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Abstract
This thesis is concerned with the development of a theoretical

method for predicting the turbulent flow and heat transfer in the
cavity between a rotating and a stationary cone. The motivation for
the work stems from the need, in the design process for the gas
turbine aero-engine, for a fast and reliable predictive method for
such flows. The method developed here is the integral method, which
reduces the governing partial differential equations to ordinary
differential equations. A number of solution methods for these
equations are described, and the optimum in terms of speed and
accuracy is indicated. Predicted moment coefficients compare well with
experimental data.for halficone angles greater than approximately 60",
but poorly for half cone angles,1éss thaif approximately 45 . The poor
agreement for small c¢one.angles-is:thought to be due to the presence
of Taylor-type vorticeés, which cannot be incorporated into the
integral methad: ‘Heat €ransfer is incorporated into the method using
the Reynolds analogy. Due to the lack of ‘experimental data, heat
transfer predictions are compared with those from a finite difference
program and show encouraging agreement ,

A computer program-which+solves the full Reynolds-averaged
Navier-Stokes -and energy equations in steady;and axisymmetric form,
using a finite-difference method is modified ‘for use in the conical
geometry. Comparison of the predicted moment coefficients with
experimental data shows no marked improvement over the integral
method. Examination of the secondary flow predicted by the program
shows it to be similar to that of the integral method. The failure of
the program to predict Taylor-type vortices may be attributed to the
fact that they are non-axisymmetric and/or unsteady. The assumptions
underlying the integral method are investigated via the finite
difference program and it is concluded that they are valid for half
cone angles as small as 15 . Based on the results of the finite
difference program, the integral method is modified to allow for a
rectangular outer shroud, and a new model for the stator is described.

It is concluded that both the integral method and the finite
difference program can be used safely in rotor-stator systems where
the half cone angle is greater than about 60 .
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CHAPTER 1

INTRODUCTION

1.1 MOTIVATION, OBJECTIVES AND APPROACH

-——_—-——-——-—-—‘-m———_—_-—__—_______-_-—

The need to improve design techniques for gas turbine aero-
engines has resulted in considerable effort being put into the
development of methods for predicting the flow and heat transfer
processes which occur in these engines. Such predictions play an
essential part in the design of the internal air system of an aero-
engine. This system has several important functions to perform, one of
which is to cool certain internal components of the engine to ensure

that they do not absorb heat to such an extent that their safe

operation is jeopardised. The aero-engine designer requires estimates
of quantities such as the torque and heat transfer experienced by
components, such as turbine discs, and theoretical techniques are
often used to provide such estimates since the temperatures in the
engine are too great to be reproduced in the laboratory.

The main features of the internal air flow occuring in a typical
aero-engine are shown in Figure 1.1, Due to the complex geometries
involved, as well as the high rotational velocities of many of the
components, such as the compressors and turbine discs, the flow
patterns are complex and diverse. The task of predicting the flow and
heat transfer is further complicated by phenomenz such as tubulence,
compressibility and possibly time-dependence. However as a first

approximation, many of the flows which occur may be satisfactorily



modelled using fairly simple geometric configurations. Examples of
such configurations are rotating disc systems, which may consist of
either the co-rotating disc system (two parallel discs rotating about
the same axis with equal angular velocities) or the rotor-stator disc
system (a disc rotating next to a parallel stationary disc), both of
which may be used to model flows occuring in the compressor and

turbine. A consequence of the importance of rotating disc systems in
aero-engines is that much effort has been put into developing
theoretical techniques for predicting the flow and heat transfer in
such systems. Another example of a simple configuration which may be
used to model some of the internal air flows is that of a rotor-stator
cone system; a configuration which has received relatively little
attention. The objective of the work deé%ibed in this thesis is to
provide a theoretical method for the prediction of flow and heat
transfer in the cavity formed between a rotating and a stationary cone.

Ideally, for efficient design, a predictive method should be

fast and accurate. In practice, this is not always achievable, but
designers may still use theoretical predictions for guidance since
even a qualitative understanding of the main factors‘influencing the
flow is of value. A flow and heat transfer calculation for a conical
rotor-stator system may only form a small part of a far more extensive
computation, in which case a predictive technique that takes days to
produce results is of little use. Depending on the situation,
different compromises between speed and accuracy are required and so

the development of a variety of predictive techniques would be

beneficial. In this thesis, the emphasis is placed on the development

of a fast technique for the prediction of the flow and heat transfer
in a rotor-stator cone system., The te%bique is known as the 'integral-

method'. The integral method has been used in fluid dynamics for many



years and it provides fast predictions since it only requires the

solution of a system of ordinary differential equations rather than
the solution of the full momentum, energy and continuity equations.
This reduction to ordinary differential equations is possible when the
flows considered exhibit a boundary layer character and it relies on

the use of empirically based velocity profiles and surface shear
stress formulae. In spite of the inherent limitations, the integral
method has been used very successfully to provide the theoretical

predictions for a variety of rotating flows, as will be seen from the

discussion in §2.3.2.

A secondary aim of the work presented in this thesis is to

modify a computer program which solves the full (axisymmetric and
steady) Reynolds-averaged Navier-Stokes and energy equations using a
finite difference technique, so that it can be used for the conical
geometry. Such programs are considerably slower than integral method

programs, but since less assumptions are made, they have the advantage

of having a wider range of application and, in general of being more

accurate. The finite difference results will be used to provide
further insight into the flow and heat transfer mechanisms which the
integral method alone can not provide. A summary of previous work

using finite difference methods for rotating flows will be given in

§2.3.3.

The only way to effectively assess the predictive capability of
a theoretical method is to compare its predictions with experiment.
However, there is a scarcity of experimental data concerning
rotor-stator cone systems. Experimentally obtained data for the moment

experienced by the rotating cone appears, in fact, to be restricted to

one source and there appears to be no relevant heat transfer data for

rotor-stator disc or cone systems. To compensate for the lack of



experimental data, reliance is placed on the accuracy of the finite

difference results to assess the predictive capability of the integral

method. Clearly, this is not ideal and further experimental work is

necessary to make a thorough assessment of both the integral method

and the finite difference method.

1.2 OUTLINE OF THESIS

In chapter 2, three types of commonly occuring rotating disc
systems are classified and the flows which are known to occur in such
systems are described. Rotating disc systems are of relevance here,
since they are a special case of a general cone system, and in
developing the integral method, the flow pattern occuring in a
rotor-stator cone system is assumed to be similar ‘to that occuring in

a rotor-stator disc system. Relevant theoretical work on the

prediction of flow in rotating disc and cone systems is then reviewed
so that the present methods may be put into context.

In chapters 3,4 and § an integral method to predict the flow and
heat transfer in a rotor-stator cone system is developed. In chapter
3, the isothermal flow equations are derived and the assumptions
required for the integral method are described. In this thesis, unlike
previous authors, extra terms are included when modelling the flow in
a narrow-angled rotor-stator system. Chapter 4 is concerned with the
methods of solution of the isothermal flow equations derived in
chapter 3. A number of methods are described in the chapter, and the
preferable method which optimises accuracy and speed is indicated. The
chapter is also concerned with assessing the effect of the extra terms

retained in the governing equations and the problem of indeterminacy



of initial conditions is considered by examining asymptotic solutions
to the equations. The chapter qpncludes with an assessment of the
predictive capability of the method by comparing its predictions with
available experimental data.

In chapter 5, heat transfer is incorporated into the isothermal

integral method described in chapters 3 and 4. This is achieved by

using the 'Reynolds analogy' which relates the surface heat flux to

the surface shear stress. Also in chapter 5 a review of previous
authors' work on modifying the Reynolds analogy in order to generalise

its applicability is carried out. The work in this chapter represents
the first attempt at using the Reynolds analogy to predict the heat
transfer in rotor-stator disc or cone systems where the specified flow
rate through the cavity is relatively small. To the author's
knowledge, there is no relevant experimental data with which to verify
the heat transfer method described in chapter 5, and so the chapter

concludes by assessing the predictive capability of the method by

comparing its predictions with those obtained from the finite
difference program.

Chapter 6 describes the use of a finite difference method to
solve the Reynolds-averaged Navier-Stokes and energy equations in the
cavity between a rotating and a stationary cone. The work involves the
modification of a computer program which solves the equations
describing.flow and heat transfer in rotating plane disc systems.
Included in the chapter is a description of the program along with a
section describing the consistency checks made to ensure the
modifications were coded correctly. The chapter concludes with a
comparison of the predicted results with the available experimental
data and a comparison of the results with those predicted by the

integral method in chapter 4,



In chapter 7, the results of the finite difference program are
used to assess the validity of the assumptions used in the integral
method described in chapter 3, and in particular, to assess whether
the assumptions which are based on those used in rotor-stator disc
systems may also be used in rotor-stator cone systems. Modelling of
the stator boundary layer in the integral method has caused some
difficulty in the past and an alternative model based on the present

finite difference results is described in chapter 7. The chapter

concludes with a simple modification to the integral method to account

for the effect of varying the shape of the outer-shroud which channels
fluid from the rotor to the stator.

Finally in chapter 8, the important conclusions which may be
drawn from the work presented in the thesis are summarised and

recommendations for further work are stated.



CHAPTER 2

THEORETICAL METHODS FOR THE PREDICTION

OF ROTATING FLOWS

2.1  INTRODUCTION

In this chapter, three rotating flow geometries of particular
relevance to rotor-stator cone systems will be classified, and the
flow patterns encountered in each case will be described. The flow
patterns have features in common and this has led to similarities in
the attempts to descibe them by the integral method. Theoretical work
related to the three types of flow is then reviewed in §2.3, where it
ijs seen that the integral method has been improved‘and extended by
various authors in a logical way. The review provides a basis for the
particular type of integral method to be used for rotor-stator cone

systems in chapter 3 and also enables the finite difference method of

attack on the problem to be set in context.

