between the 

'centrifugal' and pressure forces in equations (3.2.2) and (3.2.4) and 

coriolis forces dominate in equation (3.2.3). The following 

relationships may thus be obtained from equations (3.2.2) - (3.2.4): 

zp 
-p sinX -- Ts 

pv - (u sinX +w cosX) a0 r 

V2 P 
-p r cosx -- ýUn . 

(3.5.2) 

(3.5.3) 

(3.5.4) 

It is now convenient to use the 'standard' polar coordinate system 

(r, O, z) shown In Figure 3.1. In this system, equations (3.5.2) - 

(3.5.4) can be combined to give 
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V2_ ap 
rZT 

where ur(r, z) Is the radial velocity component. Equation (3.5.7) shows 

that the pressure is a function of r only. Equation (3.5.5) may be 

differentiated with respect to z to obtain 

2 väv_0 
Pr c'z 

u,. v Pr 

ý- o 

(3.5.5) 

(3.5.6) 

(3.5.7) 

(3.5.8) 

From equations (3.5.6) and (3.5.8) it may be deduced that 

av -n 
CTL 

sv' (3.5.9) 

and 

ura0 . (3.5.10) 

Equation (3.5.10) shows that there is no radial flow in the 

central core so that all radial flow is confined to the two boundary 

layers. Equation (3.5.9) shows that the tangential velocity in the 

central rotating core is constant at a fixed radial position. This 

means that the tangential velocities at the boundary layer edges on 

the rotor and stator are equal at the same radial positions. Thus 

equation (3.5.9) provides important information for the solution of 

the boundary layer equations on the rotor and stator by effectively 

reducing the number of unknowns by one. 
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3.6 THE INTEGRATED BOUNDARY LAYER EQUATIONS FOR THE ROTOR 

In §3.3, two alternative sets of equations describing the flow 

in the boundary layer formed over a cone were derived. In §3.4, the 

theory and assumptions which led to the particular formulation of the 

velocity components for the rotor boundary layer, i. e. equations 

(3.4.14) and (3.4.15) were explained. In this section, the velocity 

profiles will be substituted Into the two sets of boundary layer 

equations which will then be integrated across the boundary layer. 

First it is necessary to discuss assumptions concerning 

compressibility. 

Throughout the rest of this chapter, it Is assumed that the flow 

is incompressible. According to Schlichting (1968), a gaseous flow 

may be considered to be incompressible, If for isothermal flow: 

# M2 «1 (3.6.1) 

where M is the Mach number (® v/c, where v is the speed of the flow 

and c is the speed of sound). For a rotationally dominated flow such 

as the flow in a rotor-stator cone system, v may be taken as the 

magnitude of the maximum tangential velocity of the flow. Schlichting 

suggests that a value of JM2 of 0.05 may be taken as an upper limit 

for a flow to be considered as incompressible. For flows with high 

Reynolds numbers, such as may occur in many practical situations for 

which a cone rotor-stator system could be used as a model, this value 

may be exceeded. Chew and Rogers (1988), however, conclude that in 

the flow between co-rotating discs, the effect of density variations 

across the boundary layers is negligible. Since the boundary layers in. 

rotor-stator systems are similar to those in co-rotating systems, it 
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is reasonable to assume that density variations will also by 

negligible across the isothermal boundary layers considered in this 

thesis. In the present analysis, it is also assumed that density 

variations longitudually through the boundary layer are negligible, 

although in chapter 5, longitudinal density variations will be 

accounted for in non-isothermal flows. The effect of the present 

assumption of incompressibility will be assessed using the finite 

difference program in §7.2.2. 

Case i 

When integrating equations (3.3.17) - (3.3.20) across the 

boundary layer it will be assumed that r is independent of n. This is 

consistent with the boundary layer arguments of §3.3 which were used 

to derive the case (1) equations. 

Equation (3.3.20) states that the pressure is independent of n 

in the boundary layer. If equation (3.3.18) is evaluated at the 

boundary layer edge the following equation is obtained: 

dp V2 

sinX ds p r(s) 

Integrating equation (3.3.17) across the boundary layer gives 

r1 

w-- Air ý 
[proubl ( f(n)dn " ~ýývV i 

0 

(3.6.2) 

(3.6.3) 

By using equations (3.6.2) and (3.6.3) In the integration of equations 

(3.3.18) and (3.3.19) across the boundary layer the following equtions 

may be obtained: 

1d 
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1_f. £ d (pr ü2E ]-pa sinA [v2-2v(v-v )I +(v-v)2I ý 
ro ds o ro o9o gg 

z 
+pr SsinX - -TS, p (3.6.4) 

0 

and 

r02 
ds fpro2b[üvIf-ü(v-vo)I f9]} - 

ro Ifd [proüb] 

- -T©, U , 

where 

> 
If ° f(-q)dq Ig 

ji 
s g(r1)di] 

00 

(3.6.5) 

ý 
I fg °1 f(i1)g(i1)dn , Iff °1 

Jr2()di1 

, Igg - 
Jg2(n)dn. 

(3.6.6) 
0 "0 '0 

The integrals are constants, rs'o and 70,0 may be obtained from 

equations (3.4.18) and (3.4.19) and ro - ssinX. 

Case (ii) 

When integrating equations (3.3.17), (3.3.18), (3.3.23) and 

(3.3.24) across the boundary layer, the variation of r across the 

boundary layer will be included. This is consistent with the boundary 

layer arguments of §3.3 which were used to derive the case (ii) 

equations. 

Integration of equation (3.3.24) across the boundary layer from 

a general point within the boundary layer to the boundary layer edge 

gives 
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rb 

n 

(3.6.7) 

If equation (3.6.7) is differentiated with respect to s the following 

equation is obtained: 

a 

(3.6.8) 

Equation (3.3.18) may be evaluated at the boundary layer edge to obtain 

ý-p r(s) sinA (3.6.9) 

and a substitution of equation (3.6.9) Into equation (3.6.8) gives 

p(s, n) ° P- P 
V2(S, n') 

cosX dn' 
r(s, n') in 

I 

ap 
- 

ap 
-ö 

y2(s, n') 
cosX dn' 

cs c'3s Ns Pr(s, n' ) 

I rb 

a-P 
-w 

V2 

b 
ap 

p r( 
s) 

sinX -ý p r(ssnn)) cosX dn' (3.6.10) 
in 

Equation (3.3.17) may be integrated across the boundary layer to obtain 

We 1d 
p(ssinX+Scosa) ds 

[pü3(IfssinX+3lf7? cosX)J (3.6.11) 

Equations (3.6.10) and (3.6.11) may be used in the integration of 

equations (3.3.18) and (3.3.23) across the boundary layer to obtain 
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ý ds (psu2b) + 
sLffý ý 

ds (pu2b2) + 
sb 

[2v(v-vo)Ig-(v-vo)ZIgg] 
s 

+ (1 + ab 1d [(st pý 
) 

J- vZ 
- 2v(v-vo)IG+(v-v0)2IGG}, 

stand ds aný+ab 12 

- -rs, o , (3.6.12) 

and 

1A- )] 
S2 ds 

( Pý sS (VI f-(v-vo) 1 fg) ]+ 
sýtaný ds 

(Püsb 2(vI f, ý (v-v o) I fg71 

+ 
s2tan2X ds 

(pub 3(ý/I fr1rý (v-vo) 1 fg7171)] 
ý1 + 

stanaý 
Ifs 

ds 
(Pýa) 

Tal + 
stan2ýý 

Ifrý 
s ds 

(pub 2) 

where 0<a<1 and 

11 171 1Ic 
- S(? I') dq' d-q, IGG e 

01 oý 

I 
I rl 

If77 - I_ 17 f(-q) di7,1 f7777 
0 'o 

1 
Ifgn -n f01) g(i1) d77, 

0 

r I Iff77 -JI 71 f2(77) do 
" 

o 

2 d. .. 
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BZ(, qv) dq' di7, 

i ? 12 f(-q) d? J, 

r I IfSýý j 77s f(-q) 8(77) di7, 
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The constant a appears in equation (3.6.12) as a result of an 

application of the mean value theorem in the integration of the second 

term on the right hand side of equation (3.6.10) across the boundary 

layer. 

After substituting for the surface shear stresses from equations 

(3.4.18) and (3.4.19), the two sets of boundary layer equations may be 

non-dimensionalised as follows: 

ul Vo - 
yn 

, S1 Reel/ssinX , Pro Pro Pro ro 

ßb2 r Reý 
ysinX 

Xdb 

where 13 is a representative angular velocity, and ro a ssinX. 

(3.6.14) 

The particular non-dimensionalisation used in equations (3.6.14) 

ensures that the resulting case(i) equations are independent of Rep 

and X. The integrated boundary layer equations for case (i) 

(equations (3.6.4) and (3.6.5)) become 

ý dx (x4S, uIz) + b1[2V(V-Vo)Ig - (V-Vo)ZIggj 

OX0222)ý 
u'[u, z+(Vo-V)2]s/s , 

and 

xý dx [XSU, aý(VD-ý>> + 
bX1 If dd x 

(X2V) 

0.0225 
ý+(Vo-V)zýs/a - (XZö ) (Vo-V)[u, 

(3.6.15) 

(3.6.16) 
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The integrated boundary layer equations for case (ii) (equations 

(3.6.12) and (3.6.13)) become 

I+ 
allff2l d 

(u 2S x°) +I U126, x d61 
x3(r l ff Reel 5tanX 

ý 
dx ýý Ree stanX dx 

+ 61[2v(v-vo)Ig-(v-vo)21 gg] 

(2 
+ 

x3tanýReQi 5 Tx Lx4bý2 
{- 

- 2v(v-v0)IG + (v-v0)2IGG)}] 

2(- V2 
- 2v(v-vo)IG+(v-vo)2IGGý 

ad ll 
ab, + Reel stanX 

I+ 
Reg' stanX dx 

(xSý), 

m- `OZ u, [ u, 2+(vý-V) s ]3/8, 

1 

and 

d 
x4 dX [bIxsu, (vIf-(v-va)Ifg)] + 

x4Reel25taný dx 

[x551 2uI(vlfl? -(v-vo)Ifgn)] 

1d 
+ 

x4tan2XRee25 dx 
[a1 3x5uJ(vlf77n-(v-vo)IfSnn)] 

l rr l 61 
- 

x2 fl 
+ Rel stanýJ Llif + 

tanX eei sJ dx 
(u1ö1x3) + 

Iu b xý3 d 
tan"aRe©ý5 dx 

ý 

0.0225 
_ (X26, )l 4 

(vo-v) [u, 2+(vu-v)2]3/8 

(3.6.17) 

(3.6.18) 
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The integrated boundary layer equations for case (1) (equations 

(3.6.15) and (3.6.16)) do not show an explicit dependence on the cone 

angle X. These equations are in fact identical to the equations 

obtained by Chew (1989) to describe the flow over the rotor in a 

rotor-stator disc system, except in his case the scaling parameters 

involved r instead of ro(=ssinX). This similarity between the cone 

equations in case (i) and the disc equations is important in the next 

section, where the stator equations are derived via analytical 

solutions to an infinite cone rotor-stator system. The case (ii) 

equations will reduce to the case (1) equations if X- 90% which is 

to be expected since the boundary layer assumptions which result in 

the extra terms being present will not then be valid. The effects the 

extra terms in the case(ii) equations and the unknown parameter, a, 

have on the solutions to the equations will be discussed in §4.5. 

3.7 THE INTEGRATED BOUNDARY LAYER EQUATIONS FOR THE STATOR 

The formulation of the stator equations in this section is the 

same as that of Chew (1989) for the stator boundary layer equations in 

a rotor-stator disc system. The same method is possible here due to 

the similarity between the cone rotor equations for case (i) and the 

disc rotor equations derived by Chew. The formulation of the 

equations is based on the evidence of experimental results of Daily 

and Nece (1960) and the finite difference results of Chew (1987) for 

rotor-stator disc systems. At present it is assumed that these 

results are also applicable to rotor-stator cone systems and in §7.3 

finite difference results will be used to help validate this 

assumption. The approach used by Chew (1989) which is described here 
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Is to consider the flow in a rotor-stator system of Infinite radius 

with no throughflow. This approach Is convenient because analytical 

solutions are then possible for the rotor equations and the mechanism 

of the flow over an outer shroud connecting the rotor to the stator 

need not be considered. 

It has been observed experimentally by Daily and Nece (1960) 

that in a finite rotor-stator disc system with no throughflow, two 

boundary layers develop on the rotor and stator separated by an 

Inviscid core rotating with approximately a constant angular 

velocity. It is assumed that a similar flow pattern occurs In a 

fictitious Infinite rotor-stator system. Further, following the 

experiments of Daily and Nece (1960) It Is assumed that the core In 

the infinite case rotates with an experimentally obtained typical 

value of 0.42 times the rotor speed. Using this model it will be 

shown that analytical solutions may be obtained for the rotor 

equations but the same approach used for the stator produces 

meaningless solutions. From this, Chew (1989) concluded that the 

velocity profiles used for the rotor, ie. equation (3.4.16), were not 

valid for the stator, a conclusion which he suspected from his finite 

difference results (Chew (1987)). He then uses his finite difference 

results, as described here, to formulate an alternative set of 

equations valid for the stator boundary layer. 

Assuming that in an infinite rotor-stator cone system, the rotor 

and stator boundary layers are separated by a uniformly rotating cone, 

the method of Newman (1983) may be used to find analytical solutions 

to the integrated rotor boundary layer equations. The boundary 

conditions for the tangential velocity are then given by 

y0 - Or (3.7.1) and V- kflr. 
9 0 
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where k is a constant. Choosing ß- (1-k)n, analytical solutions may 

be found to equations (3.6.15) and (3.6.16) in which u, - constant, b. 

« x'0.4. These are 

21 k+(1-k)I 
uýs a 3.61ff(1-k)+4.1fg 1-k)+21fk ' 

and 

(býXO. 4)5/4 - 
0.0225(1-k)(l+u z)3/8 
ul[21fk+ . Ifg(1-k)] 

It would seem logical now to assume that equations (3.6.15) and 

(3.7.2) 

(3.7.3) 

(3.6.16) are valid for the stator boundary layer and to look for 

similar analytical solutions for the equations describing the flow 

over a stationary cone under a uniformly rotating fluid. In this case 

vo -0 and it Is found that 

U2 
k2(I -2I ) 

I (3. lff+ . Ifg-21f)(1-k)2 (3.7.4) 

From equations (3.6.6), Igg - 1/36, Ig - 1/8, Iff - 343/1656, Ifg - 

49/720 and If - 49/120. Thus u, 2 < 0, so no real solutions exist for 

u'. 

The fact that this solution is physically impossible suggests 

that the velocity profiles assumed for the rotor, (3.4.14) and 

(3.4.15), may not be a good representation of the stator velocity 

profiles. Finite difference results obtained by Chew (1987) for 

rotor-stator disc systems suggest that the rotor radial velocity 

profile gives a particularly poor representation of the profile in the 
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stator boundary layer. This would mean that some of the constants in 

equations (3.6.6) which were obtained by integrating the radial 

velocity profile across the boundary layer would be incorrect for the 

flow over the stator. The same finite difference results suggest that 

the 1/7th power law for the tangential velocity is a good fit for most 

of the boundary layer on the stator. Thus the same tangential 

velocity profile used on the rotor, i. e. equation (3.4.15), is used 

for the stator. The radial velocity profile on the stator is replaced 

by the following more general form: 

us - usfs('? S) 
. 

where the superscript's' is used to denote a stator value and 

(3.7.5) 

ýs - (d-n)/bs. To satisfy the boundary conditions, it is required that 

fs(0) - fs(1) -0. (3.7.6) 

In order that the stress relations (3.4.18) and (3.4.19) hold for the 

stator, the following relationship is required: 

fs(ns) 4 (7s)'/1 as qs 40. (3.7.7) 

No attempt at finding the explicit form of fs(is) will be made; 

instead values of the constants Ifs and Ifgs will be found by ensuring 

that analytical solutions to the stator equations obey conservation of 

mass in the infinite rotor-stator system. 

From the velocity equations (3.4.14), (3.4.15) and (3.7.5) it 

may be deduced that close to the cone surface both on the rotor and 

stator, the fluid velocity relative to the cone is at a limiting flow 

54 



angle y, such that 

U tarry - VO-V 
(3.7.8) 

At high Reynolds numbers and away from the outer shroud, Chew (1988) 

suggests his finite difference results predict that y for both the 

rotor and stator is approximately 20'. For the stator, the following 

boundary conditions must be satisfied: 

Vp °0r Va kS2r , (3.7.9) 

and using a similar form of non-dimensionaIisation as for the rotor, 

i. e. using equations (3.6.14), the following equation may be obtained 

from equation (3.7.8): 

us - 
ßs 

tan20* 

For the rotor, the boundary conditions are given by (3.7.1), so 

equation (3.7.8) gives 

Ue 
(12kfl) 

tan20' 

(3.7.10) 

(3.7.11) 

From equation (3.5.10), it is apparent that there is no radial flow in 

the core region. The mass outflow in the rotor boundary layer must 

therefore exactly balance the mass inflow in the stator boundary 

layer. The mass flow rate in a boundary layer is given by 
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m-j 2xpru dn , 
0 

so the mass balance requirement gives 

If u, ö, + IS us ds -0, 

(3.7.12) 

(3.7.13) 

where ßs - ß. Substitution of u, and uT from equations (3.7.10) and 

(3.7.11) gives 

If Ö1(1-k) - Ifs kS, . (3.7.14) 

The experimental results of Daily and Nece (1960) suggest that a 

typical value for k is 0.42 and that 61 > S,. Choosing Ifs - If gives 

as - 1.386,, which is in reasonable agreement with experiments of 

Daily and Nece (1960) and the finite difference results of Chew (1988). 

Using equation (3.7.10) to find uT, an analytical solution of 

the tangential momentum equation (3.6.16) is possible for the stator 

boundary layer, in which, again as « x-0.4. It is found that with 

k-0.42, the mass balance equation (3.7.14) is satisfied if 

Isfg - 
Ifg/2. With ßs - kn, the stator solution is then 

us - -0.364 , 

and 

(bS Xo. a)s/a - 
0.0225[1+(u S)z] 3/8 

' u, s(4.1Sfg-2IfS) 

(3.7.15) 

(3.7.16) 

Analytical solutions for an infinite rotor-stator cone system without 

throughflow have now been obtained. Equations will now be derived for 
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the stator in a finite, shrouded rotor-stator cone system with or 

without throughflow. The finite difference results presented by Chew 

(1988) show that for small throughflow rates ys has a large value at 

lower radii but tends to level off at about 20% although for high 

throughflow rates ys is more erratic. In §7.3 it will be shown that 

finite difference results for a general cone angle show a similar 

behaviour of ys as presented by Chew (1988). It is also assumed that 

for all cases, Isfg - Ifg/2 and Ifs - If. If, for general cases the 

constant ßS is set to n, the stator equations may then be derived from 

equations (3.7.10) and (3.6.16) as 

us - -0.364VS 

and 

das, 0.0225[1+(0,364)2] 3/8 1 2lfs-SISf$ l 
dx 0.3 41Sfg(VS) (x6dj) +xl Isfg J 

_ 
dVs ý. ( ZIsfI fs 
dx Vs l is- fg 

ý' 

(3.7.17) 

(3.7.18) 

Equation (3.7.18) Is an integrated boundary layer equation for 

the stator derived under the assumption that the variation of r with n 

is negligible (i. e. the case (I) boundary layer arguments of §3.3). 

To derive a stator equation which allows for the variation of r with n 

(i. e. the case (ii) boundary layer arguments), then equation (3.6.18) 

Is required in place of equation (3.6.16). However, assuming the 

analysis of Chew (1989) to be valid, equation (3.6.18) will still 

contains the unknown constants If., IfgV, Ifg., and If... Since it is 

assumed that If - If and Ig- Ifg/2, at this stage corresponding 

assumptions will be made about the other unknown constants so that the 
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following will be assumed: Iin - 'fn, Ifgn - Ifgn/2, I Nn - If., and 

Ilgnn - Ifgnn/2, The stator equation under the case (11) boundary 

layer arguments then becomes 

dbi j1 
- 

4(I -I )SS 
+ 

3(I -I )SS 
+I 

SS 
dx LI gRee' tanX Itg( eg' tanX)ý1 I gRee stanX 

r as l 
li + Reel stanXJ 

sý 

+If: ubs ý1 + 
ös ý+ I 3S ý 

IJgRee 5taný Ree1 5tanX ItgReel 5taný 

0.0225[1+(0.364)2]3/8 5(I -I )bs 10(Ifn-If2n)(bs)2 
Itg(xsbýv) 0.3 4+I 

gx 
+ Itgx ee't75 anX 

1) 
3 5(I I Os 36S (1 + 

as l(IS 
+I 

bs l 
IfgxnnIý' taný)2 xgl Reel StanaJ lf Reeý 5tanýJ 

+ aý 
_bi 

2ýI)+ 45s(I -I )- 2(Ifn -Itoin)(as)z 
dx vlfg L(ý 

lg 
Reel tan (Reeý5anX)ý 

as l( as l 
- 

[1 + ReB' stanX J liý + Reel tanXJI 
(3.7.19) 

It may be noted that if Xa 90* is substituted into equation (3.7.19) 

then equation (3.7.18) Is obtained as expected. The effect of using 

the more elaborate equation (3.7.19) rather than equation (3.7.18) 

will be investigated in §4.4. 
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3.8 THE SHROUD TREATMENT 

In §3.6, the integrated boundary layer equations describing the 

flow over the rotor were derived and in §3.7, the integrated boundary 

layer equations describing the flow over the stator were derived. To 

close the problem the effect of the gap width, d (see Figure 3.1), 

between the rotor and the stator needs to be Included. This is 

accomplished by using conservation of angular momentum in the outer 

shroud boundary layer and the method used here is that used by Chew 

(1989). 

As shown in Figure 3.2, the shroud serves to channel fluid from 

the rotor boundary layer into the stator boundary layer. The 

assumptions made are that the mass flow rate in the shroud boundary 

layer is constant, its thickness is negligibly small compared with the 

outer radius of the rotor, b, and that the tangential shear stress on 

the shroud surface can be estimated using a constant friction factor, 

F, estimated from the rotor. 

It is convenient in this section to use the standard cylindrical 

polar co-ordinate system (r, O, z). Defining vm(z) to be the mass 

averaged and boundary layer integrated (i. e. averaged through the 

shroud boundary layer) tangential velocity in the shroud boundary 

layer (i. e. at r-b), it follows that 

vm(Z) - -2m , 
mb 

(3.8.1) 

where m is the mass flow rate and am is the angular momentum in the 

boundary layer. The tangential shear stress on the shroud is 

calculated using a constant friction factor as 
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r8, z - -}pFIllbb-vm(z)I(flbb-vm(z)) (3.8.2) 

where nb is the angular velocity of the shroud. The friction factor, 

F, is calculated from the rotor boundary layer at r-b. Thus, if the 

rotor is situated at n-0 and the stator at n-d, then 

F 

but 

and so 

TB, o r-b 
iP( b-vm(O)) Inb-vm(0) 

vm(O) - f2b [V+ (1-V) ý,, 

F_0.045[u, 
2+(1-V)2]3/8If2 

ý_. 
(Rep o. söI)"(1-V)(If-Ifg)2 

(3.8.3) 

(3.8.4) 

(3.8.5) 

A balance of angular momentum for the flow in the shroud 

boundary layer leads to 

Z 
mbvm(z) - 

mbvm(0) 
- 2ab I re, Z' dz' , (3.8.6) 

J0 

where mb is the mass flow rate in the shroud boundary layer (i. e. the 

difference between the mass flow rate in the rotor boundary layer at 

r-b and any flow which leaves at r-b). Substitution of equation 

(3.8.2) into equation (3.8.6) and integration from z-0 to z-d/sInX 

gives 

vm(d/sinX) - Obb -- 
mh(iZhb-vm(0)) 

. (3.8.7) 
[mb+wpFbd/sinAlttbb-vm(0)IJ 
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Now 

vm(d/sinX) - 
Isf¢ SZbVs (-1 

-]I 137"ll (3.8.8) 

and so use of equation (3.8.7), evaluated at r-b, enables the value of 

VS at r-b to be calculated from values of the rotor variables at this 

point. 

3.9 SUMMARY 

In §3.6 and §3.7, two sets of Integrated boundary layer 

equations were derived to describe the flow over the rotor and stator 

respectively. The second set contained extra terms to allow for the 

fact that near the cone apex of a small angled cone, the distance from 

the axis of rotation to the cone surface may be of a comparable size 

to the boundary layer thickness. The effect these extra terms have on 

the solutions to the flow problems will be discussed In the next 

chapter. 

In §3.8, the effects of the shroud were accounted for which led 

to the derivation of an equation which enables the starting conditions 

for the stator boundary layer to be obtained from the conditions at 

the end of the rotor boundary layer. 

The above equations, together with an equation derived from 

conservation of mass between the two boundary layers and equations 

(3.5.1) and (3.5.9) constitute all the required relations to obtain 

the solutions to rotor-stator cone problems. In the next chapter 

several methods of solution of the system of coupled equations will 

be described. 
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CHAPTER 4 

SOLUTION OF THE ISOTHERMAL INTEGRATED BOUNDARY LAYER EQUATIONS 

4.1 INTRODUCTION 

In this chapter several methods of solving the integrated 

boundary layer equations derived In chapter 3 will be explained. All 

the relevant equations will first be derived in terms of variables 

chosen for the final numerical calculations. With reference to Figure 

3.2, to solve the equations when there is a specified throughflow 

rate, the cavity between the rotor and stator will be divided into a 

source region and a core region. When there Is no throughflow, the 

cavity will be assumed to consist of a core region only. In § 4.2 the 

solution procedure for the source region and two alternative methods 

of solution for the core region will be described. In § 4.3 the 

advantages and disadvantages of the two core region methods will be 

discussed and the reasons for a preference will be explained. 

In chapter 2, two sets of rotor and stator equations were 

derived; the second of these had extra terms which are expected to 

have an influence when the cone angle and the inner hub radius are 

small. The effect these extra terms have on the solutions to the 

equations will be discussed In § 4.4. In § 4.5 to improve the 

treatment of the initial conditions, the governing equations will be 

re-derived in terms of asymptotic variables. These new governing 

equations are amenable to treatment by similar solution methods, and 

they will provide an alternative system for the solution of flow 
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problems. Finally in § 4.6, the predicted results will be compared 

with available experiment data. 

4.2 SOLUTION METHODS 

4.2.1 Governing Equations and an outline of the solution procedure 

In chapter two, the Integrated boundary layer equations 

governing the flow over the rotor and stator were derived in terms of 

the non-dimensional dependent variables S,, u,, V, Ss and Vs. For the 

purposes of solving the equations, they will be re-written in terms of 

the following new dependent variables: 

Yl(x) - u1bIx3 , Y2(x) - b1x . (4.2.1) 

The reasons for this change of variables will now be discussed. The 

boundary layer thickness on the rotor, b, is given in equations 

(3.6.14) which show that 6 Is proportional to 6, x. The mass flow rate 

in a boundary layer is given by equation (3.7.12) which, when 

evaluated for the rotor and allowing for a variation of r across the 

boundary layer, becomes 

ma2, rpµb(Re )4/5 ub x3 
jI +bI ýýýL If (Reg)] tanX 

ý' (4.2.2) 

Thus Y, and Y2 are proportional to the mass flow rate and the boundary 

layer thickness respectively and so they represent physical 

quantities. The idealised initial conditions are that the boundary 

layer thickness Is zero and the mass flow rate in the boundary layer 

is zero. The constants If and If. In equation (4.2.2) are positive 
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and the boundary layer thickness cannot be negative, so m is zero only 

when u1b, x3 - 0. For a cone with inner radius a and outer radius b, 

the idealised initial conditions are then 

°ý a [bb] 3-0 
and (4.2.3) 

If a#0, then equations (4.2.3) indicate that initially 6, should be 

zero and that u, need not have any specific initial value but It 

should be finite. If a-0, then equations (4.2.3) indicate that both 

6, and u, need not have any specific value but they should both be 

finite. There is then an ambiguity in the required initial values of 

S, and u, and a more sensible choice of variables would be Y, and Y2 

in equations (4.2.1) which ideally for any value of a should both have 

initial values of zero. 

These may now be substituted into the case (ii) equations (the 

case (i) equations are not used explicitly since these are really a' 

special case of the case (ii) equations and may be obtained by putting 

a-9 

Putting ß- 12 in equations (3.6.14), then V. -. 1 and equations 

(3.6.17) and (3.6.18) become 

dY IffýY2 
dx 2YýYz [Iff + 

xReg' stand 

+dY7 
r Y, 3x2ý 

s 
2x- Y'a V2 

-2V(V-1)Iý+(V-1)2IGGý dx ltanXRee- [Reel/stana 
+ aY2 2 

x 

- IffY 2J 
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- -0.0225 Yýx7/4 ýrx ý2 + Y22(1-V)2l3/8 + 
Y'xY7 ýIff + 

x2tä 
ýReBl s1 

- Y23X3 [2V(V-1)Ig-(V-1)2Igg] 

V2 

tanaReg' s 
f[2_ 

aY -2 '2V(V-1)IG+(V-1)2 IGG 
ReBtanX+ _2] 

111 
x 

+ 2x dx 
ý 

22 + (1-2V)IG+(V-1)Iýýl} , 

and 

dY, l+ Y (21 fS? 1 + 
Y2l fSý1ý] 

dx 
{ 

lfgtanXReB' slx tanXReeý s, 

VY [I I+ 
Y2(Ifý-Ifýn) 

x(1-V)IfgRee' 5taný f fý xtanXRee' S J} 

(4.2.4) 

+ dx xtanAReeýY5lfg(1-V) 12[VIfn+(1-V)Ifgq]+ 
2X7 (VIfýý+(1-V)Ifgnn] 

- VIfn 11+ 
xReBIYStand J 

0.0225X7/4 I IN yý2 
+Y 2 -V, 

3/8 
° 

fg 222 

(1)2 

Tx 1 fg(1-V) 
[lf-lfg+ 

xtanaReeý s(lfrý-lfgýl)+ 
2 

tan2XRee2 s(lfn'7-lfgn'7)] 

xlfg(1-V) 
[2LIfV+Ifg(1-V)+ 

xtanXRee' 5 
LIf? 

IV+Ifg77 (1-V)] 
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Y2, fV ?7r + 
xtanXRee' s ll+ xtanXRee' s11 (4.2.5) 

In addition to the above integrated boundary layer equations and 

the stator equations, I. e. equations (3.7.17) and (3.7.19), two 

further equations are used in the solution method. The first of these 

concerns conservation of mass in the core region of the flow. 

