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ABSTRACT
�e key to optimizing so�ware is the correct choice, order as well
parameters of optimizations-transformations, which has remained
an open problem in compilation research for decades for various rea-
sons. First, most of the compilation subproblems-transformations
are interdependent and thus addressing them separately is not e�ec-
tive. Second, it is very hard to couple the transformation parameters
to the processor architecture (e.g., cache size and associativity) and
algorithm characteristics (e.g. data reuse); therefore compiler de-
signers and researchers either do not take them into account at all
or do it partly. �ird, the search space (all di�erent transformation
parameters) is very large and thus searching is impractical.

In this paper, the above problems are addressed for data dom-
inant a�ne loop kernels, delivering signi�cant contributions. A
novel methodology is presented that takes as input the underlying
architecture details and algorithm characteristics and outputs the
near-optimum parameters of six code optimizations in terms of
either L1,L2,DDR accesses, execution time or energy consumption.
�e proposed methodology has been evaluated to both embedded
and general purpose processors and for 6 well known algorithms,
achieving high speedup as well energy consumption gain values
over gcc compiler, hand wri�en optimized code and Polly.

CCS CONCEPTS
•So�ware and its engineering→Compilers; Retargetable com-
pilers;
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1 INTRODUCTION
Although signi�cant advances have been made in developing ad-
vanced compiler optimization and code transformation frameworks,
current compilers cannot compete with hand optimized code in
terms of performance and energy consumption. Researchers tackle
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the code optimization problem by using heuristics [12], empirical
techniques, iterative compilation techniques [11] and techniques
that simultaneously optimize only two transformations, e.g., regis-
ter allocation and instruction scheduling. �e most promising ap-
proach is iterative compilation but is extremely expensive in terms
of compilation time; therefore researchers and current compilers
try to reduce compilation time by using i) both iterative compila-
tion and machine learning compilation techniques [20], ii) both
iterative compilation and genetic algorithms [11], iii) heuristics and
empirical methods [5], iv) both iterative compilation and statisti-
cal techniques, v) exhaustive search [10]. However, by employing
these approaches, the remaining search space is still so large that
searching is impractical. �e end result is that seeking the optimal
con�guration is impractical even by using modern supercomputers.
�is is evidenced by the fact that most of the iterative compilation
methods use either low compilation time transformations only or
high compilation time transformations with partial applicability so
as to keep the compilation time in a reasonable level [9] [19] [13].
As a consequence, a very large number of solutions is not tested.
�is has led compiler researchers to use exploration prediction mod-
els focusing on bene�cial areas of optimization search space [5].
Our approach di�ers in three main aspects. First, the transforma-
tions are addressed in a theoretical basis; second, together as one
problem, and third by taking into account the Hardware (HW)
architecture and algorithm characteristics.

�e main steps of our methodology are as follows. First, we pro-
vide an e�cient register blocking and loop tiling algorithm; these
two algorithms consist of a) loop unroll, scalar replacement, register
allocation and b) loop tiling, data array layout, transformations,
respectively. A uni�ed framework is proposed to orchestrate the
aforementioned transformations, together as one problem (as they
are interdependent); the transformations are tailored to the target
processor architecture details and algorithm characteristics. Sec-
ond, we make an analysis of how the above transformations a�ect
Execution Time (ET) and Energy consumption (E) and for the �rst
time we provide a theoretical model describing a) the number of L1
data cache (L1dc), L2 cache (L2c) and main memory (MM) accesses
and b) the number of arithmetical instructions, as a function of the
aforementioned transformation parameters, processor architecture
details and algorithm input size; so, we are able to provide the trans-
formation parameters giving a number of memory accesses close
to the minimum. �ird, taking advantage of this model, we make
a �rst but important step towards correlating ET and E with the
aforementioned transformation parameters, processor architecture
details and algorithm input size.

�e proposed methodology has resulted in �ve contributions,
1) a single framework addressing the aforementioned transforma-
tions theoretically but most importantly as one problem, 2) a new
approach applying code optimizations (CO) by taking into account
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the HW architecture and the application special memory access
pa�erns, 3) a theoretical model describing the number of mem-
ory accesses and arithmetical instructions, as a function of the
aforementioned optimization parameters, HW architecture and al-
gorithm input size, 4) a new approach correlating ET and Power
consumption (P) with the aforementioned transformation parame-
ters, HW architecture and algorithm input size, 5) a direct outcome
of contributions (1)-(4) is that the search space (to �ne-tune the
above optimizations) is reduced by many orders of magnitude.

�e remainder of this paper is organized as follows. In Section 2,
the related work is reviewed. �e proposed methodology is pre-
sented in Section 3 while experimental results are discussed in
Section 4. Finally, Section 5 is dedicated to conclusions.

2 RELATEDWORK
Iterative compilation methods provide the most e�cient approach
towards the code optimization problem. However, to the best of
our knowledge, there is no existing iterative compilation method
including all the transformations presented in this paper and all
di�erent transformation parameters, because the compilation time
becomes too large. Iterative compilation methods use either low
compilation time transformations only or high compilation time
transformations with partial applicability so as to keep the com-
pilation time in a reasonable level [9] [19]. As a consequence, a
very large number of solutions is not tested. In [19], loop tiling
is applied with �xed tile sizes. In [9], multiple levels of tiling are
applied but with �xed tile sizes. In [13], only loop unroll is applied.

[12] uses an arti�cial neural network to predict the best trans-
formation (from a given set) should applied. In [5], performance
counters are used to determine good compiler optimization se�ings.
In [20], a long-term learning algorithm that determines the best set
of heuristics is presented.