2.2 CLASSIFICATION OF ROTATING FLOW SYSTEMS

There are essentially three related flow problems of relevance
to the work contained in this thesis which have received both
theoretical and experimental attention. These configurations are

(i) free-rotating systems, (ii) co-rotating systems and (iii) rotor-

stator systems. Most of the published theoretical and experimental



work on these systems has been confined to a consideration of plane
discs and so the descriptions of the flows which occur in the three
configurations will be restricted to plane disc flows. It will be
assumed in chapter 3 that the secondary flow pattern which occurs in a
rotor-stator cone system is the same as that which occurs in a

rotor-stator disc system. The results from the finite difference
method described in chapter 6 will be used to support this assumption.

The above three configurations will now be defined and the flows which

occur in each case will be described.

(i) Free-rotating systems.

Here the disc is rotating in an otherwise undisturbed fluid of

infinite expanse.
The fluid near to the surface of a rotating disc rotates because
of the no-slip condition and it moves both radially and

cicumferentially along the surface in a spiral motion. The outward

radial motion is compensated for by flow in the axial direction which
is entrained into a boundary layer on the disc. This entrained fluid
is then in turn carried and ejected centrifugally. A diagram of this

flow induced by a free-rotating disc, which is known as the 'disc

pumping effect' is shown in Figure 2.1(a).

(ii) Co-rotating systems,

Here two identical and parallel discs are rotating with the same
constant angular velocity about the same axis. Fluid is pumped between
the discs or cones at a specified constant flow rate.

For an isothermal co-rotating disc system, the flow pattern

which occurs between the discs has been well established by theory and

experiment (see for example Owen and Pincombe (1980) and Chew, Owen



and Pincombe (1984)) and is shown in Figure 2.1(b). The source region,
is defined by a < r < r,, where a is the inner radius of the discs, r
is the local radius and r_, denotes the radial location of the end of
the source region. In this region, incoming fluid is entrained into
boundary layers on the discs in a manner similar to the entrainment
described above for a free-rotating disc. In the source region, the

mass flow rate increases continually with increasing r in the boundary
layers until the sum of the mass flow rates in the two boundary layers
equals the mass inflow rate, m. This criterion is reached at the
radial location denoted by r,. In the core region, defined by r > r,,
the boundary layers are non-entraining, i.e. the mass flow rate in the
boundary layers is constant. Between these boundary layers and the
sink boundary layer which forms over the outer shroud, there is a

rotating core of fluid in which the axial and radial velocity

components can be taken to be approximately zero.

(iii) Rotor-stator systems.

Here a disc rotates next to a stationary, parallel disc with a
constant angular velocity.

The isothermal flow pattern which occurs in the cavity formed by
a rotor-stator disc system has been studied theoretically and
experimentally by, for example, Daily and Nece (1960), Daily et al
(1964) and Chew (1987), and is shown in Figure 2.1(c). In the source
region, a < r < r,, which occurs when there is a non-zero throughflow
rate, fluid is entrained into a boundary layer on the rotor in a
manner similar to that described above for a free-rotating disc. In
the source region, the stator does not significantly influence the
flow. The source region extends to the point where all of the

specified throughflow is entrained into the rotor boundary layer.



Beyond this point, for r >r,, there is the core region where, in
contrast to the co-rotating system, there is a continual entrainment
of fluid into the rotor boundary layer. In the core region, then, the
outflow rate on the rotor is greater than the throughflow rate at the
inlet. At r=b, the fluid on the rotor is channelled across the outer
shroud into a stator boundary layer. This fluid then travels radially
inwards back down the stator and thus compensates for the surplus mass

outflow on the rotor. In the core region, between the boundary layers
on the rotor, stator and outer shroud there is a rotating core of

fluid in which there is a weak axial flow from the stator to the
rotor, but, to a good approximation, there is again no radial flow.
When the throughflow rate is zero, there is no source region and
the core region fills the entire cavity. In this case it is known from
experiment (Daily and Nece (1960)) that the fluid core between the
boundary layers rotates almost as a solid body at about 40% to 50% of
the rotor angular velocity. When there is a non-zero throughflow rate,
the finite difference results of Chew (1987) show that the rotational
speed of the core may vary quite strongly with radius. If the
throughflow rate is high enough, the source region shown in Figure

2.1(c) will extend so as to fill the entire cavity and the core region

will not exist.

2.3 PREDICTIVE METHODS

The problem of predicting the flows which occur in the above
three configurations has attracted the attention of workers for many

years. Early workers confined their attention to exact solutions to

simplified forms of the governing equations, but more recently with

10



the advances in computer power, attention has switched to numerical

solutions of the full flow and energy equations.

The nature of the rotating flows has made possible the
application of certain assumptions to simplify the governing
equations. Firstly, it is often assumed that the flows are

axisymmetric. Secondly, it is normally assumed that a steady state has

been reached, so that all the terms involving time derivatives may be
omitted. Thirdly, due to the boundary layer character of the flows

ad jacent to the surfaces, 'boundary layer theory' may be used to
further simplify the equations.

In the next three sub-sections, important theoretical

contributions to problems of predicting the flows occuring in the
three configurations described in §2.2 will be discussed. The three
sub-sections are concerned with three different theoretical
techniques: analytical solutions for laminar flow, integral method

solutions for turbulent flow and finite difference solutions of the

Navier-Stokes equations for both laminar and turbulent flow (using

Reynolds-averaging and a turbulence model in the latter case).

2.3.1 Analytical Solutions of the Laminar Equations

Analytical solutions to the laminar flow equations are not
normally directly relevant to the aero-engine environment, where, due
to high rotational speed, the flows are usually turbulent.
Nevertheless, analytical solutions can give a useful insight into the
flow.

Von Karman (1921) obtained a set of ordinary differential

equations from the partial differential equations governing the

11



steady, axisymmetric, incompressible, laminar flow over a
free-rotating disc. He achieved this by assuming that the velocity
components and pressure were separable into arbitrary functions of the
independent variables, r and z, where r denotes the radial co-ordinate
and z the axial co-ordinate in a cylindrical polar co-ordinate system.
After substituting for the velocity components and pressure, von
Karman recognised that for simple functions of r, the equations
reduced to a set of ordinary differential equations with z as the
independent variable. This resulting set of ordinary differential
equations was later solved numerically by Cochran (1934). The wvon
Karman-Cochran solution is now regarded as one of the classical
solutions of the Navier-Stokes equations and it has been extended by
Wu (1959) to apply to the flow over a free-rotating cone. For a
free-rotating cone with a large cone angle, Wu showed that the
boundary layer equations were reducible to a set of ordinary

differential equations identical to those obtained by von Karman

(1921), with the exception of the equation governing the pressure
field. Wu concluded that Cochran's (1934) numerical solution may be
applied to the cone equations and that the pressure gquation may be
solved separately.

In laminar flow the heat transfer from a heated free-rotating
cone has been studied theoretically by Tien (1960) and Hering and

Grosh (1963), using an approach similar to the isothermal approach of
von Karman (1921). Tien assumed that the temperature in the boundary

layer energy equation was separable into a function of r and a
function of z. Substituting for this function of r, Tien similarly
reduced the energy equation to an ordinary differential equation along

with the continuity and momentum equations. Tien deduced that the

incompressible solutions are also valid in the compressible case

12



provided viscous dissipation has a negligible effect in the energy
equation. Hering and Grosh (1963) extended the analysis of Tien (1960)
to cases where the cone has a small rotational speed so that bouyancy
forces have a significant effect.

The above solutions have been confined to free-rotating systems.

However, another important solution was given by Ekman (1905) which is

relevant to co-rotating and rotor-stator systems where, in the core

region, the tangential velocity at the boundary layer edge is
significant. Ekman obtained solutions to the laminar boundary layer

equations when the flow is assumed to be a small perturbation from
solid body rotation. The approximate solutions he obtained have been
shown by comparison with experiment to have a surprisingly large range

of validity.

2.3.2 Integral Methods in Turbulent Flow

Integral methods have been used to predict turbulent rotating
flows for many years. The attractions of these methods is that they
produce results very quickly compared with finite difference methods
and that analytical solutions are possible in certain cases. The
methods can also be readily extended to include heat transfer,
although detailed discussion of this aspect of the methods will be
left until chapter 5. The review in this section will again be carried
out with reference to the flow configuarations (i), (ii) and (iii)
described in §2.2, since the approaches used by many of the authors

cited are extensions of von Karman's (1921) solution for the

free-rotating disc.

13



(i) Free-rotating systems

The first integral method solution to the equations governing
the incompressible, turbulent boundary layer flow induced by a
free-rotating disc was that of von Karman (1921). Von Karman
integrated the boundary layer equations across the boundary layer to
obtain a set of simultaneous ordinary differential equations. He
achieved this by assuming power law velocity profiles and surface
shear stress formulae which were obtained empirically from experiments
on pipe flows. A detailed discussion of the derivation of these
relations will be given in 83.4. For the case of a disc with a zero
inner radius, von Karman then obtained exact analytical solutions to
the set of ordinary differential equations.

Despite the apparently questionable assumption of using
empirical relationships based on experiments for pipe flows, von
Karman's method has proved to be very successful and it has been

extended to predict the flow in a variety of rotating systems. In
particular, von Karman's analysis has been extended to investigate the

incompressible, turbulent boundary layer flow over a free-rotating
cone by Kreith (1966) and Chew (1985a). Chew shows fhat for
sufficiently large cone angles, the boundary layer equations
describing the flow over a free-rotating cone may be integrated to
give an identical set of ordinary differential equations to those
obtained by von Karman for the free-rotating disc, provided the cone
angle is accounted for in the non-dimensionalisation of the equations.