Equation (3.5.10) shows that there is no radial flow in the central 

core, and so the net mass flow rate in the rotor and stator boundary 

layers must equal the specified mass throughflow rate. Using equation 

(3.7.12) to evaluate the mass flow rate In the boundary layers, this 

condition gives 

Yý-0.364VSbsx3+ ReBýI51lYX 
2-0.364V$(bs)Zx3, - 2RIfRee4 5 

(4.2.6) 

where Cq is the non-dimensional mass flow rate (Cq - m/µb). 

The second additional equation is the outer shroud equation, 

i. e. equation (3.8.7). This equation which is valid at ro -b may be 

written as: 

DVS - 
Ob (Y1-E)AB 

(Y1-E)B + (d/b)CIAI (4.2.7) 

where 

A- 
Ob 

- 
[V+(Vo-V) Ifg, 

f 
B- Y21/4(Vo-V)(If-If g)2 

C-0.0225 If [[Y y l2 
+ (Vo_V) 21 

3/8 

ý 
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D-1 

S 
Ifg 

and Ea Cý 
If 2ý(Reý)4 5 

Equations (4.2.4), (4.2.5), (3.7.17), (3.7.19) and (4.2.7) along 

with the core region condition which links the rotor solution to the 

stator solution and will be described below are sufficient to describe 

the isothermal flow in the cavity formed between a rotating and a 

stationary cone. As stated in § 3.5, the flow calculation may be 

divided into a source region and a core region. A sketch of the flow 

is shown in Figure 3.2. The source region will exist when there is a 

flow through the cavity: it is the region where fluid is entrained 

into a boundary layer on the rotor. This region will extend up to the 

point where the specified mass flow rate is fully entrained into the 

rotor boundary layer. Beyond this point, the mass flow rate will 

continue to increase on the rotor, and will be compensated for by a 

boundary layer flow in the opposite direction down the stator. Fluid 

will flow from the stator boundary layer across the central rotating 

core and into the rotor boundary layer. Equation (3.5.9) shows that 

in the core region 

VS(X) ° V(x) (4.2.8) 

and both of the solution methods described in the next section attempt 

to ensure that this relationship holds. All of the methods described 

in the next section involve the solution of simultaneous ordinary 

differential equations and this was achieved using a variable order, 

variable step length NAG library routine for the solution of a stiff 

system of ordinary differential equations. 

It is now convenient to define the moment coefficient, Cm, which 
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is a non-dimensional parameter that effectively measures the torque 

experience by the rotating cone: The moment coefficient is the 

parameter most often used to compare the present theoretical results 

with experimental data; it is defined here as 

Cm - 
2MsinX 
Pf)zb5 

where of is the moment on the rotor, which is calculated from 

b/sinX 

M-- 2xro2 70,0 ds 

a/sinX 

(4.2.9) 

(4.2.10) 

From equations (4.2.9) and (4,2,10) the following equation may be 

obtained: 

rl 
I 

Cm - 0.09aReý'0.2 xIYZý(ä_V) [lY Xy 2Jz+ (1-V)2 ]3/ 8dx. (4.2.11) 

ý ýý 

4.2.2 Source Region 

a/b 

In the source region, fluid is entrained into a boundary layer 

on the rotor; the flow on the stator in this region Is assumed to be 

negligible. Outside the rotor boundary layer, the fluid is assumed to 

obey conservation of angular momentum, so that V(r) satisfies equation 

(3.5.1). This equation may be non-dimensionalised using relations 

(4.6.14) to obtain 
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(zý V(x) (bý 
xý 

(4.2.12) 

where .p (- vin/Ra) is a constant and a measure of the Inlet swirl. If 

equation (4.2.12) Is substituted into equations (4.2.4) and (4.2.5) 

two ordinary differential equations for the two unknowns Y1 and Y2 are 

obtained. 

As stated in the previous section the idealised initial 

conditions are that both Y, and Y2 are zero. Equations (4.2.4) and 

(4.2.5) may be re-arranged so that it is clear that numerical 

difficulties will be encountered if either x, Y, or Y2 are zero. The 

initial value of x gives the ratio of the rotor inner radius to outer 

radius, i. e. a/b. To avoid numerical difficulties a lower bound of 

10-5 was set for the initial value of x, even In cases when a/b is 

zero (in practice it is arguable whether the inner radius of a cone 

can ever be precisely zero). The initial conditions for Y, and Y2 

were set to 10-10. ' A full discussion of the problems encountered with 

the initial conditions will be given in § 4.5. It is assumed that the 

inlet swirl parameter, p, may vary between 0 and 1, a value of 1 

indicating that the tangential velocity of the fluid*at the inlet is 

equal to the rotor velocity. From equation (3.2.5) it can be seen 

that numerical difficulties will be encountered if V-1; an 

upper-bound of 0.99 was therefore set for c. 

Given the parameters necessary to carry out a source region 

calculation, i. e. a/b, the throughflow rate parameter, Cq and the 

Inflow swirl parameter, (p, equations (4.2.4) and (4.2.5) may be solved 

from x- a/b. The ordinary differential equation routine was stopped 

when the specified throughflow rate was fully entrained into the rotor 

boundary layer. From equation (4.2.6), this condition was achieved 

when 
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( YZIf'7 C4 
YI 11 + 

xIftanXRep7 5, _ 21lf(Ree)4 5' (4.2.13) 

The x value reached when equation (4.2.13) Is satisfied marks the end 

of the source region and the beginning of the core region and is 

denoted by xe. 

4.2.3 The Core Region Calculation (Method 1) 

The main feature of this method is that the equations are solved 

in the direction of the secondary flow. The two rotor equations, 

(4.2.4) and (4.2.5) are therefore solved from x- xe to x-1 and the 

stator equation (3.7.19) is then solved from x-1 to x- xe. The two 

sets of equations are linked with equation (4.2.8) and an iterative 

method is used to find the correct V(x) distribution such that the 

mass balance equation (4.2.6) is satisfied. 

If there is a throughflow in the cavity, then the starting 

conditions for Y, and Y2 are obtained from the values of Y, and Y2 at 

the end of the source region, I. e. at x- xe. If there Is no 

throughflow, then the starting conditions for Y, and Y2 are set to 

10-10. The core region is discretised Into N radial locations, 

denoted by xi, i-1,..., N and Initially V(xl) are guessed at each 

point. A curve is then fitted through the V(xi) values using a 

library routine which interpolated the discrete values using cubic 

splines. Using this V distribution, the rotor equations (4.2.4) and 

(4.2.5) are solved from x- xe to x-1. 

The values of Y,, Y2 and V at x-1 are then substituted Into 

the shroud equation (4.2.7), from which Vs(xN) is obtained. Using 

this value together with the other V(xi) a Vs(xi) 
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distribution is obtained using the same curve fitting routine as 

before. The bs value at the start of the stator calculation, x-1 is 

obtained from the mass balance equation (4.2.6). The stator equation 

is then solved from x-1 to x- Xe- 

The values of Y, (xi) obtained from the rotor equations and the 

values of Ss(xi) obtained from the stator equation at the radial 

locations i-1 to N-1 are then substituted into equation (4.2.6). 

The error in this equation at each xi is denoted by 

Fi(Vi,..., VN) (which will be written as Fj(V)), where 

F1 (V) - 

+ 

(4.2.14) 

A final equation for i-N is obtained from equation (4.2.8) evaluated 

at x-1 as 

YI(xi) - 0.364VS(xi)b, S(xi)x3 

Y1(xi) 

IfI7 fY u- 
- 0.364VS(xq)S, S(xi)zx3l - 

c9 

IfReelIStanX 
Il 

xJ 2aIf(Ree)4 5 

(xi) Y, 

VS(xN)-V(xN) 
FN(V) m (4.2.15) 

V(xN) 

Thus the initial guessed V(xi) distribution leads to a system of N 

simultaneous non-linear algebraic equations of the form 

F1(V) -0, for i (4.2.16) 

These equations are solved iteratively for V(xi), each iteration 
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requiring the solution of the rotor equations and the stator equation 

using the up-graded V(xi) distribution. 

The accuracy and computational speed of this method would be 

expected to depend on the following factors: 

(i) The numerical method used to find the correct V(xi) distribution 

such that equations (4.2.16) are satisfied within a certain 

error band and the size of the error band chosen. 

(ii) The number of points, N. 

(iii) The distance between xe and the first point, x,. It is assumed 

that the rest of the points are spaced at equal intervals 

between x, and xN. Thus, as the first point moves further from 

xe, effectively the condition that the mass flow rate in the 

stator boundary layer at x- xe is exactly zero is relaxed. 

The above three factors will now be considered separately. 

(1) Three schemes were attempted to find the V(xi) distribution 

which satisfied equations (4.2.16). 

The first scheme used a standard NAG library routine which 

solved a system of N non-linear functions in N variables. The N 

variables in this case were V(xi), 1-1,..., N, and the N 

non-linear functions were given by equation (4.2.16). This 

scheme was found to be slow to converge and therefore not very 

efficient. A typical run with N- 10 would take about 150 

iterations and about 20 minutes processing time on a Prime 

6350. A relative error of 10-G was specified for each V(xi), 

which produced an average error in the mass balance (i. e. IFii 

of equation (4.2.16)) of about 10-3. If the relative error in 

V(xi) was set larger than this, say 10-5, it was found that Fi 
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(1-1,..., N) could vary between 0.1. and O. S. These results 

indicate that the mass balance equations are highly dependent on 

the V distribution and suggest that the equations may be 

ill-conditioned. The rate of convergence did not seem to depend 

on the initial guessed values of V(xi); aV distribution 

estimated from a method 2 calculation (see § 4.2.4) did not 

improve the convergence rate. The main draw-back of the scheme 

was that it was not very robust. Often the routine would fail 

with an error message indicating that the iteration procedure 

was not making good progress. Also the routine would sometimes 

produce 'unreasonable' V(xi) values, i. e. negative or rapidly 

varying values which would create problems with the O. D. E solver. 

The second scheme attempted used a library routine which 

found a minimum of the function G(V(x1), V(x2), ..., V(xN)) where 

G- IF11 + IFZ1 + ... + IFNI . 
(4.2.17) 

This scheme had the advantage over the previous scheme that 

constraints could be placed on the V(xi) which avoided 

unreasonable values being produced by the routine. However, the 

scheme generally took longer to converge (about 250 iterations 

corresponding to about 30 mins processing time on a Prime 6350 

when N- 10) and again it was not very robust. 

The third scheme tried was a simple iterative method. The 

value of V(xi) for the jth iteration was obtained from equations 

(4.2.16) As follows: 
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VJ(xi) - VJ-'(xi) + wVj-'(xi)Fi(V) , 
(4.2.18) 

where w is a constant under-relaxation factor (see appendix A 

for the motivation for equation (4.2.18)). Numerical 

experiments suggested that an optimum value of w for a zero 

throughflow case was about 0.5 and for a case with throughflow 

was about 0.8. The factor Vi-'(xi) appears multiplied by w on 

the right hand side of equation (4.2.18) to prevent negative 

Vi(xi) values being obtained when VJ-1(xi) was close to zero. 

For a zero throughflow case, initial values of V(xi) were all 

set to 0.4. For a throughflow case, initial values were set as 

follows: 

V(x, ) - 0.02, V(xi) - V(xi_, ) + 0.01, i-2,... N... (4.2.19) 

These initial values were chosen because they gave the 

approximate variation and magnitudes of V(xi) which could be 

expected in the final solutions. The method was found to be 

robust and to converge quickly, a typical case. taking about 25 

iterations and using 30 seconds processing time on a Prime 

6350. This method was therefore favoured over the previous two 

and was the method used in determining the effects of varying 

Tj, N and 1 -xe below. 

The effect the tolerance, T,, defined as max1Fi(V)1 

in equation (4.2.16) has on the moment coefficient, 

Cm and the number of iterations required is shown in 

Table 4.1(a). The moment coefficients shown in these tables and 

quoted throughout this thesis are given a three significant 

figure accuracy. The reasons for not quoting more significant 

74 



figures are: 

(a) Greater accuracy cannot be justified in view of the 

assumptions made in the integral method. 

(b) The experimental data with which the moment coefficient 

predictions will be compared cannot be expected to justify 

more accurate readings. 

(c) The moment coefficient was calculated numerically from 

equation (4.2.11) using a library routine and the Integrand 

error is normally such that the moment coefficient will be 

accurate to about three signficant figures. 

Table 4.1(a) shows that Cm is very insensitive to T, over 

the range shown with an error between the predicted value for 

T, - 10-1 and T, - 10-4 of only 1.3%. A value of T, - 10-2 was 

set for all subsequent problems. 

(ii) The effect the number of points, N, has on the moment 

coefficient and the number of iterations required is shown in 

Table 4.1(b). The table shows that the solution is very 

insensitive to N with an error between the predicted values for 

N-4 and N- 40 of less than 1%. A value of 10 was used for 

all subsequent problems. For the runs producing Tables 4.1, the 

core region filled approximately half the cavity. For lower 

throughflow rates, the core region would become larger and it 

may be expected that N would need to increase to produce the 

same degree of accuracy. However, Figure 4.1 shows that as the 

throughflow rate decreases then the V distribution becomes 

flatter so that increasing N would not greatly improve the 

accuracy of the solution. 
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(iii) The effect the distance xi-xe has on the moment coefficient and 

number of iterations is shown in Table 4.1(c). The table shows 

that the solution is very insensitive to this distance over the 

range considered. However, the processing time taken in all 

cases are comparatively small, so that there is no significant 

saving to be made by choosing a large value of x, -xe. A value 

of 0.05 was chosen for all subsequent problems. 

4.2.4 The Core Region Calculation (Method 2) 

The main feature of this method is that all the equations are 

solved simultaneously in the same direction, i. e. from x- xe to 

x-1. The mass balance equation (4.2.6) may be differentiated with 

respect to x to obtain 

S 

dY, 1+ 
Ifn ,+ d[ IfýY' ý- dbs[0.364x3V[1+ 2ö1 lfý 

dx 
[ 

IfReB' StanX dx ]fRee' Staný dx IfRee' Staný 

S 
llll 

s 
ll 

dx 
[0.364x3Ssf1+ 

IfRegýlstanXJJ - 1.092býx2V[1+ 
IfReeýl5tanT] 

_ 
Y, Yz IfTI 

QO 
x2 IfRee' 5tanX 

(4.2.20) 

Equations (4.2.4), (4.2.5), (3.7.19) and (4.2.20) are four ordinary 

differential 'equations for the four variables Y,, Y21 Ss, and V. The 

original mass balance equation (4.2.6) Is used to calculate initial 

conditions at the start of the core region. Ideally, the starting 

conditions for the four variables should be obtained from the end of 
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the source region, i. e. at x- xe. However, from the mass balance 

equation (4.2.6) evaluated at x- xe, either SS or V will be zero, 

which will result in dSs/dx being Infinite at x- xe (see equations 

(3.7.18) and (3.7.19)). In practice therefore the source region 

calculation Is continued for a short distance Axe past xe. The values 

of Y, and Y2 at x- xe+Axe are then substituted into equation (4.2.6) 

and the value of b; at x- xe+Axe Is calculated using a guessed value 

of V at x- xe+Axe. Using these four starting conditions, the four 

ordinary differential equations are solved from x- xe+Axe to x-1. 

At x-1, the values of Y,, Y2 and V are substituted into the shroud 

equation (4.2.7). This equation yields a value of Vs at x-1 which 

may be compared with the V value obtained from the solution to the 

ordinary differential equations. An Iterative procedure is then used 

on the guessed value of V at x- xe+Lxe which is continued until V and 

Vs at x-1 are equal (to within a specified tolerance). The 

iterative procedure used is the method of bisection, so that two 

initial V guesses are required, one producing aV at x-1 such that 

> Vs, the other producing aV such that V< Vs. 

The accuracy and computational speed of this method would be 

expected to depend on the following factors: 

(1) The size of axe. As axe becomes smaller, then the solutions 

should become more accurate, since the solution will more 

closely represent the postulated flow pattern shown in 

Figure 3.2. 

(ii) The error tolerated in V-Vs at x-1, i. e. 

Tý IV_VSI 
2V 

(4.2.21) 

77 



As with method 1, a series of calculations were performed to determine 

suitable values for the parameters axe and T2. 

(1) The effect Axe has on the moment coefficient and computational 

speed is shown in Table 4.2(a). The table shows that varying 

Axe does appear to have a fairly significant effect on the 

solution. The smallest value of Axe shown in the table is 

0.0017, since if Axe was smaller than this (to four decimal 

places) then a solution could not be obtained for any value of 

T2 tested (i. e. T2 > 10-6). The reasons for this will be 

discussed in § 4.3. The size of Axe chosen for subsequent 

problems was 0.005. 

(ii) The effect the tolerance, T2, defined in equation (4.2.21) has 

on the moment coefficient and computational speed is shown in 

Table 4.2(b). The table shows that the solution is not 

sensitive to T2 when T2 < 0.1 and a value of 10-3 was chosen for 

subsequent problems. 

4.3 COMPARISON OF THE TWO CORE REGION METHODS 

To determine which of the above two core region methods is 

superior, the efficiency, reliability and accuracy of both of them 

need to be considered. These three criteria will now be discussed 

separately. 

Excluding the extreme cases shown in Tables 4.1(a)-(c), i. e. the 

cases where T, and x1-xe are smallest and N is largest, 

Tables 4.1(a)-(c) and Tables 4.2(a) and (b) show that both methods use 
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approximately the same amount of processing time. 

By the reliability of each method is meant whether the method is 

prone to failure for one reason or another. Method 1 will fail If the 

under-relaxation factor, w, in equation (4.2.18) is too large, such 

that the errors in the mass balance, IFil, do not decrease as the 

Iteration process procedes, or such that the iteration procedure 

produces an erratic V distribution which can cause problems with the 

ordinary differential equation solver. Also, if w Is too large then 

the Iteration procedure often may not converge within a reasonable 

number, say 200, iterations. If w was given a maximum value as 

indicated In § 4.2.3 then a solution was found in all tried cases. If 

co is reduced then the reliability will be increased, although more 

Iterations will be required. 

Method 2 requires two Initial values of V at x- xe+dxe, one 

producing V> Vs, the other V< Vs at x-1. The method of bisection 

is then used until aV at xe+dxe Is obtained which produces V- Vs (to 

within a specified accuracy) at x-1. If however axe is too small, 

then to machine accuracy, the bisection method will eventually produce 

an unchanging V at xe+Ixe, but still either V> Vs or V< Vs at x- 

1. This indicates that equations (3.7.19) and (4.2.20) are very 

sensitive to their initial conditions, i. e. small changes in bs and V 

at xe+Axe produce relatively large changes in bs and V at x-1. As 

stated in § 4.2.4, however, the method should succeed provided Axe is 

given a value no less than 0.005. 

Ideally it should be possible to choose small enough or large 

enough values of the parameters shown in tables 1 and 2 such that 

methods 1 and 2 predict exactly the same value for Cm. 

Tables 4.1(a)-(c) show that method 1 is very insensitive to the 

precise values of T,, N and xi-xe, which indicates that the moment 
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coefficient should not change from 3.84 x 10-3 even if T, and x1-xe 

were reduced further or if N was increased further. Table 4.2(a) 

shows, however, that method 2 is more sensitive to the precise value 

of axe and it was found that a solution could not be obtained for axe 

< 0.0017 for any value of T2 ((0.1). Thus the value of Cm - 3.81 x 

10-3 (which differs from the above value for method 1) may not be the 

correct unchanging value. 

A comparison of the moment coefficient predicted by both methods 

using the chosen values for T,, N, x, -xe, T2, Axe stated in the 

previous section is shown in Table 4.3. The table shows that a very 

good agreement is obtained between the methods with the relative error 

always being less than 2%. Figure 4.2 shows graphs of V predicted by 

the two methods for two throughflow rates. Both graphs show a good 

agreement which explains the close agreement between the moment 

coefficient predictions. What is noticable in Figure 4.2 is that the 

V distribution predicted by method 2 has a physically unrealistic jump 

when transferring from the source region to the core region; this jump 

causes the library routine to produce a larger error when integrating 

the Cm equation (4.2.11) than the error produced by method 1. 

Clearly, the differences between the two methods in terms of 

efficiency, reliability and accuracy are not great, and it is not 

immediately apparent which method is superior. However, if a choice 

between the two methods was required then Method 1 would seem to be 

preferable for the following reasons. 

(i) Method*2 is more sensitive to the parameter dxe than method 1 is 

to all its relevant parameters shown in Tables 4.1(a)-(c). 

(ii) The jump in the V distribution predicted by method 2 tends to 
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cause a greater error in evaluating Cm than the other V 

distribution predicted by method 1. 

Of relevance here is a comparison of the performance of the 

preferred method 1 calculation procedure with that of Chew (1989). 

Chew solved the equations governing the flow in a rotor-stator disc 

system and his equations may be obtained by putting X- 90* in 

equations (3.7.19), (4.2.4), (4.2.5) and (4.2.6). For the core region 

calculation, Chew again discretised the region into N radial locations 

but he assumed a linear variation of V between these points rather 

than fitting a curve through these points as in the present method. 

He found that 'Lt was required to take N- 40 for grid independent 

solutions which is far greater than the required value found here (see 

Table 4.1(b)). Chew solved the system of equations (4.2.16) using a 

library routine for the solution of a system of simultaneous 

non-linear equations. Assuming this solver to be similar to the one 

used in the first attempted scheme described in the method 1 

calculation here, it may be concluded that the present method of 

solution using the simple iterative scheme (equation (4.2.18)) and 

using cubic splines to interpolate V(xi), results in a considerable 

saving in processing time. A comparison of the moment coefficient 

predicted by the present method with the moment coefficient predicted 

by Chew (1988) will be made in § 4.6. 

4.4 THE EFFECT OF THE TERMS CONTAINING tanX 

The terms containing tanX in equations (3.7.19), (4.2.4) and 

(4.2.5) complicate the equations considerably and so it would be 
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desirable to neglect them. This section is concerned with determining 

whether or not their neglect is. justified and this is achieved by 

assessing the effect of the terms on the solutions to the equations. 

From the analysis of § 3.3, the terms containing tanX are expected to 

have an effect when b=r (or bs =r for the stator) and this is most 

likely to occur when both a and X are small. The effect of the tanX 

terms on the solutions to the equations will therefore be assessed by 

comparing the solutions as X decreases for various values of the ratio 

(a/b). The equations governing the flow over the rotor, i. e. 

equations (4.2.4) and (4.2.5), and the equation governing the flow 

over the stator, i. e. equation (3.7.19) will be examined separately 

and so the present section will now be divided into the two 

appropriate sub-sections, with a further sub-section added for a 

discussion. 

(i) Rotor Equations 

The constant a appears in equation (4.2.4) as a result of an 

application of the mean value theorem to one of the terms in the 

boundary layer equations. The constant a may take any value between 0 

and 1 and the solutions to equations (4.2.4) and (4.2.5) when a-0 

and a-1 is shown in Figure 4.3. The results show that a has no 

noticable effect on blx (a'2) except when Xa 1*. It was found that a 

had even less effect on the solution for Y, and so it was concluded 

that a may be set to zero for all subsequent problems. 

The effect varying X has on the solutions to equations (4.2.4) 

and (4.2.5) is shown in Figures 4.4(a)-(c) and Figure 4.5. In 

Figures 4.4, V is set to zero and the ratio of the inner to outer 

radius, a/b, is varied between 0.001 and 0.75. The three graphs show 

that the tanX terms only have an appreciable affect on the solution 
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when X is less than about 15'. The graphs also show that the 

discrepancies are fairly independent of a/b. In Figure 4.5, a/b is 

set to 0.001 and V Is set to 0.42 which Is the approximate value which 

may be expected for a rotor-stator disc case without throughflow. 

Again the graphs show that the tanX terms only have an appreciable 

effect when X is less than about 15'. 

(11) Stator EQuation 

The effect of varying X on the solutions to equation (3.7.19) is 

shown in Figures 4.6(a) and (b). The V distributions chosen were 

fairly typical for a zero throughflow case and for a case where Cq has 

a value of about 3000 in which cases bs at x-1 Is set at 0.1, a 

typical value. As is consistent with the results from the rotor 

equations, the graphs show that the tanX terms only have an 

appreciable effect when X is less than about 15'. 

(iii) Discussion 

Figures 4.4,4.5 and 4.6 suggest that the tanX terms may be 

omitted from the case (ii) integrated boundary layer equations (thus 

reducing them to the case (1) equations) without noticably effecting 

the solutions unless X is as small as about 10'. In chapter 6, the 

experimental results will be discussed which provide evidence that for 

X< 45% the secondary flow pattern may change and it may no longer be 

amenable to the integral method treatment. If this experimental 

evidence is correct then there is certainly no point in considering 

rotor-stator' equations with X as small as 10*. It may be concluded 

that the extra tanX terms present In the case (ii) equations may be 

omitted in all rotor-stator cases where the equations and method are 

expected to be valid. 
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4.5 ASYMPTOTIC SOLUTIONS 

As stated in § 4.2, the idealised initial conditions for the 

solution of equations (4.2.4) and (4.2.5) are that both Y, and Y2 are 

zero. From equations (4.2.4) and (4.2.5) it is clear that to avoid 

numerical difficulties, Y, and Y2 cannot be zero. In § 4.2 it was 

stated that the initial values of Y, and Y2 were set at 10-10. To be 

confident that the solutions obtained for a particular problem are the 

real physical solutions, they need to be independent of the particular 

starting values. Figure 4.7 shows the effect of using four different 

starting conditions for Y, and Y2 on the solution for Y2 (-6, x). The 

graphs show some variation in the solution with the initial values 

assigned to Y, and Y2, particularly when they are assigned different 

values. In Figure 4.7, V-0 and a/b - 0.1, however, similar affects 

are observed when different values are assigned to these variables. 

In order to provide more confidence In the solutions when Y, and 

Y2 are given initial values of 10-10, in this section two methods will 

be described which involve re-formulating equations (4.2.4) and 

(4.2.5) so as to remove the singularity which occurs when Y, and Y2 

are zero. The solutions to the resulting equations for the second 

method will then be compared with the solutions to the original 

equations when Y, and Y2 are given starting values of 10-10. In both 

of these methods It is assumed that the boundary layer grows from 

x- a/b in a similar way to a boundary layer growing over a free 

rotating cone from x- a/b (see Appendix B for the special case 

a/b - 0), so that dY, /dx and dY2/dx are infinite at x- a/b. 

The first method Is to set Y, and Y2 at x- a/b to zero and to 

simply approximate dY, /dx and dY2/dx with a very large positive number 

at x- a/b. The method does not work as the solutions are strongly 

84 



dependent on the approximation to dY, /dx and dY2/dx and on the precise 

distance from x- a/b over which the approximation is used. 

Effectively, all this method does is to replace a guess of Yj and Y2 

with a guess of dY, /dx and dY2/dx at x- a/b. 

The second method involves a change of variables such that the 

assumed singularity in dY, /dx and dY2/dx at x- a/b is removed. The 

method was motivated by the work of Rogers (1988) who applied a 

similar method to obtain an approximate solution for the stator in a 

rotor-stator disc system. The variables Y, and Y2 are re-written in 

the following forms: 

Y2 - s(2F2(E) 1 (4.5.1) 

where 0<Z, < 1,0 <Z2<1 and e-x- a/b. 

As x -' a/b, we assume that F, and F2 have the following asymptotic 

expansions 

FI(e) - ao + a, e + a2e2 + ... , (4.5.2) 

F2(E) - bo + b1e + b2e2 + ... ý 
(4.5.3) 

where ao, a1,... and bo, b,,... are constants. 

Equations (4.5.1) ensure that Y, and Y2 are zero at x- a/b and that 

dY, /dx and dY2/dx are infinite at x- a/b. In the source region, V(x) 

takes the form of equation (4.2.12) which may be written, as x9 a/b, 

as 

V-ýO fl 
-2eb+,., 

] 
, 

(4.5.4) 
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If equations (4.5.1) are substituted into equations (4.2.4) and 

(4.2.5) two ordinary differential equations for F, and F2 are 

obtained. The values of E. and E2 may then be obtained by comparing 

the lowest powers of a in the equations. This comparison ensures that 

all the terms in the ordinary differential equations for F, and F2 are 

finite at x- a/b (e-0). It Is found that for the case (I) equations 

(i. e. the equations formed when the tans terms are omitted in 

equations (4.2.4) and (4.2.5)), if E, - 9/10 and E2 - 2/5 then z in 

the two ordinary differential equations occured in integer powers (or 

the terms could be expanded such that a occurred in integer powers). 

For the case (ii) equations however, no values of Z, and E2 could be 

found which left only integer powers of z in the ordinary differential 

equations. The assumed asymptotic expansions (i. e. equations (4.5.2) 

and (4.5.3)) could not therefore be correct for the case (ii) 

solutions. 