�e polyhedral model is a �exible and expressive representation
for loop transformations. In [17], a fundamental progress in the
understanding of polyhedral loop nest optimizations is made. Polly
is a high-level loop and data-locality optimizer and optimization
infrastructure for LLVM [6]. Pluto, which is used by Polly, is an
automatic parallelization tool based on the polyhedral model [4].

�ere has been signi�cant research on reducing the number of
data accesses in memory hierarchy by employing compiler trans-
formations and most commonly loop tiling such as [4] [15]. In [15],
a cache hierarchy aware tile scheduling algorithm for multicore
architectures is presented.

Code optimizations are also used to reduce energy consumption
in so�ware. In [1], a survey about energy reduction methods is
given. In [16], several transformation trade-o�s are discussed. In [2],
a compile-time approach to determine CPU frequency is proposed.

3 PROPOSED METHODOLOGY
In this paper, a novel methodology is presented that takes as input
the underlying processor architecture and loop kernel character-
istics and outputs the near-optimum parameters of the six afore-
mentioned transformations in terms of either L1,L2,Main Memory
(MM) accesses, Execution Time (ET) or Energy consumption (E).

Regarding target applications, this methodology considers a�ne
loop kernels; it considers both perfectly and imperfectly nested
loops, where all the array subscripts are linear equations of the

iterators (which stands in most cases). �is method is also applica-
ble to loop kernels containing SIMD instructions. �is method is
applicable to all modern single-core and shared cache multi-core
CPUs. Regarding shared cache processors, we use the so�ware
shared cache partitioning method given in our previous work [8].
No more than p threads can run in parallel (one to each core), where
p is the number of the processing cores (single threaded codes only).

An abstract representation of our method is illustrated in Fig. 1
and it is further explained in the following Subsections.

Input C-code

HW architecture 

Apply code 
optimizations

Generate all the 
efficient transf. 

parameters

Extract SW 
characteristics

Couple the
execution behaviour
of HW components

to 
the transf. params, 
HW architecture & 

input size Execution time 
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Power consumption
Model (training)

Cost 
Function

Find the best 
transf. param. set

transf.
params

L1 acc.    = f(transf., HW, input)
L2 acc.    = f(transf., HW, input)
DDR acc. = f(transf., HW, input)

Int. instrs = f(transf., input)
FP instrs = f(transf., input) Output C-code

Figure 1: Flow chart of the proposed methodology

3.1 Apply code optimizations
In this Subsection we provide an e�cient a) register blocking and
b) loop tiling algorithm. �e e�cient application of loop tiling is
not trivial and normally many di�erent implementations are tested,
since it a) depends on other transformations (e.g., data layout), b)
depends on the target memory architecture and data reuse, c) in-
creases the number of arithmetical instructions. �e application of
loop tiling for the Register File (RF) is even more complex (register
blocking). To our knowledge, no application independent algo-
rithm exists for register blocking; it is a mixture of loop tiling, loop
unroll, scalar replacement and register allocation transformations.
�e above CO are the key to high performance and low energy
consumption, especially for data dominant algorithms.

�e main steps of the proposed register blocking algorithm are
the following:

(1) Generate the subscript equations of all arrays
(2) Generate the RF inequality (Eq. 1) that provides all the

e�cient transformation parameters
(3) Extract a transformation set from Eq. 1
(4) Generate the code

De�nition 3.1. Subscript equations which have more than one
solution for at least one constant value, are named type2 equations.
All others, are named type1 equations.

For example, (A[2 ∗ i + j]) gives the following type2 equation
(2 ∗ i + j = c1), while (A[i][j]) gives the following type1 equation
(i = c21 and j = c22).

Each subscript equation de�nes the memory access pa�ern of
the speci�c array reference. Obviously, in our methodology type1
and type2 arrays are treated with di�erent policies as they access
data in di�erent ways.

�e RF inequality (Eq. 1) gives the exact loops that loop unroll
is applied to, their unroll factor values and the number of vari-
ables/registers allocated for each array. Each subscript equation
contributes to the creation of Eq. 1, i.e., equation i gives Ari and
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speci�es its expression. �e implementations that do not obey to
the extracted inequalities are discarded reducing substantially the
search space. �e RF inequality is given by

n + Sc ≤ Ar1 +Ar2 + ... +Arn + Sc ≤ FP (1)
where FP is the number of the �oating point (FP) registers, Sc

is the number of FP scalar variables and n is the number of the
array references. Without any loss of generality, we assume that
the arrays contain FP data only; in this case, the number of integer
variables used is always smaller than the number of integer registers.
�e upper bound of Eq. 1 derives from the fact that if more registers
than the available are used, data are spilled to L1dc, increasing the
number of L1 accesses. On the other hand, the lower bound value
is small because other constraints may be more critical. By using
a larger lower bound value, register utilization is increased and
therefore the number of L1 accesses is reduced; however, these
transformation parameters may con�ict to those minimizing the
number of MM or L2 accesses, which may be more critical.

�e number of variables/registers allocated for every array is
given by both Eq. 2 and the three bullets below (the bullet points
are given in order to assign variables according to data reuse).

Ari = unr 1′ × unr 2′ × ... × unr n′ (2)
where the integer unr i ′ are the unroll factor values of the iter-

ators exist in the array’s subscript, e.g., the C[i][j] array in Fig. 2
gives (ArC = 1×4 = 4) (r1−r4 variables) as the (i, j) iterator unroll
factor values are (1, 4), respectively.

