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ABSTRACT
Mesh network topologies are becoming increasingly popu-
lar in battery powered wireless sensor networks, primar-
ily due to the extension of network range and resilience
against routing failures. However, multi-hop mesh networks
suffer from higher energy costs, and the routing strategy
directly affects the lifetime of nodes with limited energy
sources. Hence while planning routes there are trade-offs
to be considered between individual and system-wide bat-
tery lifetimes. We present a novel multi-objective routing
optimisation approach using evolutionary algorithms to ap-
proximate the optimal trade-off between minimum lifetime
and the average lifetime of nodes in the network. In order
to accomplish this combinatorial optimisation rapidly and
thus permit dynamic optimisation for self-healing networks,
our approach uses novel k-shortest paths based search space
pruning in conjunction with a new edge metric, which as-
sociates the energy cost at a pair of nodes with the link
between them. We demonstrate our solution on a real net-
work, deployed in the Victoria & Albert Museum, London.
We show that this approach provides better trade-off solu-
tions in comparison to the minimum energy option, and how
a combination of solutions over the lifetime of the network
can enhance the overall minimum lifetime.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
communication networks—network architecture and design,
wireless communication; I.2.8 [Artificial Intelligence]: Prob-
lem Solving, Control Methods, and Search—Graph and tree
search strategies, Heuristics methods; G.2.2 [Discrete Math-

ematics]: Graph Theory—Network problems, Path and cir-
cuit problems
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1. INTRODUCTION
Wireless Sensor Networks (WSNs) consist of autonomous

devices distributed over a wide area that are able to sense
and periodically report environmental parameters such as
temperature or humidity. They are extensively used for re-
mote monitoring, especially in industrial and regulatory ap-
plications. Many applications require sensors to be placed
far from easy access to mains power so battery-powered sen-
sors are popular and are often necessary in such situations.
However, it is also desirable that sensors can be left unat-
tended, without battery replacement for as long as possi-
ble. In this paper we therefore investigate the use of multi-
objective evolutionary algorithms to find routing schemes
for mesh wireless sensor networks that optimally preserve
the life of the network.

Many existing commercial products use an ad hoc topol-
ogy for WSNs. Generally, these ad hoc networks are point to
multi-point networks, in which each sensor reports directly
to a central base station. Despite being a low power solution,
major limitations include limited network range as each sen-
sor node must be able to communicate directly with the base
station, and the strictly rigid network structure means that
networks are unable to cope with changing conditions in a
dynamic radio environment, which may occur as buildings
are modified or furniture is moved. As a consequence some-
times multiple base stations are required to cover a single
site.

As a solution, in recent years, mesh network topologies,
where data is relayed from node to node en route to the
base station, have grown in popularity. In addition to ex-
tending the range that can be covered by using multiple
hops, mesh networks provide the opportunity of using alter-
native routes, thus increasing resilience to radio environment
changes. However, mesh networks are expensive in terms of
energy consumption due to a higher overhead at each node
for additional activities, namely relaying messages for other
nodes and, in systems with distributed planning, calculating
new routes. These additional activities can be severely detri-
mental to the overall life of the network before it requires
servicing and battery replacement. It is desirable to max-
imise the average life of nodes in the network, but in addition
it will usually be important to maximise the time before the
battery of the shortest-lived node is exhausted. Therefore,
routing optimisation in mesh networks with careful consid-



eration of the trade-off between individual and system-wide
battery lifetimes within the network, is necessary for a prac-
tical implementation.
Efficient energy usage in WSNs has attracted much re-

search interest in recent years, especially because frequent
changing of batteries is infeasible. Approaches can be di-
vided into distributed and centralised [10]. Distributed ap-
proaches, in which responsibility for routing is distributed
across the constituent nodes, involve techniques like rein-
forcement learning [7] and swarm intelligence [1], etc. On
the other hand centralised systems, in which a centrally cal-
culated route is broadcast to participating nodes, mostly in-
corporate variants of evolutionary algorithms (EAs) [11, 13,
8]. In the distributed approach, nodes need to have sufficient
computational power to decide on the best path for sending
data and sufficient storage for storing information about lo-
cal connectivity. In comparison centralised approaches re-
quire lower computational power and lower static storage for
storing route information because they only require knowl-
edge about the node specific route information, but there
is system-wide overhead incurred for gathering connectivity
information and broadcasting routing information. In this
paper we consider very low powered nodes each of which
has limited computational power and storage. Routes are
therefore computed at a mains-powered base station node.
Most current EA-based energy-aware centralised systems