Putting Eý - 9/10 and E2 - 2/5 and substituting equations 

(4.5.1) into the case (I) boundary layer equations gives 

lOlffe(E+a/b)FIF2 aX, - 5Iffe(e+a/b)F, 2 ý 

51ffeF, 2F2 - 71ff(e+a/b)F12F2 - 5(e+a/b)4F, 3[2Igso(a-1) - Igg(1-O)2] 

- 0.1125(e+a/b)5/4F, [(e+a/b)4F22(1-o)2 + eF, 2]3/8 (4.5.5) 

and 

lOIfge(e+a/b)(1-V)F, F2 
aX, 

- -F12F2Ifg[9(e+a/b)(1-V)+20e] 

+ 0.225(e+a/b)5/4(1-ýo)F, [(e+a/b)4F22(1-(p)2 + eF, 2]3/8 (4.5.6) 
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From equations (4.5.2) and (4.5.3), 

lim F, = ao lim dF, 
ý sý0 9 eý0 dx aý 

lim F, - bo lim dF, 
-b 

£--)0 e-+0 dx l (4.5.7) 

If equations (4.5.2) and (4.5.3) are substituted into equations 

(4.5.5) and (4.5.6), then the coefficients of powers of a may be 

equated to find the values of a0, a,, bo and b,. If coefficients of e° 

are equated in equations (4.5.5) and (4.5.6) the following 

relationships are obtained: 

10.033338[b] 17/e(1-9)3/4[Igg(1-9)2 
-2Ig(p (ýp-1)J'/e 4/5 

ao ý Ifg(14Iff+91fg)1 8 (4.5.8) 

and 

14Iff+9Ifg 1/2 
bo = ao 

[1O[! 
J[Igg(1_w)22Ig(_1)]} 

(4.5.9) 

If coefficients of e' in equations (4.5.5) and (4.5.6) are equated, 

the following relationships are obtained: 

a1 - 
CE-FB 
AE-DB 

(4.5.10) 

and 

DC-FA 
BD-AE (4.5.11) 

87 



where 
ral 

A- 17 Iff [bja 
obo + 0.1125[t] 

1 /4bo 
3/4 (1 9) 3/4 

(( 4 

B- 21 ffRbl ao2 + 151bl bo2I2lgýp(q-1)-Igg(1-SO) 2] 

+ 0.0844ýbJ11/4\1-ý)3ý4 ba4 0 

C- -21 ff( 
b]ao3bo + 20 r 1b) 

3 bo3[218p+18S(1-So)] 

0.0422ao[ao+[b) 
3bo24sP(2ýo-1)+4(bra-I , 

3bo2(1-so) 
2l 

[bo(1-So) [äl1 5a 

D- 28I f8lbjaobo - 0.2251b111/4bo3/4(1-ý0) 3/4 

( (a 1 1/4 a 
E- 9lf8b l ýao2 

- 0.1688(b) (1-`P)3/4 b0 1/4 " 

9 

jr l3 
20 

0.0844ao[aoýb, boZ4(So(2tio-1)+(1-ý)2), 
F- -Ipgao2bo[9 + (1-V+ (a 574 ýbo(1-So) 

lbýI 

Given the physical variables for a particular problem, i. e. a/b 

and 9, the values of F,, F2, dF, /dx and dF2/dx at x- a/b may be 

obtained from equations (4.5.8)-(4.5.11). The values given by 

equations (4.5.10) and (4.5.11) were given to dF, /dx and dF2/dx only 

at the precise point (to machine accuracy) where x- a/b. 

A comparison was made between 61x predicted by equations (4.5.5) 
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and (4.5.6) along with equations (4.5.8)-(4.5.11) and b, x predicted by 

equations (4.2.4) and (4.2.5) with Y, and Y2 given initial values of 

10-10 for various values of the parameters a/b and (p. As expected, 

the values of 61x were identical for each case tried, except when a/b 

was very small, when as shown in Figure 4.8, the present solution 

gives a smoother curve at the start of the calculation. 

This section presents an alternative solution method for the 

rotor equations in the source region and appears to overcome the 

indeterminacy in the initial conditions. The method is only applicable 

to the case (i) equations, but could perhaps be extended to the case 

(ii) equations if the change of variables in equations (4.5.1) are 

re-defined or the expansions of F, and F2 In equations (4.5.2) and 

(4.5.3) are altered. From a practical point of view, there is perhaps 

little to be gained by adopting the procedure in this section; Its 

main purposes is to check the previously obtained solutions. 

4.6 RESULTS 

4.6.1 Comparision with Experiment 

In this section the moment coefficient predicted by the integral 

method will be compared with available experimental data. In the 

source region of the flow, which will exist when there is a 

throughflow, equations (4.2.4) and (4.2.5) will be solved for the flow 

on the rotor along with equation (4.2.12) for V. In the core region, 

equations (4: 2.4) and (4.2.5) will be solved on the rotor and equation 

(3.7.19) will be solved on the stator; method 1 described in § 4.2.3 

will be used to couple these solutions. 

The sources of experimental data used In this section may be 
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divided into those applicable for rotor-stator disc flows only (i. e. 

the special case of a cone when X- 90') and those applicable to 

rotor-stator cone systems. For rotor-stator disc systems, the data of 

Daily and Nece (1960), Daily et al (1964) and Yamada and Ito (1975) 

are used; and for rotor-stator cone systems, to the authors knowledge, 

the only known experimental data concerning moment coefficient 

calculations is that of Yamada and Ito (1975) and (1979). In all 

cases the authors report to measure (or calculate indirectly) the 

moment coefficient experienced by one side of the rotor only. 

Daily and Nece (1960) investigated the flow in a rotor-stator 

disc system without throughflow in both the laminar and turbulent flow 

regimes. For the types of flow investigated theoretically by the 

integral method In this chapter (i. e. two separated, fully turbulent 

boundary layers), Daily and Nece obtained the following empirical 

formula from their data 

Ree0"2 Cm - 0.051(d/b)c"1,0.06 < d/b < 0.2 
. 

(4.6.1) 

Daily et al (1964) investigated the flow in a rotor stator disc system 

with throughflow and obtained the following empirical formula from 

their data 

Cm - 
[8 

. 
75 

Cq 
Ree 0.8 + 1, Cmo, 0< 

Cq 
< 0.06,0.0138 < d/b < 0.1241. 

B 

(4.6.2) 

where Cmo is the moment coefficient for a zero throughflow case. 

Yamada and Ito (1975) correlated their data for the moment coefficient 

In a rotor-stator disc system with no throughflow and for fully 

turbulent, separated boundary layers obtained the following empirical 

formula 
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Repu"2 Cm - 0.050(d/b)1/14,0.016 < d/b < 0.24 . (4.6.3) 

For rotor-stator cone systems with and without throughflow, 

Yamada and Ito (1975) and (1979) did not give a correlation for the 

moment coefficient, and so the data used in this section are read from 

their graphs. The moment coefficient is a difficult quantity to 

measure experimentally, and a relative error between theory and 

experiment of less than 5% will be referred to as a very good fit, and 

a relative error of less than 10% but greater than 5% will be referred 

to as a reasonable fit. 

Figures 4.9(a) and (b) compare the moment coefficient for a 

rotor-stator disc system with zero throughflow with equations (4.6.1) 

and (4.6.3). The factor Re002 is multiplied by Cm in these graphs, 

since from equation (4.2.11) this quantity is independent of Reynolds 

number. (Equations (4.2.4) and (4.2.5) are also independent of 

Reynolds number when X- 90*). The maximum relative error in Figures 

4.9(a) and (b) occurs at the top end of the (d/b) range and is 1.4% 

and 5.9% respectively. Over most of the (d/b) range, the comparison 

with Daily and Nece and Yamada and Ito is excellent. 

Figure 4.9(c) compares the moment coefficient for a rotor-stator 

disc system with a specified throughflow rate with equation (4.6.2), 

where Cm. Is given by the present theoretical work, so that the trends 

produced by Increasing the flow rate may be compared. The factor 

Re00 8 appears multiplied by Cq, since equation (4.2.6) Is then 

Independent of Reynolds number (when X-90°). The graphs are in 

excellent agreement, for example the largest error is about 5% when ý0 

- 0.99. Two values of the inlet swirl, V, are assumed since it is 

unclear from Daily et al's (1964) paper which Is appropriate. In 

their experiment, there was an axial inlet at the base of the stator, 
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whereas the present integral method assumes a uniform radial inlet. 

At higher values of CgRe00 8, this difference in inlet conditions may 

affect the moment coefficient, since some of the Inlet air may not 

influence the rotor which would have the effect of reducing the moment 

coefficient. Also shown in Figures 4.9(a) and 4.9(c) are graphs of 

data taken from Chew (1988), which as expected show a very close 

agreement with the present results. 

Figures 4.10-4.12 shows comparisons of the predicted moment 

coefficient with the data of Yamada and Ito (1975,1979) for various 

cone angles and flow parameters. Note that finite difference results 

are also shown in some of these figures, which will be referred to 

later in chapter 6. Figures 4.10(a)-(f) show the variation of the 

moment coefficient with cone angle for zero throughflow cases. The 

gap width parameter, d/b, decreases from 0.24 in Figure 4.10(a) to 

0.008 in Figure 4.10(f). The graphs show that for d/b > 0.016 the 

agreement between the integral method and experiment is excellent for 

x> 60', with a relative error between theory and experiment always 

less than 5%. For X4 45% the agreement is generally poor, the 

relative error achieving a minimum value of 5% for X- 45' and d/b - 

0.08. When d/b is as small as 0.008, Figure 4.10(f) shows a poor 

agreement for all values of X with a minimum relative error of 17%. 

Figures 4.11(a)-(c) show the variation of moment coefficient 

with Reynolds number for three different cone angles (90', 60' and 

30*) for d/b - 0.08. Figure 4.11(a) shows a good agreement between 

the integral method and experiment in the 90' case for Re >2x 105 

with the relative error being less than 8%. Figure 4.11(b) shows 

excellent agreement between the integral method and experiment in the 

60* case for Re > 105 with the error always being less than 5%. 

Figure 4.11(c) shows that the agreement between the Integral method 
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and experiment is poor for all values of Reynolds number for a cone 

angle of 30% with a relative error being greater than 13% at each 

point. 

Figures 4.12(a)-(e) show the variation of moment coefficient 

with the throughflow rate parameter, Cq, for cone angles of 45% 30* 

and 15'. The agreement between the integral method and experiment is 

poor but the agreement generally improves as the throughflow rate is 

increased. For example in Figure 4.12(c) the relative error at Cq -0 

is 12% and at Cq - 8000 it is 5% and in Figure 4.12(e) the relative 

error at Cq -0 Is 11% and at Cq - 10000 it is 2%. 

4.6.2 Discussion 

Figures 4.10(a)-(e) show an excellent agreement between the 

predictions of the integral method and the experimental data for 

x> 60% but a poor agreement for X< 45% From visual flow studies 

and examination of data trends, Yamada and Ito (1975) report that when 

X> 60' any secondary flows present will always be of the large scale 

(disc-type) such as assumed by the integral method and shown in Figure 

3.2. The same visual flow studies and examination of data trends led 

Yamada and Ito (1975) to report that when X< 45% the secondary flow 

may consist of both disc-type flow and 'Taylor-type' vortices similar 

to those which are known to occur under certain conditions in a 

rotor-stator cylinder system. A complete discussion of this 

phenomenon will be given In § 6.4, but it may be noted that Yamada and 

Ito (1975) report the presence of Taylor-type vortices in the flow 

result in an increase in the moment coefficient. The occurence of 

secondary flows other than the disc-type flow would explain the poor 
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agreement between theory and experiment for X< 45'. Another possible 

reason for the poor agreement for X< 45* is that the assumed velocity 

profiles, i. e. equations (3.4.16) may not be valid for small cone 

angles. This possibility will be Investigated using the finite 

difference results in §7.2.4. Figure 4.10(f) shows a poor agreement 

between theory and experiment for all values of X. Since the present 

Integral method assumes the rotor and stator boundary layers to be 

separated by a rotating core, this Is consistent with the findings of 

Yamada and Ito (1975) who found that for a rotor stator disc system 

the boundary layers on the rotor and stator may be considered 

turbulent and merged for d/b - 0.008 if Re > 2.75 x 105. 

The poor agreement between theory and experiment shown in Figure 

4.11(c) for all Reynolds numbers at X- 30' Is to be expected 

considering the above discussion. Figure 4.11(a) shows a good 

agreement between theory and experiment for Re >2x 105 and Figure 

4.11(b) shows good agreement for Re > 105. The improved agreement at 

the lower Reynolds number for the smaller cone angle could be due to 

the flow becoming turbulent at "lower values of Re as the cone angle is 

reduced. This was the conclusion of Kreith et al (1963) who studied 

the transition Reynolds numbers for free-rotating cones of various 

vertex angles. This phenomenon has not been studied in rotor-stator 

systems but the above conclusion is given further evidence In § 6.4. 

Figures 4.12(a)-(e) show that the agreement between theory and 

experiment generally improves as the throughflow rate is increased. 

This may be explained by the findings of Yamada and Ito (1979) who 

found that if for a particular case with zero throughflow, Taylor-type 

vortices would be expected in the secondary flow, then the application 

of a throughflow suppresses the formation of the vortices. 

The results have indicated that the present integral method Is 
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adequate to predict the flows occuring In rotor-stator cone systems 

when the cone angle, X, is greater than or equal to 60% Figures 

4.10(a)-(e) show that the experimental trend of moment coefficient 

with cone angle is very similar to the Integral method trend for X> 

60*; this Is to be expected since Yamada and Ito (1975) report the 

secondary flow to be similar to the assumed disc-type in these cases. 

For cone angles less than 60% the experimental trends change and the 

moment coefficient begins to increase as X decreases. This trend 

change is indicative of a change of flow pattern and it Is hoped that 

the finite difference program which will be described in chapter 6 

will detect such changes. In theory, the finite difference program 

has the advantage over the Integral method of not being constrained to 

predicting disc-type secondary flows and it is hoped that its results 

will help to clarify the types of secondary flows which occur in the 

flow for small cone angles. 

4.7 SUMMARY 

In § 4.2 the methods of solution of the Integrated boundary 

layer equations governing the isothermal flow between a rotating and a 

stationary cone were described. The preferred method of solution is 

the core region results In a considerable saving In processing time 

when compared with the solution method of Chew (1989). 

In § 4.4 It was shown that the extra terms containing tanX In 

the case (ii) equations had no appreciable effect on the solutions to 

the equations for values of X where the flows would be expected to be 

amenable to the integral method. It was therefore concluded that 

these terms may be omitted from the equations reducing them to the far 
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simpler case (i) equations. 

In § 4.5 the rotor equations were re-formulated so as to avoid 

the problem of the indeterminacy of the Initial conditions. The 

solutions to the resulting equations were found to be Identical to the 

original solutions confirming that the latter were sufficiently 

insensitive to their initial conditions. 

In § 4.6 the present Integral method was shown to give excellent 

predictions for the moment coefficient compared with the available 

experimental data provided X> 60% A possible reason for the poor 

agreement for values of X less than this Is thought to be the 

occurence of Taylor-type vortices in the secondary flow, which will be 

discussed in more detail in §6.4. 
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CHAPTER 5 

AN INTEGRAL METHOD FOR THE PREDICTION OF HEAT TRANSFER 

5.1 INTRODUCTION 

The objective of the method described in this chapter is the 

prediction of the heat transfer rate between either the rotor or the 

stator and the surrounding fluid in a rotor-stator cone system. For 

fully turbulent flow in the cavity between a rotating and a stationary 

cone as shown in Figure 3.2, this quantity may be found from the 

relation 

9o(s) _-L ke(s, n) 
E)T(s, n) I 

n=o 
(5.1.1) 

where ke(s, n) Is the effective thermal conductivity, T(s, n) Is the 

mean temperature and the co-ordinate system shown in Figure 3.1 Is 

employed. 

It is common to express the heat transfer rate in terms of the 

Nusselt number, Nu, which Is a non-dimensional measure of the ratio of 

heat transferred by conduction to heat transferred by convection. It 

is defined here as 

Nu(s) - 
rn(s)9n(s) 

MT (s) 
(5.1.2) 

where k is the laminar thermal conductivity and AT(s) is a temperature 

difference. AT(s) Is usually defined as the difference between either 
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the surface temperature and the temperature at the boundary layer edge 

or the surface temperature and the adiabatic surface temperature. 

To calculate the Nusselt number directly using equation (5.1.1), 

the fluid temperature gradient at the solid boundary is required. It 

is not possible to predict this gradient using the integral method, 

and this chapter is concerned with finding an expression which can 

replace the right hand side of equation (5.1.1) with one which 

contains quantities which the integral method can predict. This is 

achieved by using the Reynolds analogy which was first published by 

Osborne Reynolds in 1874 and concerns the equivalence of the 

mechanisms of momentum and heat transfer in fluid flows. Previous 

authors (for example Dorfman (1963)) have used the Reynolds analogy to 

calculate the heat transfer from a free-rotating disc directly using 

the analytical solutions shown in Appendix B. This approach has been 

extended to rotor-stator disc flow systems In which there Is a very 

high throughflow rate (see for example Kapinos (1965) and Owen 

(1971)). In such flows the source region will fill the entire cavity, 

so that the re-circulating core region will not exist, thus enabling 

considerable simplifications of the heat transfer method to be made. 

The Reynolds analogy approach has also been used by Chew and Rogers 

(1988) to calculate heat transfer in co-rotating disc systems. 

In §5.2 the boundary layer energy equation valid in either the 

rotor or stator boundary layer of a conical rotor-stator system is 

derived and integrated across the boundary layer. A review of 

previous authors' modifications and extensions of the Reynolds analogy 

is carried out in §5.3 which leads to the derivation of an expression 

for q0 in equation (5.1.1). The review attempts to explain the 

extensions in a rational order and the analysis Involved, is quite 

detailed since many of the derivations of are complicated and previous 
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authors do not clarify many of the assumptions. In an attempt to 

assist in the reading of this chapter, some of the more tedious, 

although not trivial derivations are written in appendices. The 

novelty of the analysis in §5.3 is the derivation of equations which 

are valid in either the rotor or stator boundary layer of a 

rotor-stator cone system. In §5.4 a method of incorporating the 

energy equations into the integral method is described. In 

implementing the method described in §5.4, difficulties were 

encountered in obtaining numerical solutions to the stator energy 

equation. These difficulties were found to be caused by the 

sensitivity of the solutions to their initial conditions; an insight 

into the likely reasons for this sensitivity Is provided in §5.5. The 

predictive capability of the heat transfer method is then assessed In 

§5.6 by comparing predicted Nusselt number calculations with available 

experimental data and results predicted by the finite difference 

method which will be described in chapter 6. 

5.2 DERIVATION AND INTEGRATION OF THE BOUNDARY LAYER ENERGY EQUATION 

For steady, axisymmetric and fully turbulent flow, the Reynolds 

averaged equation describing conservation of energy may be written in 

terms of the fixed (s, O, n) co-ordinate system shown in Figure 3.1 as 

ýa 1a ýa aT11 Ia( aTl 

r cTs 
(pruH) +r dn(prwH) r c'Ts 

ýrke 
c'3sJ 

+r ýn lrke 7n] 

+rý [r(urss+vrse+wrns)] +r 
ýn 

[r(ursn+vrng+wrnn)] 

(5.2.1) 
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where the fluid is assumed to be a perfect gas and the stagnation 

enthalpy H is defined as 

H-C, T + J(u2+v2+w2) 

Cp is the specific heat at constant pressure. 

(5.2.2) 

By analogy with the assumption of the formation of a momentum 

boundary layer over a conical surfaced described in §3.3, a thermal 

boundary layer is also expected to form over such surfaces. The 

thermal boundary layer is the region near to the rotor or stator 

surface which is affected by the surface temperature. Within the 

thermal boundary layer, there will be a very steep temperature 

gradient normal to the wall and the thermal boundary layer thickness, 

8T, may be defined as the distance from the wall to the point where 

the temperature is within a certain percentage of the external 

temperature. Thus within the thermal boundary layer it is assumed that 

aT 
" 

aT 
Un Ts- 

(5.2.3) 

The case (1) boundary layer arguments of §3.3 may be applied to 

equation (5.2.1) and in addition to the scales listed in equations 

(3.3.3), a scale NT is introduced for the normal derivatives of 

temperature such that 

n- NTn' , 
(5.2.4) 

where n' is dimensionless and NT represents a distance over which the 

temperature changes significantly in the normal direction. It Is 

assumed that NT'-ST. From equation (5.2.2), H may be scaled using CpT 
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or v2 depending on which is the larger; but for generality it is 

assumed that CpT is of the same order as v2. 

The relative sizes of the thermal and momentum boundary layer 

thicknesses, i. e. 6T and 6, can be estimated from a comparison of the 

convective terms on the left hand side of equation (5.2.1) with the 

second conductive term on the right hand side. For these terms to 

have an equal order of magnitude, the following relationship is 

required 

bT 1 
I (5.2.5) - ti 

a Jý 

where Pr* is a characteristic Prandtl number for the flow defined as 

ti 
it C 

Prý - ---p (5.2.6) 

where µ and k have the dimensions and magnitudes of a typical 

viscosity and thermal conductivity within the boundary layer 

respectively. The experimental data quoted by Schlichting (1968) may be 

used to estimate the size of Pr*. The laminar Prandtl number, Pr, 

defined as Pr - 1, Cp/k depends only on the properties of the fluid and 

for air this quantity is fairly independent of temperature. The 

turbulent Prandtl number, Prt, defined as Prt - ptCp/kt is more 

difficult to measure and will vary with position. According to 

Schlichting (1968), Pr for air may vary between 0.71 at O'C to 0.72 at 

300*C whereas Prt may typically vary between 0.9 near to a solid wall 

to 0.5 away from the wall (Prt is often given the approximate value of 

one). Using the above figures to approximate values for Pr and Prt a 

direct estimate of Pr* from equation (5.2.6) is not possible. However, 
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from the above figures it is reasonable to assume that Pr* Is of order 

of magnitude unity, and so 6 and bT will be of the same order of 

magnitude. As an approximation it will further be assumed that 6T - 8- 

The energy equation (5.2.1) may now be simplified in a similar 

way to the momentum equations in §3.3. The Reynolds number, Re*, is 

defined as in equation (3.3.10) and if terms of order of magnitude 

unity are neglected when compared with terms of order of magnitude Re* 

in equation (5.2.1), the following boundary layer version of the 

energy equation is obtained 

rý 
(pruH) + -r-än(prwH) °-r 

an 
[r(q-ursn vrn6)I, (5.2.7) 

where 

Q= 4(s, n) - -ke(s, n) 
ýn(s'n) 

. (5.2.8) 

In integrating equation (5.2.7) across the boundary layer, the 

same u(s, n) velocity profiles are assumed as in chapter 3, 

i. e. equation (3.4.14) for the rotor and equation (3-. 7.5) for the 

stator. The following more general enthalpy profile is assumed for H 

In the boundary layer on the rotor 

H(n, s) - Ho(s) - [H0(s)-N(s)Jh(n, s) (5.2.9) 

where h(n, s) satisfies h(O, s) a0 and h(l, s) - 1. 

The assumed enthalpy profile for the stator boundary layer is 

similar to that for the rotor given by equation (5.2.9) except that 

h(n, s) is replaced by hs(ns, s). When integrating equation (5.2.7) 

across the boundary layer, the variation of r with n is neglected as 
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in the case (1) boundary layer assumptions of §3.3. Equation (5.2.7) 

may be integrated across the boundary layer to obtain the following 

equation for the rotor 

Es [pusbsina(Holf-(Ho-H)Ifh)] -H ds [puSsIfsinX] 

- s(sinX)(9o-vOTe, o) . 

where 

I 
I fh(s) - f(i1)h(71, s)dq 

0 

(5.2.10) 

(5.2.11) 

An equation similar to equation (5.2.10) may also be obtained for the 

stator. The following section is concerned with estimating qo(s) and 

qö(s) so that equation (5.2.10) (together with the corresponding 

equation for the stator) may be incorporated into the integral method 

described in chapters 3 and 4. 

5.3 REVIEW OF THE REYNOLDS ANALOGY APPROACH 

5.3.1 The Basic Reynolds Analogy 

In 1874, Reynolds published a paper in which he suggested that 

for turbulent flows, momentum and heat in a fluid are transferred in a 

similar way. The important results he obtained from this suggestion 

are summarised by von Karman (1939) and are given in this sub-section 

for completeness. 

Consider a steady, turbulent flow relative to a rectangular 

(x, y) co-ordinate system in which the Reynolds averaged flow Is one 

dimensional and parallel to the x-axis and the mean velocity, u is a 
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function of y only. A plane wall parallel to the x-axis is situated at 

y-0. The shear stress acting on an arbitrary plane perpendicular to 

the y axis may be expressed as a sum of the laminar stress and the 

Reynolds stress. If the Reynolds stress is expressed in terms of a 

turbulent viscosity, the following expression is obtained 

T(Y) - (P+kc(Y)) äY(Y) (5.3.1) 

where a and yt(y) are the laminar and turbulent viscosities 

respectively. If the temperature, T, of the fluid Is also a function 

of y only, then the heat flux across the same plane as above may be 

expressed as the sum of two terms in a similar form to equation 

(5.3.1). The first term of this heat flux expression consists of the 

contribution from molecular heat conduction and the second part 

consists of turbulent heat transfer due to the fluctuations of 

velocity and temperature. Hence the total heat transfer rate is given 

by 

q(y) - -(k + PCpEt(Y)) 
dy(Y) (5.3.2) 

where k is the molecular thermal conductivity and et(y) is the 

turbulent diffusivity of heat. Defining the laminar kinematic 

viscosity as v- i/p, the turbulent kinematic viscosity as 

pt(y) - pt(y)/p, and the molecular thermal diffusivity as c- k/pCp, 

equations (5.3.1) and (5.3.2) may be written as 

7p(y) - (P+Yt(Y)) 
äy-(Y) 

and 

(5.3.3) 
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4(Y) 
--- (c+ct(y)) 

dT (y) 
dy pcp 

(5.3.4) 

The anology suggested by Reynolds is that the turbulent 

diffusivities in equations (5.3.3) and (5.3.4) are equal, 

i. e. Pt(y) - et(y). This statement is equivalent to stating that the 

turbulent Prandtl number, vt/et is unity. Reynolds went further to 

say that if the laminar Prandtl number, P/c is unity, then for 

incompressible flow equations (5.3.3) and (5.3.4) may be integrated 

from the wall to an arbitrary point giving 

rY I 1 r(y')dy' 
u(y) - uo °P (P+pt(Y, )) ' 

and 

T(Y) - To -- 

0 

(5.3.5) 

(5.3.6) 

If r(y)/q(y) is Independent of y, i. e if r(y) - r0f(y) and 

q(y) - g0f(y), then it follows from equations (5.3.5) and (5.3.6) that 

(T-To) 
qo ý -CP7o (u-uo) 

which is the original result obtained by Reynolds. 

(5.3.7) 

It should be emphasised that in order to obtain equation (5.3.7) 

it has been assumed that: 

(i) r(y) and q(y) vary with y according to the same law, which can 

only be an approximation; 

0 

ry I 1 q(y')dy' 
pCp (v+vt(Y')) 
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(ii) the laminar Prandtl number is unity: Pr - P/c - 1; 

(iii) the turbulent Prandtl number is unity: Prt - Pt/et - 1" 

5.3.2 The Reynolds Analogy applied to a Rotor-Stator Cone System 

Dorfman (1963) placed the Reynolds analogy described in the 

preceeding sub-section on a firmer mathematical basis for the case of 

a free-rotating disc. He showed that If friction and compressive 

heating effects are neglected then a strong similarity exists between 

the resulting boundary layer energy equation and the tangential 

momentum equation. Dorfman's analysis has been extended to include 

the effects of friction and compressive work by Owen (1971), who 

considered rotating disc flows and by Chew (1985c) who considered 

flows over axisymmetric surfaces of small curvature. 

The work of the above authors is extended here to demonstrate 

the similarity between the boundary layer energy and tangential 

momentum equations in the rotor and stator boundary layers in a 

rotor-stator cone system. It will also be shown here that the 

similarity exists in the inviscid rotating core between the rotor and 

stator boundary layers in the core region (see Figure 3.2) so that an 

analogy (which is not strictly the Reynolds analogy but will be 

referred to as such here) may be applied to the entire cavity between 

a rotating and a stationary cone. 

Assuming steady, axisymmetric flow, the boundary layer energy 

equation (5.2.7) may be written (see appendix C) as 

aH aH a (ke aHl 
p[u c's 

+w ý-ý ° c'n lCp c'-nJ 
(5.3.8) 
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where it has been assumed that the effective Prandtl number (defined 

as Pre - µeCp/ke) is unity. If the effects of friction and 

compressive work in the boundary layer energy equation are neglected, 

then equation (5.2.4) may be written (see appendix C) as 

aT äTl a ((ke aTll 
p 

[uý+wa-a 
-an lCP ýJ (5.3.9) 

The boundary layer tangential momentum equation (3.3.19) may be 

written as 

p 
[u ý+ 

w 
ý+ uv 

r sinX 
,- 

Ua n 
[Fe 

ýý , (5.3.10) 

In the rotating core between the rotor and stator boundary layers it 

is assumed that viscous effects are negligible (see §3.3), so that the 

right hand sides of equations (5.3.8)-(5.3.10) may be set to zero. 

If the following non-dimensional variables are introduced: 

AL crv i-ºref 
'N 

H-Href 
ý. Href (5.3.11) ýý rib2 ' 'vT Tref ' 

where c is an arbitrary constant, Tref is a constant reference 

temperature and Href is a constant reference enthalpy (-CpTref), then 

for an effective Prandtl number of unity, equations (5.3.8)-(5.3.10) 

may be represented by the common equation 

ae le a( aell [u 
ýs +w° rAe 

c'ýnJ ' (5.3.12) 

where 8 represents either ltv, (ýT or (DH- In the inviscid core, the 
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boundary layer energy and tangential momentum equations may similarly 

be represented by the common equation 

äe ae 
p 

[uý+wý) 
=0 . (5.3.13) 

In both the boundary layers and the inviscid rotating core, the 

equations for 4'v, fiT and 4H are thus Identical and If the boundary 

conditions are the same then the solutions for (tv, (DT and (DH will be 

identical. If friction and compressive work are neglected then 

Identical boundary conditions may be obtained by equating &v and (DT. 

This requires that the rotor and stator surface temperatures satisfy 

z 
rotor: To a Tref [1+ 

c[b, 
, 

I (5.3.14) 

stator: Tos - Tref " (5.3.15) 

At the edge of either the rotor or stator boundary layers, assuming 

V(s) - Vs(s), the boundary conditions will be identical if the 

temperature satisfies 

crV Ta Tref [1 + flb2] (5.3.16) 

If the effects of friction and compressive work are included, then 

identical boundary conditions may be obtained by equating 4)v and 1H. 

This requires that the enthalpy satisfies 

Ho - Href [1 +c 1b) ý1 
' (5.3.17) 
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Hos - Href , 

H' Href [1 + cf2b2 
J 

(5.3.18) 

(5.3.19) 

If the Reynolds analogy is applied in the rotor and stator 

boundary layers, then the boundary layer edge conditions (equations 

(5.3.16) or (5.3.19)) need to be satisfied. It may be noted that if 

the Reynolds analogy is applied throughout the entire cavity between 

the rotor and stator, then these boundary conditions need not be 

satisfied. However, to apply the Reynolds analogy throughout the 

entire cavity equation (5.3.12) or equation (5.3.13) will need to be 

valid in the region adjacent to the outer shroud and at the inlet. If 

it is assumed that a boundary layer forms over the outer shroud, then 

an equation similar to (5.3.12) will be valid in this region and the 

required boundary conditions on the surface of the shroud will be 

similar to those for the rotor or stator depending on whether the 

shroud is rotating or stationary. In the source region, the flow 

external to the rotor boundary layer Is assumed to be inviscid (see 

§3.5), so that the inviscid equations (5.3.13) will describe the 

flow. At the inlet, the tangential velocity V is prescribed, so that 

the required boundary conditions for T and H may be obtained from 

equation (5.3.16) or equation (5.3.19). 