Chew thus concluded that the free-rotating disc solutions may be

applied directly to the free-rotating cone.
Notable alternative approaches to that of von Karman are those
of Goldstein (1935) and Murthy (1973). Rather than use power law

velocity profiles, Goldstein assumed that logarithmic velocity

14



profiles were valid within the incompressible, turbulent boundary
layer formed over a free-rotating disc. The disadvantage of his method
is that the set of ordinary differential equations obtained is
complicated and simple solutions are only possible for a special case.
Murthy examined the incompressible turbulent boundary layer formed

over a free-rotating cone. He claims that there is a disagreement

between the theoretically predicted and experimentally obtained radial
velocity over a free-rotating disc and thus uses an alternative
expression to that used by von Karman or Goldstein for the velocity
distribution. Murthy uses Van Driest's (1955) expression for eddy
diffusivity to find the velocity distribution across the boundary
layer, but he makes the assumption that the shear stress within the
boundary layer equals the value obtained at the cone surface. This
assumption seems to be questionable, since, by definition, the shear
stress at the edge of the boundary layer is zero. Nevertheless, Murthy

obtains some excellent agreement with experiment for heat transfer

calculations.

(ii) Co-Rotating Systems

The integral methoq has been used to predict the turbulent flow
occuring in the cavity formed between co-rotating discs by Owen et al
(1985) and by Chew and Rogers (1988). Both these publications are
based on an extension of the work of von Karman (1921), since von
Karman's velocity profiles and surface shear stress formulae (suitably
modified to allow for a non-zero boundary layer edge velocity) are
assumed to be valid in the boundary layers formed on the two discs.

Owen et al (1985) examined solutions to both the linear and the
non-linear boundary layer equations. These authors define 'Ekman-

layer' solutions as the solutions to the boundary layer equations in

15



which the non-linear inertial and centrifugal terms have been

neglected. The resulting linear equations are then solved exactly

using von Karman's velocity profiles and shear stress formulae. The
non-linear equations, i.e. the unsimplified integrated boundary layer
equat ions were obtained by Owen et al by integrating the momentum
equat ions across the boundary layer again using von Karman's velocity
profiles and surface shear stress formulae. These non-linear ordinary

differential equations were then solved numerically. Owen et al found

that for small values of the core rotation, the numerical solutions to
the full integrated boundary layer equations showed a better agreement
with experiment than the linear 'Ekman-layer®' solutions. However, in
Owen et al's non-linear approach, the terms involving axial velocities
in the boundary layer equations were omitted. This is not justified

from the usual boundary layer simplifications and these terms were
included in the analysis of Chew and Rogers (1988). Chew and Rogers

also extended the method of Owen et al to include heat transfer.

(iii) Rotor-Stator Systems

Integral methods have been applied by several workers to
incompressible, turbulent flow in the space between a rotating and a
stationary disc. Early workers, i.e. Schultz-Grunow (1935), Daily and
Nece (1960) and Dorfman (1963) confined their attention to sealed
rotor-stator systems in which there is zero net radial outflow. These
authors use von Karman's velocity profiles and surface shear stress
formulae, suitably modified to allow for the different boundary
conditions, for both the rotor and stator boundary layers. Daily and
Nece use slightly modified versions of the radial velocity profiles in

both the rotor and the stator boundary layers. These authors assume

that the core between the boundary layers is rotating with a constant
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angular velocity and calculate its value from an overall angular
momentum balance. Schultz-Grunow (1935) and Dorfman (1963) neglect the

effects of the outer shroud on the angular momentum balance whereas

Daily and Nece include its effect by assuming the boundary layer

thickness on the outer shroud is the same as that occuring on the

rotor at the same radial location. All the above mentioned authors
neglect the axial velocity terms in the boundary layer equations, an

assumption which, again, is not justified from the usual boundary

layer assumptions.

More recently, Polowski (1984) and Owen (1988) have considered
rotor-stator systems allowing for a net radial outflow of fluid.
Polowski again assumes that the core rotates with a constant angular
velocity and uses an overall angular momentum balance to calculate its
value. He assumes that the shear stress on the outer shroud is the
same as that on the rotor or stator (depending on whether the shroud
is rotating or stationary) at the same radius. Polowski claims to have
included all the axial velocity terms in the boundary layer equations,
but it appears that some of these terms have still been omitted.
Owen's approach is similar to that of Owen et al (1985) in that he
uses a linear 'Ekman-layer' solution for the flow over the stator.
Owen neglects the variation of the core angular velocity with radius
and finds its value from a consideration of conservation of mass
within the rotor and stator boundary layers. Owen does not account for
the influence of the outer shroud and does not justify his linear
approach for the stator. Nevertheless, he, and the other authors
ment ioned above do find some good agreement with experiment.

Based on an analysis of analytical solutions to the integrated
boundary layer equations and finite difference results (Chew (1987)),

Chew (1989) argues that von Karman's (1921) radial velocity profile is
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inappropriate for the stator boundary layer. These considerations led
to Chew developing an integral method for rotor-stator disc systems

employing a modified treatment for the stator boundary layer. In his
model, the radial momentum equation for the stator is dropped and it
is replaced by an equation which fixes the limiting flow angle as the

stator surface is approached. Chew allows for a variation of the core
velocity with radius and finds the values of this velocity at a number

of radial locations using an iterative procedure which solves for mass
conservation at each location. Chew incorporates the effects of the

outer shroud into his model by using a constant friction factor which
he calculates from the rotor boundary layer at the radial location of
the outer shroud. The important aspects of Chew's (1989) work will be

described in detail in chapter 3.

2.3.3 Finite Difference Methods

In recent years, there has been an increase in.the number of
publications concerning the use of numerical techniques to solve the
Navier-Stokes and energy equations governing both laminar and
turbulent flow (using Reynolds-averaging and turbulence modelling in
the turbulent case) in rotating systems. To date most of the published
work has been for plane disc geometries where the flow is assumed to
be steady and axisymmetric; assumptions which result in a considerable
saving in computer time. The difficulties encountered in applying
numerical techniques to rotating disc flows have been caused mainly by
numerical problems associated with the strong coupling that exists
between the radial and tangential momentum equations in these flows

and also by difficulties with the turbulence model. The more common
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turbulence models used and some of the difficulties encountered will
be briefly mentioned below. A more thorough discussion of numerical
methods which have been used to solve the full governing equations may
be found in Chew (1990), but some of the recent work of relevance to

the development of the finite difference program described in chapter

6 will now be briefly discussed.

Many workers have used variations of Patankar and Spalding's
(1972) finite difference (or finite volume) pressure correction
method to study axisymmetric steady flow in both laminar and turbulent
regimes. To improve the convergence properties of the algorithm a
number of measures in addition to the use of standard under-relaxation
have been employed. Gosman et al (1976a) introduced an extra damping
term in the radial momentum equation which may be shown to act as a
distributed under-relaxation factor on the radial velocity. This extra
term has been found by other workers to improve convergence. The
accuracy to which the pressure correction equation is solved has also
been shown to affect convergence (Chew (1984a)). Further large
improvements in computing time have resulted from the use of multigrid
acceleration techniques (Lonsdale (1988), Vaughan et'al (1989)).

The mixing length model of turbulence based on that adopted by
Koosinlin et al (1974) for boundary layer flows on free-rotating discs
and cones has proved to be successful for flow predictions in co-
rotating systems and rotor-stator disc systems. In this model,
computations extend into the viscous sub-layer regions adjacent to the
walls. The model has been shown to give reasonable agreement with
experiment for flow predictions in co-rotating disc systems and
rotor-stator disc systems (see Chew (1985b, 1987), Vaughan and Turner
(1987) and Chew and Vaughan (1988)). The Koosinlin et al turbulence

model will be described in §6.3,
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The k-¢ turbulence model has been used to predict turbulent
rotating flows with varying degrees of success. A high turbulence
Reynolds number version of the k-¢ model with the use of logarithmic
wall function in the near-wall region was used by Cosman et al (1976a,
1976b) for rotor-stator disc systems. These authors obtained some
encouraging results, but Chew (1984b) later found the disc moment
predictions to be sensitive to the near-wall mesh spacing. Poor
results were obtained by Morse (1988) when using the model to predict
the radial outflow between co-rotating discs. A low turbulence

Reynolds number version of the k-¢ model has been applied with mixed
results to rotating disc flows. Launder and Sharma (1974) and Sharma
(1977) obtain very good agreement with experiment for flow and heat
transfer predictions for a free-rotating disc, but Chew (1984b) and
Ong (1988) report that the model predicts laminar flow in conditions
known from experiment to be turbulent. Morse (1988, 1989a, 1989b) has
developed k-¢ models for co-rotating disc and rotor-stator disc
systems including transitional flows. Agreement with experiment is

generally good although some fine tuning of the model is necessary.

2.4 SUMMARY AND_CONCLUSIONS

A review of relevant theoretical work on the prediction of
rotating flows has been carried out. It is evident from the integral
method work mentioned in §2.3.2 that the most common and successful
approaches have been based on extensions of von Karman's (1921)
free-rotating disc method. Previous work in conical rotating systems
has been limited to investigations of the flow induced by a

free-rotating cone, and the analysis has been based on a recognition
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of the fact that, for large cone angles, there is a similarity between
the disc and cone equations of motion. In studying the flow occuring

in co-rotating and rotor-stator disc systems, most authors have
assumed that von Karman's velocity profiles and surface shear stress
formulae may be applied to the boundary layers in these cases.

However, in the case of rotor-stator systems, the analysis of many of

the authors is questionable since they have neglected certain terms in

the boundary layer equations. Chew (1989) includes these terms in his
analysis and he concludes that some aspects of von Karman's model are

unsatisfactory for the stator boundary layer. Chew's alternative
stator model has the advantage over previous models of being based on
the evidence of finite difference solutions to the full momentum
equations. The integral method adopted by Chew would seem to be the
most sophisticated to date, since some justification is given for most
of the assumptions made. The same method is used here in chapter 3 and

it is assumed that the model may be generalised to a conical geometry,

The results from the finite difference method described in chapter 6
will be used to support this assumption.