consider energy expense. This is the case even for multi-
objective routing optimisation, where energy expense is op-
timised with other objectives based on factors like quality
of service, bandwidth, packet loss ratio, etc. [11, 13]. How-
ever, optimising the overall energy expenditure of a network
may be detrimental to the overall performance of the net-
work, because often the goal is to prolong the lifetime of
the network before batteries need replacing. Merely reduc-
ing the overall energy expenditure may place a large burden
on a few nodes, resulting in the rapid exhaustion of their
batteries. We therefore seek to optimise the lifetime of net-
work nodes by modelling the charge held in their batteries
and the energy expenditure at each node. Islam et al. [8],
and Kamath et al. [9] have considered maximising only the
minimum remaining lifetime among nodes. Such approaches
can improve individual node specific energy state, but can
be sub-optimal from system-wide perspective. We therefore
seek to find the optimal trade-off between local and network-
wide battery lifetimes.
In this paper, we consider a centralised approach due to

the limitation of computational power and storage that a
real network entails. As network longevity is our primary
goal, we use a multi-objective evolutionary optimiser to si-
multaneously maximise the minimum lifetime of any node in
the network together with the average lifetime of all nodes in
the network. In practice our system also monitors packet-
loss-ratio and quality-of-service performance indicators, so
that re-optimisation can be invoked if performance declines,
and thus permitting self-healing in dynamic radio environ-
ments. Using this procedure we are able to achieve better
performance than minimum energy route and we show that
using a combination of solutions over the lifetime of the net-
work can extend minimum lifetime of the network.
In section 2 we describe the model of the system. In sec-

tion 3 we present a novel search space pruning method. In
section 4 we discuss the multi-objective evolutionary rout-
ing optimisation strategy. Based on this, in section 5, we

vi vj vB

Figure 1: Route Si = 〈vi, vj , . . . , vB〉 from vi via vj to the
base station vB .

demonstrate and discuss our findings in a real network de-
ployed in the Victoria & Albert Museum, London. In sec-
tion 6 we discuss how minimum lifetime of the system can be
extended through re-optimisation. In section 7 we present
re-optimisation as a tool to cope with the dynamism of the
radio environment. Finally, the conclusions are presented in
section 8.

2. SYSTEM MODEL AND PARETO OPTI-
MALITY

In this section we model the WSN and derive a multi-
objective problem in order to investigate the trade-off be-
tween individual and system-wide impacts on the remaining
lifetimes of nodes due to possible routing schemes in a net-
work.

A WSN is represented as a network graph, G = {V,E},
where V is a finite set of n sensor nodes vi plus a base
station node, vB , and E is the finite set of m edges [2, 4].
Each node must communicate with the base station, perhaps
by relaying a message through one or more other nodes. In
our scheme each node reports its status once every reporting
cycle (e.g. once each minute).

As illustrated in Figure 1, a route from node vi to the base
station vB is described by the sequence, Si = 〈vi, vj , . . . , vB〉.
We denote by Si[p] the pth element of the route Si. A rout-
ing scheme R is a set of routes, one for each node in the
network to the base station:

R = {S1, S2, . . . , Sn} . (1)

An initial mapping phase, preceding optimisation, is used
to discover which other nodes the node vi can communicate
with. Communications may take place using a variety of
baud rates and powers, so we assume that the most energy
efficient baud rate and power combination has been discov-
ered for each pair of nodes that can communicate; generally
low power and high baud rates are most efficient in our sys-
tem, but the optimisation does not rely on this. Also we
assume that communication is reliable at this baud rate and
power combination (given the current configuration of the
physical environment in which the network is deployed).