Clearly, the application of the Reynolds analogy throughout the 

entire cavity or just in the rotor and stator boundary layers requires 

very restrictive temperature or enthalpy boundary conditions, and this 

illustrates one obvious weakness In trying to use the Reynolds analogy 

in more general conditions. Using the equality of (bv and 'tT or C1H the 

surface heat flux on either the rotor or stator may be calculated from 

equations (5.3.11). If friction and compressive work are neglected 
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the heat transfer rates will be 

rotor: qo -- (vCp7 0-) 
(To-T) 

0 

S 

stator: qö - 
C- I (Tos-TS) 

(5.3.20) 

(5.3.21) 

If the effects of friction and compressive work are included, the heat 

transfer rates will be 

rotor: go -- (ýroeý) (5.3.22) 
p 

stator: qos - CP vs_o 
[(Tos-Ts) 

- 
(2C)2ý 

,P (5.3.23) 

where 

U2 - U2 + (V-v0)2 + W2 (4.3.24) 

" In this sub-section it has been shown that the surface heat 

fluxes on both the rotor and stator may be calculated from equations 

(5.3.20)-(5.3.23) provided the following conditions are satisfied: 

(1) The boundary layer assumptions leading to the case (1) equations 

of §3.3 are valid. 

(ii) The rotor surface temperature varies quadratically with radius 

(see equations (5.3.14) and (5.3.17)) and the stator surface 

temperature is constant (see equations (5.3.15) and (5.3.18)). 

(iii) If the Reynolds analogy is applied across the boundary layers 
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only, then the boundary layer edge temperature distribution 

(equation (5.3.16) or (5.3.19)) must also be satisfied. 

(iv) The effective Prandtl number is unity. 

In the next three sub-sections, the effects of relaxing 

conditions (ii) and (iv) on the Reynolds analogy will be discussed. 

This involves extending previous authors' work so that it applies to 

either the rotor or stator boundary layer in rotor-stator cone 

systems. The effect of relaxing condition (iii), Is not considered 

here and so the resulting expression for the surface heat flux which 

will be given In equation (5.3.54) can only be an approximation when 

used in rotor-stator systems. 

5.3.3 Extension to include a Non-unity Laminar Prandtl. Number 

In this section a factor Is Incorporated into the surface heat 

flux expressions to account for a non-unity laminar Prandtl number, 

although the turbulent Prandtl number is still assumed to be unity in 

this sub-section. The analysis follows that of Dorfman (1963) who 

extended his unity Prandtl number work described In §5.3.2. Dorfman's 

analysis is based on the boundary layer flow over a free rotating disc 

when the effects of friction and compressive work on heat transfer are 

neglected. His work Is extended here to boundary layer flows over 

both a rotating and a stationay cone with an arbitrary tangential 

velocity at the boundary layer edge. The analysis is explained in a 

fairly detailed manner, as Dorfman omitted many of -his assumptions 

which consequently made some of his work confusing. 
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The approach used here is to find a relationship between the 

tangential velocity profile and the temperature profile so that the 

surface heat flux may be determined in terms of the surface shear 

stress. Following Dorfman, a dimensionless length, t, velocity, v', 

and temperature, T* are defined for the (s, O, n) co-ordinate system 

shown in Figure 3.1 by 

3- nV* v'ý ° 
Ti pl, T* 

pCý . (5.3.25) ,P 

The following assumptions were made by Dorfman and are also made here 

for both the rotor and stator cone boundary layers: 

(i) Within the rotor boundary layer, the quantity (vo-v)/v* is 

independent of s and is thus only a function of the 

dimensionless distance, t, Le 

vo -v- v*F(; ") . (5.3.26) 

-(Similarly within the stator boundary layer, the tangential 

velocity is of the form vs - (v*)SF(r)). 

(ii) The turbulent boundary layer may be divided into the usual three 

layers (see for example Schlichting (1968)) namely 

viscous sub-layer: 0<r<5 where F(r) -r (5.3.27) 

transition layer: 5<t< 30 where FM -51 Qn[5] + 1] 

(5.3.28) 
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fully turbulent layer :t> 30, where molecular transport 

processes are negligible compared with turbulent transport 

processes. For the present purposes, an explicit formula for 

F(r) in the fully turbulent layer is not required. 

A necessary condition for equations (5.3.27) and (5.3.28) to 

hold is that the shear stress, re is constant within the viscous 

sub-layer and transition layer (see for example Laundau and 

Lifshitz (1987)). It Is also assumed that the heat flux, q, Is 

constant within these layers (again see Laundau and Lifshitz 

(1987)). 

By analogy with the shear stress and heat flux equations (5.3.3) 

and (5.3.4) and assuming a turbulent Prandtl number of unity the shear 

stress and heat flux within the rotor boundary layer may be written as 

p© - (v+vt) av 

and 

PC P- -(E+vt) 
aT 

(5.3.29) 

(5.3.30) 

From equations (5.3.25), (5.3.29) and (5.3.30) the following equations 

valid in the viscous sub-layer and transition layer may be obtained 

�*2 - 
(Y+Yt) aý lu. -I , v*T* - -(s+vt) äT (5.3.31) 

c'n 

If equation (5.3.26) Is differentiated with respect to 'n' and the 

resulting expression for av/ön is substituted into equation (5.3.29) 

the following equation Is obtained: 
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pt -V lFý 
1) 

, (5.3.32) 

where the prime denotes differentiation with respect to r and the 

density is assumed to be constant. If equation (5.3.32) is used to 

substitute for Pt into the second of equations (5.3.31) the following 

equation valid In the viscous sub-layer and transition layer Is 

obtained: 

aT gn 
3-n 

PCpý 
Pr 

+ Fý) - il 
(5.3.33) 

Equation (5.3.33) may be integrated across the boundary layer from the 

cone surface to a general point within the viscous sub-layer or 

transition region of the boundary layer to obtain 

To -T- T*G(r) , (5.3.34) 

where 

111 
G'(ý) - Pr + -F-'-( T-) -1. (5.3.35) 

By analogy with the velocity equation (5.3.26), Dorfman (1963) assumes 

that equation (5.3.34) Is valid throughout the boundary layer. 

Applying the three layer scheme of assumption (ii), equation 

(5.3.35) may be used to find the function G(r) in the three regions of 

the boundary layer (see appendix D). In particular in the outer fully 

turbulent region of the boundary layer, the following relationships 

are obtained 

F(r) - G(r) - E(Pr) 
, (5.3.36) 

where 
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E(Pr) - 5(Pr-1) + SQn 1276r ). (5.3.37) 

If the expressions for F(f) and C(f) from equations (5.3.26) and 

(5.3.34) are substituted into equation (5.3.36) the resulting equation 

may be evaluated at the boundary layer edge to obtain 

- 
(Tn-T) 

L1 + 
E(Pr) IrA_°I t 

qo -C P 79,0 (vo-v) l No-v1 p. 
(5.3.38) 

Equation (5.3.38) gives an expression for the surface heat flux valid 

for the rotor, and an equivalent expression valid for the stator may 

be obtained by setting vo - 0. 

Comparison of equation (5.3.38) with equation (5.3.20) shows 

that if friction and compressive work are neglected, the effect of a 

non-unity laminar Prandtl number is to multiply the heat flux when 

Pr -1 by the factor in square brackets. 

5.3.4 Extension Co include Non-unity Laminar and Turbulent 

Prandtl numbers 

Equation (5.3.38) was derived by neglecting the effects of 

frictional heating and compressive work on heat transfer and assuming 

the turbulent Prandtl number to be unity. In this section an 

empirical factor will be Introduced to account for the effects of both 

a non-unity laminar and turbulent Prandtl number when frictional 

heating and compressive work effects are included. 

A comparison of equations (5.3.20) and (5.3.21) with equations 

(5.3.22) and (5.3.23) shows that the effects of frictional heating and 
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compressive work may be accounted for by including the term U2/2Cp or 

(US)2/2Cp in the surface heat flux expressions derived when the 

effects were neglected. It will now be shown that these extra terms 

are related to adiabatic temperature differences, thus allowing the 

Introduction of an experimentally determined correction factor to 

allow for non-unity laminar and turbulent Prandtl numbers. By setting 

qo and qö equal to zero in equations (5.3.22) and (5.3.23), the 

following expressions for the adiabatic temperature difference across 

the boundary layers may be obtained: 

rotor: 
U2 

Toad Tad - 2C P 

Ta Ta __ 
(U2) 2 

sLaLor: , ö, ad - 'äd ' 2Cp ' 

(5.3.39) 

(5.3.40) 

where the subscript 'ad' refers to adiabatic values. In turbulent 

flow, experimental results (Schlichting (1968)) have led to the 

inclusion of a 'recovery factor', Rc, into equations (5.3.39) and 

(5.3.40) to account for non-unity laminar and turbulent Prandtl 

numbers. The recovery factor appears on the right hand sides of 

equations (5.3.39) and (5.3.40), so for example, to allow for 

non-unity laminar and turbulent Prandtl numbers, the adiabatic 

temperature difference for the rotor becomes 

R Uz 
To, ad - Tad i 2C 

P 
(5.3.41) 

The experimental results reproduced in Schlichting (1968), show that 

in fully turbulent flow Rc may vary betweeen 0.875 and 0.890 and since 
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for dry air, the laminar Prandtl number may vary between 0.71 at 0'C 

and 0.72 at 300'C Schlichting approximates Rc by 

Rc - Pr'/3 . (5.3.42) 

To account for a non-unity laminar and turbulent Prandtl number, when 

the effects of frictional heating and compressive work on 

transfer are included, equation (5.3.41) Is used in place 

heat 

of equation 

(5.3.39) and this may be incorporated into equation (5.3.38) as follows 

Qo aý 
C P70,0 R U2l E ITB ol I 
(yo-v) 

[(To-T) 
- 2C J[1 + 

Iv(Pr) o-l �pF. 
(5.3.43) 

A similar expression may be obtained for the stator. The same 

recovery factor was used by Chew and Rogers (1988) for heat transfer 

calculations in co-rotating disc systems, but the effects of using it 

for the present applications will be discussed in §5.6.1. 

5.3.5 Extension to include an arbitrary Temperature Distribution 

The heat flux expressions (5.3.20)-(5.3.23) were derived under 

the assumptions that the rotor temperature distribution varies 

quadratically with radius and the stator temperature is constant. In 

this section an attempt is made at finding approximate heat flux 

expressions for arbitrary surface temperature distributions and 

non-unity laminar and turbulent Prandtl numbers. The analysis follows 

the method of Chew and Rogers (1988) for the heat transfer in 

co-rotating disc systems. Their method was a generalisation of the 
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work by Dorfman (1963) who examined the heat transfer from a 

free-rotating disc when the effects of friction and compressive work 

were neglected. The following section represents an extension of the 

work of Chew and Rogers (1988) to either the rotor or stator boundary 

layers in a rotor-stator cone system. 

It is assumed that for an arbitrary surface temperature and 

arbitrary laminar and turbulent Prandtl numbers, the surface heat flux 

on either the rotor or stator may be expressed in the form 

q. ll 
-X 

[To T- Rý 
(v"-v)21 T0 ' Cp 

° 
- 2Cp (vo-v) I (5.3.44) 

where it has been assumed that (v0-V)2 » W2 and (vo-v)2 » U2. In 

equation (5.3.44) it is assumed that X depends on the laminar Prandtl 

number and the cone temperature distribution. Defining the Nusselt 

number as 

Nu 

it follows that 

Nu a 

rnQn 

k[To-T-RC(vo-v)z/2CpJ 

PrXroTB, o 

ju 
(vo-v) 

(5.3.45) 

(5.3.46) 

Dorfman assumed the following relationship for the Nusselt number (the 

basis for the relationship is not clear, although it may be an 

empirical relationship based on experimental results for free-rotating 

discs) 

Nu - F(Pr) Re2 RTß 
) (5.3.47) 
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where F(Pr) is a universal function of the laminar Prandtl number, 

Is a universal constant and ReQ and RT are a local Reynolds number and 

thermal Reynolds number respectively. In terms of the notation of 

this thesis, Rep and RT are defined by 

ReQ - P[II2+(vo-V)2]i ýý 

and 

6 
RT -k [ü2+(v0-v)2]1 

(H-H) 
dn 

(H -H)a 0 0 

(5.3.48) 

(5.3.49) 

Using the enthalpy expression (5.2.9) and the velocity profile 

(3.4.14), equation (5.3.49) becomes 

RT -ý [uz+(vo-v)2]1 61'f-Ifh{ " (5.3.50) 

Note that in equation (5.2.9), h(r, s) is a function of s, so 

that Ifh In equation (5.3.50) Is a function of s. In the special 

conditions when the temperature boundary conditions satisfy the 

Reynolds analogy condition, then as illustrated by equation (E3) of 

Appendix E, Ifh is a constant (-If-lfg). Since F(Pr) and 0 are 

assumed to be universal, they may be found by considering the special 

cases of §5.3.2 and §5.3.3. It may be shown (see appendix E) that 

0- -1/4 and F(Pr) - 0.0225PrE5/4Ifgh/4 
, (5.3.51) 

where 

1- ý" + 
E(pr) 170 ý 
1v -vi J (5.3.52) 
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The unknown X may now be found from equations (5.3.46) and (5.3.47) as 

X-[ý51 ý#. 1 f-lfh 
(5.3.53) 

The final assumed form for the surface heat flux on the rotor or 

stator may then be obtained from equation (5.3.44) as 

4n. j (Vr, -V)21 76.0 
CP l if-lfh 

[To-T-Rc 
2Cp 

I 
(vo-V) . (5.3.54) 

The key assumptions which led to the derivation of equation 

(5.3.54) are that the effects of an arbitrary cone surface temperature 

distribution may be accounted for by the multiplicative factor x 

present in equation (5.3.44) and that the Nusselt number may be 

expressed in the form (5.3.47). The first of these assumptions leads 

to a form of equation similar to equation (5.3.38) which was obtained 

at the end of §5.3.2, and which indicated that the effect of a 

non-unity laminar Prandtl number was simply to multiply the heat flux 

expression by the factor shown in equation (5.3.38). It is not clear 

how equation (5.3.47) is justified and if it is based on experimental 

results for free-rotating systems, then its application to more 

general flow regimes will be questionable. However, in §5.6.1 an 

assessment will be made of the relative merits of the use of equation 

(5.3.54) over eqution (5.3.43) In heat transfer predictions. 
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5.4 A METHOD FOR PREDICTING THE HEAT TRANSFER IN A ROTOR-STATOR 

CONE-SYSTEM 

5.4.1 Formulation of the Equations 

The surface heat flux equation (5.3.54) may be substituted into 

the integrated boundary layer energy equation (5.2.10) to obtain an 

equation valid for the rotor and a similar equation may be obtained 

for the stator. These equations may then be solved along with the 

boundary layer momentum equations derived in §3.6, but the inclusion 

of compressibility inherent in the derivation of equation (5.3.54) Is 

also necessary. The effects of compressibility will be assessed using 

the finite difference results in §5.6.2, but at present it is assumed 

that the effects of density variations across the boundary layers is 

negligible. This assumption follows the recommendations of Chew and 

Rogers (1988) who concluded that allowing for density variations 

across the boundary layers in a co-rotating disc system did not 

significantly affect the Nusselt number calculations. Compressibility 

is accounted for longitudinally within the boundary layers by use of 

the perfect gas law: 

P(s) - p(s) RC Tm(s) , (5.4.1) 

where RG is the gas constant and Tm is the mean temperature across the 

boundary layer at a particular radial location (i. e. Tm - (To+T)/2 and 

Tms - (Tos+Ts)/2). Differentiating equation (5.4.1) and using 

equation (3.6.2) the following equation is obtained: 

d2 dT p l- p rý 
sinX - ml ds rp 

ipi Tm lrRC ds J (5: 4.2) 
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where pi is a constant inlet or reference density. Re-defining the 

non-dimensional variables (3.6.14) as 

U- v va 
uý ° Qr v° /3r ' Vo ° Or 

ßb2P 
Reý - µsiný ,x- 

r 
I b 

the rotor momentum equations (3.6.15) and (3.6.16) become 

X3f dX 
(u, 2a, x4) + 6, [2V(V-Vo)Ig - (V-Vo)21 gg] 

0.0225 2+ z 3/8 P 
-- (X2b1)t a uý[uý (Vo-V) j 

Pi 

and 

x4g dx 
[xSUISI(Vo-V)] + 

3X 1 If d (x2V) 

0.0225 p ý (X261)1/4 (VO-V) [u, 2+(VO-V)2] sýe 
Pi ý 

and the stator equations (3.7.17) and (3.7.18) become 

u, s - -0.364VS , 

and 

d1 r2I-S 
_ dx xII fg 

ý dVs öi (2IsffQQ Isff 
dx Vs 

(ýJ 

_ 
0.0225 [1+(0.364)2]3/8 ps 0.3641J 

., /v8% 1/4r__ciýs. 
ý, 114 pl fg (VS)""[XS(a; )2] 

ö_ pbReOl/SsinX 
pir 

(5.4.3) 

(5.4.4) 

(5.4.5) 

(5.4.6) 

(5.4.7) 
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Hence the only effect of longitudinal compressibility on the momentum 

equations is to multiply the stress terms by the factor p/pi. 

The boundary layer energy equation for the rotor becomes 

dx 
IuýaýX3{IfHo-(Ho-H)Ifh}ý - Htf dX 

(ulaIx3) 

x14 3/8[ ZS' 
1 

0.0225[6] [u, 2+(1-V)2] {(Ih)} 

x 
{Ho-H+((1-V)-j(1-V2+Rc(1-V)2))(nxb)2}, pi 

, (5.4.8) 

and the boundary layer energy equation for the stator becomes 

-0.364 
dx [VSbýxS{IfHö-(HSö-HS)Ifh)] + 0.364IfHS äx (VSb, x3) 

Sfý j 
- 0.0236 [äs4, (us)ý ý(Is-1f" 

LHo-Hs + [(Vs)Z (1-Rc))(f2bx)2l p. 
ýf fh) 2 pi 

(5.4.9) 

The quantity p/pi was found by integrating equation (5.4.2). Using 

the non-dimensional variables (5.4.3), the quantity p/pi at a 

particular location x within either the rotor or stator boundary layer 

may then be found from 

P ýX) 
__ _. __ 

f11r (nb) 2 -, dTm1 .. lý } (5.4.10) 
Pi 

exy t1 Tm L RC v4 äJ ax 

a/b 
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5.4.2 The Solution Procedure 

The momentum equations (5.4.4)-(5.4.7) and the energy equations 

(5.4.8) and (5.4.9) are coupled via the density relationship 

(5.4.10). The solution method described here, however, involves 

solving the momentum equations and energy equations separately and 

using an iterative procedure to find the density field. The iterative 

procedure is as follows: 

(i) Assume p(x) - pi, ps(x) - pl. 

(ii) Solve the momentum equations (5.4.4)-(5.4.7) in the manner 

described in chapter 3. 

(iii) Use E, (x), u, (x), 6, s(x) and V(x) from (ii) to solve the energy 

equations (4.4.8) and (4.4.9) in the manner described below. 

(iv) Use the solutions from (ii) and (iii) to find p(x)/pi and 

(v) 

ps(x)/pi, from equation (5.4.10). 

Calculate the moment coefficient, Cm and the average Nusselt 

number, Nuav (see §5.6), go to (ii) and repeat until Cm and Nuav 

are unchanging (to a specified tolerance). 

In all the examples tested, Cm and Nuav were unchanging (to 

three significant figures) after four of the above iterations. 

To proceed with the solution of the energy equations (5.4.8) and 

(5.4.9), the following important result which follows from the 

assumptions about the flow in §3.5 is required. Outside the boundary 

layers in both the source region and the core region, viscous terms 

are assumed to be negligible so that the right hand side of the energy 

equation (5.2.1) will be zero. The resulting equation may be written 

as 
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(u. V)H -0 (5.4.11) 

Physically, equation (5.4.11) means that the enthalpy Is constant 

along streamlines. In the source region, streamlines enter from the 

inlet, so that the enthalpy at the edge of the boundary layer will 

take the known inlet value and will remain constant up to the end of 

the source region. In the core region, assuming the flow structure is 

as shown in Figure 3.2, streamlines leave the stator boundary layer 

and enter the rotor boundary layer at constant radial locations. At 

equal radial positions therefore, the enthalpy at the edge of the 

boundary layers will be equal, or 

H(x) - HS(x) ,x- r/b. (5.4.12) 

To find the heat flux from either the rotor or stator in a given 

rotor-stator system it is assumed that the inlet temperature and the 

rotor and stator surface temperatures are known. Thus H0(x) and Hö(x) 

will be known and from the above argument, H(x) will be known in the 

source region. 

The proposed method of solution of the energy equations may be 

divided into a source region calculation and a core region calculation 

as follows: 

Source Region 

There Is assumed to be no boundary layer on the stator in this 

region (see chapter 3). On the rotor H0(x) will be specified and H(x) 

will be known from the inlet conditions, so that equation (5.4.8) may 

be solved for the one unknown Ifh(x). The starting condition may be 

obtained from the Reynolds analogy result, i. e. equation (E3) of 
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Appendix E. 

Core Region 

In this region, equations (5.4.8) and (5.4.9) will be coupled 

via equation (5.4.12). Assuming Hos(x) is also known, equations 

(5.4.8) and (5.4.9) then contain the three unknowns H(x), Ifh(x) and 

Ifhs(x). To close the problem an additional assumption is therefore 

required and it is assumed thatthe Reynolds analogy result (equation 

(E(3) of Appendix £) holds on the stator, so that 

Ifh - If - Ifg (5.4.13) 

Using assumption (5.4.13), equations (5.4.8) and (5.4.9) may be 

solved simultaneously for H(x) and lfh(x). Ifh(x) Is assumed to be 

continuous from the source region, which specifies the value for 

Ifh(xe) at the start of the core region. It would seem reasonable to 

assume H(x) is also continuous from the source region, however using 

this value of H(x) at xa xe produced unreasonable results, i. e. H(x) 

would become very large or very small as the integration proceeded to 

x-1. The reason for this was found to be that the solutions to the 

stator energy equation (5.4.9) were sensitive to their initial 

conditions; this sensitivity will be investigated in the next 

section. Instead of assuming H(x) Is continuous from the source 

region, H(xe) is allowed to have a discontinuity at x- xe and an 

iterative procedure is used to find H(xe) such that when the energy 

equations have been solved overall energy is conserved in the 

rotor-stator system. Physically, this discontinuity in ii(xe) that 

results at x- xe is unrealistic. However, it may be reasonable that 

H(x) will change abruptly at a value of x around x- xe, since at this 
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point, fluid will flow across from the stator boundary layer to the 

rotor boundary layer with an enthalpy which will depend on the 

temperature of the stator. In theory, this fluid will meet with fluid 

from the Inlet at x- xe and depending on the inlet conditions there 

may be an abrupt change in enthalpy at this point. In §5.6.2, finite 

difference results will help to verify whether or not a sudden change 

in enthalpy does occur. 

The requirement of an overall energy balance in the system may 

be expressed using a rate of energy deficit, h, defined as 

1b/sin), b/sinX 

E- 2xr0qo ds + 2wr0g0s ds 
Ja/sinX re/sInX 

re/sina 

+ 2arogos ds + 27bdgshroud + f2M 

J a/sinX 

+ m(Hin - Hout) , (5.4.14) 

where M is the moment exerted by the fluid on the rotor, defined in 

equation (4.2.10), m is the specified mass throughflow rate, Hin is 

the enthalpy at the inlet, Hout is the enthalpy at the outlet and 

qshroud is the surface heat flux from the outer shroud. 

The first two integrals in equation (5.4.14) may be calculated 

directly using equation (5.3.54). The flow over the outer shroud will 

be of a boundary layer character and assuming the shroud is stationary 

and has the same temperature as the stator at x-1, then qshroud may 

be estimated as having the same value as qö at x-1. The inlet 

enthalpy, Hin, will be specified by the temperature and swirl of the 
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fluid at the inlet and if the outlet is situated next to the rotor as 

shown in Figure 3.2, the outlet enthalpy, Hout, may be estimated as 

the mean enthalpy, i. e. (Ho+H)/2 at x-1. The third integral in 

equation (5.4.14) is not so straightforward to estimate since for 

a<r< re, it is assumed in chapter 3 that the flow over the stator 

is negligible and neither a flow calculation nor a heat transfer 

calculation is performed. The proposed method of calculating qö for 

a<r< re is by use of the heat transfer coefficient, hc, in an 

equation of the form: 

qä - -hc(T-Tos) (5.4.15) 

The heat transfer coefficient, he varies according to the particular 

situation being examined and is normally calculated empirically from 

experimental data. According to Rogers and Mayhew (1967), for dry 

gases he may vary between 0.5 kW m-2 *K and 1000 kW M-2 *K, however 

the finite difference results used in §5.6.2 will help to provide a 

better estimate for the particular types of problem considered here. 

It may be noted that for zero throughflow cases when there is no 

source region, the difficulty in estimating qö from equation (5.4.15) 

does not arise. 

if overall energy is conserved then h in equation (5.4.14) will 

be zero, but in practice this criterion is taken to be satisfied when 

E is within 1% of the rate of energy flow across the rotor. The 

method of finding H(xe) such that this criterion is satisfied is the 

method of bisection, so that two starting guesses for H(xe) are 

requried, one producing h>0 
and the other producing E<0. 

Typically, the procedure took about 20-30 iterations to converge. 
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5.5 A SENSITIVITY ANALYSIS OF THE SOLUTIONS TO THE ENERGY EQUATIONS 

In the previous section it was stated that the solutions to the 

stator energy equation (5.4.9) were found to be very sensitive to 

their initial conditions, i. e small changes in H(xe) would produce 

large changes In H(1). It was found, however, that the solutions to 

the rotor equation (5.4.8) were insensitive to their initial 

conditions. In this section, approximate analytical solutions will be 

found to equations (5.4.8) and (5.4.9) which will provide an insight 

into the reasons for the different sensitivities of the solutions to 

the two energy equations. 

Analytical solutions may only be obtained for H and Hs in 

equations (5.4.8) and (5.4.9) if analytical solutions for u,, b1, as 

and V are substituted into them. Analytical solutions may be obtained 

for u,, b, and as, when V is a constant and are described in §3.7 for V 

- 0.42 (the infinite rotor-stator system with zero throughflow) and in 

appendix B for V-0 (the free rotating disc or cone). These 

solutions are only valid when the inner radius of the discs or cones 

is zero (i. e. a- 0), however, the solutions should provide a good 

approximation to the solutions of the equations when a# Ot, and they 

should serve the required purpose of illustrating the general 

behaviour of the energy equations. For the purposes of obtaining 

simple solutions to equations (5.4.8) and (5.4.9), it is also assumed 

t Evidence of this is given by Chew (1985d), where using an integral 
method he finds that the moment coefficient experienced by a 
free-rotating disc with a non-zero inner radius is only weakly 
dependent on a. The approximate relation he obtains for the moment 
coeeficient experienced by a disc of arbitrary inner radius a, denoted 
by Cm, and the moment coefficient experienced by a disc with a zero 
inner radius, denoted by Cm, o, is Cm/Cm, o -1- (a/b)5. 
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that the basic Reynolds analogy result of §5.3.2 holds, so that 

Pre - 1, Ifh - If - Ifg, and Ifh - If - Ifg. 

Under the above conditions, the energy equations (5.4.8) and 

(5.4.9) may both be expressed in the form 

dH+AH_AH' 
+B 

dHn 
97 xx dx ' (5.5.1) 

where for the rotor B- -0.2 and A-2.14 when V-0.42 and A-0.403 

when V-0. For the stator B- -0.0909 and A- -2.20 when V-0.42. 

Solutions may now be obtained to equation (5.5.1) for a 

distribution and a specified initial condition for H at 

H0(x) distributions considered here are Ho - Href and 

H0(x) - Href(1+xC), and the specified initial condition 

H- Href(I+D) where 

given Ho(x) 

x- a/b. The 

Is 

Href, C and D are constants. When Ho - 

solution to equation (5.5.1) is 

H(x) - Href [1 +D {(a/b)}A, 
x 

Href- the 

(5.5.2) 

and when H. - Href(1+XC), the solution to equation (5.5.1) is 

H(x) Q Href f+ xC 
(A+C)) 

+ 
(axb)IAID (a/b)C 

(A+C))1ý (5.5.3) 

The sensitivity of the solutions for H(x) to their initial conditions 

may be assessed by considering the sensitivity of the H(x) 

distribution given by equation (5.5.2) or (5.5.3) to the value 

assigned to the constant D. From an inspection of these equations for 

a/b ;40 It is clear that in general this sensitivity will depend on 

the sign of A and that for a negative value of A, the H(x) 
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distribution will become more sensitive to the value of D as the 

ratio a/b decreases. As stated earlier, for the rotor equation A is 

positive whereas for the stator equation, A is negative, so it is the 

solutions to the stator equation which will exhibit greater 

sensitivity to their initial conditions. 

As an example to illustrate the difference in sensitivity, 

consider the solutions for H(x) given by equation (5.5.2) for a/b - 

0.1, when D-0 and when D-0.01. For an infinite rotor-stator 

system, when V-0.42, the appropriate values for A are 2.14 for the 

rotor and -2.20 for the stator. The rotor solution then gives H(1) - 

Href when D-0 and H(1) - 1.00007 Href when D-0.01, and the stator 

solution gives Hs(1) - Href when D-0 and Hs(1) - 2.58 Href when D- 

0.01. the large difference in the stator solutions compared with the 

negligible difference of the rotor solutions clearly illustrates the 

different sensitivities. 

The difference in sensitivity to initial conditions illustrated 

by the above example is also found to occur when solving the energy 

equations numerically for a variety of flow parameters. As already 

stated, equations (5.5.2) and (5.5.3) are not strictly valid since 

they are based on analytical solutions to the flow equations which are 

only valid if a/b - 0. Nevertheless the behaviour of equations (5.5.2) 

and (5.5.3) provide a plausible explanation for the different 

numerical behaviours of the solutions to the rotor and stator energy 

equtions to be understood. 
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5.6 COMPARISON WITH EXPERIMENT AND FINITE DIFFERENCE RESULTS 

This section is divided into two sub-sections; the first 

involves a comparison of the predicted surface heat flux, using the 

Reynolds analogy as described in the previous sections, with the 

available experimental data for free-rotating discs and cones. This 

comparison enables an assessment to be made of the applicability of 

the generalised Reynolds analogy to conical systems. Unfortunately, 

there appears to be no relevant experimental data concerning heat 

transfer In rotor-stator disc or cone systems, so that in the second 

sub-section a comparison is made between the predictions of the 

present theory with the predictions of a finite difference program to 

be described in the next chapter. In both sub-sections an assessment 

will be made of the importance of the various extensions of the 

Reynolds analogy described in §5.3. The conclusions to be made from 

the two sub-sections will be given in §5.7. 

