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Abstract

We prove that magnetic charge does not exist as a physical observ-
able on the physical Hilbert space of the pure SU(2) gauge theory.
The abelian magnetic monopoles seen in lattice simulations are then
interpreted as artifacts of gauge fixing. The apparent physical scaling
properties of the monopole density in the continuum limit observed on
the lattice are attributed to the correct scaling properties of physical
objects - magnetic vortices, as first argued by Greensite et. al. We
show that a local gauge transformation of a certain type “creates”
abelian monopole-antimonopole pairs along magnetic vortices. This
gauge transformation exists in pure SU(N) gauge theory at any N .
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Understanding the mechanism of confinement in QCD has kept many
peoples busy for 30 years. At present there are two basic schools of thought on
the subject, both motivated in large measure by early works of ’t Hooft. One
school maintains that the area law of the Wilson loop, and thus confinement,
comes about due to condensation of magnetic vortices in the QCD vacuum.
This physical idea was proposed in the early days of QCD [1] and later
formalised in [2]. This approach has been dormant for quite a while with
the exception of a couple of works [3], [4]. Interest in it has been rekindled
in the recent years in the lattice community following the work of Greensite
and collaborators [5], [6].

The other idea is known by the name of dual superconductivity and goes
back to [7]. Here one assumes that the QCD vacuum behaves in a way similar
to a superconductor but with electric and magnetic quantities interchanged.
In particular magnetic monopoles are supposed to be condensed in the QCD
vacuum leading to the dual Meissner effect and therefore linear confinement
of colour charges.

Although on the face of it the status of the two approaches is similar,
in fact there is a profound difference between them. Magnetic vortices in
gauge theories are physical objects in the sense that it is possible to define
a gauge invariant vortex creation operator. The expectation value of this
operator then can be used as a gauge invariant order parameter for confine-
ment [2] and it indeed has been shown analytically [8] and numerically [9]
that its behaviour changes above deconfinement transition. As discussed in
[10] in pure Yang-Mills theories the VEV of this operator probes the mode
of realisation of the global magnetic Z2 symmetry. This symmetry is a little
peculiar since its group element is not an exponential of a volume integral
of some charge, but rather an exponential of a surface integral. This group
element is nothing but the fundamental Wilson loop taken over the contour
at spatial infinity[10]

M = TrP exp{ig
∮
R→∞

dliA
i} (1)

On the other hand no gauge invariant order parameter is known for
monopoles in nonabelian theories. Moreover, although the monopoles are
supposed to carry a conserved magnetic charge, no gauge invariant magnetic
charge operator has ever been constructed in pure gauge theories.

Nevertheless, the monopole condensation mechanism has been studied
extensively on the lattice. To define monopoles on the lattice one has to
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fix a particular abelian gauge. This is achieved by choosing an adjoint field
χ = χaτa and diagonalising it by a gauge transformation. Once this diagonal-
isation is achieved, the residual gauge symmetry is U(1)N−1. The locations
of abelian monopoles are then identified by measuring the abelian magnetic
flux corresponding to the residual gauge group. The flux through an elemen-
tary plaquette is defined modulo 2π. If the total flux that emanates through
all the faces of a three dimensional cube is greater than 2π, one ascribes a
magnetic monopole to this particular cube. The choice of the adjoint field χ
specifies the “abelian projection”. It is usually taken as a component of the
gauge field strength, as a Polyakov loop on a finite lattice [11], or as the low-
est eigenfunction of the lattice Laplacian operator [12]. Any other choice is in
principle permissible. The most popular projection is the so called“maximal
abelian projection” which is defined implicitly through minimisation of a par-
ticular functional of lattice gauge fields [13]. The detailed properties of the
monopoles, such as their locations and density clearly depend on the choice
of the abelian projection [11]. Nevertheless it has been found that some basic
properties are common to monopoles defined in different abelian gauges, at
least within certain limits [11]. For example all monopoles are condensed
in the confining phase and are not condensed in the high temperature de-
confined phase. Likewise the monopole density in various gauges seems to
scale similarly in the continuum limit. This universality is at the root of
the frequently expressed belief that abelian monopoles are bona fide physical
objects [14] that carry a gauge invariant conserved monopole charge [15].