In solving the full momentum equations for rotating flows, the
mixing length turbulence model has been found to be particularly
successful in reproducing experimental results. The model also has the
advantage over other models (such as the k-¢ model) of requiring less
equations to be solved and therefore of being computationally more
efficient. The finite difference program described in chapter 6 is
that of Vaughan et al (1989), which has been modified here to solve
the equations describing the flow in a conical geometry. The program
uses various techniques to improve convergence, such as the use of the
extra under-relaxation term of Gosman et al (1976) and the use of

muitigrid acceleration techniques (Lonsdale (1988)). Compared with the
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integral method, the finite difference method requires less
assumptions to be made about the flow and is therefore expected to

produce better predictions. In view of this, the results of the finite

difference program will be used to examine the flows in more detail

than the integral method solutions alone can provide.
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CHAPTER 3

FORMULATION OF THE ISOTHERMAL EQUATIONS

3.1  INTRODUCTION

The purpose of this chapter is to explain the theory and

assumptions leading to the derivation of the integrated boundary layer

equations describing turbulent flow in the cavity between a rotating
and a stationary cone. The method of solution of the equations will
be left until chapter 4. The work described in this chapter is an
extension of the work of Chew (1989) on the flow between a rotating
and a stationary disc. Chew assumes the flow to be fully turbulent
and assumes that the gap width between the discs is sufficiently large

for two distinct boundary layers to form on the discs. A

straightforward extension of von Karman's (1921) method is used by
Chew to formulate the integrated boundary layer equations for the
rotor, but he concludes the method is unsatisfactory for the stator.
Chew uses results obtained from finite difference work and experiment
to improve the model for the stator.

In §3.2, the full governing equations are presented and in §3.3
the standard boundary layer assumptions are described and they are
applied to a conical surface. Two sets of boundary layer equations are
derived; one of these accounts for the case where the inner radius or
the cone angle is large and the other accounts for the case where the
cone angle and inner radius of the cone are both small. In §3.4, the
velocity profiles and shear stress formulae necessary for the

implementation of the integral method are derived and the assumptions

23



made by von Karman (1921) in deriving these equations are explained.
Some important aspects of the postulated flow pattern in a rotor-

stator cone system are described in §3.5, and their consequences on
the boundary conditions are explained. In §3.6, the integrated rotor
boundary layer equations are obtained and in §3.7 Chew's (1989) stator
model is explained, and thus the integrated stator boundary layer
equations are derived. Finally in §83.8, the treatment of the outer

shroud which channels fluid from the rotor to the stator is described.

3.2 GOVERNING EQUATIONS

The geometry of the rotor-stator cone system considered is shown
in Figure 3.1. The outer radius of the cone is of length b and the
inner radius is of length a (which may be zero). The perpendicular
distance between the rotor and stator is d. The rotor is rotating
about an axis at r = 0 with constant angular velocity  and a 'tilted’

cylindrical polar co-ordinate system (s,0,n) is used. The half cone
angle is denoted by X\.

Throughout this chapter, the flow is assumed to be fully
turbulent and all quantities have been averaged over a suitably small
time scale so that they denote turbulent mean quantities. The mean
components of velocity are denoted by (u,v,w), the mean pressure by p
and the mean density by p. The shear stresses shown below are the sum
of laminar stresses and Reynolds stresses. The shear stresses are
written in component form, so for example, 7., is the stress which
acts on the surface whose normal is in the s-direction and which acts
in the n-direction. For generality the equations have been derived

for compressible flow, although in later sections of this chapter
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incompressibility will be assumed. The continuity and momentum

equations which describe the flow in the cavity between the rotor and

b

stator may then be written as

g-f- + % g; (pru) + -:: % (pv) + %: % (prw) = 0 , (3.2.1)

1
- -5t T35 Ts6 T 706 - (rrge) + = 5= (rrgqn) (3.2.2)

v OV dv  uv WV
S tUsetrop tvVaont — sin) +F— COS\ ]
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- - Pt T a0t 71 g5 (TTes) *+gxgm (ren) (3.2.3)
ow ow . v Ow ow v2

PGt st Tt e o]

o, 13 cos\ 10 10
I il = a7 (rrpg) + = == (rrpy) (3.2.4)

Following Boussinesq (1877), the Reynolds stresses of the above
equations may be expressed in terms of gradients of the mean velocity
components and a 'turbulent' viscosity. This turbulent viscosity may

then be found from an application of a turbulence model, such as the
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mixing length model or k-¢ model. The resulting equations would be

very complex and they would be very expensive to solve numerically.

However certain simplifications may be made to the above equations due
to the nature of the flows encountered in rotor-stator cone systems
which are of practical interest here. Firstly the flows can be

assumed to be axisymmetric and steady, so that all terms involving
derivatives of 0 and t will be zero.l Secondly due to the high
rotational velocity of the rotor, boundary layers will be formed over

the solid surfaces. This means that boundary layer theory may be used

to simplify the above equations,

3.3 APPLICATION OF BOUNDARY LAYER THEORY TO A CONICAL SURFACE

The concept of a fluid forming a boundary layer when it flows
over a solid surface was first described by Prandt]l in 1904 and is
supported by many experimental observations. Boundary layer theory is
now well established and only a brief description of it will be given
here. The novelty of this chapter is the application of boundary
layer theory to a conical geometry and in particular its application
to cases where the cone angle and inner radius are small.

A boundary layer will be formed when the flow is at near zero
incidence and is at a high velocity relative to the bounding surface

so that the influence of viscosity is confined to a thin layer in the

T These assumptions are certainly justified when examining flows in a
rotor-stator disc system (the limiting case when \ = 90°) where the
experimental and numerical work supports these assumptions. For the
cases where X takes small values (< 60°) certain types of flow may
occur which would violate these assumptions. The occurence of these
types of flows will be discussed in §6.4.

26



immediate neighbourhood of the surface. The boundary layer is the
region in which the relative f[pid velocity makes a transition from
zero at the boundary to a finite 'free-stream' velocity in the main
flow. The definition of the boundary layer thickness, §, is not
precise but may be expressed as the distance from the solid boundary

to the point where the boundary layer velocity attains a certain

percentage of the free-stream velocity.

As stated above within the boundary layer, tangential fluid
velocities will be much larger than those normal to the boundary.

Since the relative fluid velocity changes from zero at the boundary to
a finite value over a small distance of the order of the boundary
layer thickness, spatial gradients of velocity in the normal direction
will be larger than those in the tangential direction. These are the
major simplifying assumptions of boundary layer theory, and they will

now be applied to the flow close to the rotating or stationary

surfaces in a rotor-stator cone system.

In terms of the variables used to describe the flow in the

boundary layer formed over the rotating or stationary cone, the

following relationships are assumed:

g—»g; , v>>w o, (3.3.1)

n

For rotationally dominated flow, within the boundary layer v is
expected to be larger than u. However, since their relative orders of

magnitude are not precisely known, it is assumed that
u<v, (3.3.2)

where the ~ symbol means 'of the same order of magnitude’.
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The variables of equations (3.2.1) - (3.2.4) may be

non-dimensionalised as follows:

u = Uu' R P'EP' ’ S = Ss' ’
v = Vv' | r = Rr' , p —-Ep' : (3.3.3)
w = Ww' | n = Nn' ,

where, for example, V has the dimensions of velocity and has a
magnitude of a typical tangential velocity within the boundary layer.

The dashed variables are therefore dimensionless and are of equal

orders of magnitude.
Relationships (3.3.1) and (3.3.2) then translate to

S>> N, U>>VW, U<V. (3.3.4)

L

The boundary layer flow is now assumed to be axisymmetric and steady.

Substitution of the above variables into the continuity equation

(3.2.1) leads to

(3.3.5)

UN
W S -

The shear stress terms in equations (3.2.2) - (3.2.4) are scaled by
first writing them in terms of their velocity components and effective

viscosity, so that, for example, 7.. is scaled as

o = (8] e [ 55 - ol v + B )] =[] vt 350
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where p, is the effective viscosity and p has the dimensions of

viscosity and the magnitude of a typical viscosity within the boundary

-

layer.

Substitution of equations (3.3.3) into the momentum equations (3.2.2)

- (3.2.4) yields, on setting U=V,

e r'
(3.3.7)
o [w B B[] s B (4] con ] -
1 1 3 ., ., . S12 1 3 :
rer [ vraer o) + [ § ) meaer tow) | (3.3.8)

1 S 1% N 709 1 S 12711 e , 1 e C b
el g ) LR )eo B v e 5 ) [ s i) + 7 0 (i)
(3.3.9)
where Re® is a Reynolds number for the flow which is defined as
Re* = p }ﬁ’ﬁ | (3.3.10)

and it is assumed that Re™ >> 1.
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An order of magnitude analysis may now be carried out on the
individual terms of equations {3.3.7) - (3.3.9) provided that the
magnitudes of the terms (S/N)2, (S/R)sinh and (N/R)cos\ relative to
Re™ may be estimated. For boundary layer flow induced by either the
rotor or stator, the relative sizes of S, N and R will depend on the
geometry of the cone considered. N represents the distance over which
velocities change significantly in the normal direction and may be

represented by the boundary layer thickness, §. S represents the
distance over which velocities change significantly in the

longitudinal direction and may be represented by the longitudinal

dimension of the cone, 2.
As can be seen from Figure 3.1, r = ssin\ + ncos\, so the

following relationship between the scales S, N and R may be assumed

R ~ Ssin\ + Ncos\ . (3.3.11)

The size of R compared with S and N will therefore depend on the size

of the cone angle, A\, and since S depends on the inner radius, R will
also depend on a. Two cone geometries, which are assumed to be
realistic models for practical purposes are considered to facilitate

the comparison of R with S and N. These two cases will now be
examined individually and a different set of boundary layer equations

will be derived for each case.