• For the type1 arrays which contain all the loop kernel
iterators, only one register is needed (Ari = 1)

• For the innermost iterator always holds unr ′ = 1
• For the arrays i) containing more than one iterators and

one of them is the innermost and ii) all iterators which do
not exist in this array reference have unroll factor values
equal to 1, then only one register is needed for this array
(Ari = 1)

In the above three cases, a di�erent element is accessed in each
iteration (no data reuse being achieved) and thus wasting more
than one register is not e�cient, e.g., in Fig. 2, six registers are used,
i.e., (ArC = 1×4,ArA = 1×1,ArB = 1). Note that (ArB = 1) instead
of (ArB = 1× 4) because of the 3rd bullet above (a di�erent element
of B is accessed in each k iteration and therefore it is not e�cient
to waste more than one register).

Let us give an example, �rst box code in Fig. 2. Eq. 1 gives:
3 ≤ unri × unr j + unri + unr j ≤ F P, unri , 1&unr j , 1

3 ≤ unr j + 2 ≤ F P, unri = 1
3 ≤ unri + 2 ≤ F P, unr j = 1 (3)

�e 3rd bullet generates 3 branches while the 2nd gives (unrk =
1). �e code shown in the second box of Fig. 2 refers to a second
branch solution, i.e., (unri = 1 and unr j = 4) and therefore 6
registers are used.

�e main steps of the loop tiling algorithm are similar to those
of the register blocking algorithm, but a cache inequality (Eq. 4) is
generated for each cache memory; each inequality contains the it-
erators that loop tiling is applied to, the tile sizes and the data array
layouts. �e implementations that do not obey to the extracted in-
equalities are automatically discarded by our methodology reducing
substantially the search space.

�e cache inequality is formulated as:

/* Execute MMM */ cnt_2=0; cnt=0; 
for (kk=0;kk!=N;kk+=KK){ //Tiling for L2 
for (ii=0;ii!=N;ii+=II){ cnt_1=cnt_2;//Tiling for L2 
for (jj=0;jj!=N;jj+=JJ){      //Tiling for L1 

for (i=ii;i!=ii+II;i++){ b=cnt_1;
for (j=jj;j!=jj+JJ;j+=4){ a=cnt+i*KK;
r1=0;r2=0;r3=0;r4=0; 
for (k=kk;k!=kk+KK;k++){ r5=Atr[a]; r6=Btr[b];

r1+=r5*r6; r6=Btr[b+1]; 
r2+=r5*r6; r6=Btr[b+2]; 
r3+=r5*r6; r6=Btr[b+3]; 
r4+=r5*r6;  
b+=4; a++; }  

C[i][j]+=r1; C[i][j+1]+=r2; 
C[i][j+2]+=r3; C[i][j+3]+=r4;
}  }  cnt_1+=KK * JJ; } }  cnt_2+=KK * N; cnt+=N*KK; }

//change data layout of B
for (ii=0;ii!=N;ii+=KK)
for (jj=0;jj!=N;jj+=4)
for (i=ii;i!=ii+KK;i++)
for (j=jj;j!=jj+4;j++) {
Btr[cnt]=B[i][j]; cnt++; }

// After register blocking & loop tiling
//change data layout of A
cnt=0;
for (jj=0;jj!=N;jj+=KK)
for (i=0;i!=N;i++)
for (j=jj;j!=jj+KK;j++) {
Atr[cnt]=A[i][j]; cnt++; }

Tiling for L2 – i and k are tiled
Ti’’=II, because i is tiled with tile size II
Tj’’=JJ, because jj has a smaller NLV than ii,kk
Tk’’=KK, because k is tiled with tile size KK 
TC2=Ti’’xTj’’x4x2, TA2=Ti’’xTk’’x4x1, TB2=Tk’’xTj’’x4x2

Tiling for L1 - only j is tiled
Ti’=1, because i has a smaller NLV than j
Tj’=JJ, because j is tiled with tile size JJ
Tk’=KK, because k has a larger NLV than j
TC1=Ti’xTj’x4x2, TA1=Ti’xTk’x4x2, TB1=Tk’xTj’x4x1

Register blocking – r1-r6 registers

// Input Code
for (i=0;i!=N;i++)

for (j=0;j!=N;j++)
for (k=0;k!=N;k++)

C[i][j]+=A[i][k]*B[k][j];

C A B

r1-r4

Tile2 & Tile1

IIII
=

x

i i

j jk

k

Tile1 Tile1Tile2 Tile2

JJ JJr5 r6KK

KK

//After register blocking
for (i=0; i!=N; i++)

for (j=0; j!=N; j+=4) {
r1=0;r2=0;r3=0;r4=0; 
for (k=0; k!=N; k++) {

r5=A[i][k]; r6=B[k][j];

r1+=r5*r6; r6=B[k][j+1];
r2+=r5*r6; r6=B[k][j+2];
r3+=r5*r6; r6=B[k][j+3];
r4+=r5*r6;  }  

C[i][j]+=r1; C[i][j+1]+=r2; 
C[i][j+2]+=r3; C[i][j+3]+=r4;}

Figure 2: An example, Matrix-Matrix Multiplication (MMM)

m ≤ d T ile1
Li /assoc e + ... + d

T ilen
Li /assoc e ≤ assoc (4)

where Li is the corresponding cache size, assoc is the Li associa-
tivity value (e.g., for an 8-way associative cache, assoc = 8) andm
de�nes the lower bound of the tile sizes and it equals to the number
of arrays in the loop kernel. In the special case where the number
of the arrays is larger than the associativity value is not discussed
in this paper (normally, (assoc ≥ 8)). Tilei gives the tile size of the
ith array and is given by Eq. 5:

T ilei = T ′1 ×T ′2 ×T ′n × type × s (5)
where type is the size of each array’s element in bytes and T ′i

are the tile sizes of the iterators existing in the corresponding array
subscript. s is an integer and (s = 1 or s = 2); s de�nes how many
tiles of each array should be allocated in the cache. For the tiles
that do not achieve data reuse (a di�erent tile is accessed in each
iteration), we assign cache space twice the size of their tiles (s = 2
in Eq. 5). �is way, not one but two consecutive tiles are allocated
into the cache in order for the second accessed tile not to displace
another array’s tile. (d T ile1

Li /assoc e) is an integer representing the
number of Li cache lines with identical cache addresses used for
the tile of array1. Eq. 4 satis�es that the array tiles directed to
the same cache subregions do not con�ict with each other as the
number of cache lines with identical addresses needed for the tiles
is not larger than the (assoc) value.

All the tile elements in Eq. 4 must contain consecutive MM
locations, e.g., in Fig. 2, none of the tiles does. Otherwise, an
extra loop kernel is added for each array, likewise Atr and Btr
arrays in Fig. 2; new arrays are created which replace the default
ones (extra cost in L/S and arithmetical instructions). �ere are
some special cases where the arrays do not contain consecutive
memory locations but their layouts can remain unchanged in order
to avoid the cost of transforming the arrays; in that case, extra
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cache misses occur and thus a larger error in approximating the
number of memory accesses occurs too (Fig. 4-Subsection 4.1). T ′i
is given by one of the following three:

• T ′i equals to the L1 tile size of i iterator, if tiling for L1 is
applied to the i iterator

• T ′i equals to the unroll factor value of i iterator, if tiling
for L1 is not applied to the i iterator and i has a smaller
Nesting Level Value (NLV) than the iterator being tiled for
L1

• T ′i equals to the upper loop bound value of i iterator, if
tiling for L1 is not applied to the i iterator and i has a larger
NLV than the iterator being tiled for L1

Assuming an 8-way 32kbyte L1dc and MMM (Fig. 2), Eq. 4 gives
(3 ≤ d TC1

4096 e + d
TA1
4096 e + d

TB1
4096 e ≤ 8). �e (TC1,TA1,TB1) values of

the C-code shown at the right of Fig. 2 are given in the bo�om
le� box (the NLV of k iterator is 6 while the NLV of kk is 1), also,
�oating point values are assumed, 4 bytes each.

In the shared cache case, Li in Eq. 4 is the corresponding shared
cache partition size used and each core uses only its assigned shared
cache space.

We have implemented an automated C to C tool just for the six
studied algorithms, but a general tool can be implemented by using
POET [18] tool.
3.2 Couple execution behaviour to CO,

processor architecture & input size
For all the Eq. 1 and Eq. 4 schedules, we compute the number of
L1dc, L2c and MM accesses as well as the number of arithmetical
instructions. �is problem is theoretically formulated by exploiting
the memory architecture details and the special memory access
pa�erns. In particular, one mathematical equation is generated for
each memory and for each loop kernel providing the correspond-
ing value. �is equation provides the number of memory accesses
while the transformation parameters and input size serving as the
independent variables of the equation. Loop tiling and loop unroll
transformations as well as the input size, are inserted directly to the
aforementioned equations while the data layouts, scalar replace-
ment and register allocation transformations as well as the HW
architecture, are inserted indirectly (they have been used in order to
create Eq.1-Eq.5). �is way, we are able to �nd the solution o�ering
a number of L1dc, L2c or MM accesses close to the minimum.

We are able to approximate the number of memory accesses
because no unexpected misses occur in the cache. We assume that
the underlying memory architecture consists of separate �rst level
data and instruction caches (modern architectures). In this case,
the program code typically �ts in L1 instruction cache; thus, it is
assumed that the shared cache or uni�ed cache (if any) is dominated
by data. For the reminder of this paper, we assume 2 levels of cache,
but more/less levels can be used, by slightly changing the following
equations.

�e equation approximating the number of L1dc accesses follows

L1.acc =
i=arrays∑

i=1
(
j=M∏
j=1

(upj − low j )
Tj

×
k=P∏
k=1

unrk + of f seti ) + var (6)

where arrays is the number of arrays, M is the number of the
iterators that control the corresponding array and P is the number of
the iterators that loop unroll has been applied to (iterators that exist
in the subscript of the corresponding array only), e.g., regarding

the C array in the code at the right of Fig. 2, the �rst product of
Eq. 6 refers to all the iterators but k (array reference is outside k
loop) while the second product refers to j iterator only. (up, low)
give the bound values of the corresponding iterator (normally, they
de�ne the algorithm’s input size) and (T ,unr ) refer to the tile size
and unroll factor value, respectively.

o f f set gives the number of L1dc of the new loop kernel added
in the case the data array layout is transformed. O�set is either
(o f f seti = 2×ArraySizei ) or (o f f seti = 0) depending on whether
the data layout of the array is changed or not; in the case that the
layout is changed, the array has to be loaded and then wri�en again
to memory, thus it is (o f f seti = 2 × ArraySizei ). (var ) gives the
number of L1 accesses due to the scalar variables; we never use
more registers than available and thus the number of RF spills is
negligible (var ≈ 0).

