
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2018-08-21

A suite of computationally expensive

shape optimisation problems using

computational fluid dynamics

Daniels, SJ

http://hdl.handle.net/10026.1/12661

10.1007/978-3-319-99259-4_24

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

The final authenticated version is available online at
https://doi.org/10.1007/978-3-319-99259-4_24.

A Suite of Computationally Expensive
Shape Optimisation Problems Using

Computational Fluid Dynamics

Steven J. Daniels �, Alma A. M. Rahat �, Richard M. Everson, Gavin R.
Tabor, and Jonathan E. Fieldsend

University of Exeter, UK.
S.Daniels@exeter.ac.uk (CFD)

A.A.M.Rahat@exeter.ac.uk (representations)

{R.M.Everson, G.R.Tabor, J.E.Fieldsend}@exeter.ac.uk

Abstract. In many product design and development applications, Com-
putational Fluid Dynamics (CFD) has become a useful tool for analysis.
This is particularly because of the accuracy of CFD simulations in pre-
dicting the important flow attributes for a given design. On occasions
when design optimisation is applied to real-world engineering problems
using CFD, the implementation may not be available for examination.
As such, in both the CFD and optimisation communities, there is a
need for a set of computationally expensive benchmark test problems
for design optimisation using CFD. In this paper, we present a suite of
three computationally expensive real-world problems observed in differ-
ent fields of engineering. We have developed Python software capable
of automatically constructing geometries from a given decision vector,
running appropriate simulations using the CFD code OpenFOAM, and
returning the computed objective values. Thus, users may easily evalu-
ate a decision vector and perform optimisation of these design problems
using their optimisation methods without developing custom CFD code.
For comparison, we provide the objective values for the base geometries
and typical computation times for the test cases presented here.

1 Introduction

Many real-world engineering design optimisation problems are computationally
expensive. For instance, optimising the shape of an aircraft wing may require
evaluating the performance of candidate designs in flight using Computational
Fluid Dynamics (CFD). A high-fidelity simulation may take hours to converge,
imposing a practical limit to how many designs may be considered during opti-
misation.

In recent years, interest in computationally expensive optimisation problems
has grown rapidly. It was first popularised by Jones et al. [1]. They presented
two real-world problems: minimising a voltage spike in an integrated circuit,
and exploring the trade-off between viscosity and yield stress in a proprietary
automotive application; both of which required expensive computer simulations.

1

https://doi.org/10.1007/978-3-319-99259-4_24

Since then many example problems have been published. For instance, Naujoks
et al. presented a multi-objective shape optimisation problem for aerofoils, opti-
mising high-lift and low-drag simultaneously using CFD simulations [2]. Similar
problems with a particular attention to drag coefficients and uncertainty are
available from [3, 4]. Leary et al. presented a CFD-based shape optimisation
problem of minimising the volume of beams subject to stress and stiffness con-
straints [5]. In [6], a multi-objective optimisation problem of minimising pressure
drop and maximising heat flux for the design of a heat exchanger using CFD
was discussed. Another example is the rocket simulator in [7], which has been
used for simultaneously optimising the time to return to earth and the angular
distance travelled [8]. More recently, Daniels et al. presented several CFD based
geometry optimisation problems: minimising pressure difference in a pipe [9] and
a duct [10]. Beyond engineering design problems, further examples of computa-
tionally expensive problems exist in the literature from the machine learning
community, mostly for optimising model parameters to reduce training errors;
see for examples [11, 12, 13].

Note that authors often develop custom codes for their problems, and they
are generally reluctant to release code, primarily because many problems are
proprietary in nature. Therefore, despite numerous example problems, it is often
difficult to acquire the simulators for exact comparison of methods. Moreover,
there is no complete test suite of benchmark problems similar to inexpensive
test suites such as the DTLZ test problems [14]. The optimisation community is
actively investigating benchmark computationally expensive problems. However,
most previous attempts, for example [15, 16], use pseudo-expensive problems, i.e.
inexpensive functions are used with delays to mimic expensive problems.