5.6.1 Free-rotating Systems 

To the authors knowledge the only relevant experimental Nusselt 

number data is that of Kreith (1966), who calculated average Nusselt 

number values from heat transfer data concerning free-rotating discs 

and cones. To compare the results from the above theory with this 

data, the source region method of §5.4.2 was used, with the condition 

that V(x) - 0. Equation (5.4.8) was solved from x- a/b to x-1 

using the solutions from the rotor flow equations, i. e. equations 

(5.4.4) and (5.4.5). The solutions for u, (x) and bl(x) were obtained 

at 100 equally spaced points between x- a/b and x-1 and were 
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interpolated by cubic splines. The ratio a/b was set to 0.001 and the 

Nusselt number was defined as 

Nu(x) - rn(x)gn(x) 
k[To(x)-T(x)] 

(5.6.1) 

To compare average Nusselt numbers with those obtained by Krelth, an 

average Nusselt number was defined as 

i 
Nuav -2 Nu(x) dx 

a/6 
(5.6.2) 

Kreith did not mention the temperature of the cone surface or 

the surroundings, but stated that the cone surface temperature was 

uniform. However, numerical experiments showed that Nuav calculated 

from equation (5.6.2) was insensitive to the values assigned to the 

cone temperature and the ambient temperature, i. e. To and T 

respectively. (When To-T - 1000*K, Nuav - 936.6 and when 

Ti o-- 
11.2*K, Nuav - 937.9 for one particular case considered when 

a/b - 0.001). For the present comparisons, T. -T was set to 100*K. 

It may be noted that for a free rotating cone, with constant surface 

temperature, Tm(x) Is constant and hence from equation (5.4.10) p(x) 

Is constant. A value of 0.72 for Pr was used here as in Kreith. Cp 

was set to 1012J kg-1 .C and µ was set to 1.81 x 10-S kg m-1 sec-1 

which are taken from Bachelor (1967) as representative values for air 

at room temperature. Shown in Figures 5.1(a) and (b) are a comparison 

of Nuav calculated from equation (5.6.2) with that of Kreith. Only 

one curve is presented for the present theory to represent all the 

cone angles since the results of §4.4 show that varying X has very 
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little effect on the flow variables and the energy equation (5.4.8) Is 

independent of X. 

Figure 5.1(a) also shows the effects on the Nuav calculations of 

omitting the various extensions to the Reynolds analogy. A calculation 

of Nuav is shown in which the effects of accounting for a 

non-quadratic temperature distribution has been omitted, so that 

Ifh(x) has been given a constant value of If - Ifg in equation 

(5.3.54). Also shown is a curve of the results for which the effects 

of a non-unity laminar Prandtl number have been omitted, so that E has 

been set to 1 in equation (5.3.54). The effects of the recovery 

factor, Rc, in equation (5.3.54) are not shown In Figure 5.1(a), since 

it was found that the term Rc(vo-v)2/(2Cp) did not have an appreciable 

effect on Nuav. The term appears in equation (5.3.54) to account for 

the effect of frictional heating and compressive work (as derived In 

§5.3.2) and it will only have an effect on the heat transfer when the 

Eckert number, defined as 

122 r2 Eý - 2CP(T0 -T) 
(5.6.3) 

is not small compared with unity. The Eckert number'will increase as 

Ree increases and it was found that when Ree - 10s (which is the 

highest value used by Kreith (1966) and shown in Figure 5.1(a)), 

To -T was required to be as small as 10*C to change the computed 

values of Nuav by 10%. In an aero-engine environment, the temperature 

difference between the fluid and metal components is unlikely to be as 

small as 10°K, so that high Reynolds numbers (greater than 106) will 

be required for frictional heating and compressive work to have a 

significant effect on the heat transfer. 

Figure 5.1(a) shows that for the free rotating disc (X - 90*), 
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the value of Nuav calculated numerically from equation (5.6.2) shows 

excellent agreement with Kreith for values of Ree >6x 105. For 

Ree >6x 105, the value of the relative error in Nuav in this case is 

always less than 5%. For Ree <6x 105, the error is greater than 

this, but for these values of Reynolds number the flow may be 

predominantly laminar. For the case of X- 40% the agreement between 

Nuav calculated from equation (5.6.2) and Kreith is excellent for 

Ree >4x 105, where the relative error is always less than 5%. The 

agreement for the X- 30' case is excellent for the Ree 45x 105, 

where the relative error is less than 5% and reasonable for 

Ree >5x 105 where the relative error is less than 10%. 

Kreith et al (1963) studied the transition between laminar and 

turbulent flow for free rotating discs and cones of various vertex 

angles. They concluded that the transition occurs at progressively 

smaller values of the Reynolds number as the cone angle is decreased. 

This could explain the improved agreement between theory and 

experiment at lower Reynolds numbers for X- 40* and X- 30* compared 

with the X- 90* case. The close agreement between theory and 

experiment provides evidence that the application of the Reynolds 

analogy in this chapter is valid for free-rotating cones with angles 

as small as 30*. Figure S. 1(a) also indicates that the more 

elaborate forms of the Reynolds analogy explained in this chapter do 

improve the model. 

Figure 5.1(b) shows a comparison of the average Nusselt number 

calculated from equation (5.6.2) with Nuav found experimentally by 

Krelth (1966) for a cone angle of 15'. The Reynolds number variation 

shown is between 2x 104 and 105. According to Kreith et al (1963), 

for a 15*"cone, the flow begins to become turbulent at a Reynolds 

number of about 2x 104. The figure shows a poor agreement between 
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the predicted and the experimentally obtained values with the relative 

error in Nuav varying between 18% and 37%. A possible reason for the 

poor agreement in this case is that for cones with such a small cone 

angle the boundary layer assumptions and in particular assumption 

(3.3.1), i. e. u»w may not be true for small cone angles. Another 

possible reason for the poor agreement for the small cone angle cases 

is that the assumed velocity profiles given by equations (3.4.16) are 

no longer valid. 

5.6.2 Rotor-Stator Systems 

As already stated, there is not to the author's knowledge any 

relevant experimental data concerning rotor-stator disc or cone 

systems, hence in this section the integral method predictions are 

compared with finite difference predictions. The finite difference 

method will be described in detail in the next chapter and only the 

heat transfer results obtained from the finite difference program will 

be used here. The finite difference method is expected to give more 

accurate predictions than the integral method described in this 

chapter, since the method involves solving the full (axisymmetric and 

steady) flow and energy equations (with turbulence modelling) within 

the cavity and far fewer assumptions are made than in the integral 

method. The comparisons here concentrate on assessing the integral 

method for a variety of-temperature conditions and the configuration 

of a rotor-stator disc system is used, with the exception of one 

comparison which was made for a cone system with X- 45'. The emphasis 

has been placed on disc systems rather than cone systems, since as 

stated earlier the integral method solutions are independent of X and 
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also it will be shown In chapter 6 that the finite difference results 

are similarly independent of X. 

The flow within the cavity was assumed to be fully turbulent and 

the following values were assigned: d/b - 0.12, Tref - 298*K, 

Ree - 1.7 x 106/sinX, Pr - 0.7, Prt - 0.9, Cp - 1012 J kg'' OK-', 

it - 1.81 x 10-5 kg m'' sec-' and pl - 1.18 kg m'3. Comparisons were 

made for eight different sets of boundary conditions, labelled 

(a)-(h), which are described in Table 5.1. 

In Table 5.1, TIN refers to the temperature of the inner surface 

(see Figure 6.1(b) for the finite difference domain) for zero 

throughflow cases and the temperature of the incoming fluid through a 

uniform inlet for throughflow cases. In case (b), To is set to 

Tref + 1463 x2 OK since this is the appropriate value for the basic 

Reynolds analogy condition (5.3.17) to hold. 

In all cases, a comparison between the finite difference 

predictions and the Integral method predictions is made by comparing 

the local Nusselt number, Nu(x) or Nus(x), defined by 

Nu(x) Q 
r°(x)4n(x) 

and Nus e 
rn(x)9s(x) (5.6.4) k[To(x)-Tref] k[To(x)'Tref) . 

Comparisons were also made between predicted average Nusselt numbers, 

Nuav and Nusav, defined by 

Nu go av 
bs- gö; av 

b 
av - k(To, av'Tref) 

and Nu av k(To, av-Tref) 
(5.6.5) 

where the subscript 'av' refers to radially weighted average values. 

Note that for case (c), T0(x) in equations (5.6.4) Is replaced by Tö 

and To, av in equations (5.6.5) Is replaced by Ts av' to avoid the 
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singularity which would occur in equations (5.6.4) and (5.6.5). 

A comparison of the average Nusselt numbers predicted by the 

finite difference method and the Integral method for the cases (a)-(h) 

of Table 5.1 are shown in Table 5.2. The error shown in the table is 

an error in the average Nusselt number relative to the finite 

difference method prediction. To obtain solutions for the throughflow 

cases (f) and (g), an estimate of the heat transfer coefficient, hc, 

in equation (5.4.15) Is required. As stated in §5.4.2, a value of he 

is required to estimate the surface heat flux in the source region on 

the stator, where an Integral method calculation is not performed. A 

graph of the variation of he with x for case (g) is shown in Figure 

5.2. This shows that in the source region of the flow (where x is 

less than about 0.5), he is less than 10 for most of this region 

shown. It was found, however, that the integral method solutions were 

fairly insensitive to the value of hc; the results shown in Table 5.2 

were obtained for he - 0, but when he was set to 10, Nuav varied by 

less than 1% of the value shown. 

Apart from case (c), the agreement for the rotor predictions Is 

excellent, whereas the agreement for the stator Is more erratic. 

Figure 5.3(a) shows a comparison of the mid-axial temperature 

distribution predicted by the two methods for the case (a) boundary 

conditions. Also shown in the figure is the Integral method solution 

when t-1, I. e. the solution when the effect of a non-unity laminar 

Prandtl number is not accounted for. The graph shows that the 

integral method predicts the same trend as the finite difference 

method although the error at larger values of x becomes quite large. 

The graph also shows that the correction factor for a non-unity 

laminar Prandtl number, E, does seem to improve the agreement. 

Figure 5.3(b) shows a comparison of the local Nusselt number 
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predictions evaluated from equations (5.6.4) for the case (a) boundary 

conditions. The figure shows that setting -1 tends to decrease the 

Nusselt number, as was the case with the free rotating disc in §5.6.1, 

but no conclusion may be drawn from the figure as to whether or not 

the correction factor improves the agreement. It was found, however, 

that setting E-I resulted in poorer agreement between the average 

Nusselt numbers predicted by the finite difference program and the 

integral method. 

A comparison between the results for boundary conditions (d) and 

(e) in Table 5.2 shows that the agreement between the integral method 

and the finite difference method is worse when the flow is treated as 

being compressible. Figures 5.4(a) and (b) show graphs comparing the 

mid-axial temperature difference and local Nusselt numbers on the 

rotor for these cases. These graphs confirm that the agreement 

between the methods is better when the flow is assumed to be 

incompressible. A possible reason for the worse agreement for 

compressible flows is the assumption in the integral method that the 

density is constant across the boundary layers. Figure 5.5 shows 

profile plots of density from the finite difference results for the 

case (a) and (d) boundary conditions of Table 5.1 taken at three 

different radial locations. These graphs show a marked variation of 

density near the rotor which is situated at n/d -0 and at the stator 

which is situated at at n/d - 1, especially for case (d) where the 

rotor has a higher relative temperature. Unfortunately, the inclusion 

of density variations across the boundary layers is not 

straightforward and only an approximation Is possible. To include 

normal density variations Into the method described In §5.4 would 

require a knowledge of. the variation of h(,, s) and hs(i7, s) with n and 

this variation is only known when Pre - 1, To - Tref « r2 and Ts - 
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Tref, in which case h(n) - 1-g(n) and hs(n) - 1-gs(n). Such density 

variations across the boundary layers were accounted for by Chew and 

Rogers (1988) for co-rotating disc systems. They showed that for the 

special case when Pre -1 and To - Tref a r2, the density variations 

had very little effect on the solutions. They also found that the 

inclusion of density variations across the boundary layer resulted in 

computer times being increased by a factor of about ten. Considering 

these results and the uncertainties involved in accounting for normal 

density variations under more general surface temperature and Prandtl 

number conditions, the inclusion of the effect of density variations 

across the boundary layers would not seem to be worthwhile. 

Table 5.2 shows that the comparison of the average Nusselt 

numbers for the case (c) boundary conditions is quite good for both 

the rotor and stator with the relative error being less than 10% in 

both cases. This agreement is surprisingly good since in this case 

the stator surface temperature varies quadratically with radius and 

assumption (5.4.13) is only strictly valid when the stator surface 

temperature is uniform (see appendix E). Assumption (5.4.13) will 

only be valid if hs(n) - 1-gs(n) within the stator boundary layer, and 

Figure 5.6(a) shows graphs of hs(j) and 1-gs(n) as predicted by the 

finite difference program at two radial locations adjacent to the 

stator for the case (c) boundary conditions. The figure shows a good 

agreement between hs(n) and 1-gs(n) at both radial locations, but 

there is a variation of hs(n) with x. Figure 5.6(b) shows a similar 

comparison for the case (b) boundary conditions where Ts is uniform. 

As expected, -the agreement between hs(n) and 1-gs(t) is slightly 

better and there is less of a variation of hs(n) with x. The above 

results provide some encouraging evidence that the assumption (5.4.13) 

may hold in cases where the stator surface temperature is not uniform. 
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Table 5.2 shows a good comparison for the predicted Nuav for 

throughflow cases as shown by the results for cases (f) and (g) which 

were both treated as being incompressible. The agreement for the 

predicted Nusav for the case (g) boundary conditions is poor and this 

is due to the integral method under-predicting the mid-axial 

temperature in the core region of the flow as shown in Figure 5.7. A 

noticeable feature of Figure 5.7 is that the finite difference program 

does predict an abrupt change in temperature when transferring from 

the source region to the core region. This feature predicted by the 

finite difference program provides some evidence to support the 

assumption of a discontinuity in H(x) when transferring from the 

source region to the core region as explained in §5.4.2. 

5.7 SUMMARY AND CONCLUSIONS 

The work in this chapter represents an extension of heat 

transfer methods using the Reynolds analogy to the situation of a 

rotor-stator system where the throughflow rate is sufficiently small 

for there to be a re-circulating core region in the flow. Previous 

authors, such as Kapinos (1965) and Owen (1971) have confined their 

attention to rotor-stator systems with a very high throughflow rate so 

that the source region shown in Figure 2.1(c) fills the entire cavity 

and the re-circulating core region does not exist. The calculation of 

heat transfer between the rotor and the fluid is far simpler in such 

cases since the temperature of the fluid at the boundary layer edge 

throughout the cavity is known from the inlet conditions and does not 

have to be predicted. Owen (1971) confined his attention to 

rotor-stator disc systems where the distance between the rotor and 
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stator is sufficiently small for the entire cavity to be treated as 

one boundary layer. In such cases, the boundary layer edge 

temperature may be taken as the temperature of the stator and again a 

temperature prediction is not required. 

Chew and Rogers (1988) solved the integrated boundary layer 

energy equation to find the heat transfer In a symmetrically heated 

co-rotating disc system. There is no re-circulating region of flow in 

this case, as shown in Figure 2.1(b), and because both discs have the 

same temperature distribution there is no interaction between the two 

boundary layers on the discs. In this case the source region 

calculation used by Chew and Rogers is similar to the one used here 

(i. e. the Inlet temperature is known and the energy equation is used 

to calculate Ifh(x)). In the core region, Chew and Rogers assumed 

Ifh(x) to be constant and used the energy equation to calculate the 

boundary layer edge temperature. The present method is an extension 

of the work of Chew and Rogers to rotor-stator systems where there is 

an interaction between the two boundary layers. 

Considering the crude nature of many of the assumptions (e. g. 

the estimation of some of the terms In the energy balance equation 

(5.4.14)) and the fact that the heat flux expression (5.3.54) has been 

developed for flows over a free disc), the method has been 

surprisingly successful. The comparison of the average Nusselt number 

solutions for free-rotating cones with experimental results in §5.6.1 

provide some evidence that the application of the Reynolds analogy is 

valid for free-rotating cones with half-angles as small as 30°. It was 

also shown in §5.6.1 that the extensions of the Reynolds analogy to 

allow for a varying laminar Prandtl number and arbitrary surface 

temperature distribution did tend to improve the agreement and there 

was also some evidence of an improvement In the rotor-stator 
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predictions when the factor to account for a non-unity laminar Prandtl 

number was included. 

Overall the comparisons with the finite difference results in 

§5.6.2 show an encouraging agreement. The main draw-back of the method 

seem to be its restrictiveness in modelling compressibility; improving 

on this aspect of the model could be an area for further work. The 

comparisons in §5.6.2 were restricted to rotor-stator disc systems 

except for one rotor-stator cone system case. However, it will be 

shown in §7.2 that the finite difference results predict the same flow 

pattern as assumed in chapter 3 for rotor-stator cone systems and the 

results also support the use of the integral method assumptions 

described in these chapters. It would be expected then that the same 

pattern of results illustrated by Table 5.2 would occur for 

rotor-stator systems with a general cone angle. 
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CHAPTER 6 

THE FINITE DIFFERENCE METHOD 

6.1 INTRODUCTION 

In this chapter, the flow between a rotating and stationary cone 

will be investigated numerically using a finite difference program. 

There are two reasons for the investigation: 

(i) To assess the suitability of the numerical method for predicting 

rotor-stator cone flows by comparing the results with 

experimental data. 

(ii) To use the numerical results to validate and if necessary to 

modify the integral method described in previous chapters. This 

will require examination of the secondary flows to see whether 

they can be treated by the integral method and if they can, to 

decide whether modifications are necessary to certain aspects of 

the model (for example the form of velocity profiles). 

The program used here is a modified version of that written by 

Vaughan, Gilham and Chew (1989) to investigate flows in rotating disc 

systems. The. original program solved the relevant steady, axisymetric 

equations of motion in a cavity whose geometry is shown in Figure 

6.1(a). The present modifications involved 'tilting' the cavity of 

Figure 6.1(a) through an arbitrary angle, X, as shown in Figure 

144 



6.1(b). The program was written to be very general in its modelling 

capability and it could be used to investigate a wide range of 

rotating flows (within the constraints of time independence and 

axisymmetry). However for the present purposes of modelling 

rotor-stator cone flows it is sufficient to specify stationary 

boundaries at s- a/sInX, s- b/sinX and n-d, and a rotating 

boundary at n-0. With the above boundary conditions, the equations 

may be solved to describe the flow in a rotor-stator cone system 

without throughflow. By specifying a uniform inlet at s- a/sinX and a 

uniform outlet at s- b/sinX, a model with throughflow may be 

represented. It may be noted that the solution domain here differs 

from the domain assumed in the integral method (see Figure 3.1), since 

the angles that the inner and outer boundaries make with the rotor and 

stator are not the same In the two cases. The effect of this 

difference in geometry will be discussed in §6.4.2 and a modification 

to incorporate a 'rectangular' outer shroud into the integral method 

will be described in §7.4. 

The purpose of the present study Is to investigate the 

predictive capability of the modified version of the program and to 

analyse the results. The finite difference method used has been 

accepted and for the present purposes, the model will not be 

investigated or questioned. However, for completeness, a description 

of the program and the criteria used to judge whether or not a 

particular run had converged will be given in §6.2. In §6.3, results 

will be presented of the studies which were undertaken to ensure that 

the modifications to the program had been coded correctly. The 

comparisons of the predicted results with experimental data and the 

conclusions to be made from the comparisons will be made In §6.4. 
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6.2 DESCRIPTION OF THE PROGRAM 

6.2.1 The Governing Equations 

For steady, axisymmetric flow, the Reynolds averaged continuity, 

momentum, energy and state equations may be written in terms of the 

coordinate system shown in Figure 6.1(b) as follows 

r as 
(pru) +rý (prw) -0 (6.2.1) 
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(6.2.5) 

P- PRGT , (6.2.6) 

where 

A -rýs (ru) +rý (rw) 

and 

H- CpT + }(u2+v2+w2) 

(6.2.7) 

(6.2.8) 

is the stagnation enthalpy. The vector (u, v, w) represents the mean 

velocity components in the (s, O, n) coordinate system, p represents the 

mean pressure, p the mean density, T the mean temperature, tie the 

effective viscosity, ke the effective thermal conductivity, Cp the 

specific heat at constant pressure and RC; Is the gas constant. 

For ease of description of the solution procedure the three 

momentum equations and the energy equation may be represented by the 

common equation 
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rý (prudý) 

+rý 
(pruvl) 

-rý 
(f'r ý, 

+r Un 
[rr ý) 

+ Sb� (6.2.9) 

where 4 represents either u, v, w or H, the diffusion coefficient r 

equals Fe for the momentum equations and ke/Cp for the energy equation 

and the source term SD is different for each variable. 

The boundary conditions are given by the no-slip and 

no-penetration conditions on the solid surfaces. The rotor, situated 

at n-0 is given a constant angular velocity 12, whereas the other 

three surfaces are stationary. For a throughflow case, a uniform 

inlet is assumed at s- a/sinx, 0<n<d and a uniform outlet is 

assumed at s- b/sInX, 0<n< dc, where do represents the n location 

of the end of the solid boundary on the outer shroud at s- b/slnX. 

For a throughflow case the inlet and outlet boundary conditions are 

taken to be 

u-2xpad' v- fir, w- Oons - a, 0 <n<d, (6.2.10) 

ma u' 2apa(d-dc) r 
(rv) - 0, w-0 on s-b, 0<n< dc. (6.2.11) 

6.2.2 The Turbulence Model 

The turbulence model used in this program is a mixing length 

turbulence model based on that applied to the flow over rotating discs 

and cones by Koosinlin, Launder and Sharma (1974). No allowance is 

made for the possibility that the flow may be laminar towards the 

centre of the cavity. This assumption is made by Chew and Vaughan 

(1988), who found that at high Reynolds numbers it had very little 
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effect on the results in the main part of the cavity if the boundary 

layer formed over the inner surface at s-a in a rotor-stator disc 

system is treated as laminar or turbulent. 

The effective viscosity is calculated as the sum of the laminar 

viscosity, p and the turbulent viscosity, kt: 

µe QA+ Pt . (6.2.12) 

The turbulent viscosity is calculated from an extension of Prandtl's 

original mixing length hypothesis as 

pt - p22 L ldxn) 
2+ 

lr Xn lr) 
ý ýý ýý 

(6.2.13) 

where 2 Is the mixing length, up Is the velocity component parallel to 

any of the four surfaces in the s-n plane and xn is in the direction 

normal to the surface. A two part specification is used for the 

distribution of the mixing length. In the region where the presence 

of the wall affects the turbulence structure, a Van Driest (1956) type 

of damping factor is used and it is assumed that 

2-0.42x� l- exp 
[ x+2-n-ý--, (6.2.14) 

where xn is the non-dimensional distance from the wall (- xn(prw)'/µ), 

rw is the resultant wall shear stress and r+(- r/rw) is a non- 

dimensional shear stress. Koosinlin et al (1974) recommend the 

exponent e being given a value of 1.5, however, Chew and Vaughan 

(1988) found that using this value of e caused numerical difficulties 
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in rotor-stator disc systems. Following Vaughan et al (1989) the value 

of e has therefore been set to zero, so that equation (6.2.14) reduces 

to an identical equation to that used by Van Driest (1956). The effect 

of using a non-zero value for e on the moment coefficient calculations 

will be discussed in §6.4.3. In the outer part of each boundary layer, 

9 is given by 

Q-0.0856, (6.2.15) 

where 6 is the boundary layer thickness. The factor 0.085 in equation 

(6.2.15) is used following the recommendations of Koosinlin, Launder 

and Sharma (1974). The division between the two regions for 

calculating 2 Is taken as the lowest value of xn for which equations 

(6.2.14) and (6.2.15) gave the same value of Q. 

An appropriate definition of the boundary layer thickness in 

equation (6.2.15) is the distance from the wall at which the resultant 

shear stress parallel to the wall becomes 1% of its value at the 

wall. However it has been suspected that using this definition may 

cause convergence difficulties and following Chew and Vaughan (1988), 

the edge of the boundary layer is defined as the point at which 

Ile [ [adxýý 2+ [r ýa [r)) ý] (6.2.16) 

is equal to 0.01 of its value at the wall. In the corners, the value 

of b associated with each wall is taken to be the minimum of the 99% 

boundary layer thickness, as described above for that wall, and the 

value of xn for which the distances to the two walls are equal. 

Following Koosinlin et al (1974), the influence of rotation on 

the mixing length is accounted for by use of the Richardson number, 
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Ri. Accordingly, the mixing length is modified as follows: 

12 - Qo(1-5Ri)ý (6.2.17) 

where P. Is the mixing length prescribed by equations (6.2.14) and 

(6.2.15). The factor of 5 In equation (6.2.17) was found by Koosinlin 

et al (1974) to give the best agreement with experimental data for the 

moment coefficient and velocity profiles for free-rotating cones and 

cylinders. The Richardson number is defined as 

Ri - 
rZ cosx 

ý 
(rv) 

[dxn] Z+ [r 
ýlxn 

Ir))Z 
I (6.2.18) 

where x is the angle that the surface makes with the axis of rotation. 

To avoid discontinuities in µt, the turbulent viscosities 

calculated for the four walls were averaged as in Chew and Vaughan 

(1988) as follows: 

X,,, X. t Xj) 3ttt h+ (X,, XiXh) 3ut 
ý+ 

(XýXtX_)3u,. 4 +- (XaX_XL) 
1-t - (XoXaXd)3 + (XOXdXb) + (XaXbXo)3 + (XdXaxb) 

(6.2.19) 

where the subscripts o and d refer to the surfaces at n-0 and n-d 

respectively and the subscripts a and b refer to the surfaces s-a 

and s-b respectively. So, for example, xo represents the normal 

distance from the wall at ne0 to the point where the turbulent 

viscosity is to be calculated. The type of weighting in equation 

(6.2.19) is chosen by Chew and Vaughan (1988) so as to have a 

negligible effect in the boundary layers apart from in the corner 
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regions. 

The effective thermal conductivity, ke, is divided into a 

laminar and a turbulent part in a similar way as the effective 

viscosity and is defined as 

ke- k+kt . 

The conductivities k and kt were calculated using a laminar and 

turbulent Prandtl number, where Pr - µCp/k, Prt - µtCp/kt. 

6.2.3 The Numerical Method 

(6.2.20) 

The derivation of the finite difference equations follows the 

finite volume approach of Patankar and Spalding (1972) and Patankar 

(1980). A staggered grid is used as shown in Figure 6.2. The velocity 

components u and w are calculated at the points marked t and 4 

respectively, which lie mid-way between the main grid points. Other 

variables are calculated at the main grid points. A control volume is 

associated with each grid point (shown shaded in Figure 6.2) and the 

finite difference equations are obtained by integration of the 

equations of motion over the control volumes. 

For a particular control volume, the s and n distances to the 

points P, N, S, E and W are denoted by sp, np, sW, nN etc and to 

facilitate the integration, the following distances between points are 

defined: 
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Dne - nE - np , 

Dnw - np - nW , 

Dnp - (nN-nS)/2 

Dsn - sN - sp, 

Dss - sp - sS , 

Dsp - (SE-sW)/2 

1 (6.2.21) 

Smooth expansion factors are used in both the s and n directions, so 

that grid points could be more closely packed in the regions near to 

boundaries. Unless otherwise stated, constant radial and axial 

expansion factors of 1.2 were used throughout. A finite difference 

representation of equation (6.2.9) for each of the variables at either 

of the points P shown in Figure 6.2 has the form 

AP"p -E AkOk + (SI +SAP) 
k 

(6.2.22) 

where the summation is carried out over the four neighbouring points 

N, S, E and W. The coefficients associated with u, v, w and H are 

shown in Appendix F. 

The continuity equation (6.2.1), is not included in the above 

differencing scheme, as this equation requires special treatment. It 

is used in the iterative pressure-correction method which is the 

SIMPLEC method of Van Doormal and Raithby (1984). 

An iterative, non-linear multigrid method Is used to solve the 

finite difference equations; details of the scheme may be found in 

Lonsdale (1988) and Vaughan et al (1989). Under-relaxation factors 

are used for the three velocity components, pressure, enthalpy, 

turbulent viscosity and multi-grid corrections. The additional so 
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called Cosman under-relaxation factor, aC (see Appendix F) Is also 

introduced. Unfortunately, no general rules could be found to assign 

values to the under-relaxation factors which would provide an optimum 

convergence rate for a specific case. 

6.2.4 Convergence Criteria 

To determine whether or not a given numerical calculation had 

converged, particular aspects of the output were examined; these will 

now be described. 

The Residual 

This was calculated for the velocity components, the pressure 

and the enthalpy (for a non-isothermal case). It Is defined as the 

sum over all grid points, for a particular variable, of the absolute 

value of the error in the differential equation multiplied by the 

volume associated with that grid point. From equation (6.2.22), the 

residual, Res, for a particular variable is defined as 

Res -E I(Ap-Sz)(ýp - AnDN - AS(DS - A&E - AW(DW - S, I DnpDsp , (6.2.23) 

where the summation is carried out over all points of the finest grid 

before the first coarsening in the multigrid step. 

R. M. S. Change 

This is calculated for all the variables, and is defined as the 

root-mean-square of the change of a variable given by the solution 

procedure on the fine grid, divided by the root-mean-square value for 
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the variable. The root-mean-square change for a particular variable 

Is therefore defined as 

R. M. S. change a 
ýýýý 

, (6.2.24) 

where represents any variable, do is the change at a particular grid 

point and the summation is carried out over all grid points. 

Moments 

The moment exerted on each of the four surfaces of the cavity by 

the fluid is calculated at the end of the stipulated number of 

iterations. 