The energy required to transmit a message from vi to the
base station is found by summing the energies required to
transmit a message between each of the nodes comprising
the route:

Hi =

l−1∑

p=1

eSi[p],Si[p+1] (2)

where l is the length of the route and ejk is the energy re-
quired to transmit a message from vj to vk. Note that this
generally involves energy expenditure at both the transmit-
ting node and the receiving node, and will also involve ex-
penditures for transmitting an acknowledgement. As noted
above, we assume that the communication is reliable, but
if an acknowledgement is not received from the receiver the
message is resent; this additional expense is not modelled,
but if a link becomes unreliable, the routing is re-optimised.



In many routing optimisation problems, such as shortest
path problems, minimising a route’s overall cost is desirable.
The overall cost is found by summing the costs associated
with each edge in the route. There are many well-known
methods for minimising such costs, e.g. [5]. In this prob-
lem, however, we focus on the costs expended at the nodes
themselves, rather than the edge costs. This is because it
is energy expended at the nodes that depletes charge in the
batteries and thus governs the lifetime of a node.
Let Tij be the energy (charge) required at node vi to send

a message to vj and let Aik be the energy required to re-
ceive a message from vk at vi. Then in one reporting cycle,
the energy expended at vi in sending its own data to its
downstream node d = Si[2] and relaying messages received
from nodes with indices in the set I and sending them on
to nodes with indices O is

Ci = Tid +
∑

k∈I

Aik +
∑

j∈O

Tij . (3)

Clearly
∑n

i
Ci =

∑n

i
Hi is equal to the energy cost across

the whole network of sending a message from each node.
In order to calculate the lifetime remaining due to a rout-

ing scheme we require additional intrinsic information about
the nodes, namely the charge Qi remaining in the battery
and the quiescent energy consumption per reporting cycle
Ei due to constant micro-controller operation, sensor mea-
surements, running an on-board display, etc. The life of the
current node therefore is modelled as

Li =
Qi

(Ei + Ci)N
(4)

where N is the number of reporting cycles per unit time.
We emphasise Li = Li(R), i.e. Li is a function of all the
routes which utilise vi.

Our goal is to prolong the average life of the network, that
is to minimise the total energy consumed, and to maximise
the time before any individual node requires its battery to
be recharged or changed. We therefore seek to maximise the
two objective problem:

Maximise f1(R) =
1

n

n∑

i=1

Li(R). (5)

Maximise f2(R) = min
i∈[1,n]

Li(R). (6)

In addition, it may be important to maximise the lifetime of
one or more nodes vi for i ∈ U , because, for example, they
are particularly inaccessible. In this case the two-objective
problem is augmented with a third objective:

Maximise f3(R) = min
i∈U

Li(R). (7)

Solving this multi-objective problem may result in multi-
ple solutions, as opposed to a single solution for single objec-
tive optimisation. In this case, there exists a set of solutions
which are Pareto optimal; that is, there are no other feasible
solutions available that improve performance on one objec-
tive, without a simultaneous decrease in at least in one other
objective [3].
The dominance criterion is used to locate such solutions

in the search space. The dominance criterion from a routing
optimisation perspective is described as follows. In a multi-
objective problem with D objectives, a routing scheme, R′,

is said to dominate another routing scheme, R, denoted R′ ≻
R, iff

fi(R
′) ≥ fi(R) ∀i = 1, 2, . . . , D, and (8)

fi(R
′) > fi(R) for some i.

Hence, we seek the maximal set of feasible routes which are
mutually non-dominating, which is known as the Pareto set,
P.

3. SEARCH SPACE PRUNING
The multi-objective optimisation problem described above

is a combinatorial optimisation problem with, for practical
WSNs, a vast number of potential solutions. It is crucial
for practical implementations that the optimisation process
is fast. A way to improve the speed of optimisation is to
sensibly prune the search space, while retaining important
potential solutions. For this purpose we deploy a novel k-
shortest path based technique. Before describing the evolu-
tionary algorithm employed, we therefore discuss the way in
which solutions are represented and the search space pruned
to permit an efficient approximation of the Pareto set.