Addressing these issues, the aim of this paper is to present a test problem
suite1 for computationally expensive problems with the following features :

– We focus on real-world problems of designing apparatus using CFD to eval-
uate the performances of a geometry in a fluid environment. As such these
are functions that are truly computationally expensive to evaluate, and op-
timisation has real implications for engineers.

– All problems use open source software suitable for popular platforms and
machines, and thus enable comparison between different methods without
requiring substantial hardware.

– This flexible suite offers the opportunity to create different instances of a
problem with a configurable number of dimensions for the decision space. In
practice increasing the number of dimensions increases the difficulty of the
associated problem.

– We provide the base geometry performance and the computation time so
that they may be used as a yardstick for comparison.

– Some decision vectors may result in an unphysical geometry, and conse-
quently a CFD simulation will fail. We therefore constrained the problems

1 Python code for these test problems and relevant instructions are available at: https:
//bitbucket.org/arahat/cfd-test-problem-suite.

https://bitbucket.org/arahat/cfd-test-problem-suite
https://bitbucket.org/arahat/cfd-test-problem-suite

to only evaluate feasible geometries. We provide a callable function encap-
sulating the constraint checks to inform the users whether a decision vector
is feasible. As such users may treat these constraints as black-box functions.

– Some design optimisation scenarios are naturally phrased as single objec-
tive problems, while others are inherently multi-objective. Adhering to such
genuine objectivity of design optimisation, we present three distinct design
problems: two single-objective and one multi-objective.

The rest of the paper is organised as follows. Section 2 provides a background
discussion on geometry optimisation using CFD, and in section 3 we present the
necessary background regarding geometry representation. The problems in this
test suite are detailed in sections 4 and 5. Finally, we draw conclusions in section
6 with the base geometry performance and relevant computation time.

2 Computational Fluid Dynamics (CFD)

Design performance in a fluid environment cannot usually be evaluated ana-
lytically. It is therefore necessary to resort to a numerical approximation using
CFD. CFD undoubtedly represents the more computationally costly end of engi-
neering simulation, requiring fast processing speed and making serious demands
on memory, multi-processor intercommunication speeds (for parallelisation) and
even graphical visualisation. CFD requires the solution of a set of Partial Differ-
ential Equations (PDEs) which describe the physics of fluid flow (principally the
Navier-Stokes equations, obtained independently by M. Navier and G. Stokes in
1822). This is typically achieved using the Finite Volume Method, in which the
fluid continuum is discretised into a grid and the PDEs are solved algebraically
for each cell. There are many software packages available to perform these cal-
culations. Over the last few years the open-source C++ code OpenFOAM [17]
has emerged as one of the most popular CFD codes in the community, partly
boosted by the financial issues of using a commercial code with a ‘per core’
license cost.

For this test suite, we have developed a Python-based optimisation frame-
work to operate with OpenFOAM. The communication of the Python libraries
with OpenFOAM was achieved using PyFoam as an interface to control the
OpenFOAM case set-ups and runs, and to post-process the data generated after
each CFD simulation. An appealing aspect of this framework is that the simula-
tions are run in an automated procedure based on a decision vector prescribed
by the user. The parametric geometries generated from the decision vector are
converted into sterolithography (STL) files and imported into OpenFOAM. In-
terested readers should refer to [18] for details of importing a STL file into
OpenFOAM environment. Following CFD simulation with the imported STL
file, the problem specific objective value(s) are computed from the flow fields. In
the next section, we describe the geometry representation methods used in this
paper.

3 Geometry Representation Methods

Generally, the standard procedure to create a geometry is to use a Computer
Aided Design (CAD) software. However, it is difficult to automatically alter de-
signs using CAD. Consequently, we resort to various parametric representations
for parts of the original geometry created in CAD; varying the parameters of the
representation allows the generation of new geometries. The new geometries may
then be considered as candidate designs in the optimisation. Below we briefly
describe the representation methods used in this paper. To keep computation
times manageable we formulate the test problems in terms of two-dimensional
geometries (although one is a fully three-dimensional flow).