Case (i

The cone angle and/or the inner radius are not small. In this

case within most of the boundary layer, except maybe near the inner

radius, Ssin\ >> NcosA, so that
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R ~ Ssin), (3.3.12)

-

and the following relationship holds:

<< 1. (3.3.13)

Stank

Setting R ~ Ssin\ in equations (3.3.7) - (3.3.9) gives

' ou' ‘ du' v'<e B ap'
o' v et -] - - A

ov' ov' 'v' N w'v!
’ | + + -
P [u Os' W' on' T Stan\ r' ]

el o e o () e ] - @39

: . ow' . ow' ' ~
P [u _8%'“" TzT" _S_]zstl;lmrz]___g_[g]?ap

-'%E*[g]zstgnk EEQL +égk[§]2[%7'327(r'7ns')+ %7“327 (r'fnn')]-

In equation (3.3.14) all the terms on the left hand side will then be

of order of magnitude unity. On the right hand side, the pressure

term and the middle stress term will be of order of magnitude unity if
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; ~ pU?2 and (;]2 ~ Re*. The other two stress terms will be of order of
magnitude 1/Re™. In equation (3.3.15) all the terms on the left hand
side will be of order of magnitude unity except the last term which
will be very small. On the right hand side the first stress term will
be of order of magnitude 1/Re® whereas the second stress term will be
of order of magnitude unity. In equation (3.3.16), the dominant term
will be the pressure term which will be of order of magnitude Re™,

whereas the other terms will be of order of magnitude unity or less.

If terms of order of magnitude unity are neglected compared with

N

is assumed to be of order
tani

terms of order of magnitude Re¥™, and S

of magnitude 1/Re™, the following boundary layer equations may be

obtained from equations (3.2.1) - (3.2.4):

10

.}gg (pru) + — == (prw) = 0, (3.3.17)
.}... gg (pru?) + .il_- % (pruw) - E}_’-i sink + g% - % % (rre) ., (3.3.18)
-il-,-l-,- g; (priuv) + ;1.- % (prwv) = ;1.-2- % (rérg) , | (3.3.19)
% -0 . (3.3.20)

Case (i
Both the cone angle and the inner radius are small. In this

case within most of the boundary layer SsinA ~ NcosA, so that
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R ~ Ssin\ , (3.3.21)

o

and the following relationship holds

~ 1. (3.3.22)

Stanh

In an 'extreme' case, i.e when both the cone angle and the inner
radius are very small, then theoretically we may have Ncos\ >> Ssin\

and R ~ NcosA. This extreme case is however considered to be too
unrealistic to be used as a model for an aero-engine problem and is
not considered here. Substituting R ~ Ssin\ into equations (3.3.7) -

(3.3.9) gives equations (3.3.14) - (3.3.16) as before.

An order of magnitude analysis may now be carried out on the
terms in equations (3.3.14) - (3.3.16). 1If terms of order of
magnitude unity are again neglected compared with terms of order Re™,
equations (3.3.14) will produce boundary layer equation (3.3.18) as
before. In equa;ion (3.3.15) all the terms on the left hand side will
be of order of magnitude unity. On the right hand side the first
stress term will be of order of magnitude 1/Re* whereas the second
stress term will be of order of magnitude unity. In equation
(3.3.16), the dominant terms will be the pressure term and the v/r
cos\ term which will both be of order of magnitude Re®, whereas the
other terms will be of order of magnitude unity or less. If terms of
order of magnitude unity are neglected when compared with terms of

order of magnitude Re™, the following alternative boundary layer

equations are obtained from equations (3.3.15) and (3.3.16):
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f-momentum (case (1ii

1

1
r 2 g’g (PI“ZUV) + 'r—z' gﬁ (pI'?WV) - :.—-2- % (rire) , (3.3‘23)

n-momentum (case (ii

2

3.4 VELOCITY PROFILES _AND THEIR RELATIONSHIP WITH SHEAR STRESS

What follows is a derivation of a relationship between surface
shear stress and velocity for flow through a pipe of circular
cross-section. An empirical relationship based on experiment is then

used to find the velocity distribution across the boundary layer.
Prandt] made the fundamental assumption that the velocity distribution

in the boundary layer formed over a flat plate is identical to that
between the axis and the surface in the flow inside a circular pipe
(see Schlichting (1968)). According to Schlichting (i968), this
assumption has been verified by experimental studies. The description
of the above work is fairly well known, but its inclusion is necessary
here for an understanding of the more unusual approach used for
rotating flows. This approach is that of von Karman (1921) who
assumed the flat plate velocity distribution may also be applied to a
free rotating disc. He also assumed that the above mentioned

relationship between surface shear stress and velocity was valid for a
free rotating disc. As discussed in §2.3.2, many authors have since

used von Karman-type assumptions for other types of rotating disc

34



flows and they are used here for rotor-stator cone system flows.

The assumed velocity profiles will obviously not be an exact

representation of the true velocity profiles. This fact is clearly
illustrated by the infinite shear stress that the assumed profiles
predict at the boundary. However, the experimental results from which

the power law profiles were obtained often involved integrals of the
velocity. The integral method involves integrating the velocities
across the boundary layer too, and so the power law profiles should

provide good estimates for the purposes they are used for here.

Consider the fully developed, turbulent flow of a fluid through
a straight pipe of circular cross-section and diameter D. In a fluid

cylinder of length L, the equilibrium of forces due to the shear

stress 7, on the circumference and pressure difference P,-P, on the

end faces gives:

IDLTU o T (P'I_P.'Z) ’ (3.4.1)
so that
P]-P2 D
To & ( L ) 3 (3.4.2)

where the subscript 'o' represents values at the pipe surface.

Empirically determined 'laws of friction' for turbulent pipe flow are
commonly stated in terms of the dimensionless coefficient of

resistance, A, where

P.-P., ApU
.—1—2-::——m
L 2D (3.4.3)

and Uy, is the mean velocity of the fluid, defined as
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U

4Q
m-}'ﬁ'?' (34.4)

3

where Q is the volumetric flow rate,

Comparison of expressions (3.4.2) and (3.4.3) gives

T -%pU 2 (3.4.5)

In 1911, Blasius made a survey of the then existing experimental

results and established the following empirical equation

A = 0.3164 [—m- ]' | (3.4.6)

where » is the kinematic viscosity (=p/p), and which is known as the

Blasius formula.

Equations (3.4.5) and (3.4.6) may now be used to relate To toO
the mean velocity Uy. In 1932, Nikuradse carried out a very thorough
experimental investigation into the laws of friction and velocity
profiles in smooth pipes over a wide range of Reynolds numbers (4 x103
< U,D/v < 3.2 x 10%). Schlichting (1968) shows plots of u/U., (where
U,.x is the maximum velocity in the cross section) against 2y/D (where
y is the distance measured radially inwards from the wall surface)
from Nikuradse's results and shows that the following empirical

equation is a close representation of the velocity profiles

(3.4.7)

(2]

where the exponent m varies slightly with Reynolds number. From this
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equation, the ratio of the mean to the maximum velocity can be shown

to be

U 2m?
-ll—nl-:;-ml—)--F(m) . (3.4.8)

Substitution of equation (3.4.6) into equation (3.4.5) gives

2y 1%
r, = 0.03325pU,7/ [.ﬁi] . (3.4.9)

Throughout this chapter, m will be taken as 7, although in §7.2.3, the

effect of using other power laws will be discussed. The Blasius
formula (3.4.6) was established for Reynolds numbers (calculated with
the mean velocity and diameter of the pipe) up to a maximum of 10°%

since at that time, measurements for higher Reynolds numbers were not

available. For a Reynolds number of 105, Schlichting (1968)
recommends using F(m) = 0-8, which corresponds approximately to

m=7. If U, is obtained from equation (3.4.8) and substituted into

equation (3.4.9) the following relationship is obtained:
7/ 2y 13
ro = 0.02250Up,, 7/4 [ <2 )7 (3.4.10)

Von Karman (1921) assumed that for a free rotating disc a
similar expression to (3.4.10) was valid near to the rotating
surface. It is assumed here that a similar expression is valid near
the surface of the rotor and stator in a rotor-stator cone system.
For the rotor or stator, D/2 is replaced by the normal distance near
to the surface and Up,, is replaced by the resultant relative velocity

(Upag) near to the surface. Thus, for example, the resultant surface

37



shear stress for the rotor is given by

T, = 0.0225p Ai? { Ures7/4 [%]i } : (3.4.11)

Finally, following Von Karman (1921), it is assumed that near the
walf, the direction of the shear stress is that of the resultant

velocity relative to the wall. Hence it is assumed that

T lim u
T2 = 0 | = ] (3.4.12)

Von Karman (1921) assumed that the velocity profile (3.4.7) was
valid for the skewed boundary layer formed over a rotating disc.
Other authors have since used similar profiles for the velocities in a
variety of rotating disc flows. In particular, similar profiles where
used by Chew (1989) for the velocities in the boundary layer formed
over the rotating disc in a rotor-stator disc system. Chew (1989)
claims that his finite difference results indicate that these assumed
profiles give a good representation of the velocity profiles on the
rotating disc. The same profiles are used here for the boundary layer
formed over the rotating cone in a rotor-stator cone system and it
will be shown in §7.2.4 that finite difference results support the use
of such power law profiles. For reasons discussed in §3.7, it is not
at this stage assumed that the velocity profile (3.4.7) is valid for
the boundary layer formed over the stator.