Ideally, as a particular numerical calculation converges, the 

residuals and root-mean-square changes for each variable will tend to 

zero. In practice, however, a particular solution may have been 

judged converged and these parameters would tend to level off at a 

finite value. If a solution diverges, the residuals become large and 

the root-mean-square changes approach unity. The performance of a 

particular iterative solution procedure is dependent on the particular 

problem considered and the choice of the various input parameters. In 

determining whether or not a particular numerical calculation has 

satisfactorily converged, the following factors are taken into account 

(i) The values of the root-mean-square changes should be small 

relative to unity. In practice if a solution had satisfactorily 

converged, the root-mean-square changes for the velocities and 

pressure (and enthalpy for a non-isothermal case) would normally 
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be less than 10-4, although the root--mean-square change for the 

turbulent viscosity rarely reduced below 10-2. 

(ii) The values of the residuals should be small relative to the 

characteristic values of mass flow, force and energy flow for a 

particular problem. 

(iii) The values of the moments should be unchanging (to 3 significant 

figures) over single iterations and over 100 to 150 iterations. 

(iv) The values of the flow variables at a monitored point should be 

unchanging (to 4 significant figures) over single iterations and 

100 to 150 iterations. 

6.3 VERIFICATION OF THE MODIFICATIONS TO THE CODING 

To ensure that the program had been modified to model a conical 

geometry correctly, the results from several pairs of runs which in 

theory should give exactly the same results will be compared. Since 

in this section comparisons between numerical results are being made, 

the accuracy of the solution is not of importance, so to save on 

computer time, unless otherwise stated, a coarse 17 x 17 grid is used 

in each case. For isothermal flow the following three pairs of runs 

are compared. 

(R1) Results from a case where X- 90% a-0 and the surface at 

n-d is rotated are compared with results from a case where 

X- 0%. a-0 and the surface at s-0 is rotated. The radial 

and axial dimensions of the cavity in both cases are set to 

0.126m and 0.2016m respectively, so that the same rotor-stator 

disc problem are examined in both cases. 
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(R2) Results from a case where >- 70% the surface at n-0 is 

rotated and a-0 are compared with the results from a case 

where X- 110* and the surface at n-d is rotated. In both 

cases, the outer radius of the cone, b, is set to 0.126m and the 

gap width, d, is set to 0.2016m. 

(R3) To test the boundary conditions for a throughflow case, the 

geometries of test (R2) above are used, but a uniform inlet is 

assumed in place of the surface at s-a and a uniform outlet Is 

assumed In place of the surface at s-b. A mass flow rate of 

0.00696kg s'i is assumed. 

To test the changes in the energy equation, the results from the 

following two non-isothermal cases are compared. 

(R4) The geometries of the cones are the same as case (R2). The 

temperature of the rotating surface in each case is set to 500*K 

and the other three surfaces are given a temperature of 298*K. 

The laminar Prandtl number is set to 0.7 and the turbulent 

Prandtl number is set to 0.9. 

In all the above cases the flow is treated as turbulent, even if 

the Reynolds number Is sufficiently small to suggest that the flow 

should be laminar; this ensures that the modifications to the 

turbulent viscosity calculations are also tested. In all the cases, 

the flow is considered to be Incompressible, since the present 

modifications did not involve changes to the parts of the program 

which are concerned with compressibility and the following reference 

fluid properties are assumed: Pref - 1.18kg m-3, 

Aref - 1.84 x 10'Skg m'1 s'', Pref - 1.01 x 105Pa and Tref - 298*K. 
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The Reynolds number for the flow is calculated as 

Re - 
Prefý b2 

Juref 
(6.3.1) 

where 11 is the angular velocity of the rotor. Note that the 

relationship between Re above and Reg used in the integral method 

(equations (3.6.14)) is 

Ree - Re sinX . (6.3.2) 

In non-isothermal cases, the surface area averaged Nusselt 

number for a bounding surface is calculated from 

rad Eq, 
Nuav - kref(Tm'Tref) I (6.3.3) 

where 

qo - -k aT a7x- (6.3.4) 

and the summation Is carried out over all the grid points along the 

surface. In equation (6.3.3), kref is the thermal conductivity at 

reference conditions, A is the area of the surface and Tm Is the 

area-averaged temperature of the sector. 

The results for each of the above four pairs of runs are as 

follows. 

(Ri) Several values of the Reynolds number were assigned. When 

Re - 104, a converged solution was obtained after 210 Iterations 

in both cases and the moments on all four surfaces were 

identical (to an accuracy of 3 significant figures). The three 

velocity profiles at the mid-radial location are shown in 
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Figures 6.3(a)-(c). These show that the profiles are 

indistinguishable for the two cases. Similar identical profiles 

were obtained for Re < 104. When Re - 105 or Re - 106, however, 

convergence difficulties were encountered for the case when 

0% For Re - 106, a converged solution for the X- 90' case 

was obtained after 377 iterations, but after 1200 Iterations the 

0* case still had not fully converged. The moment coefficients 

for the rotor in the X- 90* and X- 0* cases were 9.13 x 10 -4 

and 9.17 x 10-4 respectively. Figures 6.4(a)-(c) show the three 

velocity profile plots at the mid-radial location. The 

tangential velocity profiles are very similar, the radial 

velocity profiles differ slightly and the axial profiles differ 

significantly. The only difference in the program for the two 

cases is the order of execution of the sub-routines concerning 

the radial and axial momentum equations. This difference must be 

the cause of the different convergence rates and it was thought 

possible that this discrepancy may be reduced by using a finer 

grid. To test this possibility, the Reynolds number was set to 

106 and a 41 x 41 grid was used. Each case was run for 400 

iterations, after which the moment coefficients on the rotor for 

the X- 90* and X- 0' cases were 3.14 x 10 -3 and 3.11 x 10 -3 

respectively. A comparison of the velocity profiles in the 

mid-radial position is shown in Figures 6.5(a)-(c). These show 

that the agreement has definitely been improved by decreasing 

the grid spacing, indicating that the disagreement in velocity 

profiles for the coarse mesh was probably due to grid refinement 

error and not due to an error in the coding. 

(R2) A value of Re - 106 was assigned. When X- 70', a converged 
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solution was obtained after 327 Iterations and when X- 110* a 

converged solution was obtained after 348 iterations. The 

moment coefficient on the rotor in both cases was 1.03 x 10-3. 

A comparison of the velocity profiles at the mid-radial position 

is shown in Figures 6.6(a)-(c). As to be expected, the velocity 

profiles are virtually indistinguishable in all cases. 

(R3) Again a value of Re - 106 was assigned. Each run was given 600 

Iterations, after which the moment coefficient for the rotor was 

1.81 x 10-3 in both cases. A comparison of the velocity 

profiles at the mid-radial position is shown in Figures 

6.7(a)-(c). Again, the velocity profiles are virtually 

indistinguishable. 

(R4) A value of Re - 106 was also assigned in this case. The 110* run 

converged after 348 iterations and the 70' case was stopped 

after 500 iterations. The average Nusselt number for the rotor 

was 5.38 x 104 in both cases. As expected a comparison of the 

stagnation enthalpy profiles at the mid-radial position showed 

that they were indistinguishable. 

The evidence of the above four cases gives confidence that the 

modifications to the program were coded correctly. In the next 

section the results predicted by the program will be compared with the 

available experimental data. 
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6.4 COMPARISON WITH EXPERIMENT 

The experimental data concerning moment coefficient calculations 

in rotor-stator cone systems used In this section is that of Yamada 

and Ito (1975,1979). In both papers, the moment coefficient for the 

rotating cone is calculated; the 1975 paper concerns zero throughflow 

cases and the 1979 paper concerns rotor-stator systems with an imposed 

throughflow. The moment coefficient is defined as in equation (4.2.9) 

and the moment on the cone is calculated numerically using equation 

(4.2.10). In Yamada and Ito (1975), the values of cone angle 

investigated are 90' (disc case), 75% 60', 45% 30' and 15% In 

Yamada and Ito (1979), the cone angles Investigated are 45% 30' and 

15% The cones used by Yamada and Ito all had a pointed vertex, so 

that the inner radius is taken to be zero In the subsequent 

calculations. For the throughflow cases, It Is assumed that the flow 

has zero swirl, so that the tangential velocity at the inlet is set to 

zero in the program. To make a thorough comparison with experiment, 

the effects of all the physical parameters, ie. X, Re, d/b and 

throughflow rate on the moment coefficient are considered. 

The rest of this section is divided into three sub-sections: the 

first is concerned with laminar flow and the second with turbulent 

flow. More attention has been given to turbulent flow, however, since 

these are the types of flow which are expected to occur more often in 

the aero-engine. The third sub-section concerns conclusions drawn from 

the previous two. 
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6.4.1 Laminar Flow 

Before comparing the numerical predictions with the experimental 

results, it is necessary to assess the effect of the grid spacing on 

the moment coefficient predictions. Table 6.1 shows the results for a 

run with zero throughflow where X- 60', a-0, Re -2x 104 and 

d/b - 0.16. These results Indicate that the moment coefficient is 

independent of the grid spacing if the mesh has at least 33 x 33 

nodes. It is assumed that for subsequent laminar runs a 33 x 33 mesh 

would give sufficient accuracy. 

In Figure 6.8(a), results are compared for a zero throughflow 

case where Re -2x 104 and d/b - 0.16. For comparison, numerical 

predictions are also shown in this figure when the flow was treated as 

being turbulent. The graph shows that the agreement between experiment 

and the laminar results is good when X> 45% where the relative error 

varies between 5.2% and 1.9%. For X< 45', the agreement becomes 

progressively worse with a 34% error at X- 15*. Figure 6.8(b) shows 

results for a case similar to 6.8(a) but where the spacing ratio has 

been reduced to d/b - 0.024. When X is between 60'and 90% the 

relative error is less than 5% and when X- 30' or 15% the relative 

error is greater than 30%. 

One possible reason for the poor agreement in Figures 6.8(a), 

(b) for smaller cone angles Is that the flow is no longer laminar in 

these cases. As stated in §4.6, the experimental work of Kreith et al 

(1963) on the transition Reynolds number for free-rotating cones 

supports the-notion that the transition Reynolds number decreases as 

the cone angle decreases. Figure 6.8(a) shows the results of treating 

the flow as turbulent, which shows a much better agreement with 

experiment at lower values of X, the relative errors being 6.1% when 
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X- 15* and 5.2% when X- 30'. At higher values of X, Figure 6.8(a) 

shows that the agreement between the turbulent flow predictions and 

experiment is worse than the agreement between the laminar flow 

predictions and experiment. This difference In agreement provides 

evidence that the flow laminarises as the cone angle increases. Yamada 

and Ito (1979) report that the transition Reynolds number is increased 

as the gap width ratio d/b decreases. This effect is supported by the 

results shown in Figure 6.8(c) where the gap width ratio is reduced to 

0.016 and X is set to 15'. The graph shows that the agreement at 

lower Reynolds numbers is excellent with the relative error at 

Re - 104 being 1.9% and the relative error at Re -2x 104 being 3.5%. 

Another reason for the poor agreement between the experimental 

results and the laminar predictions shown in Figures 6.8(a) and (b) 

for small cone angles is that the mode of secondary flow has changed 

and the finite difference program is not predicting the flow pattern 

correctly. For XG 45% Yamada and Ito (1975) report that the 

secondary flows may consist of both the large-scale 'disc-type' flow 

(as assumed in the integral method and shown in Figure 3.2) and 

'Taylor-type' vortices which are similar to those which are known to 

occur under certain conditions in a rotor-stator cylinder system. The 

presence of these Taylor-type vortices in the flow has been shown by 

Yamada and Ito (1975) to result in an Increase in the moment 

coefficient. Visual flow studies made by Yamada and Ito showed that 

the Taylor-type vortices were not a complete ring (as encountered in 

rotor-stator cylinder systems) but were spiral-shaped. This 

observation was also made under certain circumstances by Wimmer (1983) 

who observed spiral-shaped vortices moving from the larger to the 

smaller radii of the cones. Under other circumstances Wimmer (1983) 

also observed complete ring 'Taylor-type' vortices being formed 
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progressively from the outer radius of the cone inwards as the 

Reynolds number was increased. He observed these vortices travelling 

axially upwards being driven by the disc-type secondary flow. 

Wimmer's diagram of these vortices is shown reproduced in Figure 6.9. 

As the Reynolds number was increased further, Wimmer noticed the gap 

between the rotor and stator being steadily filled with vortices and 

the axial speed of the vortices decreasing. Finally, the whole gap 

was filled with vortices and a steady state was achieved. Wimmer also 

found that it was possible for the spiral Taylor-type vortices and the 

ring Taylor-type vortices to exist together side by side at the same 

time. These observations Indicate that the Taylor-type vortices 

occuring In the flow when X< 45* may be both non-axisymetric and 

non-steady and If so they would not be detected by the finite 

difference method descibed in this chapter. Yamada and Ito (1975) 

made another important observation of the flow for a 30' angled 

rotor-stator system for d/b - 0.016; when they observed 'emerging 

vortices' even in the turbulent flow region (Re - 1.5 x 106). This 

observation has important implications for the explanation of the 

turbulent flow comparisons which will be described In the next 

sub-section. 

Figures 6.10(a)-(d) show secondary flow streamline plots for 

four of the results shown in Figures 6.8(a)-(Q. Figures 6.10(a), (b) 

show the results of two runs which used the same specified flow 

parameters, but In Figure 6.10(a) the flow was treated as being 

laminar and in Figure 6.10(b) the flow was treated as being turbulent. 

Both of these streamline plots show the formation of a vortex near the 

outer shroud rotating In the opposite direction to the main secondary 

flow. Figures 6.10(c) and (d) (which have been expanded 20 times in 

the normal direction relative to the gap width to show more detail) 
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show the formation of what appear to be two vortices near the outer 

shroud. Streamline plots for the other results shown in Figure 

6.8(a)-(d) similarly illustrated the prediction of no more than two 

such vortices. The occurence of these vortices in the predicted flow 

pattern does not seem to have a significant effect on the predicted 

moment coefficient. The vortices shown in Figure 6.10(d) were not 

present when Re -2x 104, but Figure 6.8(c) shows the experimental 

and predicted trends departing at Re -4x 104. Some of the 

experimental curves show very significant increases in the moment 

coefficient as the cone angle becomes small (see Figure 6.8(b) and 

Figures (4.13(a)-(f)) which are probably due to the influence of 

Taylor-type vortices. The finite difference program does seem to be 

capable of predicting some vortices other than the main disc-type 

flow, but these do not seem to have such a significant effect on the 

moment coefficient as those which are presumably causing such abrupt 

changes in the experimental data. 

6.4.2 Turbulent Flow 

As in §6.4.1, before comparing the numerical predictions with 

the experimental results, it is necessary to assess the effect of the 

grid spacing on the solutions. Tables 6.2(a), (b) show the effect of 

the mesh size and the axial grid expansion factor on the moment 

coefficient calculations for a system with zero throughflow where 

X- 60% a-0, Re - 10s and d/b - 0.16. The tables show the 

non-dimensional near-wall grid spacing, YP, at four radial locations 

in each case, defined as 
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YP - 
(An), �'T; 

i:; T 
P 

(6.4.1) 

where (An)0 is the distance between the rotor and the first grid 

point. For the results shown in Table 6.2(a), the axial expansion 

factor is held fixed and the mesh size is increased, whereas for the 

results shown in Table 6.2(b), the mesh size is fixed and the 

expansion factor is increased. The effect of increasing the mesh size 

or increasing the expansion factor is to reduce (dn)o and hence to 

reduce YP. The Tables show that the moment coefficient (or wall shear 

stress) is sensitive to the grid spacing and that to achieve a grid- 

independent solution requires YP < 1. This means that the first grid 

point should be well inside the laminar sub-layer, which would be 

expected to extend to YP -5 (see equation (5.3.27)). Figure 6.11 

shows radial velocity profile plots at ro/b - 0.8, which indicate that 

only the results for the coarsest two grids are noticably affected by 

grid refinement error. The above findings are consistent with those 

of Chew and Vaughan (1988) for a rotor-stator disc system. For 

subsequent turbulent runs it was ensured that YP <1 at all radial 

locations. 

The experimental data and numerical predictions are compared in 

Figures 4.10(a), (b), Figures 4.11(a)-(c) and Figures 4.12(a), (b). 

Overall the agreement between theory and experiment is good, the 

maximum relative error for all the comparisons is about 14% which 

occurs in Figure 4.11(c) at the higher Reynolds number. The agreement 

between theory and experiment generally appears to be worst when 

X- 75* or 60' (see Figures 4.10(a), (b)). Figures 4.10(a), (b) show 

that although the overall agreement is good, the trend of the 

experimental data is different from the trend of results predicted by 
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the finite difference program. The trend predicted by the finite 

difference program Is in fact similar to the trend predicted by the 

integral method. Figures 6.12(a)-(f) and Figures 6.13(a), (b) show 

predicted streamline plots for some of the turbulent cases, which 

indicate that for all values of X the predicted secondary flow pattern 

is of the large scale disc-type as assumed in the integral method (see 

Figure 3.2). This helps to explain the similar Cm versus X trends 

predicted by the Integral method and the finite difference program as 

shown in Figures 4.10(a), (b). It is noticable that for X> 60', 

Figures 4.10(a)-(f) show that the experimental data follow a trend 

similar to the integral method predictions, but not for X< 45'. As 

already stated in the previous sub-section, this difference in trend 

is likely to be due to the presence of Taylor-type vortices in the 

flow when X< 45'. Yamada and Ito (1975) observed vortices emerging 

even in turbulent flow; this observation Is supported by the 

experimental work of Burkhalter and Koschmeider (1973) who observed 

Taylor vortices in rotor-stator cylinder systems even in fully 

turbulent flow. The moment coefficient data and the streamline plots 

show that the finite difference method is not predicting any form of 

secondary flow other than the disc-type In the turbulent regime and 

this would explain the poor agreement for X< 45'. The failure of the 

program to predict these vortices could be due to the fact that they 

are non-axisymmetric (Yamada and Ito (1975) and Wimmer (1983) reported 

the occurence of spiral shaped vortices) or unsteady. 

Figures 4.10(a), (b) indicate that for >> 60% both the 

integral method predictions and the experimental data produce a 

monotonically increasing moment coefficient trend. In contrast, for 

X> 60% the values for Cm predicted by the finite difference program 

peak at around 60* to 75*. The experimental apparatus used by Yamada 
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and Ito (1975,1979) is such that a half cross-section of the cavity 

is a parallelogram similar to that assumed by the Integral method. 

The finite difference solution domain Is however rectangular and is 

shown super-imposed on the integral method and experimental domains in 

Figure 6.14. It can be seen from the figure that in the experimental 

and integral method domains fluid flows directly from A to B, whereas 

in the rectangular finite difference domain, the fluid flows across a 

longer path ACB. Thus the effect of the rectangular domain on the flow 

is to channel fluid across a further distance causing the fluid to 

lose more angular momentum. The rectangular domain effectively 

increases the gap width between the rotor and stator, this effect 

reaching a maximum at X- 45'. Figures 4.10(a)-(f) show that Cm 

increases as the gap width increases, so that for X< 90', the finite 

difference predictions for Cm would be expected to be larger than the 

integral method predictions and the experimental data. This expected 

difference in predictions Is illustrated by the different Cm versus X 

trends shown in Figure 4.10(a), (b). In §7.4 the integral method will 

be modified to account for the effect of a rectangular outer shroud. 

Figure 6.14 shows that the inner boundary at r-a (or 

s- a/sinX in the finite difference domain) is also different In each 

case. In the experiments, this would be a free boundary whereas in 

the finite difference program the boundary at s- a/sinX is modelled 

as a fixed boundary where u-v-w-0. This difference In boundary 

conditions would not however be expected to contribute to appreciable 

differences in the moment coefficient, since in the proximity of this 

boundary, the velocities and distance to the axis of rotation (about 

which moments are taken) are small. This conclusion is supported by 

the results of two sets of runs both of which were performed for the 

X- 90* flow conditions which produced the results shown in Figures 
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4.10(a), (b). For one run, the boundary at s- a/sina was treated as 

fixed (u -v-w-0 at s- a/sinX) and for the other run the boundary 

was treated as a free-boundary where 

u-v-0, 
dw-0 

at s-0 dr (6.4.2) 

The moment coefficient was found to be identical (to 3 significant 

figures) when either the fixed or free-boundary conditions were used. 

For X> 60* and Re <2x 106, Figures 4.10(a), (b) and Figures 

4.11(a), (b) indicate that the finite difference program is tending to 

over-estimate the moment coefficient (with the exception of some 

points shown in figure 4.11(a) where the agreement is excellent 

anyway). A possible reason for this is the setting of the exponent e 

in the turbulence model (see equation (6.2.14)) equal to zero. Figure 

4.10(b) shows the results of setting e-0.75 for the X- 30* and 

X- 60' cases. As can be seen the non-zero value of e has the effect 

of reducing the moment coefficient by 6.8% and 2.5% respectively. 

Chew and Vaughan (1988) reported that e has a smaller effect at higher 

Reynolds numbers; this is supported by the result shown in Figure 

4.11(b) where setting e-0.75 at Re -4x 106 reduced the moment 

coefficient by only 0.5%. The above results illustrate that a non-zero 

value of e may result in a slight improvement in the agreement between 

the predicted and the experimentally determined moment coefficient, 

although it is not a critical factor, especially at higher Reynolds 

numbers. 
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6.4.3 Conclusions 

The laminar flow comparisons of §6.4.1 provide evidence for the 

following conclusions to be drawn about the predictive capability of 

the program. 

(I) In agreement with the experimental work of Kreith et al (1963), 

the program predicts a decreasing transition Reynolds number with 

decreasing cone angle. 

(ii) The comparisons of predicted moment coefficient with the 

experimental data of Yamada and Ito (1975) supports their conclusion 

that the transition Reynolds number increases as the gap width 

decreases. 

(iii) For small cone angles (X < 45'), Yamada and Ito (1975) report 

that Taylor-type vortices may be present In the flow which have the 

effect of increasing the moment coefficient. The finite difference 

program predicts only a maximum of two extra vortices (other than the 

main disc-type secondary flow), and these do not seem to significantly 

Increase the predicted moment coefficient. 

The turbulent flow comparisons of §6.4.2 provide evidence for 

the following conclusions. 

(I) For X> 60', the predicted moment coefficient is in reasonable 

agreement with the experimental data of Yamada and Ito (1975,1979). 

The differences for X- 60* and X- 75* may be attributed mainly to 

the differences in the experimental apparatus and the numerical 

solution domain. 

(ii) For x< 45% the error between the predicted moment coefficient 

170 



and the experimentally obtained values of Yamada and Ito (1975,1979) 

indicate a reasonable agreement for any particular value of X, 

although there are marked differences in the Cm versus X trends. This 

trend difference can be attributed to the failure of the finite 

difference program to predict Taylor-type vortices in the flow, which 

is likely to be due to the fact that the vortices are non-axisymmetric 

or unsteady. 

The experimental results have been restricted to one source, so 

the possibility of experimental error should not be ruled out. The 

peak in the experimental moment coefficient data for large d/b at 

X- 30' Is unexpected since it would seem likely that Taylor-type 

vortices should have an even larger effect at smaller cone angles. 

However, this peak is apparent on a number of Yamada and Ito's graphs 

for a wide range of Reynolds numbers, which suggests some credibility 

in the results. Further experimental work, particularly concerning 

more detailed flow visualisations for small angled cones would clearly 

be benificial. 

It is perhaps a little disappointing that the finite difference 

program described in this chapter failed to provide appreciably better 

moment coefficient predictions than the Integral method described in 

chapters 3 and 4. As the streamline plots in Figures 6.12(a)-(f) and 

Figures 6.13(a)-(b) show, the finite difference program has predicted 

a similar flow pattern for all values of X tested as assumed in the 

integral method described in chapter 3. This has resulted in the two 

methods predicting similar Cm versus X trends as illustrated in 

Figures 4.10(a), (b). As already discussed, it is possible that the 

experimental data is in error, in which case it is worth using the 

finite difference program results to examine the integral method 
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assumptions in more detail. This work will be described in the next 

chapter. 

6.5 SUMMARY 

This chapter has been concerned with an investigation of the 

capability of a finite difference program to predict the flow in 

rotor-stator cone systems. 

A brief description of the program was given in §6.2. The 

original program solved the flow and energy equations in a plane disc 

geometry. The steps taken to ensure the modifications had been coded 

correctly were described in §6.3. 

The predictive capability of the program was assessed in §6.4 by 

comparing the predicted results with experimental data and previously 

obtained integral method results. 
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CHAPTER 7 

MODIFICATIONS TO THE INTEGRAL METHOD 

7.1 INTRODUCTION 

In §4.6 it was shown that the integral method based on an 

adaptation of the method of Chew (1989) predicted the moment 

coefficient in excellent agreement with Yamada and Ito (1975) when 

»>60% It was also shown that when X<45% the agreement was poor. 

Ideally, the Integral method should be adapted so that the moment 

coefficient predictions are in better agreement at the smaller cone 

angles. However, the integral method can only be used If the secondary 

flows are relatively simple; boundary layers must be formed over the 

rotor and stator and the radial and tangential velocity components 

must be capable of being written as a product of a function of s and a 

function of n (see equations (3.4.14) and (3.4.15)). As discussed in 

§6.4, the evidence from flow visualisations and plots of experimental 

moment coefficient versus X curves suggests that for X<45% the mode 

of secondary flow changes and Taylor-type vortices are present in the 

flow. Flows in which Taylor-type vortices are present would not be 

amenable to analysis by the integral method. 

Unfortunately the presence of Taylor-type vortices, or any type 

of secondary flow other than the disc-type secondary flow has not been 

confirmed by the finite-difference method (except for the occurence of 

one or two vortices shown in Figures 6.10 at relatively low Reynolds 

numbers). As already stated, this could be due to the fact that such 
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vortices are non-axisymmetric (i. e. spiral-shaped) or unsteady. It is 

possible, though, that the experimental data referred to is in error 

for small cone angles, and without further experimental evidence the 

possibility exists that the finite difference program is correctly 

predicting the flows at small cone angles. It is worthwhile therefore 

using the program to examine the assumptions made in the integral 

method In such cases. There is also the possibility that for X>60% 

the assumptions of the integral method are wrong and that it is giving 

excellent moment coefficient predictions for other reasons. The finite 

difference program may then be used to help confirm that for X>60* the 

assumptions are valid. For the above reasons, in §7.2, the results 

generated by the finite difference program will be used to investigate 

the integral method assumptions described In chapter 3. 

In §7.3 and §7.4, modifications to two aspects of the present 

integral method will be described. Firstly, in §7.3 an alternative 

stator model will be described and secondly in §7.4, a simple 

modification to account for a 'rectangular' outer shroud rather than a 

shroud parallel to. the axis of rotation, as currently assumed in the 

Integral method, will be presented. 

7.2. THE INTEGRAL METHOD ASSUMPTIONS 

7.2.1 General Flow Structure 

The secondary flow pattern which was assumed when using the 

integral method described in chapter 3 is shown in Figure 3.2. The 

principal assumptions which were made about the flow will be 

summarised here again for reference. 

(i) For cases with an imposed throughflow, there is a source region 

where fluid is entrained into a boundary layer on the rotor. This 
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region continues until the mass flow rate on the rotor equals the 

specified throughflow rate. Beyond this region there is a core region. 

(ii) In the core region, fluid is continually entrained Into the rotor 

boundary layer and is then channelled across the outer shroud and back 

down in a boundary layer on the stator. 

(iii) Between the rotor and stator boundary layers there is an 

inviscid rotationally dominated core. 

(iv) For cases with no throughflow, there is no source region and the 

core region fills the entire cavity. 

The streamline plots shown in Figures 6.12 and 6.13 show that 

the finite difference program predicts a flow structure very similar 

to that described above. The u(s, n) and v(s, n) velocity profiles 

across the cavity at constant s (where s- rasinX) shown in Figures 

7.1 (a), (b) and Figures 7.2 (a), (b) confirm the formation of 

boundary layers on both the rotor and stator, In which the flow is 

outward on the rotor and Inward on the stator. The assumption that in 

the core region the flow between the rotor and stator is inviscid and 

rotationally dominated led to the derivation of equations (3.5.9) and 

(3.5.10). Equation (3.5.9) states that the tangential velocity should 

be constant between the two boundary layers at constant r (where 

r-s sina +n cosX), and this has been predicted to a good 

approximation by the finite difference program, as indicated by the 

examples shown in Figure 7.3. Equation (3.5.10) indicates that at each 

boundary layer edge, the u(s, n) velocity component should be non-zero 

for cases when X$90. As an approximation these non-zero boundary 

layer edge components were neglected (see equations (3.4.13) and 

(3.7.6)). The u(s, n) velocity profiles shown in Figures 7.1 (a), (b) 

show that if the boundary layers are assumed to extend far enough from 

the walls, then even for small X the above approximation appears to be 
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valid. 

7.2.2 Compressibility 

In §3.6 it was assumed that the isothermal flows were 

imcompressible. The validity of this assumption will be assessed using 

the finite difference program for one particular rotor-stator system 

for three different Reynolds numbers. The effect of compressibility in 

non-Isothermal systems has already been discussed in chapter 5. In an 

isothermal system, compressibility will have a greater effect on the 

flow at higher values of Reynolds number, where pressure differences 

through the cavity will be greater. A comparison of the moment 

coefficients predicted by the finite difference program when the flow 

is treated as incompressible and compressible is shown in Table 7.1, 

for three different Reynolds numbers for a particular rotor-stator 

system. The table shows that at the highest Reynolds number the 

difference In predicted moment coefficients is significant. It may be 

noted that accounting for compressibility for the Re -4x Jos case 

results in a worse agreement with the experimentally obtained value 

for the moment coefficient of 1.93 x 10-3 (from Yamada and Ito 

(1975)). The reason for the poorer agreement Is to be expected since 

the test fluid in Yamada and Ito's experiments was either water, a 

mixture of water and glycerin or spindle oil, all of which would be 

less susceptible to changes in density compared with the perfect gas 

assumed in the finite difference program. 

Figure 7.4(a) shows profiles of density across the cavity at 

three radial locations for the Re -4x 106 case in Table 7.1. All of 

them confirm that the assumption In §3.6 of constant density across 
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the boundary layers appears to be valid. Figure 7.4(b) shows 

longitudinal density plots through the rotor boundary layer at three 

axial locations. These show a significant density variation which 

would be responsible for the change in the predicted moment 

coefficient. Also shown in Figure 7.4(b) is the longitudinal density 

variation predicted by the integral method when using equation 

(5.4.10), with Tm constant and dTm/dx=0, to predict the density. The 

figure shows that the integral method over-estimates the density but 

it predicts a similar trend to that of the finite difference program. 