3.1 Catmull-Clark Subdivision Curves

To alter the boundary wall of a geometry, we use Catmull-Clark subdivision
curves [19]. In this method, a curve C is parametrised with a sequence of n
vertices S0 = 〈p1, . . . ,pn〉. We refer to each vertex vector pi ∈ R2 in the control
polygon S0 as a control point. We then insert a mid-point between adjacent
vertices, and adjust each of the vertices’ position iteratively. Thus, at the jth
iteration with previous vertex sequence Sj−1, we generate a larger sequence Sj .
The vectorial subdivision operation in each iteration j may be expressed as:

Sj [1] = Sj−1[1], (1)

Sj [|Sj |] = Sj−1[|Sj−1|], (2)

Sj [2i] =
Sj−1[i− 1] + 6Sj−1[i] + Sj−1[i+ 1]

8
, (3)

Sj [2i+ 1] =
4Sj−1[i− 1] + 4Sj−1[i+ 1]

8
, (4)

where |Sj | = 2|Sj−1| − 1 is the total number of elements in the sequence Sj ,
Sj [k] is the kth element in the sequence, and indices i ∈ {2, . . . , |Sj−1| − 1}.

The curve C = limj→∞ Sj is a result of the infinite iterative process of sub-
division starting from the original sequence of vertices S0. Thus a sequence S0

with a small number of control points is sufficient to represent a curve with
infinitely many points. We construct a decision vector from S0 by sequentially
arranging the control points in a vector.

It should be noted that from practical perspective only a few iterations of
subdivision usually results in a visually smooth curve that may be exported in
STL format. We set the iteration limit to five in this paper. In Figure 1, we
provide an illustration of a Catmull-Clark subdivision curve.

3.2 Chebyshev Polynomials

Often multiple geometric variables may be spatially related, but the nature of
this relationship may not be known a priori. Rather than representing these

S0

S1

S5

Fig. 1: Illustration of a Catmull-Clark subdivision curve. The blue line shows the
original control polygon S0 with the control points depicted in blue dots. After
one iteration, the resulting approximation S1 is shown in orange with the new
control points shown in solid squares. The visually smooth curve S5 after five
iterations is drawn in black. From practical perspective, further iterations are
unnecessary as the curve is already smooth enough for STL file generation.

independently, it may be useful to encode their relationship with a parametrised
function such that altering the parameters changes all geometric variables si-
multaneously. An additional benefit is that a small number of parameters may
then represent a large number of variables, and consequently reduce the search
space size. In this paper, we used Chebyshev polynomials for encoding spatial
relationships for one dimensional variables [20].

A function based on Chebyshev polynomials (type I) may be defined as:

f(t, c) =

n∑
i=0

ciTi(t), (5)

where, t ∈ [0, 1] is a location variable, Ti(t) = (−2)ii!
(2i)!

√
1− t2 di

dti (1 − t2)
i−1
2 is

the ith Chebyshev basis function, which is orthogonal to all other Chebyshev
functions, and the associated coefficient vector is c = (c1, . . . , cn)> with ci ∈
[−1, 1]. With this parameterised function, if there are k variables at locations
t1, . . . , tk, and a vector of n coefficients (or parameters) c, then the jth variable
of interest takes the value:

vj = f(tj , c). (6)

The coefficient vector may be directly considered as the decision vector here,
and as it is varied, we may achieve a distinct value for vj at a fixed location tj .

Note that it is straightforward to scale the variables vj and locations tj
between specified lower and upper bounds. Furthermore, so long as n < k, a
smaller number of coefficients (or parameters) in this representation may directly
encapsulate and control the relationships between the k variables v1, . . . , vk.
Thus we may effectively reduce the search space. An illustration of the scheme
is presented in Figure 2a.

3.3 Monotonic Beta Cumulative Distribution Functions

It can be envisaged that some geometric variables should be monotonically in-
creasing with respect to location. Again, we may use parametric monotonic func-

tmin t1 t2 t3 tmax
t

vmin

v1

v2

v3

vmax

f
(t
,c

)

(a) Chebyshev polynomials from (5).

tmin t1 t2 t3 tmax
t

vmin

v1

v2

v3

vmax

b(
t,

a
,b
,w

)
b(
t,
a
,b

,ω
)

(b) Monotonic Beta CDF from (7).