Eq. 6 for the C-code at the right of Fig. 2 gives ( N 3
4×KK ,

N 3
4 ,N

3) L1
accesses for (C,A,B) arrays, respectively, and in overall (L1.acc =
N 3

4×KK +
N 3
4 +N

3+4×N 2). Here, the number of L1 accesses strongly
depends on the unroll factor value (N 3/4).

�e number of L2c accesses is approximated by Eq. 7; at this
step, only the new/extra iterators (introduced by loop tiling) must
be processed and not the initial iterators exist in the input code.
L2 Acc . =

∑i=type1
i=1 Type1 L2acc . +

∑i=type2
i=1 Type2 L2acc . + code (7)

where type1 and type2 is the number of type1 and type2 arrays,
respectively. In this paper, we don’t provide the equations for type2
arrays because of the limited paper size; however, in Section 4, FIR
and Gaussian Blur contain type2 arrays. code refers to the number
of source code accesses and always (Arrays acc . � code) as a) the
code size of loop kernels is small and �ts in L1 instruction cache, b)
we are dealing with data dominant algorithms.

Type1 L2acc . = array size × ti + o f f set (8)

where array size is the size of the array and o f f set gives the
number of L2 accesses of the new loop kernel added in the case
the data array layout is transformed. ti gives how many times the
corresponding array is accessed from L2 memory and is given by
Eq. 9. Regarding the o f f set value, when the array size is bigger
or comparable to the cache size, then (o f f seti � 2 ×ArraySizei ).
�is is because the elements are always loaded in blocks (cache
lines) and many lines are loaded more than once (especially in the
column-wise case). �is is why we use a hand optimized code
changing the layout in an e�cient way, thus always achieving
(o f f seti ≈ 2 ×ArraySizei ).

ti =
∏j=N

j=1
(upj−low j )

Tj ×∏k=M
k=1

(upk−lowk )
Tk

(9)

where N is the number of new/extra iterators that a) do not exist
in the corresponding array and b) exist above of the iterators of the
corresponding array. M is the number of new/extra iterators that a)
do not exist in the array and b) exist between of the iterators of the
array, e.g., regarding (C,A,B) arrays in Fig. 2, the iterators referring
to the �rst and second product of Eq. 9 are (kk,none), (jj,none),
(none, ii), respectively, giving (tC = N

KK ), (tA = N
J J ) and (tB = N

I I ),
respectively. �e �rst and the second products of Eq. 9 give how
many times the array is accessed due to the iterators exist above
the upper new iterator of this array and between the new iterators
of this array, respectively.
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Eq. 7 for the code of Fig. 2 gives (L2.acc = N 3/KK + N 3/J J +
N 3/I I + 4 × N 2).

In the case that more than one thread run in parallel under a
shared cache, the overall number of cache accesses is extracted by
accumulating all the di�erent loop kernel equations.

�e number of MM accesses is given by an equation identical to
Eq. 7. Moreover, the number of MM accesses because of the type1
arrays is given by an equation identical to Eq. 8 and Eq. 9. However,
in Eq. 9, we refer only to the iterators created by applying tiling to
the last level cache, e.g., regarding (C,A,B) arrays of MMM (Fig. 2),
the iterators referring to the �rst and second product of Eq. 9 are
(kk,none), (none,none), (none, ii), respectively, giving (tC = N

KK ),
(tA = 1) and (tB = N

I I ), respectively.
�e number of integer and FP instructions is approximated by:

Arith . instr s =
i=iterators∑

i=1
(
j=i∏
j=1

upj − low j

Tj
× c j ) + of f set (10)

where iterators is the total number of iterators and (up, low,T )
are their corresponding bound values, as in previous equations. c j is
the number of integer or FP assembly instructions measured inside
j loop (assembly instructions occur between the open and close
loop bracket). o f f set is the number of arithmetical instructions of
the extra loop kernels added (if the array layouts change).

(
∑i=iterators
i=1 (∏j=i

j=1
upj−low j

Tj ) gives the number of loop itera-
tions in total while c j gives the number of assembly instructions
in loop j. Note that j iterator varies from (j = 1 - it corresponds
to the outermost iterator) to (j = iterators - it corresponds to the
innermost iterator), e.g., in Fig. 2, Eq. 10 gives ((N /KK) × c1 +
(N 2/(KK × I I )) ×c2+ (N 3/(KK × I I × J J )) ×c3+ (N 3/(KK × J J )) ×
c4 + (N 3/(KK × 4)) × c5 + (N 3/4) × c6); as it can be observed, the
number of arithmetical instructions is strongly a�ected by a) the
number of the loops being tiled (more terms are introduced), b) tile
size / unroll factor values of the innermost iterators (here, the unroll
factor value of j, i.e., 4, a�ects the number of instructions at the
most). �us, a larger unroll factor value would be more e�cient.

Given that the c values depend on the target compiler, they
cannot be approximated. �us, we measure the c values for one
transformation set and predict the c values of the others (where
possible), e.g., in Fig. 2, the c values (assembly instructions) almost
remain unchanged by changing the (KK , I I , J J ) values (apart from
their maximum and minimum ones because in this case, the number
of the loops changes), but not by changing the (j) unroll factor
value or the number of the loops being tiled, because the loop body
changes and thus more/less assembly instructions are inserted.