A consequence of this over-estimation is that the integral method 

over-predicts the moment coefficient, giving a value of 2.48 x 10-3 

which corresponds to a 13% error relative to the value of 2.20 x 10-3 

predicted by the finite difference program. The reason why the 

integral method over-estimates the density is that it slightly 

over-estimates the boundary layer edge velocity, V(x), which from 

equation (5.4.10), results in a higher density prediction. 

The examples considered above indicate that the assumption of 

constant density across the boundary layers is justified but caution 

is required when assuming a constant longitudinal density at higher 

Reynolds numbers. 

7.2.3 Surface Shear Stress Assumptions 

In §3.4 a formula for the surface shear stress on the rotor and 

stator was found using the empirical Blasius law of friction. The 

final form of the shear stress relation (equation (3.4.11)) was 

obtained assuming the boundary layer velocity components obeyed a 

1/7th power law (i. e. equation (3.4.7) with m- 7). Following 
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Schlichting (1968), the Blasius law, may be extended to account for a 

general power index. The surface shear stress relation (3.4.11) may be 

written as 

To(s) - km P týi-iiö 
Ures (7.2.1) 

where km takes the values 0.0225,0.0247 and 0.0258 for m-7,8 and 9 

respectively. In general, f(i) and g(n) in equations (3.4.16) may be 

replaced by the general power law formulae 

f(17) - n'/m (1-0 - 80l) - 1-n, /m 
, (7.2.2) 

and the limiting behaviour of fs(n) as n40, i. e. equation (3.7.7), 

may be replaced by 

fs(tls) -+ (ns)'/m as tjs -* 0. (7.2.3) 

If equations (7.2.2) are used In the surface shear stress formula 

(7.2.1), the following shear stress equation for the rotor is obtained: 

To(S) - km p rv12ý(mý'){ü2 + (vo-v)2)m/(M+'). (7.2.4) 
J l6 

A similar formula may be obtained for the stator. 

The finite difference program may be used to assess the validity 

of equation (7.2.4) for different values of m. The right hand side of 

equation (7.2.4) can be calculated using the definition of the 

boundary layer thickness appropriate to the mixing length in equation 

(6.2.15). The value of V(s) or vs(s) can be obtained from the 

tangential velocity at this boundary layer edge position and vo(s) is 

2m/(m+l 2/(m+, ) 

es 

1-1 

1, 
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the value on the surface of the rotor. From equation (3.4.14), the 

value of ü(s) at a particular s_location is given by 

ü(s) - [u(s'77)]max 
I 

(7.2.5) 

f('? )max 

where the subscipt 'max' denotes the maximum value obtained within the 

boundary layer at a particular s location. From equation (3.7.17) the 

value of us(s) is 

us (s) - -0.364 Vs(s) . (7.2.6) 

The left hand side of equation (7.2.4) may be obtained from the actual 

surface shear stress as predicted by the finite difference program. 

Thus for the rotor, the left hand side of equation (7.2.4) may be 

calculated from 

a 
12 

n/0 
(7.2.7) To° Iz 

1 lýn] 2+ frU-n 
lr] 

I 21 

and a similar equation may be formulated for the stator. 

Use of the finite difference program to evaluate equation 

(7.2.4) can only lead to an approximate assessment of the validity of 

the Blasius shear stress law, since through the use of equations 

(7.2.5) and (7.2.6) it is implicitly assumed that the finite 

difference program will predict the particular separable forms of the 

velocity components (equations(3.4.14), (3.4.15) and (3.7.5)). In 

evaluating equation (7.2.4) a suitable value for the boundary layer 

thickness Is required. The definition of the boundary layer thickness 

used in the mixing length turbulence model of the finite difference 
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method is not appropriate for the integral method where a more 

appropriate definition would be the normal distance from the rotor or 

stator over which all the flow in the s-direction occurs. Figures 

7.1(a), (b) show that next to the region of the flow directed Inwards 

on the stator, there is a region where the flow reverses direction and 

flows outwards. This region should be accounted for In the stator 

boundary layer definition used in the Integral method since a radial 

mass flux balance between the rotor and stator boundary layers is 

essential to the method. The boundary layer definition used by the 

finite difference method tends to underestimate this distance. In 

practice, the finite difference method predicts the edge of the 

boundary layer to be (approximately) at the distance from the stator 

where the s-velocity first becomes zero. Thus from Figures 7.1(a), 

(b), this boundary layer thickness could be as small as half of that 

which is a definition appropriate for the Integral method. However, 

the discrepancy should not have too significant an effect on the 

Blasius shear stress formula, because of the 2/(m+l) index occuring on 

the right hand side of equation (7.2.4). For the above reasons and for 

coding simplicity, the boundary layer thickness as predicted by the 

finite difference method was used in evaluating the shear stress from 

equation (7.2.4). 

Figures 7.5(a), (b) show typical comparisons of the surface 

shear stress on the rotor predicted by equation (7.2.7) and by 

equation (7.2.4) for m-7,8 and 9. The figures show that the Blasius 

law predictions using equation (7.2.4) exhibit a similar trend to the 

finite difference predictions using equation (7.2.7). The figures also 

show that the 1/7th law gives the best fit, particularly in'Figure 

7.5(a) where the Reynolds number is highest (Re -4x 106 In Figure 
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7.5(a)). This improved agreement for higher Reynolds numbers is 

reflected in the moment coefficient comparisons in Figures 4.11 (a) - 

(c) where the agreement between the integral method and the finite 

difference program improves as the Reynolds number increases. Figures 

7.6(a), (b) show similar comparisons for the stator. Again the 1/7th 

law gives the best predictions, and the comparison is particularly 

good for the higher Reynolds number as illustrated in Figure 7.6(a). 

The comparisons shown in Figures 7.5 and 7.6 can only be used as 

a rough guide to the validity of the shear stress law, nevertheless 

very good agreement when using the 1/7th power law has been shown, 

especially at higher Reynolds numbers. This is particularly 

encouraging since Reynolds numbers of this size and above are likely 

to be encountered in the aero-engine. 

7.2.4 Velocity Profiles 

In §3.4 the velocity profiles in the rotor boundary layer were 

assumed to be generalisations of those used by von Karman (1921), and 

are given by equations (3.4.14)-(3.4.16). The functional forms of f(n) 

and g(n) given by equations (3.4.16) cannot be valid near to the rotor 

surface since they predict an infinite surface shear stress. However, 

it would be expected that the profiles are valid throughout most of 

the remaining boundary layer. It was also assumed in §3.7 that the 

same tangential velocity profile as that given by equations (3.4.16) 

was valid in the stator boundary layer. In this sub-section, the 

finite difference results will be used to assess the validity of the 

above assumed velocity profiles. The assumptions used to formulate the 

stator model, in particular the radial velocity In the stator boundary 
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layer described In §3.7, will be discussed in §7.3. 

The validity of the 1/7th power law used In the tangential 

velocity profile in equations (3.4.16) may be most effectively 

assessed using log plots, where the 1/7th law will be represented by a 

straight line. Some typical profiles across both the rotor and stator 

boundary layers are shown in Figures 7.7(a)-(d) for a variety of 

rotor-stator cone systems at three different radial locations. It is 

apparent from the figures that, even for small cone angles, the 1/7th 

power law is a good representation of the profiles throughout most of 

the boundary layers (whose thickness will typically be of the order 

10% of the gap width, d). 

As discussed in §3.4, the simple multiplying factor (1-, ) 

present in f(n) in equations (3.4.16) was used by von Karman (1921) to 

force the radial velocity to zero at the boundary layer edge. A more 

general formula for f(n) is 

f(q) - n'/7 (1-. q)M , (7.2.8) 

where M is a constant which may be varied in order to determine the 

value which gives the best agreement with the finite difference 

results. Figures 7.8(a)-(d) show a selection of finite difference 

velocity profiles across the rotor boundary layer compared with 

profiles using equation (7.2.8) with M equal to 0.5,1 and 2. The 

boundary layer thickness, b, in the figures is defined as the distance 

from the rotor to the point where the radial velocity first becomes 

approximately zero. The figures show that for all values of X 

considered, the value of M-1 in equation (7.2.8), as used by von 

Karman (1921), appears to give the best agreement with the finite 

difference results. 
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The above results show that the assumed velocity profiles of 

chapter 3 are in good agreement, with those predicted by the finite 

difference method. The comparisons show that even for small cone 

angles, there is no evidence from the finite difference results to 

suggest any modifications to these profiles. 

7.3 ALTERNATIVE STATOR MODEL 

7.3.1 Discussion of the Model used in q3.7 

The derivation of the integrated boundary layer equations for 

the stator boundary layer in §3.7 was based on the method of Chew 

(1988,1989). The equations were derived from a consideration of 

analytical solutions to the problem of an infinite rotor-stator cone 

system with no throughflow. The assumptions which were made about the 

flow in an infinite system were based on the experiments of Daily and 

Nece (1960) and the finite difference results of Chew (1987) and for 

ease of reference are summarised belbw. 

(I) A boundary layer develops on both the rotor and the stator 

separated by a uniformly rotating inviscid core which rotates with an 

angular velocity of approximately 0.42 times the rotor angular 

velocity. 

(11) The fluid velocity relative to both the rotor and stator is at a 

limiting flow angle y (or ys), such that 

tarry - ll, Hi ö (u_ 1-0.364 
lvo v 

(7.3.1) 

(iii) The ratio of the stator boundary layer thickness, bs, to the 

rotor boundary layer thickness, b, is approximately 1.38 (or, 

equivalently, 6s-1.3861). 
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The present finite difference results will now be used to 

discuss the validity of the above three assumptions when applied to 

cone rotor-stator systems. 

(1) Figures 7.9(a), (b) show profiles of v/(0r) against ro/b where v 

is evaluated at n-d/2. The graphs show that v/(11r) is approximately 

constant for all values of X considered and that the value of 

v/(flr)-0.42 is also a fairly good approximation. 

(ii) Profiles of tarry and tangs against ro/b are shown in Figures 

7.10(a)-(c) and Figures 7.11(a)-(c) respectively. Figures 7.10(a), (b) 

and Figures 7.11(a), (b) show that for zero throughflow cases, tarry 

and tangs tend to attain a constant value at higher values of ro/b 
V 

which would correspond to higher values of a local Reynolds number for 

all values of X considered. The figures also show that a value of 

0.364 (-tan20*) is a fairly good approximation to this constant value. 

Figure 7.11(c) shows that the variation of tanys with ro/b Is more 

erratic for cases with throughflow, a result also found by Chew 

(1988). 

(iii) Defining the boundary layer thickness as the region within which 

all the secondary flow occurs, Figures 7.1(a), (b) show that as X 

decreases, the boundary layer thicknesses on both the rotor and stator 

increase in such a way that the ratio S/bs is approximately 

independent of X. If the edge of the boundary layers are defined as 

the points outside of which there is no secondary flow, then Figures 

7.1(a) and (b) show that the ratio S/bs should lie between 2 and 3. 

It Is evident from the above results that the finite difference 

program predicts values for V/(nr), tarry, tarrys and d/Ss which are 

fairly independent of X. This simplifies the stator model since no 

special considerations are required to account for different cone 

angles. The results also show that the assumption 6s-1.38ö tends to 
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underestimate the size of the stator boundary layer. From the finite 

difference results it appears that the weakest assumption of the model 

is that us(s) in equation (3.7.5) can be calculated from equation 

(7.3.1) for all throughflow rates. To improve on this aspect of the 

model, both the radial and tangential momentum equations would need to 

be retained, instead of replacing the radial momentum equation with 

equation (7.3.1). This would enable a solution to be found for us(s) 

which could vary according to the problem being considered. To retain 

both the momentum equations, the radial and tangential velocity 

components need to be expressed explicitly in a similar way to that 

shown in equations (3.4.14) and (3.4.15). The following sub-section 

describes the derivation of explicit profiles for fs(ns) and gs(ns) 

which may be used to express the ns dependence in the stator radial 

and tangential velocity components. 

7.3.2 Description of the New Model 

The particular forms of the profile functions fs(ns) and gs(ns) 

used here are chosen so as to model the profile behaviours evident in 

Figures 7.1 and 7.2. Examination of the radial profiles adjacent to 

the stator in Figures 7.1(a), (b) show that the profile function 

fs(ns) should change sign to incorporate the region of reverse flow 

and so it is assumed that the radial velocity in the stator boundary 

layer, u(s, is), can be expressed in the form 

ug(s. 71s) - us(s) fS(71s), 

where 

(7.3.2) 

fs(-qS) - 
(nS)'/' (1-77 s) (a, -IS), 77S-(d-n)/ds , (7.3.3) 

185 



and a, is a constant such that 0<a, < 1. 

Examination of the tangential velocity profiles adjacent to the stator 

in Figures 7.2(a), (b) shows that the tangential velocity profile 

reaches a maximum which Is significantly greater than the core 

velocity. (It may be noted that a similar phenomenon Is observed next 

to the rotor, although here the difference between the minimum 

tangential velocity and the core tangential velocity is less 

significant than in the stator case). To account for this peak in 

tangential velocity it is assumed that the tangential velocity in the 

stator boundary layer, vs(s, is), can be expressed in the form 

Vs(s, 71s) - vs(s) [1-8s(ns)) 
. 

where 

gS(iS) -1- a1(is)'/7 + (az-1)ns 
0 

(7.3.4) 

(7.3.5) 

and a2 is a constant greater than one so that výs, ns) has a maximum 

above vs(s). The functions fs(ns) and gs(ns) shown in equations 

(7.3.3) and (7.3.5) satisfy the required boundary conditions of 

us(s, 0) - us(s, l) - vs(s, 0) -0 and vs(s, 1) - vs(s) and they also 

exhibit a 1/7th power law behaviour as ns 4 0, so that the Blasius 

shear stress law (3.4.11) will still hold. Using equations (7.3.3) and 

(7.3.5), the surface shear stress formulae (3.4.18) and (3.4.19) 

become 

reýo = 0.0225 p [vs1ý/4a2 vS [(alus)Z + (azvs)Z]3ý8 (7.3.6) 
aJ 

and 

SSS 
S, 0 - a, u Te, O. 

CYZVS 
(7.3.7) 
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Substituting the above shear stress formulae into the integrated 

boundary layer equations (3.6.4) and (3.6.5) and setting vo-0, which 

is appropriate for the stator, two equations for the stator boundary 

layer are obtained. Non-dimensionalising these equations using 

equations similar to (3.6.14) the following equations are obtained: 

I£f d [x4(us)23S] + bs(VS)2[2Ig-Igg] 
x3 dx 

--0.0225 aIus [(usa, )2 + (a2Vs)23/8 
(X2bS)1/4 

and 

SS S-S SSS 2-S 
ýg L (x u, býV ssb, ul If d (x V) 
x4 dx x 

- -0.0225 a2Vs[(a1uý)2 + (a2Vs)2I3/8 

ýX2bS, 1ý4 
1 

(7.3.8) 

(7.3.9) 

where if, Ig etc. are constants defined in a similar way to those in 

equations (3.6.6). 

The constants al and a2 which now appear in the expressions for 

If, Ig etc. and in equations (7.3.8) and (7.3.9) may be calculated 

using the analytical solutions for an Infinite rotor-stator system 

(c. f. §3.7). Following the approach of §3.7, it Is assumed that in an 

infinite rotor-stator cone system, the rotor and stator boundary 

layers are separated by a uniformly rotating core. In this case vs=k. Qr 

where k is a constant and choosing ßs-kn, the analytical solutions to 

equations (7.3.8) and (7.3.9) are 

)az (us) _-ý (ISg-219 J1/2 
(7.3.10) 

r VI 
3.6Iffa2 + (4.6Ifg-2If)a, 
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and 

(bsx°'4) - 
[0.0225 

as)2+az 3/a a/s 
ý z[ (aýu ýz] (7.3.11) 

us(4.61fg-2If) 

Two relationships will now be used to find a, and a2. Firstly, the 

mass balance condition (i. e. mass outflow on the rotor must be 

balanced by a mass inflow on the stator) gives 

6sj -- (1-k)u, If (7.3.12) 

Sý kuýIf 

where u, and b, are the analytical solutions to the rotor boundary 

layer equations and are given by equations (3.7.2) and (3.7.3). 

Secondly, the limiting flow angle, which has been shown by the present 

finite difference results to have a fairly constant value for zero 

throughflow cases, may be derived from equation (7.3.1) as 

tangs- - au, (7.3.13) 
a2 

Given values for tanys and k, equations (7.3.12) and (7.3.13) are two 

non-linear equations which, provided real solutions exist, may be 

solved for a, and a2. The method of finding a, and a2 used here 

though, recognises the fact that the values of tanys-0.364 and k-0.42 

used previously can only be approximate and the required values of a, 

and a2 are found numerically as follows. 

Firstly upper and lower bounds are placed on a, and a2: 
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0<a, <1, (7.3.14) 

and 

1< a2 <5, (7.3.15) 

The upper and lower bounds imposed on a, follow immediately from 

equation (7.3.3). The constant a2 Is given an upper bound of 5 since 

for values larger than this, it may be shown from equation (7.3.5) 

that the maximum value of v(s, r, s) attained within the stator boundary 

layer is greater than three times vs(s), which from Figures 7.2(a), 

(b) would seem to be unreasonable. The constants a, and a2 are 

assigned all values (to a specified accuracy) between the bounds 

imposed by equations (7.3.14) and (7.3.15) and if real solutions 

exist, equations (7.3.10) and (7.3.11) are solved for us and Ss 

respectively. The values obtained for u7 are substituted into equation 

(7.3.13) to find the value of tangs and if this is within 5% of 0.364, 

the value of k required to satisfy the mass balance equation (7.3.12) 

(to a tolerance of 1%) is found. An additional criterion used was that 

2< 67/&, < 3, which follows from the finite difference results. One 

value of a2 and two values of a, were found such that tangs was within 

5% of 0.364 and 2< 67/6, < 3. The final values chosen were a, - 0.580 

and a2-1.35 which required a value of k- 0.393 to satisfy the mass 

balance equation (7.3.12) which is reasonably close to the previously 

chosen value of k-0.42. Using these values for a1, a2 and k it was 

found that tarrys-0.382 and 67/6, -2.80. 

Figures 7.12(a), (b) show graphs comparing the finite difference 

radial velocity predictions with those from equation (7.3.2) with 

a1-0.580 and Figures 7.13(a), (b) show similar comparisons for the 

tangential velocity with a2-1.35 in equation (7.3.5). The graphs show 
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a fairly good agreement between the finite difference predictions and 

the new velocity profiles. These velocity profiles will now be used in 

the stator equations to solve general rotor-stator flow problems. With 

a, -0.580 and as-1.35, the constants in equations (7.3.8) and (7.3.9) 

take the following values: 

If-8.836 x 10-2, Ig -6.250 x 10_3 Iff-2.447 x 10-2, 

I9sg-4.833 x 10-3 and Ifg-4.928 x 10-3. 

A comparison between the results obtained using this stator model and 

the previous model of §3.7 will now be made. 

7.3.3 Comparison of the Models 

A comparison will be made between the results obtained from the 

integral method using the old stator model (old integral method) and 

the integral method using the new stator model (new integral method) 

with the finite difference results and the experimental results of 

Yamada and Ito (1975,1979). A stator moment coefficient, 

Cm, is defined in a similar way as the rotor moment coefficient, i. e. 
S 

Cm is defined as 

CCm - 2MssinX 

Af, 2 bs 

where Ms is the moment on the stator which is calculated from 

b/sinX 

, 
Ms - 2aro re 0 

ds 

a/sinX 

The rotor moment coefficients are compared in Figures 

(7.3.16) 

(7.3.17) 

7.14(a)-(d) and the stator moment coefficients are compared in Figures 
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7.15(a)-(d). The agreement for the rotor moment coefficient between 

those predicted by the finite difference program and the new Integral 

method is shown to be better in all cases except for those shown In 

Figure 7.14(c) at higher Reynolds numbers. A comparison of the 

predicted rotor moment coefficients with the experimental results of 

Yamada and Ito (1975,1979) does not show any marked improvement with 

the new integral method. In all cases the new integral method predicts 

a higher rotor moment coefficient than the old Integral method, which 

is a consequence of the new method predicting a lower V(x) 

distribution as shown by the examples in Figures 7.16(a), (b). 

Figures 7.15(a)-(d) show that the new integral method tends to 

produce stator moment coefficients in better agreement with those 

predicted by the finite difference program than the old method. 

Figures 7.15(a), (b) show a different trend in Cms with X to that 

predicted by the finite difference program. This is likely to be 

caused by differences between the finite difference solution domain 

and the integral method solution domain (see Figure 6.15). For small 

values of X, the outer shroud over which the fluid flows from the 

rotor to the stator is smaller in the finite difference domain so that 

the fluid will have lost less angular momentum when it reaches the 

stator. This will result in an increase In the moment exerted by the 

fluid on the stator. The discrepancy in the predictions for the stator 

moment coefficients In throughflow cases may be expected to be larger 

since the Integral method does not calculate the moment exerted on the 

stator at radial locations within the source region. However, the 

finite difference results for the surface shear stress shown in Figure 

7.17 indicate that the shear stress in this region is much smaller 

than that In the core region, so that neglecting the contribution to 

the moment from this region will not greatly affect the overall moment. 
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A comparison of the predictions for the limiting flow angle, 

tangs, given by equation (7.3.1) is shown in Figures 7.18(a), (b). The 

zero throughflow case shown in Figure 7.18(a) illustrates that the new 

integral method gives an improved agreement with the finite difference 

method and that it correctly predicts the trend at lower radii. 

However, the throughflow case shown in Figure 7.18(b) indicates that 

the new integral method over-estimates tangs predicted by the finite 

difference program at the lower radii. 

7.3.4 Discussion 

It has been shown that the new integral method tends to predict 

rotor and stator moment coefficients which are in slightly better 

agreement with those obtained using the finite difference method and 

experiment than the old integral method. However, the new integral 

method does under-predict the core tangential velocity, for which the 

experimental results of Daily and Nece (1960) for rotor-stator disc 

systems with zero throughflow provide further evidence of the accuracy 

of the finite difference predictions. This under-estimation could be a 

consequence of the values of a, and a2 chosen, which as described in 

§7.3.2, required a value of k-0.393 (which Is lower than the values of 

k-0.41 to k-0.46 which were obtained by Daily and Nece (1960)), to 

satisfy the mass balance requirement. It has also been shown that for 

throughflow cases, the new integral method over-predicts the limiting 

flow angle apparent from the finite difference results. This over- 

estimation at lower radii for throughflow cases, as shown In Figure 

7.18(b), Is perhaps an illustration of the weakness in developing a 

model from finite difference and experimental results with zero 
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throughflow and then applying the model to general throughflow cases. 

Further work will be required to develop an integral method which 

gives good predictions for quantities such as tangs and Cms for 

general throughflow rates. However, considering the contrast in the 

fairly constant tangs graphs shown in Figures 7.11(a), (b) compared 

with the erratic tangs graphs shown in Figure 7.11(c), it is perhaps 

unlikely that a single simple model will be found which will be valid 

for cases with throughflow as well as cases with zero throughflow. 

Considering the above results and the fact that for X>60% the 

rotor moment coefficient was satisfactorily predicted by the old 

integral method, it would seem that the new stator model may only be 

worthwhile considering in preference to the old model if stator moment 

coefficient predictions are required. 

7.4 THE SHROUD TREATMENT 

The outer shroud channels fluid from the rotor boundary layer to 

the stator boundary layer, as illustrated by Figure 2.1(c) and Figure 

3.2, and it has the effect of decreasing or increasing the angular 

momentum of the fluid as it travels from the rotor to the stator 

depending on whether it is stationary or rotating. As shown in Figure 

3.2, for rotor-stator cone systems, the shroud is assumed to be 

parallel to the axis of rotation and in this section a simple 

modification will be explained to allow for the effect of a 

'rectangular' outer shroud as assumed in the finite difference method 

and shown in Figure 6.1(b). 

The effect of the rectangular domain is to channel fluid across 

a further distance, as shown by the dashed arrows in Figure 6.14 
. The 

193 



rectangular domain effectively increases the gap width between the 

rotor and stator, which explains the Cm trend differences between the 

finite difference results and integral method seen for »>60* in 

Figures 4.10(a), (b). Considering the difference in the geometries of 

the two domains shown in Figure 6.14, it is clear that the 'apparent' 

shroud length, d', for the rectangular domain is related to the shroud 

length, d, of the original integral method domain, by the relation 

d' -d( cosX + sinn ). (7.4.1) 

To account for a rectangular outer shroud in the integral method, the 

gap width, d, may simply be replaced by d' from equation (7.4.1). This 

correction should result in the Cm versus X trend predicted by the 

finite difference program shown in Figures 4.13(a), (b) and, as shown 

in Figures 7.19(a), (b), this is found to be the case. 

Although the effect of applying correction (7.4.1) is not great 

(the difference at X-45% where the correction has the greatest 

effect, for the two integral method solutions shown in Figure 7.19(a) 

is 4.0%), the principle of accounting for different shroud geometries 

by changing the gap width may presumably be extended to other 

situations where the effect may be greater. 

7.5 SUMMARY AND CONCLUSIONS 

In §7.2 it was shown that the results of the finite difference 

program have supported the integral method assumptions of chapter 3 

and they have shown that the assumptions may be generalised to 

rotor-stator cone systems. However, as discussed In §6.4, the poor 
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agreement between the trend of the finite difference results and the 

trend of the experimental results for X<4 $, raises doubts as to the 

validity of the finite difference results for small cone angles. 

Clearly, further experimental work Is desirable to clarify the results 

referred to here which were restricted to one experimental source. 

If the above discrepancies are due to the occurence of 

spiral-shaped or unsteady 'Taylor-type' vortices occuring in the flow 

when W45% the prediction of such flows will require the numerical 

solution of non-axisymmetric or unsteady partial differential 

equations. This will prove more costly. From the experimental evidence 

available, the conclusion that can be drawn at this stage is that the 

present integral method may be used with confidence to predict 

rotor-stator cone flows provided »>60% 

The treatment of the stator boundary layer in the integral 

method has proved somewhat difficult in the past and In §7.3 an 

alternative model to the fairly simple model of Chew (1988,1989) was 

described. The new model resulted in a slightly Improved agreement for 

the rotor and the stator moment coefficient compared with the finite 

difference and experimental results. However, the new model tended to 

under-estimate the rotational speed of the core and did not produce 

good agreement for the limiting flow angle for throughflow cases 

compared with the finite difference results. From these results it has 

been concluded that the new stator model is only worthwhile including 

if stator shear stress predictions are required. 

A simple correction has been proposed to model the effects of a 

rectangular solution domain. For »>60% the correction resulted in the 

integral method correctly predicting the same Cm versus X trend as the 

finite difference results. The model illustrates a method of 

accounting for other more general shroud geometries. 
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CHAPTER 8 

CONCLUDING REMARKS AND SUGGESTIONS FOR FURTHER WORK 

This chapter focusses upon the important conclusions which may 

be drawn from the work described in this thesis. As most of these 

conclusions have already been discussed in previous chapters, this 

chapter serves to summarise and emphasise the most important points. 

Attention will also be given to recommendations for areas of further 

work. The chapter is divided into two sections, the first is concerned 

with the integral method and the second with the finite difference 

method. 

8.1 THE INTEGRAL METHOD 

The isothermal predictions for the moment coefficients have been 

shown to be in very good agreement with experimental results for 

a>60'. For X<45' and Cq-0, the agreement is poor, which is likely to 

be caused by the occurence of Taylor-type vortices in the secondary 

flow. For X<45% there is some improvement in the agreement as Cq 

increases, which may be explained by the fact that the Taylor-type 

vortices are suppressed by throughflow. Further experimental work 

concerning rotor-stator cone systems would be useful; particularly 

detailed flow visualisations to precisely establish the nature of the 

Taylor-type vortices and the range of parameters (such as Ree, X and 

d/b) over which they occur. Based on the evidence of the available 
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experimental data, it may be concluded that the present integral 

method, which is an extension of that developed for rotor-stator disc 

systems, can be used for flow predictions in rotor-stator cone systems 

where a>60'. 

The comparison of the non-isothermal results of chapter 5 with 

the finite difference results showed encouraging agreement. The 

effects of compressibility caused modelling difficulties and this 

could be an area for further work. However, some caution is required, 

as in certain cases with adverse temperatures, problems may be caused 

by the effects of bouyancy which can fundamentally change the 

secondary flow structure. Clearly, experimental work concerning heat 

transfer in rotor-stator disc or cone systems would be desirable to 

compare the predicted results and to examine in detail the effects of 

compressibilty and bouyancy. Some aspects of the model descibed in 

chapter 5 would benifit from further work; in particular the methods 

described in §5.4.2 to estimate gshroud, Hout and qö. A 
. 
systematic 

study of the best ways to estimate these quantities could be achieved 

more satisfactorily if experimental results were available. 

8.2 THE FINITE DIFFERENCE METHOD 

The different trends illustrated by the Cm versus X curves 

produced by the finite difference results and experiment clearly shows 

the presence of an experimental effect not being predicted by the 

finite difference program. As already stated, the experimental 

evidence suggests that this effect is the occurence of Taylor-type 

vortices in the secondary flow. For all cone angles considered, the 

finite difference program predicts a secondary flow pattern similar to 
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the disc-type secondary flow, except for a few laminar cases, where a 

second or third small vortex is predicted near to the outer-shroud. 

The failure of the program to predict Taylor-type vortices may be 

explained by the fact that they are non-axisymmetric or unsteady. The 

numerical prediction of non-axisymmetric or unsteady flows (or both) 

would be very expensive computationally. The results in this thesis 

show that the finite difference method has a similar range of validity 

as the integral method, i. e. the finite difference method may be used 

with confidence to predict the flow in a rotor-stator system provided 

»>60* . 