The velocity components u(s,n) and v(s,n) in the rotor boundary
layer are obtained following von Karman's (1921) method for a
free-rotating disc. Von Karman assumed that in the boundary layer

formed over a free-rotating disc, the radial and tangential velocity
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components were separable into a function of s and a function of n,

and that the function of n took the form of a power law profile. Von

Karman assumed that the profile for the tangential velocity was of a
1/7th power law form similar to equation (3.4.7) but where the radius
of the pipe, D/2, is replaced by the boundary layer thickness, §. He
also assumed that the radial velocity component obeyed a 1/7th power
law near to the disc surface and used a simple multiplying factor to

force the radial velocity to zero at the boundary layer edge. In the

next section, it will be shown from a consideration of the flow
outside the boundary layer in a rotor-stator cone system that u(s,n)
should not be zero at the boundary layer edge. However inclusion of a
non-zero u(s,n) at the boundary layer edge leads to considerable
complication of the governing equations and as an approximation it
will be neglected. The magnitude of u(s,n) at the boundary layer edge
is expected to be small relative to the velocity within the boundary
layers since it results from a weak axial flow across the cavity, and
this view will be supported by finite difference results in §7.2.J.
The tangential velocity at the boundary layer edge ‘in a rotor-stator
disc or cone system will however be of a comparable size to the rotor
velocity (see the experimental results of Daily and Nece (1960)) and

is therefore not neglected here. The following boundary conditions

for u(s,n) and v(s,n) are used for the rotor boundary layer:

u(s,0) = u(s,s) - 0, v(s,0) = vo(s), v(s,8) = V(s), (3.4.13)

where the overbar denotes a value at the boundary layer edge.
Following von Karman, D/2 in equation (3.4.7) is replaced by é and m

is set to 7 as appropriate for the 1/7th power law. Considering the

boundary conditions of equation (3.4.13), the velocity components may
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be written as:

u(s,n) = u(s)f(n) , (3.4.14)

v(s,n) = V(s) - [V(s)-v,(s)]lg(n) , (3.4.15)
where

f(g) = n'/7(1-9), g(p) =1 - /7, (3.4.16)
and

7 = n/s .

The surface shear stress components for the rotor in the

rotor-stator cone system may now be obtained from equations (3.4.11)

and (3.4.12), where the resultant velocity relative to the cone may be

obtained from equations (3.4.14) and (3.4.15). Using
To? = 75,0 ¥V 76,0 > (3.4.17)

the following stress components may be obtained:

79,0 = -0.0225p [ : ]i (vy-V) [uz+(v,-v)z J*/® (3.4.18)

and

- - — . (3.4.19)

3.5 THE FLOW PATTERN_AND BOUNDARY CONDITIONS

The assumed velocity profiles (3.4.14) and (3.4.15) and the

shear stress equations (3.4.18) and (3.4.19) allow the integration of
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the boundary layer equations (3.3.17), (3.3.18), (3.3.19) and (3.3.20)
or equations (3.3.17), (3.3.18), (3.3.23) and (3.3.24) through the
boundary layer on the rotor. However, in equation (3.4.15), V(s) is

unknown and the boundary layer equations describing the flow over the
stator have not been derived. In this section information will be

obtained which will enable the derivation of the stator equations in

§3.7, and enable the required relationships for V(s) to be deduced.
The postulated flow pattern in the cavity formed between a

rotating and a stationary cone is shown in Figure 3.2. It is assumed

that the flow develops in a similar way to the flow between a rotating
and a stationary disc, and in §7.2 it will be shown that finite
difference results support this assumption. The pattern assumed to
occur in the disc case has been confirmed by experimental work (Daily
and Nece (1960), Daily, Ernst and Asbedian (1964)) and by finite
difference results (Chew (1987)) and is shown in Figure 2.1{(¢c). In
the source region, fluid is entrained into a boundary layer on the
rotor, any flow on the stator up to this point being negligible. In

the core region, fluid is 'centrifuged' up the rotor and back down the
stator. Between these two boundary layers there is a rotating core,
in which there is a weak axial velocity and negligible radial
velocity. If there 1is no throughflow then there is no source region
and the core region fills the entire cavity (except for a thin
boundary layer over the outer shroud). In this case the core between
the rotor and stator boundary layers rotates with an approximately
constant angular velocity. 1In the flow external to the boundary
layers, viscous effects are not so important and it is consistent with
previous authors, eg. Owen, Pincombe and Rogers (1985) and Chew (1989)
to treat the flow in these regions as inviscid.

In the inviscid source region outside the boundary layer on the
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rotor, it is assumed that the flow obeys conservation of angular
momentum and is incompressible. (Incompressibility will be assumed

throughout the cavity in the next section and a discussion of this

will be given there). At the boundary layer edge, therefore, the

following relationship may be obtained:

rv(r) = avyp(a) , a<rc<r, (3.5.1)

where the subscript ‘in' indicates the inlet value, and r. marks the

edge of the source region.

If it is assumed that in the core region between the rotor and
stator boundary layers, the flow is inviscid, incompressible and
rotationally dominated, then coriolis and centrifugal forces dominate
inertial forces. There is therefore a balance between the
'centrifugal' and pressure forces in equations (3.2.2) and (3.2.4) and
coriolis forces dominate in equation (3.2.3). The following

relationships may thus be obtained from equations (3.2.2) - (3.2.4):

v2 o
-p -l:_ sin\ = - als)' ’ (3-52)
p-% (u sin\ + w cos\) =0 , (3.5.3)

. v 2 s,
~p F-_ COSA = - 8?1 . (3-54)

It is now convenient to use the 'standard' polar coordinate system

(r,0,z) shown in Figure 3.1. In this system, equations (3.5.2) -

(3.5.4) can be combined to give
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o Y2 _0Op (3.5.5)

r or °’
0 Err-" -0 , (3.5.6)
Op
= = 0 ., (3.5.7)

where u,.(r,z) is the radial velocity component. Equation (3.5.7) shows
that the pressure is a function of r only. Equation (3.5.5) may be

di fferentiated with respect to z to obtain

293%-0 . (3.5.8)

ov

= - 0 , (3.5.9)
and

u, = 0 . (3.5.10)

Equation (3.5.10) shows that there is no radial flow in the
central core so that all radial flow is confined to the two boundary
layers. Equation (3.5.9) shows that the tangential velocity in the
central rotating core is constant at a fixed radial position. This
means that the tangential velocities at the boundary layer edges on
the rotor and stator are equal at the same radial positions. Thus
equation (3.5.9) provides important information for the solution of

the boundary layer equations on the rotor and stator by effectively

reducing the number of unknowns by one.
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3.6 THE INTEGRATED BOUNDARY LAYER EQUATIONS FOR THE ROTOR

L )

In §3.3, two alternative sets of equations describing the flow
in the boundary layer formed over a cone were derived. In 83.4, the
theory and assumptions which led to the particular formulation of the

velocity components for the rotor boundary layer, i.e. equations

(3.4.14) and (3.4.15) were explained. In this section, the velocity
profiles will be substituted into the two sets of boundary layer
equations which will then be integrated across the boundary layer.

First it is necessary to discuss assumptions concerning

compressibility.
Throughout the rest of this chapter, it is assumed that the flow

is incompressible. According to Schlichting (1968), a gaseous flow

may be considered to be incompressible, if for isothermal flow:

i M2 << 1 (3.6.1)

where M is the Mach number (= v/c¢, where v is the speed of the flow
and ¢ is the speed of sound). For a rotationally dominated flow such
as the flow in a rotor-stator cone system, v may be ;aken as the
magnitude of the maximum tangential velocity of the flow. Schlichting
suggests that a value of iM? of 0-05 may be taken as an upper limit
for a flow to be considered as incompressible. For flows with high
Reynolds numbers, such as may occur in many practical situations for
which a cone rotor-stator system could be used as a model, this value
may be exceeded. Chew and Rogers (1988), however, conclude that in
the flow between co-rotating discs, the effect of density variations
across the boundary layers is negligible. Since the boundary layers in.

rotor-stator systems are similar to those in co-rotating systems, it
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is reasonable to assume that density variations will also by
negligible across the isothermal boundary layers considered in this

thesis. In the present analysis, it is also assumed that density
variations longitudually through the boundary layer are negligible,
although in chapter 5, longitudinal density variations will be
accounted for in non-isothermal flows. The effect of the present

assumption of incompressibility will be assessed using the finite

difference program in §7.2.2.

Case (i

When integrating equations (3.3.17) - (3.3.20) across the
boundary layer it will be assumed that r is independent of n. This is
consistent with the boundary layer arguments of §3.3 which were used
to derive the case (i) equations,

Equation (3.3.20) states that the pressure is independent of n

in the boundary layer. If*equation (3.3.18) is evaluated at the

boundary layer edge the following equation is obtained:

2
Pep L sinh . (3.6.2)

Integrating equation (3.3.17) across the boundary layer gives

1
_ 1 d ~

W o= - E?;rag-[proua] { f(n)dy . (3.6.3)
0

By using equations (3.6.2) and (3.6.3) in the integration of equations
(3.3.18) and (3.3.19) across the boundary layer the following equtions

may be obtained:
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I d 2 -5 2 V229 (V- v 2
FfOI P [prou 6] o r sinA [v 2V (V Vo)lg + (V=v,) Igg]

-

2
+ p ;——‘ésink - ~Ts o (3.6.4)
o

and
1 d vy e Y d ~
r7 ds {prozé[uvlf-u(v-vo)lfg]} " T I =2 [pr qus]
- —1'0’0 ’ (3.6-5)
where
1 1
If = J f(n)dy , Ig = [ g(n)dn ,
0 0
1 1 1
Iy = f f(n)g(n)dn , I = J f2(n)dn , oo = [ g2(n)dn. (3.6.6)
0 v 0

The integrals are constants, 75 5 and 745 , may be obtained from

equations (3.4.18) and (3.4.19) and r, = ssin\.

Case (ii

When integrating equations (3.3.17), (3.3.18), (3.3.23) and
(3.3.24) across the boundary layer, the variation of r across the
boundary layer will be included. This is consistent with the boundary

layer arguments of §3.3 which were used to derive the case (ii)

equations.