In this work, we take advantage of the fact that the c values
almost remain unchanged for di�erent tile sizes, su�ce the array
layouts remain unchanged and the tile sizes do not take their maxi-
mum/minimum values; the c values are only slightly a�ected by
the compiler, even by using aggressive compilers and high opti-
mization levels. �e c values for di�erent unroll factor values and
data layouts are signi�cantly changed and cannot be predicted.
3.3 Performance Models
�e aforementioned transformations a�ect P and E in all HW com-
ponents and thus a di�erent power model is generated for each
di�erent processor and MM. An o�-line training phase is applied in
order to generate the power equations for the target processor and
MM (Fig. 3); the custom HW architecture is given as input to the
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Figure 3: Power consumption models
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Figure 4: Validation of Eq.6-Eq.10 (relative error)

mcpat [14] simulator and a number of simulations takes place for
di�erent values of L1,L2,DDR accesses and integer, FP instructions.
�is way we generate P equations (Fig. 3); we show that memory
power values are linear to their number of memory accesses (Eq.6-
Eq.10). Moreover, LoadQ/StoreQ power values are linear to the
number of L/S instructions (Eq. 6). �e ALU, instruction bu�er
and instruction decoder power values are linear to the number of
ALU instructions and total number of instructions (Eq. 10+Eq. 6),
respectively (Fig. 3). Although this work can be extended to take
into account more HW architecture components, in this paper, we
approximate P by using Eq. 11; thus, according to mcpat we do not
take into account P on the renaming unit, instruction cache, RF,
TLBs, branch predictor and instruction scheduler.
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P = PL1(f (L1.acc)) + PL2(f (L2.acc)) + PDDR (f (DDR .acc))+
PL/S Queue (f (L/S .instr s)) + PALU (f (ALU .instr s))+
Pinstr .buf f er (f (instr s)) + Pinstr .decoder (f (instr s))

(11)

As far as execution time (ET) is concerned, it cannot be approx-
imated by using a mathematical formula; however, we can use
current ET models in order to �nd/predict qualitatively the trans-
formation parameter set giving the fastest binary. Given that all
the candidate transformation parameter sets a) refer to the same
algorithm, b) the algorithm is static, in Subsection 4.1, we show that
we are able to select qualitatively a high quality transformation pa-
rameter set, even by using a simple execution time model (Average
Memory Access Time (AMAT) [7]). Although more accurate and
complex ET models exist like [22], where concurrency in memory
hierarchy is taken in account, the aim of this �rst version is to
validate and describe the theoretical background.
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Figure 5: Validation of the ET and Pmodels used (the results
for the other algorithms are similar)

3.4 Reduction of the search space - optimality
Although it is impractical to run all di�erent schedules in order to
prove that our methodology doesn’t discard e�cient schedules, a
theoretical explanation is given.

First, the schedules that don’t belong to Eq. 1, either use a larger
number of registers than available or they don’t take into account
data reuse (and therefore registers are wasted), while the schedules
that don’t belong to Eq. 4 either use larger tile sizes than the cache or
the tiles cannot remain in the cache. All the above refer to schedules
that register blocking and loop tiling have not been applied in an
e�cient way and therefore they give a high number of data accesses
through the whole memory hierarchy. Although Eq. 1 and Eq. 4
transformation parameters do not always provide near-optimum
performance as the corresponding transformations are not always

e�cient/desirable, Eq. 1 and Eq. 4 do provide all the e�cient register
blocking and loop tiling implementations, respectively. In other
words, if the target metric is to minimize the number of Li memory,
then the optimum solution will be included in the corresponding
inequality.
3.5 Putting it all together
�e proposed methodology is given in Algorithm 1. All the steps
have been explained in the previous subsections. All di�erent
combinations of loop interchange are generated as it a�ects Eq.1-
Eq.10.

In the case that the target metric is not ET or E, but the minimum
number of Li memory accesses, then Algorithm 1 is changed accord-
ingly, i.e., steps (1, 2, 5, 8), (1, 3, 5, 8) or (1, 4, 5, 8) are executed only,
respectively. It is important to note that in this case the number
of di�erent schedules that have to be further processed by Subsec-
tion 3.2 is smaller, i.e., the lower bound values of Eq. 1 and Eq. 4
are no longer needed to be that small. For example, by using a
larger lower bound value in Eq. 1, register utilization is increased
and therefore the number of L1 accesses is reduced; however, these
parameters may con�ict to those minimizing the number of MM
accesses, which may be more critical. �us, if the target metric is
just the L1dc accesses, there is no need to use such a small Eq. 1
lower bound value. �e same holds for L2c and MM too.

Algorithm 1 Proposed Methodology
Step 1. parsing
Step 2. apply proposed Register blocking algorithm
for (all di�erent RF sets) do

pick a RF transf. set
Step 3. apply loop tiling alg. to L1
for (all di�erent L1 sets) do

pick an L1 transf. set
Step 4. apply loop tiling alg. to L2
for (all di�erent L2 sets) do

pick an L2 transf. set
Step 5a. generate access equations - Eq. 6-Eq. 9 (all mems)
Step 5b. compute the num of accesses in memory hierarchy
Step 6. arithmetical instructions
if (the num of arith. instrs cannot be predicted for the current
set) then

generate C code (from C to C) for the current set
generate assembly code - cross compile
measure the num of FP and integer assembly instrs (get the c
values of Eq. 10)

else
predict the num of arith. instrs (Eq. 10)

end if
Step 7. compute the ET,P,E values for the current set
Step 8. store only the best set depending on the cost function
(ET,E,L1,L2,MM)

end for
apply loop interchange to L2 iterators and go to step4

end for
apply loop interchange to L1 iterators and go to step3

end for

4 EXPERIMENTAL RESULTS
�e experimental results are obtained by using a) the quad-core Intel
i7 6700 CPU (CentoS-7 OS) by using both normal C-code and hand
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Table 1: Evaluation over gcc and hand written AVX code