This interpretation is frequently taken even further. One postulates that
the low energy dynamics of QCD is the same as that of a dual abelian Higgs
model, where the role of the Higgs field is played by the monopole field and
the role of the electric charge by the magnetic charge. The lattice data is
sometimes interpreted in terms of this model [16]. The dual superconductor
philosophy does not differentiate between the SU(N) gauge theories atN = 2
and N > 2. In practice this approach is most frequently applied at N = 2,
since this theory is technically the simplest.

The purpose of this note is to show that an interpretation of this type is
seriously flawed. In particular we will show that the physical Hilbert space of
pure SU(2) gauge theory does not contain a physical observable which could
correspond to a magnetic charge. Therefore, at least in this case, the dual
Higgs model cannot be the correct low energy theory.

The argument is very simple and straightforward. Consider pure SU(2)
gauge theory. Let us assume that within this theory there exists a local,
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gauge invariant magnetic current JM
µ . Such a current obviously must be C-

parity odd, C−1JM
µ C = −JM

µ . This is the case in all the implementations of
the dual Higgs model known to us, and quite generally must be the case as
monopoles have to be charge conjugates of anti-monopoles. However, it is a
basic fact that pure SU(2) gauge theory does not possess a physical charge

conjugation transformation. This is easiest to see in the lattice formulation.
The basis of physical operators of a pure SU(2) gauge theory is spanned by
traces of fundamental Wilson loops of various sizes. The action of charge
conjugation on any Wilson loop operator is

C−1WC = W ∗ (2)

However for SU(2) the group trace of any Wilson loop is real. Therefore any
physical gauge invariant observable O satisfies

C−1OC = O (3)

Another way of seeing this, is to realise that since the two eigenvalues of W
are complex conjugates of each other, the transformation (2) permutes the
two eigenvalues. Thus the “would be” charge conjugation is nothing but the
global Weyl subgroup of the SU(2) gauge group.

Thus there are no charge conjugation odd observables in the pure SU(2)
gauge theory, and therefore magnetic current and magnetic charge do not
exist. The U(1) dual abelian Higgs model therefore can not be a relevant
low energy description of physical degrees of freedom.

The preceding argument leaves the door open to the existence of a Z2

subgroup of the monopole charge group. The point is that even though a
U(1) charge is naturally C-odd, there is one element of the group generated
by it which is C-even. This group element T = exp{π

∫
d3xJM

0
} could in

principle exist1 even if the charge itself does not. If such a Z2 symmetry
existed one could hope that the effective low energy theory could be a Z2

gauge Higgs model. However, this too can not be the case. A field that is
odd under T would be a source of magnetic flux equal to half that of the
minimal Dirac string. Thus a Z2 magnetic vortex could end on a particle
created by such a field. However it is well known that only closed Z2 vortices
exist in the SU(2) gauge theory [10]. If open vortices existed, the magnetic

1Note that such an operator is not the same as the Z2 magnetic symmetry operator
M discussed in [10].

4



symmetry group element M of (1) would not be conserved. We thus conclude
that even if the low energy effective Z2 gauge theory existed, it could not
contain matter fields 2.

We note that our argument applies only to pure gauge theory and does
not contradict the well established fact that in the Georgi Glashow model
(SU(2) gauge theory with an adjoint Higgs field) one can perfectly well define
a gauge invariant magnetic charge. In this case the definition, due to ’t Hooft,
is

JM
µ = ∂νF̃

µν (4)

with

F µν = Φ̂aF a
µν −

1

g
fabcΦ̂a(DµΦ̂)

b(DνΦ̂)
c, Φ̂a =

Φa

|Φ|
. (5)

where Φa is the adjoint Higgs field appearing in the Lagrangian of the
Georgi Glashow model. The charge conjugation transformation in the Georgi
Glashow model is defined as

A1,3
µ → −A1,3

µ , A2

µ → A2

µ ,

Φ1,3 → Φ1,3 , Φ2 → −Φ2 . (6)

This is clearly distinct from a global gauge transformation, since the vector
potential and the Higgs field transform differently. However the transfor-
mation on the gauge potential alone is indeed equivalent to a global gauge
transformation. Thus when an independent Higgs field is not present, the
charge conjugation also disappears. Physically this means that as the Higgs
field is made heavier, all the states in the Hilbert space which are odd under
the charge conjugation also become heavy. In the limit of pure gluodynamics,
or infinite Higgs mass, they become infinitely heavy and therefore unphysical.