Integration of equation (3.3.24) across the boundary layer from
a general point within the boundary layer to the boundary layer edge

gives
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v2(s,n')

F(s,n") cos\ dn' . (3.6.7)

p(s,n) =p - | p

If equation (3.6.7) is differentiated with respect to s the following

equation is obtained:
vé(s,n')

p O
BE-S'E—, —BE p?(—s’—n—l—j—-cos)\ dn' . (3-6'8)

dp V2
Js ~ P F(e) sinx (3.6.9)

Op V2 vZ(s,n')

T (s ") cosA dn' . (3.6.10)

Equation (3.3.17) may be integrated across the boundary layer to obtain

1 d

¥ T T p(ssinhtocosh) ds

[pus (I gssinz+élg,cosh)] . (3.6.11)

Equations (3.6.10) and (3.6.11) may be used in the integration of

equations (3.3.18) and (3.3.23) across the boundary layer to obtain
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2 52 PB (V- (V-
ey s (pu2s2) + [2V(V-v ) 15=(V-v4)2 1 g0]

_§£ d_ (psuzs) + 1£fp_ 4

s __pst v _ v, )2
M [l + stank ds (stanA+ad) 2 2v(v VU)IG+(V M ) IGG}]
- -Ts 0 (3.6.12)

and
1 d 25(VI pg-(V-v, ) If}] + - : [puss (VI £,~(V-v ) I £ ) ]
—7 35 [PUs f- fg! * S7rany ds P fm YV o) " fgy

1 d  ~ 35 S 5 vd ,
¥ SZtan?\ ds [pud {Vlfﬂﬂ-(v Vﬂ)lfgﬂﬂ}] (1'+ S anxllf';'—; (pusé)
1 0 v d ~
- [tank stanzk] Ifﬂ E'_E'(puaz) = =70.0 (3.6.13)

where 0 € ¢ < 1 and

1 7 T (7
Ig = J J g(n') dnp' dy, Igc = J J g#(n') dn' dn,
0 1

0 L

1

n? f(n) dn,

1
0

0

]

L
Ifopy = J n £(n) g(n) dn, Igfepy = J n* £(1) g(n) dn,

0

0

1
Iffﬂ o= [ n £2(n) dn .
C
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The constant o appears in equation (3.6.12) as a result of an

application of the mean value theorem in the integration of the second

term on the right hand side of equation (3.6.10) across the boundary

layer.

After substituting for the surface shear stresses from equations

(3.4.18) and (3.4.19), the two sets of boundary layer equations may be

non-dimensionalised as follows:

u, Br. . V Br . vV, Bro . 0 r Rep /Ssin\ ,
Rey psin\ '’ X b ' (3.6.14)

where B is a representative angular velocity, and r, = ssin\.

The particular non-dimensionalisation used in equations (3.6.14)
ensures that the resulting case(i) equations are independent of Rey

and M. The integrated boundary layer equations for case (i)

(equations (3.6.4) and (3.6.5)) become

d _ —
Irp X4,u,?) + ‘51[2V(V"V0)Ig - (V-V,)?I

o %ég%%gj'U1[U12+(V0'V)2]3/3 , (3.6.15)

and

I d S 5,u d =
% gx [¥54,8,(Vg-V)] + 21 1p — (x7V)

0.0225 = v
= Gy VoW [u 2 (Vp-V)2jsce (3.6.16)
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The integrated boundary layer equations for case (ii) (equations

(3.6.12) and (3.6.13)) become

L)

1 6,1 d o L4 I u,46,x ds,
'§3[Iff ¥ Re9'75tank] dx(u‘ 6,x%) + Repl/5tanN dx

+ 61[ZG(V—VO)Ig-(?—VU)zlgg]

1 d V2 — -
* rEmRe, 7T & X007 - - Vo) lg + (F-v) o) ]

5,2[- 3= - 29(V-v,) IgH(-v,) 2 g

- ad, + Ree‘75tank

o d
[1 + Re5‘75tank H;(x51)]

'?g%gz%gul [u,2+(vo-?)2]3/3, (3.6.17)
1

and

1 d i o 2 d
.§z“a§-[6,x u,{vlg (VVo)Ifg}] M x4ReB‘75tankE§

[x°5, 2u, {Vlf.n-(\_/'-vo) Ifgﬂ”

1 d _ _
* x9tan?\Rey 2/5 dx [513x5u1{Vlfnn“(v'vo)lfgnn}]

V | P d

X2 [l M Ree‘75tank] [[If + tankﬁe9‘75] dx (u161x3)-+
Ieu,8,%x3 da]]
tankRe9‘75 dx

0.0225

- W (V,-V) [u12+(v0-7)2]3/3 ‘ (3.6.18)
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The integrated boundary layer equations for case (i) (equations
(3.6.15) and (3.6.16)) do not show an explicit dependence on the cone
angle A. These equations are in fact identical to the equations
obtained by Chew (1989) to describe the flow over the rotor in a

rotor-stator disc system, except in his case the scaling parameters

involved r instead of r (=ssin\). This similarity between the cone
equations in case (i) and the disc equations is important in the next
section, where the stator equations are derived via analytical
solutions to an infinite cone rotor-stator system. The case (ii)

equations will reduce to the case (i) equations if A = 90", which is
to be expected since the boundary layer assumptions which result in
the extra terms being present will not then be valid. The effects the

extra terms in the case(ii) equations and the unknown parameter, o,

have on the solutions to the equations will be discussed in §4.5.

3.7 THE _INTEGRATED BOUNDARY LAYER EQUATIONS FOR THE STATOR

The formulation of the stator equations in this section is the
same as that of Chew (1989) for the stator boundary layer equations in
~a rotor-stator disc system. The same method is possible here due to
the similarity between the cone rotor equations for case (i) and the
disc rotor equations derived by Chew. The formulation of the

equations is based on the evidence of experimental results of Daily

and Nece (1960) and the finite difference results of Chew (1987) for

rotor-stator disc systems. At present it is assumed that these

results are also applicable to rotor-stator cone systems and in §7.3
finite difference results will be used to help validate this

assumption. The approach used by Chew (1989) which is described here
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is to consider the flow in a rotor-stator system of infinite radius
with no throughflow. This app(pach is convenient because analytical

solutions are then possible for the rotor equations and the mechanism
of the flow over an outer shroud connecting the rotor to the stator
need not be considered.

It has been observed experimentally by Daily and Nece (1960)

that in a finite rotor-stator disc system with no throughflow, two
boundary layers develop on the rotor and stator separated by an
inviscid core rotating with approximately a constant angular
velocity. It is assumed that a similar flow pattern occurs in a
fictitious infinite rotor-stator system. Further, following the
experiments of Daily and Nece (1960) it is assumed that the core in
the infinite case rotates with an experimentally obtained typical
value of 0.42 times the rotor speed. Using this model it will be
shown that analytical solutions may be obtained for the rotor

equations but the same approach used for the stator produces
meaningless solutions. From this, Chew (1989) concluded that the

velocity profiles used for the rotor, ie. equation (3.4.16), were not
valid for the stator, a conclusion which he suspected from his finite
difference results (Chew (1987)). He then uses his finite difference
results, as described here, to formulate an alternative set of
equations valid for the stator boundary layer.

Assuming that in an infinite rotor-stator cone system, the rotor
and stator boundary layers are separated by a uniformly rotating cone,
the method of Newman (1983) may be used to find analytical solutions
to the integrated rotor boundary layer equations. The boundary

conditions for the tangential velocity are then given by

- {r

<]

and

- kiir (3.7.1)
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where k is a constant. Choosing f = (1-k){2, analytical solutions may
be found to equations (3.6.15) and (3.6.16) in which u, = constant, §,

o« X—0-49, These are

21 k+(1-k)1I

% = 3T (1K 81, (1K) +2I K (5.7.2)

and

0.0225(1-k) (1+u,2)3/s

(51x°-4)5/4 - 521 k4, lfg(l-k)] . (3.7.3)

It would seem logical now to assume that equations (3.6.15) and
(3.6.16) are valid for the stator boundary layer and to look for
similar analytical solutions for the equations describing the flow
over a stationary cone under a uniformly rotating fluid. In this case

Vo = O and it is found that

k2(1,,-21,)

R W I PT2 8 [fg-21f) (1-K)2 (3.7.4)

From equations (3.6.6), Igg = 1/36, 1, = 1/8, Igp = 343/1656, P

49/720 and I¢ = 49/120. Thus u,?2 < 0, so no real solutions exist for

ll1.

The fact that this solution is physically impossible suggests

that the velocity profiles assumed for the rotor, (3.4.14) and
(3.4.15), may not be a good representation of the stator velocity
profiles. Finite difference results obtained by Chew (1987) for
rotor-stator disc systems suggest that the rotor radial velocity

profile gives a particularly poor representation of the profile in the
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stator boundary layer. This would mean that some of the constants in
equations (3.6.6) which were obtained by integrating the radial

velocity profile across the boundary layer would be incorrect for the
flow over the stator. The same finite difference results suggest that
the 1/7th power law for the tangential velocity is a good fit for most

of the boundary layer on the stator. Thus the same tangential
velocity profile used on the rotor, i.e. equation (3.4.15), is used

for the stator. The radial velocity profile on the stator is replaced

by the following more general form:

uS = uSfs(ys) , (3.7.5)

where the superscript 's’ is used to denote a stator value and

nS = (d-n)/6%. To satisfy the boundary conditions, it is required that

£5(0) = £5(1) = 0 . (3.7.6)

In order that the stress relations (3.4.18) and (3.4.19) hold for the

stator, the following relationship is required:

fS(9S) » (9S)V/7 as 58S 50 . (3.7.7)

No attempt at finding the explicit form of fS(nS) will be made;
instead values of the constants I¢S and Ifgs will be found by ensuring
that analytical solutions to the stator equations obey conservation of
mass in the infinite rotor-stator systenm.