MMM - ZYBO MVM - ZYBO
Binaries ET(sec) P (W) E (J) ET(sec) P (W) E (J)
default 1.38E+02 4.80E-01 6.62E+01 4.70E-01 4.10E-01 1.93E-01
best ET 1.55E+01 5.00E-01 7.75E+00 2.20E-01 3.50E-01 7.70E-02
best E 1.79E+01 3.80E-01 6.80E+00 2.20E-01 3.50E-01 7.70E-02

MMM - i7 6700 MVM - i7 6700
default 9.92E+00 4.80E+01 4.76E+02 1.02E-01 4.18E+01 4.25E+00
AVX 8.90E+00 4.66E+01 4.15E+02 8.43E-03 4.67E+01 3.94E-01

best ET 2.30E+00 4.60E+01 1.06E+02 3.30E-03 4.92E+01 1.62E-01
best E 2.40E+00 4.39E+01 1.05E+02 3.30E-03 4.92E+01 1.62E-01

FIR - ZYBO Diotgen - ZYBO
default 1.98E+00 5.75E-01 1.14E+00 3.90E+01 5.00E-01 1.95E+01
best ET 8.20E-01 5.00E-01 4.10E-01 1.60E+00 4.25E-01 6.80E-01
best E 8.60E-01 4.75E-01 4.09E-01 1.60E+00 4.25E-01 6.80E-01

FIR - i7 6700 Diotgen - i7 6700
default 1.33E-01 4.45E+01 5.94E+00 8.90E+00 4.81E+01 4.28E+02
AVX 1.30E-01 4.43E+01 5.76E+00 6.82E+00 4.68E+01 3.19E+02

best ET 3.42E-02 4.70E+01 1.61E+00 2.38E+00 4.55E+01 1.08E+02
best E 3.42E-02 4.70E+01 1.61E+00 2.38E+00 4.55E+01 1.08E+02

Gemver - ZYBO Gaussian Blur - ZYBO
default 4.90E-01 5.75E-01 2.82E-01 2.53E-01 4.10E-01 1.04E-01
best ET 2.10E-01 5.00E-01 1.05E-01 6.65E-02 3.50E-01 2.33E-02
best E 2.10E-01 4.75E-01 9.98E-02 6.65E-02 3.50E-01 2.33E-02

Gemver - i7 6700 Gaussian Blur - i7 6700
default 2.10E-03 4.47E+01 9.39E-02 2.60E-02 4.62E+01 1.20E+00
AVX 2.00E-03 3.70E+01 7.40E-02 6.10E-03 4.68E+01 2.85E-01

best ET 1.54E-03 3.65E+01 5.62E-02 5.40E-03 4.64E+01 2.51E-01
best E 1.54E-03 3.65E+01 5.62E-02 5.40E-03 4.64E+01 2.51E-01

wri�en code with AVX extensions, b) the embedded ARM Cortex-
A9 processor on a Zybo Zynq-7000 FPGA platform using petalinux
OS, c) the gem5 [3] and McPAT [14] simulators, simulating both a
generic x86 and an ARMv8-A CPU .

�e bench-suite used in this study consists of six well-known
data dominant static kernels taken from PolyBench/C benchmark
suite version 3.2 [21]. �ese are: Matrix-Matrix Multiplication
(MMM), Matrix-Vector Multiplication (MVM), Gaussian Blur (3 × 3
�lter), Finite Impulse Response �lter (FIR), a kernel containing
mixed vector multiplication and matrix addition (Gemver) and a
multiresolution analysis kernel (Diotgen). �e kernels are compiled
using gcc 4.8.5 and arm-linux-gnueabi-gcc 4.9.2 compilers, for
x86 and arm, respectively (’O3’). �e output of our method is
compiled with ’O2’ optimization level in order the compiler to be
less aggressive.

Table 2: Speedup over hand optimized code and Polly

Unroll Tiling Tiling Unroll & Prop. Polly
1 loop 1 loop 2 loops Tiling Meth. LLVM

MMM-i7(AVX) 1.11 1.53 1.82 1.90 3.93 1.41
MMM-ZYBO 1.71 2.23 2.78 3.07 8.62
MVM-i7(AVX) 1.08 1.09 1.09 1.10 2.32 0.97
MVM-ZYBO 1.18 1.11 1.10 1.13 2.14
FIR-i7(AVX) 1.42 1.11 1.11 1.44 3.85 1.38
FIR-ZYBO 1.31 1.52 1.50 1.63 2.48

Gemver-i7(AVX) 1.06 1.03 1.03 1.07 1.26 1.31
Gemver-ZYBO 1.33 1.04 1.04 1.35 2.34
Diotgen-i7(AVX) 1.16 1.53 1.60 1.65 3.91 1.26
Diotgen-ZYBO 1.34 2.69 3.05 3.38 30.63
G.Blur-i7(AVX) 1.02 1.00 1.00 1.02 1.17 1.02
G.Blur-ZYBO 1.62 1.00 1.00 1.62 3.81

4.1 Validation of Eq.6-Eq.10 (gem5)
First, a validation on the number of arithmetical instructions is
given (Eq. 10) for 2 di�erent compilers (’O2’ option). �e number
of integer instructions is measured for one transformation set and
then predicted for the others (2nd and 3rd �gure in Fig. 4); we take
advantage of the fact that the c values almost remain unchanged
for di�erent tile sizes. In Fig. 4, (T 1,TRF ) represent the (tile, unroll
factor) values of the innermost iterator, respectively, (T 2,TRF ) the
next innermost etc. �ere is a large error value in the case that the
tile size of the innermost iterator is twice its minimum value (this
is the only case we have faced this disunion); these parameter sets
are not e�cient in the majority of the cases and this is why the
compiler becomes so aggressive and therefore changes the code.
It is important to note that this disunion on the error values is
eliminated by using the ’O1’ option. �us, in order to use ’O2’
option, the (T1 = 2 × TRF ) case has to be included in Step6 of
Algorithm 1. �e results on the FP instructions are similar.

