2018-09-11

Summer School - Tuesday 11 September 2018 - Experimental planning I: Facilities and set-up

Perez-Collazo, C

http://hdl.handle.net/10026.1/12650

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Experimental planning I: Facilities & set-up

Dr Carlos Perez-Collazo
11th Sep 2018
Experimental planning

1. Design of Model Test
2. Scaling Laws
3. Model Properties and restraints

- Selection of Test Facility
 - Calibration of the facility
 - Selection of facility instrumentation and design of the experimental set-up
 - Calibration of instrumentation

- Design of the Model and selection of drought and water depth
 - Selection of Model materials and model instrumentation
 - Model construction
 - Model calibration

- Set-up of test in the facility
 - Debugging the system
 - In-place calibrations
 - Test runs
 - Analysis of test data
 - Documentation
Facilities
Facilities

- Wave generation and absorption
- Basin and flume flow
- Towing tanks
- Blockage effects
Wave generation

- Wave makers
 - Deep water generation
 - Shallow water generation
Piston wavemaker
Table 4.1 Biéssel transfer functions for four common types of wavemakers

Piston

\[S(z) = S_0 \]

\[\frac{H}{S_0} = \frac{2 \sinh^2(kh)}{\sinh(kh) \cosh(kh) + kh} \]

Elevated Piston

\[
\begin{align*}
S(z) &= S_0 & \text{if } (z + h) > h_0 \\
S(z) &= 0 & \text{if } (z + h) < h_0
\end{align*}
\]

\[\frac{H}{S_0} = \frac{2 [\sinh(kh) - 2 \sinh(h_0) \sinh(kh)]}{\sinh(kh) \cosh(kh) + kh} \]

Flap wavemaker
Table 4.1 Biéssel transfer functions for four common types of wavemakers

Hinged

\[S(z) = \frac{S_0}{h} (h+z) \]

\[H = \frac{2 \sinh^2(kh)(1 - \cosh(kh) + kh \sinh(kh))}{kh \sinh(kh) \cosh(kh) + kh} \]

Elevated Hinged

\[
\begin{align*}
S(z) &= S_0 \frac{h+z-h_0}{h-h_0} \quad ; \quad (z+h) > h_0 \\
S(z) &= 0 \quad ; \quad (z+h) < h_0
\end{align*}
\]

\[H = \frac{2[\sinh(kh)((h-h_0)ksinh(kh)-\cosh(kh)+\cosh(kh_0))]}{k(h-h_0)[\sinh(kh)\cosh(kh) + kh]} \]

Wave absorption

Images from: http://www4.edesign.co.uk
Coastal Basin
Limitations
Limitations
Blockage effect

Waves
Model width to tank width > 5 : 1

Currents
Cross-section of the model to cross-section of the channel < 10%.
Standard tests - wave

<table>
<thead>
<tr>
<th>Test series</th>
<th>TRL Level</th>
<th>Facility</th>
<th>2D-3D</th>
<th>Test duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series A: Linear regular waves</td>
<td>1-4</td>
<td>flume-basin</td>
<td>2D</td>
<td>50-100 waves (300 if resonance)</td>
</tr>
<tr>
<td>Series B: Non-linear regular waves</td>
<td>3-5</td>
<td>flume-basin</td>
<td>2D</td>
<td></td>
</tr>
<tr>
<td>Series C: Long-crested irregular waves</td>
<td>1-5</td>
<td>flume-basin</td>
<td>2D</td>
<td></td>
</tr>
<tr>
<td>Series D: Spectral shape</td>
<td>2-5</td>
<td>flume-basin</td>
<td>2D-3D</td>
<td>1 h full scale or (> 700 waves)</td>
</tr>
<tr>
<td>Series E: Directional long-crested waves</td>
<td>2-5</td>
<td>Basin</td>
<td>3D</td>
<td></td>
</tr>
<tr>
<td>Series F: Short-crested waves</td>
<td>2-5</td>
<td>Basin</td>
<td>3D</td>
<td></td>
</tr>
<tr>
<td>Series G: Combined waves and ocean currents</td>
<td>2-5</td>
<td>flume-basin</td>
<td>2D-3D</td>
<td>test specific</td>
</tr>
<tr>
<td>Series R: Repeatability</td>
<td>1-5</td>
<td>flume-basin</td>
<td>2D-3D</td>
<td></td>
</tr>
</tbody>
</table>
Survivability tests - wave

<table>
<thead>
<tr>
<th>Test series</th>
<th>TRL Level</th>
<th>Facility</th>
<th>2D-3D</th>
<th>Test duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series H: Long-crested</td>
<td>2-5</td>
<td>flume-basin</td>
<td>2D-3D</td>
<td></td>
</tr>
<tr>
<td>Series I: Long-crested and directional</td>
<td>3-5</td>
<td>flume-basin</td>
<td>2D-3D</td>
<td></td>
</tr>
<tr>
<td>Series J: Short-crested</td>
<td>3-5</td>
<td>basin</td>
<td>3D</td>
<td>3 hrs (full scale)</td>
</tr>
<tr>
<td>Series K: Combined wave and ocean current</td>
<td>3-5</td>
<td>basin</td>
<td>3D</td>
<td></td>
</tr>
<tr>
<td>Series R: Repeatability</td>
<td>2-5</td>
<td>flume-basin</td>
<td>2D-3D</td>
<td></td>
</tr>
</tbody>
</table>
Joint PRIMaRE and UK&CHN|CORE Summer School
10-14th of September 2018
Hydrodynamic Modelling and Well-being in Engineering
University of Plymouth (COAST Lab) and University of Exeter (Penryn Campus)