The number of possible routing schemes, i.e. the search
space size, depends on the number of available routes for
each node in the system. For instance, in a network with
n nodes excluding the base station with let the number of
available loopless paths from vi to vB be ai. In this case,
the number of possible routing schemes, i.e. the number of
combinations of routes for individual nodes that can build
the routing scheme, is:

Za =
n∏

i=1

ai. (9)

In order to combat the potential growth in the size of the
search space as the number of nodes increases we therefore
limit the number of potential routes available to each node.
More specifically, we attempt to search for solutions in the
space defined by the k-shortest paths for each node, where
the metric defining the k-shortest paths is defined below.
This reflects our intuition that short paths to the base sta-
tion are most likely to be energy efficient. We select from
among several shortest path routes for each node because if
each node were to utilise its shortest path a single node on
many of them would be disproportionately burdened.

Algorithms for discovering the shortest path between two
nodes in a weighted graph are well known and the shortest
path can be found in O(n log n) time. However, as we noted
above, the energy costs in this problem are associated with
the nodes themselves rather than with the edges. We there-
fore weight the edges in the network graph to associate the
energetic cost at the nodes with the edges connecting them.
Consider the nodes vi and vj . We define the weight of the
edge between them as:

wij =
eij
Qi

+
eji
Qj

, (10)

where, as above, eij is the energy required to transmit a mes-
sage from vi to vj , and Qi and Qj are the battery charges. It
is expected that eij = eji. This edge weighting models the
fact that a high transmission cost can be borne by nodes
with a high battery charge, but transmission is relatively
expensive for nodes with low battery charge because each
transmission will make a larger fractional depletion of the
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Figure 2: Correlation between objectives and composite
cost. Scatter plots show (right) the composite cost and true
average lifetime f1(R) and (left) minimum lifetime f2(R)
for 1000 randomly generated routing schemes with random
residual charges at the nodes.

charge. Likewise transmissions are free if Qi = ∞ (i.e. the
node is connected to mains power). Note that Qi/

∑
j
eij is

an estimate of the lifetime of vi. We call the cost of a routing
scheme calculated using the weights wij the composite cost.
As we require diversity in the search space and the possi-

bility of load balancing among nodes, we propose to evolve
solutions from among the k-shortest paths for each node
calculated with the composite cost (10). A number of al-
gorithms are available for computing the k shortest paths;
see for example [12, 5]. In our implementation we have used
Eppstein’s algorithm [5] modified to produce only simple or
loopless paths, which matches the best upper-bound time
complexity for finding k-shortest simple paths [5]. We de-
note the mth shortest route found for node vi by Sm

i , for
m = 1, . . . , k. Using this technique, the total size of the
search space is no larger than kn, although it may be smaller
than this because nodes close to vB may not have k loopless
paths to vB .

3.1 Relationship between objectives and com-
posite cost

In order to validate the use of the composite metric for
choosing candidate routes, Figure 2 presents the correlation
between the objectives and composite cost for 1000 ran-
domly chosen routing schemes with random residual charge
levelsQi at nodes for the Victoria & Albert museum network
described below. There is a fairly strong negative correla-
tion between the average battery life f1(R) and the compos-
ite cost. This indicates that routing schemes selected with
low composite cost via the k-shortest paths algorithm are
likely to have long average lives. On the other hand, there
exists a weak negative relationship between the minimum
lifetime and composite cost. This is unsurprising since the
minimum lifetime depends on a single node in the network
and is highly dependent on the interaction between routes.

Algorithm 1 Optimisation of Battery Powered Mesh Net-
work
Inputs

1: T = Number of iterations
2: s = Size of initial archive
3: µ = Perturbation rate
4: c = Uniform crossover rate

Steps

1: A← InitialiseArchive(s) ⊲ Initialise random archive
2: for i = 1→ T do

3: {R1, R2} ← Select(A) ⊲ Select two parent solutions
4: R′ ← UniformCrossOver(R1, R2, c)
5: R′′ ← Perturb(R′, µ) ⊲ Mutation
6: A← NonDominated(A ∪R′′) ⊲ Update archive
7: end for

8: return A ⊲ Approximation of the Pareto set

4. MULTI-OBJECTIVE ROUTING OPTIMI-
SATION

The multi-objective evolutionary algorithm used in this
approach is a real-valued genetic algorithm, which main-
tains an unconstrained Pareto archive to reap the benefits
of better convergence properties [6], but does not employ an
independent search population. Algorithm 1 describes this
process in more detail.