Subsection 3.2 has also been validated on the number of L1,
L2 and MM accesses (1st �gure in Fig. 4). �e error values are
less than 3.5% in all cases (both processors) when the tiles contain
consecutive MM locations. However, as it was expected, for the
special cases that the array layouts remain unchanged, there is a
larger error.

4.2 Validation of execution time and power
consumption models (gem5 and McPAT)

Furthermore, a validation on the simple ET model used [7] is made
as well as on the P model derived by mcpat (Fig. 5). �e equa-
tions giving the execution time for the x86 and arm on Gem5 are
(ET = L1reads ∗ 2 + L2reads ∗ 20 + DDRreads ∗ 60) and (ET =
L1reads + L1writes + L2reads ∗ 20 + DDRreads ∗ 60), respectively.
�ese equations don’t take into account the concurrency in mem-
ory hierarchy and this is why the equations give larger ET values in
most cases. However, the above simple equations give very good re-
sults because a) all di�erent transformation parameters refer to the
same algorithm, b) the algorithms are static; apart from not taking
into account concurrency in memory hierarchy, any less accurate
measurements derive from the fact that the above ET equations
do not take into account instruction level parallelism. �e reason
that arm processor achieves less execution cycles than x86 in gem5
simulator is that a) unlike x86, arm compiler generates assembly
code with fused multiply-accumulate assembly instructions, b) x86
contains more registers than arm and thus the current transfor-
mation sets are more e�cient for arm. Regarding P, the proposed
model follows perfectly the trend in both arm and x86, but P is
more accurate on arm than on x86; x86 is more complex than arm
and therefore the HW components that we have not taken into
account consume more power.

4.3 Evaluation over gcc, hand tuning optimized
code & Polly (i7 6700 & ARMv8-A)

First, the proposed methodology is evaluated over gcc compiler on
two real processors (Table 1). Intel i7 processor supports SIMD unit
and therefore we have evaluated our methodology to C-code con-
taining AVX intrinsics; we have used hand wri�en C-code with AVX
intrinsics as input to our tool. It is important to note that although
gcc supports auto-vectorization, hand wri�en AVX code is faster in
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most cases (Table 1). MMM and Diotgen are the most data dominant
kernels and this is why they achieve the highest memory gains
and speedup/energy gains on both CPUs. �e proposed method-
ology achieves about (8.5, 30, 2.1, 2.5, 2.3, 3.8) times faster code,
for (MMM, diotgen, MVM, FIR, Gemver, Gaussian Blur), on ZYBO
and about (4.4, 3.9), (4, 4), (20, 2.3), (4, 3.8), (1.3, 1.2), (4.8, 1.15) on i7
comparing to the (gcc, hand optimized code), respectively. Regard-
ing energy gains, the proposed methodology achieves about (9.2,
40, 2.5, 2.7, 2.6, 5) times less energy on ZYBO and about (4.6, 4),
(4, 4), (20, 2.4), (3.7, 3.6), (1.6, 1.2), (4.8, 1.15) on i7 comparing to the
(gcc, hand optimized code), respectively. It is important to note that
smaller gain values are achieved on i7 processor because the input
C-code contains AVX intrinsics, either directly or indirectly (gcc
auto-vectorization). �e proposed methodology achieves smaller
gain values for SIMD input codes, because hand wri�en AVX-code
�rst, is at a lower level and thus more e�cient, second, in many
cases it already uses a signi�cant number of the available registers,
leaving less space for modi�cations and third, it is less friendly to
register blocking.

Moreover, our methodology is evaluated over hand wri�en opti-
mized code and Polly [6] (Table 2). A large number of experiments
has taken place with 10 di�erent unroll factor values and 10 di�erent
loop tiling sizes in order to �nd the best (in Table 2, ’1 loop’ refers
to best loop and best tile size). We have used normal C-code for
ZYBO and hand wri�en C-code using AVX instrinsics for i7. As it
was expected, hand wri�en optimized code achieves be�er or equal
performance than gcc in all cases and likewise Table 1, our method
achieves smaller gain values on the codes using AVX intrinsics. It
is important to note that Polly includes other transformations too,
which our methodology does not.

5 CONCLUSION AND FUTUREWORK
In this paper, a novel methodology to six of the most popular and
important code optimizations is provided for data dominant static
algorithms. Instead of applying heuristics and empirical methods
we try to understand how so�ware runs on the target HW and
how CO a�ect ET and P. Moreover, we provide a theoretical model
correlating the number of memory accesses and arithmetical in-
structions with CO parameters, HW parameters and input size. To
this end, we make a �rst but important step towards correlating ET
and P with CO, HW architecture and input size.

Our future work includes more accurate and complex execution
time models such as [22] as well as extending the P model to the
remaining HW components. Moreover, it includes more loop trans-
formations such as loop merge and loop distribution and considers
nested loops where the array subscripts are not linear equations of
the iterators.
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