It is instructive to see how our argument coexists with the construction
of a formally gauge invariant magnetic current given in [11]. The expression
suggested in [11] is the same as eqs.(4,5) with a composite field χa substituted
for the Higgs field Φa. The field χ is chosen as some operator in the adjoint
representation of the gauge group in gluodynamics and is the same field which
defines the abelian projection. The main problem with this expression, from
our point of view, is that it is not a Lorentz vector current, since the “Higgs”
which it is constructed from is not a scalar field (we remind the reader that χ

2We note that such an effective theory has in fact been suggested in [17], but it has
nothing whatsoever to do with the dual abelian Higgs model.
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is usually chosen either as some fixed component of the gauge field strength,
or as a Polyakov loop on the finite lattice, or in some rather implicit way).
Thus the spatial integral of the zeroth component of this “current” is not a
scalar charge. It is indeed clear that this expression is charge conjugation
even, since the transformation properties of any adjoint χ under the “charge
conjugation” (2) are the same as those of F a

µν . Choosing χ as a Lorentz scalar
is not possible in SU(2). For example, the obvious choice χa = dabcF b

µνF
c
µν

does not exist due to the vanishing of the d-tensor in SU(2). Thus the
expression constructed in [11] although gauge invariant, is not a conserved
scalar charge.

Another expression was suggested in [15]. It is similar to the one in
[11], except the choice of χ is somewhat more intricate. This suggestion
has an additional problem, namely that the abelian gauge in [15] is only
fixed up to a discrete Z2 gauge transformation - the Weyl subgroup of the
gauge group. The sign ambiguity in the definition of the magnetic charge
noted in [15] is precisely the local version of the “charge conjugation” gauge
transformation which is central to our argument. The incomplete gauge fixing
should, strictly speaking, force the charge to vanish in any finite region of
space when averaged over a gauge invariant ensemble 3.

Another definition of magnetic charge is used in the studies in the maxi-
mal Abelian gauge. This gauge is defined by the requirement that the follow-
ing expression (we use here continuum notations for simplicity) be globally
minimized: ∫

d4x[(A1

µ)
2 + (A2

µ)
2] (7)

The magnetic monopole current is then defined as the divergence of the third
component of the dual field strength,

jMAG
µ = ∂νF̃

3

µν (8)

There is however the following obstacle to this procedure. The MAG condi-
tion is itself invariant under the discrete subgroup of the gauge group that is
the central point of our discussion. It is clearly invariant under the change
of sign of A1 and A3, which is generated by the transformation eq.(2). Since
this part of the gauge group is not fixed, in any properly generated ensemble

3An explicit attempt at fixing the Weyl subgroup of the gauge group was made in the
lattice implementation in [18]. It leads to a nontrivial problem of finding a global minimum
of a certain Ising-type model.
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of field configurations, for any given configuration one must find a gauge copy
which differs only by this transformation. The definition of magnetic current
in eq.(8) is odd under the transformation in question. Thus when averaged
over the gauge copies, the current thus defined vanishes. This is another way
of saying that this current is not gauge invariant.

Our proof of nonexistence of magnetic charge seems to lead to an ap-
parent paradox. As we have mentioned above, lattice simulations of the
pure SU(2) gluodynamics do find abelian monopoles. The density of these
monopoles is gauge dependent, but it nevertheless seems to scale correctly
in the continuum limit. How can this be the case if the monopoles them-
selves are not physical objects? We believe that the correct answer to this
question is the one put forward in [6]. According to [6], the abelian mag-
netic monopoles that are found in lattice simulations overwhelmingly reside
on magnetic vortices. The magnetic vortices are in fact physical objects and,
being condensed in the vacuum, their density must scale in the continuum
limit4. The positions of monopoles along the vortex are determined by the
specific abelian projection and are more or less random. Thus although the
monopoles are gauge artifacts themselves, their locations trace the locations
of physical objects — magnetic vortices — and therefore scale in the con-
tinuum limit. The numerical evidence presented in [6] is very supportive of
this point of view. Not only were monopoles found to reside on vortices, but
also the distribution of the energy density around a monopole was found to
be very similar to that around any other point on the vortex. In fact in a
particular (center Laplacian) gauge it was proven in [19] that monopoles are
always located on vortices.