From the velocity equations (3.4.14), (3.4.15) and (3.7.5) it
may be deduced that close to the cone surface -both on the rotor and

stator, the fluid velocity relative to the cone is at a limiting flow
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angle %, such that

tany = ——= . (3.7.8)

At high Reynolds numbers and away from the outer shroud, Chew (1988)

suggests his finite difference results predict that 4 for both the

rotor and stator is approximately 20°. For the stator, the following

boundary conditions must be satisfied:
== 0 ’ vﬂmr ’ (3.7.9)
and using a similar form of non-dimensionalisation as for the rotor,

i.e. using equations (3.6.14), the following equation may be obtained

from equation (3.7.8):

u,§ = — tan20 . (3.7.10)

For the rotor, the boundary conditions are given by (3.7.1), so

equation (3.7.8) gives

u, = (Qékﬂ) tan20 . (3.7.11)

From equation (3.5.19), it is apparent that there is no radial flow in
the core region. The mass outflow in the rotor boundary layer must
therefore exactly balance the mass inflow in the stator boundary

layer. The mass flow rate in a boundary layer is given by

35



d
m = J 2xpru dn , | (3.7.12)

0 -

so the mass balance requirement gives
If ué, + IgS vy 67 =0, (3.7.13)

where §S = 3. Substitution of u, and u${ from equations (3.7.10) and

(3.7.11) gives

Ifr 6,(1-k) = I¢S k&3 . (3.7.14)

The experimental results of Daily and Nece (1960) suggest that a
typical value for k is 0.42 and that 63 > &,. Choosing I¢S = I¢ gfves
5$ = 1.385,, which is in reasonable agreement with experiments of

Daily and Nece (1960) and the finite difference results of Chew (1988).

Using equation (3.7.10) to find u$, an analytical solution of
the tangential momentum equation (3.6.16) is possible for the stator
boundary layer, in which, again 63 « x=0.-4, [t is found that with
k = 0.42, the mass balance equation (3.7.14) is satisfied if

[sfg _ Ifg/z' With 85 = k], the stator solution is then

u? - -0,364 , (3.7.15)
and

0.0225[1+(u,S)2] 3/s (3.7.16)

S +0.4Y5/4
(85 x0-%) u,S(4.615¢,-21¢5) °

Analytical solutions for an infinite rotor-stator cone system without

throughflow have now been obtained. Equations will now be derived for
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the stator in a finite, shrouded rotor-stator cone system with or

without throughflow. The finite difference results presented by Chew

(1988) show that for small throughflow rates 45 has a large value at
lower radii but tends to level off at about 20", although for high
throughflow rates ¥ is more errgtic. In §7.3 it will be shown that
finite difference results for a general cone angle show a similar
behaviour of 4S5 as presented by Chew (1988). It is also assumed that
for all cases, lsfg - lfg/Z and I¢5 = le- If, for general cases the

constant 35 is set to (], the stator equations may then be derived from

equations (3.7.10) and (3.6.16) as

uS = -0.364vVs (3.7.17)

1

and

dsSs 0.0225[1+(0.364)2] 3/8 §S ( 2]1S-5]S
d&x T T 0365, (V) i(xes s Tk ['“*ﬁngg-fg ]

_avs &9 [.Zlffg:lff ] _ (3.7.18)

Equation (3.7.18) is an integrated boundary layer equation for
the stator derived under the assumption that the variation of r with n
is negligible (i.e. the case (i) boundary layer arguments of §3.3).
To derive a stator equation which allows for the variation of r with n
(i.e. the case (ii) boundary layer arguments), then equation (3.6.18)
is required in place of equation (3.6.16). However, assuming the
analysis of éhew (1989) to be valid, equation (3.6.18) will still
contains the unknown constants Ifn, Ifgn, lfgnq and Ifnn. Since it is
assumed that I§ = I¢ and lfg "~ Ifg/Z, at this stage corresponding

assumptions will be made about the other unknown constants so that the
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following will be assumed: Ifq- Iy, I§gn - Ifgq/2' Ifnn - lfﬂﬂ and

lfgnﬂ - Ifgnn/z' The stator equation under the case (ii) boundary

layer arguments then becomes

dés 4(1%,-1%,,)85 , 3(I1§,n-1 )63 1§.5S
—l - +
dx [1 IfgReg '/ >tank Ifg(Reg’ tan)\)2+ I§3R39575tank

+ Ii?él [ ] lf&?
lngea °tanA e9‘75tan lf Regp? 5tanX]

_ _ 0.0225[1+(0.364)2}3/8  S(I1§-1§,)8§ . 10(1§,-1§,,) (55)?
__T$ET§§E$55367§32__—' “__ifgég__l IfgXxRey '/ Stank

5S
- [1 T Rep'’ 75tan ? ;Etank (3.7.19)

It may be noted that if A = 90" is substituted into equation (3.7.19)
then equation (3.7.18) is obtained as expected. The effect of using

the more elaborate equation (3.7.19) rather than equation (3.7.18)

will be investigated in §4.4.
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3.8 THE_SHROUD TREATMENT

In §3.6, the integrated boundary layer equations describing the
flow over the rotor were derived and in §3.7, the integrated boundary

layer equations describing the flow over the stator were derived. To

close the problem the effect of the gap width, d (see Figure 3.1),

between the rotor and the stator needs to be included. Thisg is

accomplished by using conservation of angular momentum in the outer

shroud boundary layer and the method used here is that used by Chew

(1989).

As shown in Figure 3.2, the shroud serves to channel fluid from
the rotor boundary layer into the stator boundary layer. The
assumpt ions made are that the mass flow rate in the shroud boundary
layer is constant, its thickness is negligibly small compared with the
outer radius of the rotor, b, and that the tangential shear stress on
the shroud surface can be estimated using a constant friction factor,

F, estimated from the rotor.

It is convenient in this section to use the standard cylindrical
polar co-ordinate system (r,0,z). Defining Vn(z) to‘be the mass
averaged and boundary layer integrated (i.e. averaged through the
shroud boundary layer) tangential velocity in the shroud boundary

layer (i.e. at r=b), it follows that

v, (2) --?-E , (3.8.1)
m

where m is the mass flow rate and ay is the angular momentum in the
boundary layer. The tangential shear stress on the shroud is

calculated using a constant friction factor as
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Tg  Z - -i‘PFIbe-Vm(Z) I (be“vm(z)) (3 . 8 .2)

where ()}, is the angular velocity of the shroud. The friction factor,
F, is calculated from the rotor boundary layer at r=b. Thus, if the

rotor is situated at n = 0 and the stator at n = d, then

T6,0|rmb
F = - @ (0 [0 ] (3:8.9)

vp(0) = 0b [ V + (1-V) }{;3 ] . (3.8.4)

but

and so

F . _0.045[u,2+(1-V)2]3/8]1¢2

I (3.8.5)
(Re¢°'351) (l—V)(If-Ifg)2
A balance of angular momentum for the flow in the shroud
boundary layer leads to
Z
mpVn(Z) = mbvm(O) - 2xb I 79,2' dz' , (3.8.6)

O

where mp is the mass flow rate in the shroud boundary layer (i.e. the
difference between the mass flow rate in the rotor boundary layer at
" r=b and any flow which leaves at r=b). Substitution of equation

(3.8.2) into equation (3.8.0) and integration from z = 0 to z=d/sin)\

gives

vp(d/sink) = Qpb - — Ph(pb-vp(0)) (3.8.7)
[mp+xpFbd/sink |Qpb-v,,(0) | ]
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Now

vp(d/sind) = ab¥s [1 - fe ] (3.8.8)

and so use of equation (3.8.7), evaluated at r=b, enables the value of

VS at r=b to be calculated from values of the rotor variables at this

point.

3.9 SUMMARY

In §3.6 and 83.7, two sets of integrated boundary layer
equat ions were derived to describe the flow over the rotor and stator
respectively. The second set contained extra terms to allow for the
fact that near the cone apex of a small angled cone, the distance from
the axis of rotation to the cone surface may be of a comparable size

to the boundary layer thickness. The effect these extra terms have on

the solutions Fo the flow problems will be discussed in the next
chapter.

In §3.8, the effects of the shroud were accounted for which led
to the derivation of an equation which enables the starting conditions
for the stator boundary layer to be obtained from the conditions at
the end of the rotor boundary layer.

The above equations, together with an equation derived from
conservation of mass between the two boundary layers and equations
(3.5.1) and (3.5.9) constitute all the required relations to obtain
the solutions to rotor-stator cone problems. In the next chapter

several methods of solution of the system of coupled equations will

be described.
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CHAPTER 4

SOLUTION OF THE ISOTHERMAL INTEGRATED BOUNDARY LAYER EQUATIONS

4.1  INTRODUCTION

In this chapter several methods of solving the integrated

boundary layer equations derived in chapter 3 will be explained. All
the relevant equations will first be derived in terms of variables
chosen for the final numerical calculations., With reference to Figure
3.2, to solve the equations when there is a specified throughflow
rate, the cavity between the rotor and stator will be divided into a
source region and a core region. When there is no throughflow, the
cavity will be assumed to consist of a core region only. In § 4.2 the
solution procedure for the source region and two alternative methods
of solution for the core region will be described. In § 4.3 the
advantages and disadvantages of the two core region methods will be
discussed and the reasons for a preference will be e%plained.

In chapter 2, two sets of rotor and stator equations were
derived; the second of these had extra terms which are expected to
have an influence when the cone angle and the inner hub radius are
small. The effect these extra terms have on the solutions to the
equations will be discussed in § 4.4, In § 4.5 to improve the
treatment of the initial conditions, the governing equations will be
re-derived in terms of asymptotic variables. These new governing
equations are amenable to treatment by similar solution methods, and

they will provide an alternative system for the solution of flow
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problems. Finally in § 4.6, the predicted results will be compared

with available experiment data.

4.2 SOLUTION METHODS

4.2.1 Governing Fquations and an outline of the solution procedure

In chapter two, the integrated boundary layer equations
governing the flow over<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>