Fig. 2: Illustration of parametric functions: Chebyshev polynomials in (a) and
monotonic Beta CDFs in (b). Function responses are depicted in blue. Red
squares show the selected function values v1, v2 and v3 at locations t1, t2 and t3.
For demonstration we chose arbitrary parameter vectors c,a,b and ω. Clearly,
changing the parameters will result in a different function response. Thus, a
variable of interest vj at a fixed location tj may be varied by changing the
relevant parameters, but the basis function representation ensures that changes
to a single coefficient yields correlated changes to all the variables.

tions to encode such relationships. In this paper, we use a weighted sum of
cumulative distribution functions (CDFs) of Beta distributions for this purpose.

Let the function F (t, α, β) be the CDF of a Beta distribution. The CDF
monotonically increases from zero to one as location t is changed from zero to one
for a specified set of shape parameters α > 0 and β > 0. If the shape parameters
are altered to α′ and β′, this will result in a distinct monotonic relationship
between t and F (t, α′, β′) in comparison to t and F (t, α, β). To further increase
the flexibility of such a representation, we may consider the weighted sum of
multiple Beta CDFs, and as a convex combination of monotonic functions this
will preserve the monotonicity. Such a combination of n Beta CDFs may be
expressed as:

b(t,a,b,ω) =

n∑
i=1

ωiF (t, αi, βi), (7)

where ω = (ω1, . . . , ωn)> is the weight vector with ωi > 0 for all i,
∑

i ωi = 1,
and a = (α1, . . . , αn)> and b = (β1, . . . , βn)> are the vectors of parameters
for the Beta distribution. As in section 3.2, we can now compute a monotonic
variable of interest using equation (6) by replacing f(tj , c) with b(t,a,b,ω).
Again, if we choose a small n number of Beta functions to represent a large k
number of monotonic geometric variables, then we efficiently reduce the size of
the search space. The scheme is depicted in Figure 2b.

4 Single Objective Problems

In this paper, we present two single objective problems: PitzDaily and Kaplan
draft tube. These are detailed in the next sections.

Outflow
ow

Outflow
Inflow

Fig. 3: (Left) Streamlines of the flowfield coloured by velocity magnitude for the
original (base) PitzDaily case. (Top-right) A schematic of the Catmull-Clark
subdivision curve setup for the PitzDaily test case, and a randomly generated
subdivision curve. (Bottom-right) Streamlines and contour of the resulting flow-
field from the random design.

4.1 PitzDaily

Flow separation, recirculation, and reattachment are common phenomena ob-
served in many engineering applications, and are usually undesirable features
within a product’s design. Based on the experimental set up by Pitz and Daily
[21], this first case features a so-called ‘backward-facing step’, which serves as
a simple prototype for simulating the above flow phenomena. In this geometry,
the flow separates at the edge of the step, creating a recirculation zone, the flow
then reattaches at some distance beyond the step. The flow structure for the
base case can be seen in Figure 3 (bottom-left). Traditionally, this case has fea-
tured as a benchmark case for testing the accuracy of CFD methodologies and
thus has been the focus of much experimental and computational investigation.
Furthermore, this has also been used as a test case for adjoint (gradient descent)
methods of optimisation (see for example [22]).

Head losses within a flow are an undesirable characteristic for engineering
design. To quantify this, the mechanical energy loss factor, ζ, describes the en-
ergy that is converted to a form that cannot be used during the operation of
an energy producing, consuming, or conducting system (i.e. due to frictional
losses, or dissipation due to turbulence). In one mathematical form, ζ is defined
as the total pressure difference between the inflow and outflow of the apparatus
(relative to the kinetic energy at the inflow), i.e.