4One has to be cautious with the interpretation of this statement in the following sense.
While the density of physical, gauge invariant magnetic Z2 vortices must scale correctly in
the continuum limit, the existing lattice algorithms for identifying magnetic vortices are
themselves not gauge invariant. Accordingly in different gauges their density has different
scaling properties. For example, in the maximum center gauge the density scales [20]
while in the Laplacian center gauge it does not [21]. The relevant question is how well a
given “vortex finding algorithm” identifies physical vortices. Indirect tests performed in
[5] suggest that the maximal center gauge does the job rather well. At any rate, since
the explicit expression for the conserved Z2 charge carried by the vortices exists[10], one
should be able to set up an explicitly gauge invariant procedure for identifying physical
vortices on the lattice. This would involve measuring the sign of Wilson loops of various
sizes, and identifying the underlying vortex structure on the basis of this data. Such a
procedure however may turn out to be tricky since it may be affected by ultraviolet lattice
artifacts. We thank Philippe de Forcrand for raising this issue with us.
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In the rest of this note we want to demonstrate that there is a clear
connection between the local version of the gauge transformation (2), on
which our argument hinges, and the fact that monopoles are located along
vortices. Consider a lattice SU(2) pure gauge theory in an abelian gauge
specified by diagonalisation of some adjoint operator χ(x) defined on lattice
sites. In this abelian projection one defines vortices and monopoles in terms
of a magnetic flux in the third direction in colour space. The abelian part PA

of every SU(2) plaquette matrix P is then defined through the Euler angle
decomposition [11]

P (x) = exp{iα(x)σ3} exp{iβ(x)σ2} exp{iγ(x)σ3} (9)

= exp{iα(x)σ3} exp{iβ(x)σ2} exp{−iα(x)σ3}PA(x) ,

with
PA(x) = exp{i(γ(x)− α(x))σ3} ≡ exp{iF (x)σ3} (10)

where σi are the Pauli matrices. Here the plaquette variable is defined in a
standard way as a product of the SU(2) link matrices along the plaquette:

P ab
µν(x) = [U(x, x+µ)U(x+µ, x+µ+ν)U(x+µ+ν, x+ν)U(x+ν, x)]ab . (11)

Let us now consider a local version of the gauge transformation (2), which
permutes the eigenvalues of the matrix χ(x) at one particular site X . This
transformation is affected by the matrix c(x) which is unity on all sites except
forX , and on this site is given by σ2. Under this transformation the plaquette
matrix transforms as

Pµν(x) = c−1(x)Pµν(x)c(x) . (12)

Thus the only plaquettes that are affected by this transformation are the
ones that are associated with the site X . For all these plaquettes (i.e., all
orientations µν) the appropriate abelian parts are conjugated by this trans-
formation

c−1PA,µν(X)c = P ∗

A,µν(X) ,

c−1Fµν(X)c = −Fµν(X) . (13)

Now, if the abelian field Fµν(X) is small this transformation has no par-
ticular significance. However if the gauge field configuration is such that
a Z2 magnetic vortex is piercing one of the plaquettes associated with the
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point X , the abelian magnetic field on this plaquette is close to π. The
gauge transformation then transforms the flux on this particular plaquette
from π to −π thus reversing the direction of the magnetic flux of the vortex
on this particular plaquette. This of course appears equivalent to placing
a monopole-antimonopole pair in the three dimensional cubes separated by
this plaquette. Clearly one can perform a gauge transformation not on one
site but on several sites along the magnetic vortex. A transformation of this
type will place on the vortex monopole-antimonopole pairs separated by ar-
bitrary distances. We stress again that plaquettes not pierced by a magnetic
vortex do not undergo any major change as a result of this transformation.