Solutions R are represented by vectors of n integers; the
ith element of the solution indexes one of the k shortest
paths found for node vi. In the initialisation step, we gener-
ate at random a population from the pruned search space.
This population comprises random routing schemes where
the member routes are picked from the k-shortest paths for
each node; thus for node vi the shortest paths are selected
from {Sm

i }
k
m=1. Additionally, we include in the initial popu-

lation the routing scheme which uses the first shortest route
for each node. The initial archive of non-dominated solu-
tions A is the maximal non-dominated subset of this random
population. At any step of the evolution, A is the current
approximation of the Pareto set.

During the evolution process, we randomly select two rout-
ing schemes. These parent routing schemes are then crossed-
over uniformly with a crossover rate c, resulting in the sin-
gle dominating offspring. The child is then perturbed by
changing routes randomly within the routing scheme, where
the number of changes depends on the perturbation rate,
µ. The offspring from perturbation is compared against the
members in the archive: if it is not dominated by any of
them then it enters the archive and any elements of A which
are dominated by the new solution are removed from A.
In this fashion only the non-dominated routing schemes are
preserved in the archive and the archive can only approach
the true Pareto set. The process of evolution continues for
a fixed number of episodes (alternatively, another termina-
tion criterion, such as specified minimum dominated hyper-
volume, may be employed).

Once the evolution process is finished, the decision maker
may manually choose the operating point using the final
approximation of the Pareto front, based on the expected
network longevity. The chosen routing scheme is sent to the
nodes through the base station, and it then becomes the
active data reporting scheme in the system.



5. ILLUSTRATION
A real network deployed in the Victoria & Albert Mu-

seum, London, is used to illustrate the proposed approach.
In a controlled environment over a vast area, such as Victo-
ria & Albert Museum, it is essential to monitor temperature
and humidity in galleries and display cases for the preserva-
tion of the artefacts. Compared to wired networks, battery
powered WSNs carry huge advantages in deployment cost
and flexibility.
The network incorporated 30 sensor nodes and a base

station, spanning five floors within an approximate area of
35000 m2. This provides a challenging radio environment
with thick, solid walls and a dynamic medium varying with
the rate of passage of people in the galleries.
The connectivity map was built in an initial mapping

phase in which nodes pinged each other using a range of
baud rates and powers to discover the minimum energy con-
figuration for communication between those nodes within
radio range of each other.
Subspace pruning using k = 10 shortest paths still results

in a search space of 1030 solutions. The initial population
was built with 100 randomly chosen solutions from this sub-
space together with the solution consisting of the shortest
route for each node. The initial archive was then found by
extracting the non-dominated solutions in this population.
For optimisation purposes, we used µ = c = 0.1 as the

perturbation and crossover rates; these rates were chosen
after a short empirical study on simulated networks, but the
performance of the optimiser is relatively insensitive to their
precise values. Using the dominated hypervolume measure,
the Pareto set was well converged after 150, 000 iterations.
A single core Python implementation takes about 2 min-

utes to complete 150,000 iterations on a 2.5 GHz machine.
As a consequence, the optimum routes for the new installa-
tions can be found readily, making this approach particularly
feasible as part of a real system.

5.1 Baseline optimisation
Figure 3 shows the Pareto front resulting from the optimi-

sation of the network. As the figure shows, routing schemes
in the Pareto set provide the network operator with a wide
range of routes trading off the average lifetime of the network
against the time before any single node needs its battery re-
placing. We note that the optimisation has resulted in rout-
ing schemes that are substantially better, in terms of both
average and minimum lifetime, than routing schemes utilis-
ing randomly chosen routes from the 10 shortest paths (I,
marked with blue crosses in the figure). Indeed, the routing
scheme with the longest minimum life has an average life-
time that is better than any of the solutions in the initial
random population. Interestingly, the routing scheme, Rc in
which each node uses its shortest path route (according to
the composite cost) lies close to the Pareto front, although
it is dominated by solutions in the Pareto front. We include
Rc in the initial archive.
As a result of optimisation, we were able to derive the