The present finite difference results support the integral 

method assumptions and they show that the assumptions may be 

generalised to rotor-stator cone systems. However, the few cases 

considered indicate that for high Reynolds number isothermal flows, 

longitudinal compressibility effects should not be neglected. 
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NOMENCLATURE 

a inner radius 

b outer radius 

Cm moment coefficient (-2Msina/(pC2b5)) 

Cp specific heat at constant pressure 

Cq non-dimensional mass throughflow rate (-iry/(µb)) 

d perpendicular distance between the rotor and stator 

D diameter of pipe (see §3.4) 

e exponent in Van Driest (1956) type damping factor (equation 

(6.2.14)) 

rate of energy deficit 

Ec(s) 

f(r7) 

F 

Eckert number (_fl2r2/2Cp(To-T)) 

s-velocity profile 

friction factor 

g(77) tangential velocity profile 

h(77, s) stagnation enthalpy profile 

H(s, n) stagnation enthalpy 

Hin stagnation enthalpy at inlet 

Hout stagnation enthalpy at outlet 

hc 

If 

I9 

Ifg 

Iff 

1 gg 

IG 

'GG 

1 f17 

heat transfer coefficient 

constants obtained by integrating velocity and enthalpy 

profiles across the boundary layer 
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Ifl? n 

1 fS77n 

lffý 

lfh 

k(x) non-dimensional boundary layer edge tangential velocity 

(-v/(fro)), used when V Is constant 

k laminar thermal conductivity 

km constant in Blasius law of friction (equation (7.2.1)) 

ke(s, n) effective thermal conductivity (-k+kt) 

kt(s, n) turbulent thermal conductivity 

Q mixing length 

L length of pipe (see §3.4) 

m variable exponent in power law velocity profiles 

in mass flow rate 

M moment exerted on rotor 

n normal coordinate direction in 'tilted' cylindrical polar 

system 

Nu(s) local Nusselt number 

Nuav average Nusselt number 

p(s, n) static pressure 

Pr laminar Prandtl number 

Pre(s, n) effective Prandtl number (-µeCp/ke) 

Prt(s, n) turbulent Prandtl number (-. utCp/kt) 

Pr* characteristic Prandtl number 

q(s, n) heat flux 

qshroud surface heat flux from outer-shroud 

Q volumetric flow rate (see §3.4) 

r radial coordinate direction in cylindrical polar system 

r(s) local radius (-s sinX +n cosX) 
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re(s) radial location of end of source region 

r0(s) radial location of rotor surface (-s sinX) 

RG perfect gas constant 

Re Reynolds number used in finite difference program (-f2b2/p) 

Re* Reynolds number used in order of magnitude analysis 

(equation (3.3.10)) 

Ree Reynolds number used in the integral method (-2b2/(vsinX)) 

Rep(s) local Reynolds number (equation (5.3.48)) 

RT(s) thermal Reynolds number 

s coordinate direction parallel to cone in 'tilted' 

cylindrical polar system 

t time 

T(s, n) Temperature 

T, tolerance defined as max1Fj(V)I where Fi is given by 

equations (4.2.14) and (4.2.15) 

T* 'friction' temperature (-q0/(pCpv*)) 

u(s, n) s-velocity component 

ü(s) s-dependent component of u(s, n) 

u, (x) non-dimensional ü(s) (-ü/(Qro)) 

up(s, n) velocity component parallel to a surface in the s-n plane 

Um mean velocity of fluid in pipe (-4Q/RD2) 

Umax maximum velocity of fluid in a cross-section of the pipe 

U(s) -[ü2 + (v0-V)2 + W2]1/2 

v(s, n) tangential velocity component 

v*(s) friction velocity (-(IT8,01/p)1/2) 

V(x) non-dimensional boundary layer edge tangential velocity 

(-v/(ßr, )) 

V0(x) non-dimensional surface tangential velocity (-v0/(ßr0)) 

w(s, n) n-velocity component 
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x non-dimensional distance (-ro/b) 

xe non-dimensional radial location of end of source region 

(-re/b) 

xn normal distance from surface 

xn non-dimensional normal distance from surface (-xn(prw)1/2/µ) 

YP non-dimensional near-wall grid spacing 

z coordinate direction in cylindrical polar system 

Greek letters 

a ý 

a2 

aG 

ß 

b(s) 

S, (x) 

aT(s) 

Axe 

E 

Et(s, n) 

t 

71 

constant in new s-velocity profile (equation (7.3.3)) 

constant in new tangential velocity profile (equation 

(7.3.5)) 

Gosman under-relaxation factor 

representative angular velocity 

momentum boundary layer thickness 

non-dimensional momentum boundary layer thickness 

thermal boundary layer thickness 

distance over which source region calculation is continued 

in core region calculation method 2 (see §4.2.4) 

x-a/b 

molecular diffusivity of heat (-k/pCp) 

turbulent diffusivity of heat (-kt/pCp) 

non-dimensional distance from wall (_nv*/v) 

non-dimensional distance in boundary layer (-n/b) 

I 

B tangential coordinate in cylindrical and 'tilted' cylindrical 

polar systems 

half cone angle 

angle which a surface makes with the axis of rotation 

(equation (6.2.18)) 
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A coefficient of resistance in the 'law of friction' for 

turbulent pipe flows 

laminar dynamic viscosity 

µe(s, n) effective dynamic viscosity (-µ+µt) 

µt(s, n) turbulent dynamic viscosity 

v laminar kinematic viscosity (-µ/p) 

yt(S, n) 

ý,, ýz 

p(s, n) 

rij (s, n) 

rW(s) 

turbulent kinematic viscosity (-µt/p) 

constants used in asymptotic solutions (see §4.5) 

density 

stresses components, where i and j represent s, 6 or n 

resultant wall shear stress 

V inlet swirl parameter (-vin/(fla)) 

X(Pr, T0) function expressing the dependence of the surface heat flux 

on the laminar Prandtl number and surface temperature 

distribution (equation (5.3.44)) 

under-relaxation factor (equation (4.2.18)) 

angular velocity of rotor 

nb angular velocity of outer-shroud 

Subscripts 

in inlet value 

o value on rotor or stator surface 

out outlet value 

t turbulent value 

e effective value 

ref reference value 
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Superscripts 

s stator variable 

Overbars 

values at the boundary layer edge 
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Appendix A- The Simple Iterative Method 

The motivation for using equation (4.2.18) is from the general 

iterative method for finding the zero of a function f(x). The formula 

for the jth iterate is 

x3 - xJ-' + f(xj-') . 

It may be shown that a condition for convergence of (Al) is that 

-2 < f'(x3-') <0. 

(Al) 

(A2) 

The above method has been extended to a system of N variables so that 

the jth iterate is found from 

xii a xiJ-' + f(xiJ ') for I (A3) 

f(x-') In equation (A3) is taken as F1(V) in equation (4.2.16) 

and an under-relaxation factor is used which appears multiplied by 

Fi(V). It is not generally possible to check condition (A2) 

analytically in this case. The attractions of the method are its ease 

of application; derivatives of the function F1(V) are not required and 

only one initial guess is needed. 
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Appendix B- Analytical Solutions for a Free-Rotating Cone 

Von Karman (1921) found analytical solutions to the integrated 

boundary layer equations governing the flow over a disc rotating in an 

infinite environment. His work has since been generalised to boundary 

layer flow over a cone rotating in an infinite environment by other 

authors, such as Kreith (1966) and Chew (1985). Their results are 

valid provided the inner hub-radius of the cone is zero (i. e. a- 0) 

and the case (1) boundary layer arguments of §3.3 are valid. 

The relevant equations are (4.2.4) and (4.2.5) when the terms 

containing tanX are omitted and V is set to zero. The equations then 

become 

J2 + Y2213/8 2Y1 Y2 
dx 

- Iff Y12 
dX' 

- -0.0225x7/4 YI rrx y 

+ 
Y1 2xY7 

Iff + x3Y23 199 

and 

(B1) 

dYL 
ý 

0.0225x7/4 ((Y l2 3/8 
- 

2Y 
dx Ifg Y2 

rx21 
+ Y22] ý (B2) 

Re-writing Y, - u, S, x3 and Y2 - 61x, equations (B1) and (B2) have 

analytical solutions of the form 

uý - 0.162 , 

b, - 0.525x'o. 4 . 

(B3) 

(B4) 

212 



As stated in §4.2.1, Y2 is proportional to the boundary layer 

thickness and from equation (B4) 

aX' - 0.315x-0"4 (BS) 

Y, is proportional to the mass flow rate in the boundary layer and may 

be written as Y, - u, x2Y2, so that 

dY, 
- 0.324x Y2+0.162x2 dYz 

dx dx (B6) 

From equation (B5), the analytical results indicate that the boundary 

layer thickness (or Y2) has an Infinite gradient at x-0 (i. e. at the 

inception of the boundary layer). It would seem reasonable to assume 

that for a cone where a ;40, the boundary layer grows in a similar 

way, so that 

ä 
-) Co, at x- a/b, d a/b . (B7) 

From equation (B6), for a free cone where a#0, the above assumption 

then leads to 

äY, .. ý co, at x= a/b, V a/b #0. (B8) 
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Annendix C- Derivation of the Boundary Layer Energy 

Equations in 85.3.2 

It is consistent with the case (1) boundary layer assumptions of 

§3.3 to assume that for any function V(s, n) and integer m (where m-1 

or m-2), within the boundary layer 

ý»r 
ýCOSX (Cl) 

Using the continuity equation (3.3.7), the boundary layer energy 

equation and the momentum equations (3.3.18) and (3.3.19) may then be 

written: 

Energy 
aH aH a 

P[uý+wý) °-ý(4-urs -vre) (C2) 

2P 
s-momentum: p1 uý- + wUn -s inlý) --+ 

ö 
(C3) 

9-momentum: p[u 
ýs 

+ wý+ rv 
siný) - 

äý 
. 

where Ts = Tsn and TB 0 TBn" 

Writing the shear stress terms in equation (C2) in terms of the 

(C4) 

effective viscosity and velocity gradients and applying the boundary 

layer simplifications of §3.3, the shear stress terms may be 

approximated by 

5=. 
--l aU aV Tg - Ile , 70 = Pe an (cs) 

214 



Equation (C2) may then be written as 

äH äH a 8T au öv 
p 

[u 
ý+w jý] --ý 

[-ke 
ý- Pe u Un - Pe" ý1 ' (C6) 

The following approximations are consistent with the boundary layer 

simplifcations of §3.3: 

au 
»wý, v 

ýn 
»w 

aw 
U, (C7) 

so that for an effective Prandtl number of unity, equation (C6) may be 

written as 

äH äH 
a 

la rke äHl 
p[u + wýnl 

c'n 
rCp 

c'nl (C8) 

Substituting for u 
ödn 

and v 
äan 

from equations (C3) and (C4) 

into equation (C2) and using the fact that H- CPT + J(usz+v2+un2) 

the following boundary layer energy equation is obtained: 

PýPluý+wý) --ý+TSýn+Teýn+uds . (C9) 

If the effects of frictional heating and compressive work in the 

energy equation are neglected, then the stress terms and the 

compressibility term will be zero. Under such conditions, the energy 

equation (D9) may therefore be written as 

aT aTl 
_ä 

((ke aT 
F ýus 

ý+ un ýnJ c'ýn lCP ý'ý ' (C10) 
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Appendix D- Derivation of the Relationship between F(r) and 

c(f) In 95.3.4 

The assumed three layer scheme is 

viscous sub-layer: 0<t<5, F(t) -r (D1) 

transition layer :5<r< 30, F(r) - 5[Qn[5, + 1, (D2) 

and for r> 30, molecular transport processes are negligible compared 

with turbulent transport processes. For the present purposes, an 

explicit formula for F(t) in the fully turbulent layer is not required. 

The derived relationship between F(t) and G(r) (equation (5.3.35)) is 

G'ý ý Pr + (D3) 

In the viscous sub-layer, the expression for F'(r) from equation (DI) 

may be substituted into equation (D3) to obtain 

Gl(t) - Pr . (D4) 

If equation (D4) Is Integrated and the condition that when t-0, 

G(r) -0 (provided qo 0) Is used, the following expression is 

obtained: 

G(r) - rPr 
. (D5) 
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In the transition layer, the expression for Fl(t) from equation (D2) 

may be substituted Into equation (D3) to obtain 

5Pr 
S+Pr-5Pr (D6) 

Equation (D6) may be integrated and the boundary condition at r-5 

from equation (DS) may be used to obtain 

G(t) - 5Pr + 52n [r 
Sr +1- Pr] (D7) 

In the fully turbulent region of the boundary layer, neglect of 

molecular terms in equations (5.3.29) and (5.3.30) leads to 

TB 

1 
av 

ýt Tn- 
t> 30 . (DS) 

q 
pCp 

aT 
Un- 

A substitution of and 
an 

from equations (5.3.26) and (5.3.34) into 

equations (D8) leads to 

v*= v 
ITgI - pvt 

v 
F'(r) and 

PC - Yt T*v*G'(r) (D9) 
P 

Now, v* and T* are defined in the laminar and transition layers where 

re and q may be considered constant (see assumption (ii) of §5.3.3) 

and may therefore take their values at - 30, denoted by 70,30 and 

q, 30. Equations (D9) may then be written as 
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1701 - vt 
ýr0, 

soI FIM and q- 
vt 

q, 30 G'(i) . (D10) 

These combine to give 

Fý(ý) TBIq 
Gý a 170,30 7 Q, 30 

(D11) 

Dorfman (1963) assumes that the quantity r©/q is independent of 

r In the fully turbulent layer. This result follows directly from the 

Reynolds analogy result of §5.3.2 as follows. If laminar effects are 

neglected compared with turbulent effects and Prt is put equal to one, 

then the equations for 4T, (tV and cbH (defined in equations (5.3.11)) 

will still be identical. From the equality of dV and 4T, the quantity 

(av/an)/(aT/an)) will be Independent of r, so from equations (D8) the 

desired result of r8/q being independent of r may be obtained. Since 

re/q is independent of r in the fully turbulent layer it equals its 

value obtained at fa 30, so that equation (Dll) reduces to 

F'(O - GM (D12) 

Integrating equation (D12) and applying the boundary conditions at 

te 30 from equations (D2) and (D7), the final form of the 

relationship between F(S) and G(t) valid in the turbulent region of 

the boundary layer becomes 

F(r) - C(r) - E(Pr) 
, 

(D13) 

where 

E(Pr) - 5(Pr-1) + 52n r5Pý±11 (D14) 
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Appendix E- The Derivation of F(Pr) and Q in 85.3.5 

Substitution of equations (5.3.48) and (5.3.50) into equation 

(5.3.47) leads to 

ß+, +, 
Nu - F. (Pr) [ý] ro[u2+(vo-v 

ß 
" (E1) )2] 161If-Ifhll 

Comparing equation (5.3.22) or (5.3.23) with equation (5.3.44), it is 

clear that in this special case X- Rc - 1. The Nusselt number 

equation (5.3.45) for this case gives 

Nu 
rore, o (E2) -T (v 0 -: -V- ). 

It may also be deduced from the profile equations (5.2.9) and (3.4.15) 

that the equality of (Dv and 4H in equations (5.3.11) gives the 

following value of Ifh, Independent of s: 

Ifh - If - Ifg . (E3) 

If the Nusselt number in equation (E2) is equated with the general 

Nusselt number in equation (El), then for consistency, 

0- -# (E4) 

Comparing equation (5.3.38) with equation (5.3.44), it is clear that 

In this case, Rc -0 and X-E, where 

ýa 
L1 + 

E(Pr) IrAýoll-ý 

o-vl 
L Iv 

The Nusselt number equation (5.3.45) for this case gives 

(E5) 
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Nu --Z 
Pr r, r 0_. 

_Q _. R(Vo-V) 
(E6) 

If friction and compressive work are neglected, the boundary layer 

energy equation may be written as 

ýs 
(PruSH) +a (ArunH) -- ýn (E7) 

Assuming the case (i) boundary layer arguments of §3.3 and using the 

enthalpy and velocity profiles given by equations (5.2.9) and 

(3.4.14), equation (E7) may be integrated across the boundary layer to 

give 

d 
ds 

[pubs sinX(Ho-H)(If-Ifh] - ssinX qo 

Substitute for qo from equation (5.3.38) to obtain 

(E8) 

d (If-Ifh) (T"-T) 
ds 

[pubs 
siný(Ho-H) -ý-, - -ssiný Cpreýo -(v0 -V) 

(E9) 

For a laminar Prandtl number of unity, equation (E3) will be valid and 

t-1. Consideration of equation (E9) in which only Ifh(s) and E 

depend on Pr shows that 

If - Ifh -Z 1fg . 

Equating the Nusselt numbers given by (El) and (E6), gives 

(E10) 

F(Pr) - 0.0225 Pr E5/4 IfgI/4 . (E11) 
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Appendix F- The Finite Difference Coefficients of Equation (6.2.22) 

The coefficients of equation (6.2.22), where d can represent 

either u, v, w or H may be written: 

Ap-AN+AS+AE+AW+4 

The coefficients AN, AS, AE and AW were calculated using the hybrid 

differencing of the convective terms described by Patanker (1980) and 

A, D Is different for each variable. 

Following Patanker (1980), AN, AS, AE and Aw have the following forms: 

AN - 
[I b-I n' Dn 11 2 

where Cn - 

AS [I I2SI , 
Ds 11 +ZS 

AE e LI 
12-e1 

' De 1' 2e 

AW-[I12W1'DWI] +2W 

Pnunrn 
s 

Psusrs Pewere Pwwwrw 
rpDsp 's rpDsp ' Ce - rpDnp ' Cw - rpDnp 

Blrnrn B2rsrs B3rere 
Dn - rpDsnDsp ' Ds - rpDssDsp 9 De e rpDneDnp ' Dw 

(F1) 

(F2) 

(F3) 

(F4) 

B4rWrW 
m rpDnWDnp 
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and where r- Pe (effective viscosity) when 4' - u, v or w and 

r- ke/cp when 4' - H. 

The constants B,, B21 B3 and B4 are different for each variable and 

will be given in the following sections where each variable will be 

considered separately. 

(D -u 

Aý - 
2f pR ýs 

ln? 
ý 

+ jI 2I( n_ S sipý ý 
r+ 

IaGprpsi? 
3C lr rý Ds ' 

Ic is a constant which is set to zero or one when the flow is 

incompressible or compressible respectively. aC is a constant and is 

an under-relaxation factor recommended by Cosman et al (1976) for 

fluid flows in rotating disc systems. The motivation is that there 

are strong links between the radial and tangential momentum equations 

and if u increases, a decrease in v is expected and so the centrifugal 

force term should be reduced. In the present program, the aC term is 

added to both the s and the n momentum equations. 

IC , Bz-2-3 Ic B3 i 1 I, B4 

Sl 
(Pc'Pn) 

+ 
rere(wne-wce) - rwrw(wnw-waw) 

ý DsP rPDsPDnP 

+ 2rp P 
sinXcosX + pPvpz srPX 

s 

IC l±nrnýWn -Wnwý - rcra(Wca-waw)ý 

rpDspDnp 
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+3rp [cosý(i'nwn-1'sws) 
+ T'p sýn" (r w -rw 

peew w)] 

lnX S2 s LI _2 IC (ý 
_ýl 

sina U IJ + IP r SR 
l3 (rn rsJJ DSp rp 

Acb - 
[Ip--ýP 

sinX, 01] + [I- 
-REP cosX, 01] + [IirnDssi 

sinX, Ol] 
PrPPP 

+ I[- 
(re-rw) 

r 
rPDnp os, 'OI] 

B1 - B2 - 13 3 

Si =0 

B4-1 

S2 - 
[I- 

-PEP sin>., Ol] + [Ip pR cosX, 011 +[I 
(r^DsG) 

sinX, OI] 
PP 

rlý 
+ 

rl(PW) 
cosX, 0 

P Dn P 

Aý - 
2t'DC os2a +LI_2 Ic ýý 

_r 
cosý 

,0l+ 
aGPpvpcosx 

rp 3 re rW Dnp 
(l I 

rp 
l 

2 Ic, B4 -2-3 Ic 

(Pw'Pe) 
+ 

rnrn(unP'unw) 
- rcrc(uc 'ucw) 

Dnp rpDspDnp 
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XP! + 2fP rR sinXcosX - pp cosh 
PrP 

3 rPDsPDnP 
[rere(une-use) - rwrw(unw-usw)] 

-3P 
[sinX(reue-rWuW) + rP cýpX (rnun-rsus)J 

Sý i LI 
2 

Ic lr _r) 
cosa 

ý 
U(l + lar cýI 

L3 lre rWJ Dnp rP 

Ad) - 

BI "Bz - B3=B4 1 

1 
S, -r Ds 

[(/In-rn) Ds {un(uN-up)+vn(vN-vp)-wn(wN-wp)) 
ppn 

Ds {us(up-us)+vs(vP-vs)+us(up-ws)} 
s 

+r Dn 
[(Pe-re) D {ue(uE-up)+ve(vE-vp)-we(wE-wp)} 

PP 

- (ttw'rw) D {uw(up-uw)+vw(vp-vw)+ww(wp-ww)) 

-32 rP 
[µnun{vnsiný-uncosý 

+D (VN-VP) +P (une-unw)} 
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-µsus{vssinX-uscosX + DSs (vp-vs) +Dp (uSe-usw)}, 

3 riDn 
[Reue{vesina-uecosX + Ds (vne-vSe) +D (UE-uP)} 

pppe 

-I, WUW{vWsinX-uWcosX +p (vnW-vsW) +D (up-uW)}l 

+1(r u(uH-up) +w 
iWnPWnw) 

- 
vnz 

Siný} rpDsp 
[Fn 

n{ n Dsn n Dnp rn 

{ (up-uS) 
s 

(wse-wsw) 
-AgrsuS Dss +w 

Dnp 
V2 

- -s-- sinX 
}J 

rs 

+1Lr LW 
(WF. 'WP) +u 

(une uce) +ý Cosx 
} 

rpDnp 
ýe ee Dne e Dsp re 

-Kwrw{ww 
(WP-WW) 

+ uw 
(unw-uýw) 

+ 
ywT 

1 Dnw Dsp rw cosý}] 

Sz -0 

where 4u in the above equations is the effective viscosity (se). 
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TABLES 
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(a) Effect of T, (-maxiPii); N- 10, xi-xe - 0.05 

T1 10-1 10-2 10-3 10-4 

Iterations 9 23 34 44 

Processing Time (sec) 17 30 40 50 

Cm (x103) 3.89 3.84 3.84 3.84 

(b) Effect of N; T, - 10-2, x, -xe - 0.05 

N 4 8 12 20 40 

Iterations 23 23 35 101 152 

Processing Time (sec) 23 28 45 153 264 

Cm (x103) 3.82 3.84 3.84 3.84 3.84 

(c) Effect Of x, -xe; T, - 10-2, N- 10 

x1-xe 0.005 0.01 0.03 0.05 0.07 0.09 0.11 

Iterations 53 34 15 16 19 17 17 

Processing Time (sec) 75 50 26 27 29 26 26 

Cm (x103) 3.84 3.84 3.84 3.84 3.85 3.85 3.85 

Tables 4.1 The Effect of T,, N and (xi-xe) on the method 1 solution 

a- 60', Cq- 3000, a/b - 0.1, d/b - 0.1, 

ýo - 0, Ree - 10r. 
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(a) Effect of Axe; T2 - 10-3 

Axe 0.1 0.05 0.01 0.005 0.002 0.0017 

Iterations 16 28 33 45 48 51 

Processing time (sec) 15 17 18 23 25 26 

Cm (x103) 3.47 3.62 3.75 3.78 3.81 3.81 

(b) Effect of T2; Axe - 0.005 

T2 0.5 10-1 10-2 10-3 10-4 10-5 

Iterations 35 39 43 45 46 54 

Processing Time (sec) 21 23 23 23 23 26 

Cm (x103) 3.92 3.79 3.79 3.78 3.78 3.78 

Tables 4.2 The effect of axe and T2 on the Method 2 solution 

X- 60% Rea - 10 s, Cq - 3000, a/b - 0.1 , 
d/b - 0.1, V-0 
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X 900 600 300 

Cq Method 1 Method 2 Method 1 Method 2 Method 1 Method 2 

0 2.52 2.53 2.53 2.53 2.55 2.53 

500 2.78 2.78 2.79 2.78 2.80 2.79 

3000 3.84 3.78 3.84 3.78 3.86 3.79 

6000 4.47 4.36 4.48 4.36 4.49 4.37 

Table 4.3 A Comparison of the Moment Coefficient (x103) predicted 

by the two Core Region Methods 

Ree - 106, a/b - 0.1, d/b - 0.1,9 -0 
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MESH 
MOMENT COEFFICIENT 

Program Yamada & Ito 

25 x 25 0.0117 0.0119 

33 x 33 0.0114 0.0119 

41 x 41 0.0114 0.0119 

49 x 49 0.0114 0.0119 

57 x 57 0.0114 0.0119 

Table 6.1 Laminar Flow: The Effect of Mesh Size 

on Moment Coefficient Predictions 

X- 60*, Re -2x 10 4, Cq - 0, 

a/b - 0, d/b - 0.16 
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YP 

AXIAL MOMENT ro/b - ro/b - ro/b - ro/b - 
MESH 

EXP FACTOR COEFF (CM) 0.2 0.4 0.6 0.8 

33 x 33 1.2 0.00292 3.81 5.58 9.48 14.8 

41 x 41 1.2 0.00332 2.05 3.58 4.92 6.47 

49 x 49 1.2 0.00310 0.97 1.63 2.20 2.94 

57 x 57 1.2 0.00299 0.46 0.77 1.04 1.39 

65 x 65 1.2 0.00294 0.22 0.37 0.50 0.66 

73 x 73 1.2 0.00294 0.11 0.18 0.24 0.32 

Table 6.2(a) Turbulent Flow: The Effect of Mesh Size on Moment 

Coefficient Predictions 

X- 60 *, Re - 10 s, Cq-0, a/b -0, 

d/b - 0.16 
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YP 

AXIAL MOMENT ro/b - ro/b - ro/b - ro/b - 
MESH 

EXP FACTOR COEFF (CM) 0.2 0.4 0.6 0.8 

49 x 49 1.0 0.00149 14.0 20.8 26.2 32.5 

49 x 49 1.1 0.00292 5.00 7.40 10.5 12.6 

49 x 49 1.2 0.00310 0.97 1.63 2.20 2.94 

49 x 49 1.3 0.00294 0.17 0.35 0.47 0.62 

49 x 49 1.4 0.00294 0.05 0.08 0.11 0.14 

Table 6.2(b) Turbulent Flow: The Effect of the Axial Expansion 

Factor on Moment Coefficient Predictions 

x- 60 *, Re - 10 6, Cq-0, a/b - 0, 

d/b - 0.16 
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Re Cm (incompressible) Cm (compressible) % Change 

106 2.71 X 10-3 2.77 X 10-3 2.21 

2x 106 2.25 x 10'3 2.37 x 10'3 5.33 

4x 10 1.88 x 10-3 2.20 x 10-3 17.0 

Table 7.1 The effect of compressibility on Moment Coefficient 

Calculations. Pref-1.01x105 Pa, T-298°K, 

it-1.84x10'5 kg m'' s''- X=600, a/b-0, d/b-0.08, Cq-0. 

235 



FIGURES 

236 



L. P. COMPRESSOR BY-PASS DUCT H. P. TURBINE 

FRONT BEARING \ H. P. TURBINE 
H. P. COMPRESSOR 

L. P. TURBINE 
BEARING 

L. P. COMPRESSOR I\ BEARING L. P. L. P. TURBINE 
FRONT BEARING 1 

0 

L. P. COMPRESSOR \ AIR OUTLET 
REAR BEARING AIR TRANSFER PORTS 

L. P. air 0 H. P. intermediate air ® H. P. air 

Figure 1.1 The Internal Air Flow in a typical Aero-engine. 

(Taken from 'Rolls-Royce The Jet Engine', publication 

ref T. S. D. 1302, July 1969) 



Figure 2.1(a) The Flow in the Neighbourhood of a Disc Rotating 

in a Fluid at rest. Velocity components: u-radial, v-tangential, 

w-axial. (Taken from Schlichting (1968)). 
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Figure 2.1(b) The Flow Pattern in a Co-Rotating Disc System 
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Figure 2.1(c) Flow Pattern in a Rotor-Stator Disc System 
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Figure 3.1 Geometry of the Rotor-Stator Cone System 
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Figure 3.2 postulated Flow Pattern in a Rotor-stator Cone System 
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Figure 6.1(a) The Solution Domain for the Original Rotating Cavity 



Figure 6.1(b) The Solution Domain for the Present 'Tilted' Rotating 

Cavity 
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Figure 6.2 Control Volumes for the Flow Variables 



Figure 6.3 Comparison of Velocity Profiles across the 

cavity on a 17 x 17 Grid. 

Turbulent Flow: - a/b - 0, d/b - 0.16, Cq - 0, 

Re - 104 

(a) u-velocity component 

(b) v-velocity component 

(c) w-velocity component 
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Figure 6.4 Comparison of Velocity Profiles across the 

Cavity on a 17 x 17 Grid. 

Turbulent Flow: - a/b - 0, d/b - 0.16, Re - 106, 

Cq-0 

(a) u-velocity component 

(b) v-velocity component 

(c) w-velocity component 
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Figure 6.5 Comparison of Velocity Profile across the 

Cavity on a 41 x 41 Grid. 

Turbulent Flow: - a/b - 0, d/b - 0.16, Re - 106, 

Cq-0 

(a) u-velocity component 

(b) v-velocity component 

(c) w-velocity component 
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Figure 6.6 Comparison of Velocity Profiles across the Cavity. 

Turbulent Flow: - a/b - 0, d/b - 0.16, Re - 106, 

Cq-0 

(a) u-velocity component 

(b) v-velocity component 

(c) w-velocity component 
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Figure 6.7 Comparison of Velocity Profiles across the Cavity, 

Turbulent Flow: - a/b - 0, d/b - 0.16, Re - 106, 

Cq - 3000 

(a) u-velocity component 

(b) v-velocity component 

(c) w-velocity component 
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Figure 6.9 'Taylor-type' vortices in a Rotor-Stator Cone System. 

(Taken from Wimmer (1983)) 



Figure 6.10 Steamline Plots; Cq - 0, a/b - 0, a- 150 

(a) Laminar, d/b - 0.16, Re -2x 104 

(b) Turbulent, d/b - 0.16, Re -2x 104 

(c) Laminar, d/b - 0.016, Re -4x 104 

(d) Laminar, d/b - 0.024, Re - 104 
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Figure 6.12 Turbulent Streamline Plots; 

d/b - 0.16, a/b - 0, Cq - 0, Re - 106 

(a) ), - 900 

(b) X- 750 

(c) X- 600 

(d) X- 450 

(e) X- 300 

(f) x- 150 



(a) 

rotor stator 

(b) 

stator 
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Figure 6.13 Turbulent Streamline Plots; 

d/b - 0.16, Re - 106 

(a) ý- 750, a/b - 0.2, Cq - 6000 

(b) X- 450, a/b - 0, Cq - 1500 
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legend 

finite difference domain 

integral method and experimental domains 

-- - Flow over outer-shroud (finite difference) 

T Flow over outer-shroud (integral method) 
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Figure 6.14 Finite Difference Solution Domain Super-imposed over the 

Integral Method and Experimental Domains 
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