We have thus established that the local version of the gauge transforma-
tion (2) places monopole-antimonopole pairs along Z2 magnetic vortices. In
a sense, it transforms a segment of a vortex into an antivortex. Since charge
conjugation is not a physical symmetry in this system, a vortex and an an-
tivortex are physically equivalent and thus any monopole-antimonopole pair
that distinguishes between them is a pure gauge artifact. This goes nicely
together with the finding of [6] that in terms of energy density monopoles
are hardly at all distinguishable from other points along vortices.

Our proof of nonexistence of the magnetic charge applies strictly speak-
ing only to the SU(2) theory. Gauge theories with higher SU(N) gauge
groups do possess a physical charge conjugation symmetry and thus in those
theories a conserved magnetic current can be constructed. In particular the
simplest candidate for such a current would be eqs.(4,5) with the Higgs field
chosen as a bona fide scalar χa = dabcF b

µνF
c
µν . However, even in this case,

the naive dual abelian Higgs model is not a viable low energy theory, since
it is supposed to involve N − 1 magnetic charges. Some of these currents are
clearly unphysical. In particular the analogue of the local gauge transfor-
mation that artificially creates monopole-antimonopole pairs clearly exists in
any pure SU(N) gauge theory. In this case such a segment of a ZN magnetic
vortex can be transformed into N−1 antivortices, and the two are physically
equivalent for any N . Thus at least some monopoles in the lattice simula-
tions of SU(3) gauge theories are also gauge artifacts. There are also other
configurations in the SU(3) gauge theory which are identified as monopoles
by the existing “monopole finding” algorithms. In particular one can imag-
ine three Z3 magnetic vortices coming together at the same point X . Such
a configuration clearly is not equivalent to a single vortex, but rather to two
vortices which run together along the same line and, at the point X , split
into two. These configurations must exist in lattice simulations. The ques-
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tion is quantitative: whether their density can be accounted for simply by
the probability of two independent vortices running along the same line, or is
this density significantly enhanced? Of course even these configurations do
not look like monopoles with a Coulomb-like magnetic field. Whether there
are genuine physical Coulomb-like monopoles in this case is an interesting
question. It seems unlikely to us that this is the case, but the question is
certainly well worth studying numerically. In particular, it would be inter-
esting to extend the numerical analysis of [6] to the SU(3) theory and see if
a statistically significant proportion of monopoles exists for which the fluxes
through each phase of the cube are different from an integer multiple of 2π/3
modulo small fluctuations. It would also be interesting to choose the abelian
projection with respect to the local scalar field χa = dabcF b

µνF
c
µν and inves-

tigate numerically whether properties of monopoles in this particular gauge
are any different from other gauges.

Note added. The first version of this note was followed by the appear-
ance of [22]. This paper summarises the view of its authors on the nature of
abelian monopoles. It disagrees with our views on two main points. First it
suggests that the absence of C-parity is not an obstacle for definition of the
monopole current in maximal Abelian gauge. We have added a paragraph in
the present version (around eqs.(7,8)) which shows that this is not the case,
and that the current defined as in [22] vanishes when averaged over gauge
copies.

The second important statement made in [22] is that monopoles can not
be gauge artifacts since the action measured on the plaquettes bounding the
monopole is greater (in lattice units) than the average plaquette action on
the lattice. In our view however this fact alone does not by itself preclude the
monopoles from being gauge fixing artifacts. As we have explained, we view
monopoles as points on a magnetic vortex. The identification of points on a
vortex as monopoles depends on the gauge fixing and is thus a gauge fixing
artifact. On the other hand, a magnetic vortex being a physical object, must
carry an excess of energy (or Euclidean action) at each of its points relative
to the average point on a lattice. Thus it is only natural that the points on
the vortex that are identified as monopoles by a particular lattice “monopole
finding algorithm” also carry an excess of action. We do not claim that a
monopole can be created by a gauge transformation at a point on the lattice
which has a small value of the field strength and thus our argument does not
imply that they should be indistinguishable from an “average” point on the
lattice.
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