trade-off front that dominates the shortest paths routing
scheme, and thus any solution from the front performs better
in comparison. For example, the solution directly above Rc

can provide 1 more month in the minimum lifetime, with the
same average lifetime. Also, considering the left-most solu-
tion, we can get an improvement of 2.5 months in minimum
lifetime at the expense of 0.5 months of average lifetime.
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Figure 3: Baseline Optimisation. Pareto front approxima-
tion (red) and randomly generated initial solutions (blue)
for the Victoria & Albert museum network. Non-dominated
solutions comprising the initial archive are shown as in blue
with green rings and the solution in which each node uses
its shortest path based on the composite cost is shown in
orange/black.

6. EXTENDING MINIMUM LIFETIME
It is of considerable practical importance to maximise the

minimum lifetime of any node in the network, because the
network requires no maintenance until the battery of the
shortest-lived node is exhausted. Rather than using a single
routing scheme for the lifetime of the network it can be ad-
vantageous to adopt a new routing scheme partway through
its life which can serve to prolong the time before any single
node’s battery is exhausted. Rerouting of the network can
be accomplished at low energy cost from the base station.
To see how this can be useful, suppose that under the initial
routing scheme R, a node v⋆ has the minimum lifetime. Now
suppose that the network is optimised a second time after it
has been in operation for a while. The result of this second
optimisation can be a routing scheme in which v⋆ is very
lightly loaded, prolonging its life, while a different node, v′,
which was lightly loaded in the first epoch, now carries a
heavier load. In this way the life of v⋆ is extended and it
may be that v⋆ or v′ or some other node is exhausted first,
but in any case the time before any single node is exhausted
may be extended.

To illustrate this, we choose the routing solution with the
best minimum lifetime from the Pareto front shown in Fig-
ure 3, that is, the left-most solution, which we denote by
R. We simulate the operation of the network for 6 months,
roughly one third of the average lifetime of the network or
roughly half of the time (1.12 years) before v⋆ = v21 would
be exhausted. Note that during this time, the batteries in
the various nodes are discharged at different rates, so that
after 6 months the residual charges {Qi}

n
i=1 are unequal.

Figure 4 shows the result of re-optimising the routings using
these residual charges. Here A′ is the new Pareto optimal
front, which can be seen to dominate the original routing
scheme R which is marked in blue. Note that the remaining
lifetimes for R are 6 months smaller than those appearing in
Figure 3 because the network has been running for 6 months.
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Figure 6: Network graphs. Nodes are coloured according to the remaining battery life and edges are coloured according to the
utilisation of the corresponding link. Left: Network corresponding to the minimum lifetime solution R shown in the Figure 3.
Middle: Network R′, the best minimum life network following re-optimisation based on R after 6 months. Right: Routing R′

showing lifetime remaining after 6 months operation, but using R′ throughout.
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Figure 4: Re-optimised Pareto Front. The system simu-
lated for 6 months with operating point R (blue cross). Re-
optimisation with battery states after 6 months of operating
R generates the Pareto front A′ (red dots), with R′ being
the best minimum lifetime solution.

We draw attention to the best minimum lifetime solution,
R′ from this second optimisation which has a significantly
longer life than the scheme R. Thus using R for the first
6 months, followed by R′ prolongs the life of the network
before any battery needs changing.
To examine this further, Figure 5 compares the overall

lifetimes available using the two-stage optimisation with the
original lifetimes. The original Pareto front is shown in red,
while the green symbols show the Pareto archive A′ result-
ing from the second optimisation (Figure 4) with 6 months
added to each objective coordinate to show the total life-
times of the two-stage networks. Also shown, in blue and
labelled Â′, are the routing schemes in A′ re-evaluated using
the batteries with charges corresponding to the initial opti-
misation. The Â′ routing schemes do not dominate the orig-
inal schemes in A with one or two minor exceptions which
indicate that the Pareto front is not quite fully converged.
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Figure 5: Comparison of overall lifetimes from one and two-
stage optimisation. The Pareto front corresponding to the
original optimisation is shown in red, with R being the
best minimum lifetime solution from this archive A. Re-
optimisation with battery states after 6 months of operat-
ing R generates the trade-off of overall lifetimes A′ (green
pluses), with R′ being the best minimum lifetime solution.
Blue crosses indicate the lifetimes of solutions from A′ eval-
uated with the initial battery states; R̂′ is the solution R′

evaluated with the initial battery states.