ζ =
1

1
2ρU

2
in

[
1

Ain

∫
in

Pt,in(u · n)dAin −
1

Aout

∫
out

Pt,out(u · n)dAout

]
, (8)

where Pt is the total pressure, and u · n indicates the velocity component normal
to the boundary, Uin is the inflow velocity, ρ is the density of the fluid, A is the
cross-sectional area, and subscripts in and out indicate the inflow and outflow
boundaries. The primary objective of this case is to minimise this energy loss,
i.e. min ζ. Using adjoint (gradient descent) optimisation, [22] identified a local
minimum, with ζ = 0.09032; this was achieved by removing the backward-facing

2 Solution repeated using our framework.

Fig. 4: Top-left: A schematic of the Hölleforsen-Kaplan sharp-heeled draft tube.
Bottom-left: Streamlines of the flow through the base (original) design. Top-
right: A schematic of the Catmull-Clark subdivision curve setup for the Kaplan
Draft tube, and a randomly generated subdivision curve. Bottom-right: Stream-
lines of the resulting flowfield from the new (random) design.

step, and by gently increasing and decreasing the cross-sectional area along the
domain. Based on this, the design optimisation for this first case focuses on
altering the geometry across the lower portion of the domain.

Figure 3 (top-right) shows the case setup for optimisation. The fixed bound-
ing box indicates the limits which the Catmull-Clark control points cannot
exceed. Fixed points are applied to enforce a smooth transition between the
Catmull-Clark subdivision curve and the adjacent wall. The bottom-right panel
of Figure 3 also shows an example geometry created from a randomly generated
set of Catmull-Clark control points. Note that the number of control points can
be defined by the user. For this configuration, the energy loss ζ = 0.2037, which
is an improvement on the cost function for the base design (see Table 1).

4.2 Sharp-heeled Kaplan Draft Tube

A hydropower plant converts the gravitational potential energy of water from
an upstream reservoir into electrical energy, by means of a turbine coupled to a
generator. The flow leaving the turbine loses its velocity in the draft (exhaust)
tube, where kinetic energy of the flow is transformed into pressure. This energy
conversion has a significant impact on the efficiency and power of the turbines,
thus, the draft tube design is of great interest to the industry. The two most
common draft tubes considered in the literature are the sharp-heeled and un-
derground designs; the former represents a large group that were installed in
Swedish hydropower plants in the 1950s. Elbow-draft tubes are widely used for
vertical Kaplan and Francis turbines, due to their low height, lesser excavation
cost, and greater potential for pressure recovery. This type of draft tube consists

Fig. 5: CFD case set up for the staggered ‘quincunx’ formation of the cross-flow
tube-bundle heat exchanger.

of three parts: a cylindrical cone, an elbow, and an end diffuser. The draft tube
geometry considered for the second case of this test suite is a 1:11 scaled model
from the Hölleforsen Kaplan turbine, built in 1949. A schematic of this draft
tube geometry is shown in Figure 4 (top-left).

The flowfield through the base design of the draft tube is shown in Figure 4
(bottom-left). An unusual characteristic of this test case is that a swirl-flow is
imposed at the inflow, which simulates the exit flow from the turbine. This makes
the flowfield complex, and, unlike the other test cases in this suite, inherently
three-dimensional. As discussed earlier, the main purpose of the draft tube is to
recover the kinetic energy leaving the turbine by increasing the pressure energy.
A performance indicator of this is given by the pressure recovery factor,

Cp =
1

1
2ρU

2
in

[
1

Aout

∫
Aout

poutdAout −
1

Ain

∫
Ain

pindAin

]
, (9)

where p is the static pressure. A higher value of Cp indicates a higher conversion
of kinetic energy to pressure energy. Thus, the single objective of this problem
is to maximise the pressure recovery factor, i.e. maxCp. The region of inter-
est for this case is the end-diffuser; changing its shape dramatically alters the
structure of the swirl-flow, and the resulting kinetic-pressure energy conversion.
Two Catmull-Clark subdivision curves define the shape of the top and bottom
of this section, as indicated in Figure 4 (top-right). Once again, a randomly gen-
erated subdivsion curve using one free control point is used as a demonstration
for altering the diffuser shape. As this is a three-dimensional flow, this test case
requires the highest computational effort out of all the cases in this test suite.
Thus, it is likely that the user will run this case in parallel, something for which
the OpenFOAM code is already equipped. The method of parallel computing
used by OpenFOAM is known as ‘domain decomposition’, in which the geom-
etry and associated fields are divided into sections allocated to separate cores.
For the example case in Figure 4, the pressure recovery factor Cp = 0.955, which
is an improvement on the cost function for the base design (see Table 1).

5 Multi-Objective Problem: Heat Exchanger

A cross-flow tube-bundle heat exchanger has a wide range of applications in many
fields, such as the chemical, food and nuclear industries, and HVAC (Heating,

Fig. 6: (Left) tube arrangement of the base case for the heat exchanger. (Right)
tube arrangement of a randomly generated decision vector. (Top row) contours
of the temperature distribution. (Bottom row) contours of static pressure across
the CFD domain.

Ventilation and Air Conditioning) sectors, to name a few. Generally, this type
of heat exchanger contains many rows of tubes oriented in a direction perpen-
dicular to the flow, as shown in Figure 5. The tubes may be arranged in many
configurations in order to obtain the greatest heat transfer between the two me-
dia. The transfer of heat between the tubes and the main flow occurs through
the tube walls and will be maximised by increasing the surface area of contact
between the flow and the walls. A detrimental effect of this may be that the
static pressure across the tube configuration increases, requiring greater energy
to push the flow through the heat exchanger. Overall, this potentially results in
a conflicting pair of objectives for heat exchanger design.

For this final test case, we have constructed a simple heat exchanger with
three rows of tubes. The design variables include altering the diameter of the
tubes, the position of the tubes in the streamwise direction, and the number
of tubes per row. To alter these variables, the decision vector contains the pa-
rameters of Chebyshev polynomials (for number of tubes in a row, and radii
of the tubes), and monotonic Beta functions (for the position of the tubes) as
described in sections 3.2 and 3.3. The cost functions describing the heat transfer
and pressure drop across the heat exchanger are defined as follows :

max |∆T | = |Tin − Tout|, (10)

min |∆p| = |pin − pout|, (11)

where p is the static pressure (units in Pascal, Pa), and T is the temperature
(units in Kelvin, K). Figure 6 (right) shows the result of a random decision
vector on the configuration of the pipes and the flowfield. The cost functions
from this random configuration are |∆T | = 26.8733K and |∆p| = 12035.9Pa;
this shows that this configuration has improved on the pressure drop across
the heat exchanger but the heat transfer has worsened when compared to the
staggered ‘quincunx’ tube formation of the base case (see Table 1).

6 Conclusion

In this work we describe a Python-based software framework for the automated
optimisation of a suite of computationally expensive design problems. These
include two single objective, and one multi-objective cases to act as benchmark
test problems for the CFD and optimisation communities. An appealing aspect of
this code is its flexibility, allowing the user to test their optimisation methodology
under a number of dimensions for the decision space, and the application of
these methods to real-world engineering problems. The schematics and contour
diagrams shown in this paper were generated using utilities in the proposed
framework, and ParaView – a visualisation utility – was used to visualise the
flowfield data. In summary, Table 1 below shows the cost function values and
typical simulation runtimes for the base case of each test problem, which may
be used as a yardstick to compare the fitness of optimal designs found using
different optimisation algorithms.

Table 1: Base geometry evaluation results for each test case. The calculations
were performed using an Intel Xeon(R)-3.60GHz desktop.

Test Problem Execution time (sec) f1(x) f2(x)

PitzDaily 40.35 0.312 (-)
Kaplan Draft Tube3 947.37 0.939 (-)

Heat Exchanger 34.55 40.933K 19,577Pa

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research
Council (EPSRC) grant (reference number: EP/M017915/1).

References

[1] Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. Journal of Global Optimization 13(4) (1998) 455–492

[2] Naujoks, B., Willmes, L., Bäck, T., Haase, W.: Evaluating multi-criteria evolution-
ary algorithms for airfoil optimisation. In: International Conference on Parallel
Problem Solving from Nature, Springer (2002) 841–850

[3] Keane, A.J.: Statistical improvement criteria for use in multiobjective design
optimization. AIAA journal 44(4) (2006) 879–891

[4] Forrester, A.I.J., Bressloff, N.W., Keane, A.J.: Optimization using surrogate mod-
els and partially converged computational fluid dynamics simulations. Proceed-
ings: Mathematical, Physical and Engineering Sciences 462(2071) (2006) 2177–
2204

[5] Leary, S.J., Bhaskar, A., Keane, A.J.: A derivative based surrogate model for
approximating and optimizing the output of an expensive computer simulation.
Journal of Global Optimization 30(1) (Sep 2004) 39–58

[6] Foli, K., Okabe, T., Olhofer, M., Jin, Y., Sendhoff, B.: Optimization of micro heat
exchanger: CFD, analytical approach and multi-objective evolutionary algorithms.
International Journal of Heat and Mass Transfer 49(5) (2006) 1090 – 1099

3 Simulation was performed in parallel using four-cores.

[7] Hasbun, J.E.: Classical mechanics with MATLAB applications. Jones & Bartlett
Publishers (2012)

[8] Shah, A., Ghahramani, Z.: Pareto frontier learning with expensive correlated
objectives. In: International Conference on Machine Learning. (2016) 1919–1927

[9] Daniels, S.J., Rahat, A.A.M., Tabor, G., Fieldsend, J., Everson, R.: Shape op-
timisation using computational fluid dynamics and evolutionary algorithms. In:
11th OpenFOAM Workshop, Portugal. (2016)

[10] Daniels, S.J., Rahat, A.A.M., Tabor, G., Fieldsend, J., Everson, R.: Automatic
shape optimisation of the turbine-99 draft tube. In: 12th OpenFOAM Workshop,
Exeter. (2017)

[11] Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

[12] González, J., Dai, Z., Hennig, P., Lawrence, N.: Batch bayesian optimization via
local penalization. In: Artificial Intelligence and Statistics. (2016) 648–657

[13] Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., De Freitas, N.: Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the
IEEE 104(1) (2016) 148–175

[14] Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evo-
lutionary multiobjective optimization. In: Evolutionary multiobjective optimiza-
tion. Springer (2005) 105–145

[15] Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for
the CEC 2014 special session and competition on single objective real-parameter
numerical optimization. Computational Intelligence Laboratory, Zhengzhou Uni-
versity, Zhengzhou China and Technical Report, Nanyang Technological Univer-
sity, Singapore (2014)

[16] Chen, Q., Liu, B., Zhang, Q., Liang, J., Suganthan, P., Qu, B.: Problem definitions
and evaluation criteria for CEC 2015 special session on bound constrained single-
objective computationally expensive numerical optimization. Technical Report,
Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China
and Technical Report, Nanyang Technological University (2015)

[17] Weller, H., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to compu-
tational continuum mechanics using object orientated techniques. Computers in
Physics 12(6) (1998) 620–631

[18] Daniels, S.J., Rahat, A.A.M., Tabor, G., Fieldsend, J., Everson, R.: A review of
shape distortion methods available in the OpenFoam framework for automated
design optimisation. In Nóbrega, J., Jasak, H., eds.: OpenFOAM: Selected papers
of the 11th Workshop. Springer (2018) (in press).

[19] Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topo-
logical meshes. Computer-Aided Design 10(6) (1978) 350 – 355

[20] Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical methods for physicists: a
comprehensive guide. Academic press (2011)

[21] Pitz, R., Daily, J.: An experimental study of combustion the turbulent structure
of a reacting shear layer formed at a rearward-facing step. Technical report,
University of California, Berkeley, California, USA, NASA Contractor Report
165427 (08 1981)

[22] Nilsson, U.: Description of adjointShapeOptimizationFoam and how to implement
new objective functions. Technical report, Chalmers University of Technology
(2014)