We note that the re-optimisation was performed using k-
shortest paths derived using battery charges after 6 months
operation of R so a slightly different set of potential solutions
was available to this optimisation.

In Figure 6 we portray network graphs corresponding to
R, R′, and R̂′. The left panel of the figure illustrates the
lifetimes of the nodes using the best minimum lifetime rout-
ing R from the original optimisation after it has been in use
for 6 months. Nodes are coloured according to their remain-
ing life and in this case it can be seen that node 21 has the
minimum lifetime of 0.62 years. Edges are shaded according
to their utilisation and, unsurprisingly, it can be seen the
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(a) Re-optimisation following deletion of edge v19 → vB .
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(b) Re-optimisation following failure of node v19.

Figure 7: Dynamic Optimisation. Average and minimum lifetimes remaining for solutions in the Pareto front after 6 months
of operation (magenta pluses) using the route scheme Rd (black/orange diamond). The Pareto front resulting from re-
optimisation as a result of node or edge failure is shown by red dots. The routes repaired by random selection from k shortest
paths are denoted by blue crosses, and initial archive by green rings.

links to v21 are well used (the link v21 → vB is used by 11
routes), resulting in its short life.
The network illustrated in the middle panel of Figure 6

corresponds to R′, the routing scheme with the best mini-
mum lifetime resulting from a second optimisation after 6
months based on R. As can be seen, although v21 is still
the first node to be exhausted its life has been extended
by heavier utilisation of nodes 29 and 10; in particular the
v21 → vB link is now used only 8 times. This redistribu-
tion of loading during the two epochs is what allows the
combination of R and R′ to provide superior performance
to R alone. The right panel of Figure 6 shows the lifetimes
remaining after 6 months using R′ from the outset. Here
v29 has the minimum life of 0.62 years which is equivalent
to the minimum life v21 using R and no benefit is accrued
from using either scheme alone. It is the combination of the
two schemes that allows energy to be expended more evenly
around the network, protecting different nodes in different
epochs, that enables the overall minimum life of the network
to be prolonged.
Clearly, this two-stage combination of routing schemes

could be extended to incorporate additional epochs, although
we speculate that smaller relative gains will be made as ad-
ditional epochs are added. Also in the work we present here
the point at which to switch from R to R′ was fixed in ad-
vance of the optimisations and the second optimisation was
carried out independently of the first. Current work is in-
vestigating simultaneous optimisation of two or more epoch
combinations.

7. DYNAMIC OPTIMISATION
As WSNs operate in a dynamic environment, it is conceiv-

able that over time some of the links in the routing scheme
will fail. In addition nodes can disappear from the network
due to hardware failure or changing requirements and new
nodes can be introduced as the network is extended. Hence,

it is important to detect failures and re-establish connectiv-
ity with optimal routes, thus enabling self-healing within the
network.

These failures can be detected from the failure of nodes to
report data within an expected period of time as indicated
by the packet loss ratio. The particular edge that failed
can be detected as nodes succeeding the failed link send a
distress signal to the base station. In such cases, the solu-
tions from the original Pareto front may become infeasible,
as they may include the lost nodes or edges. Therefore, de-
pending on the reliability thresholds as set by the decision
maker, a re-optimisation is necessary in order to find the
optimal front in this new state using the latest connectivity
information. We note that the solutions from the original
Pareto set contain previous knowledge of good routes which
is useful for routes unaffected by the failure. These routes
can be fused with newly-generated random routes in order
to build the initial archive for a re-optimisation. Here we
generate an initial archive for re-optimisation by replacing
the affected routes from the original front with randomly se-
lected alternatives from the available k = 10 shortest paths
and extracting the non-dominated subset. Using this initial
archive can promote subsequent rapid optimisation.

To illustrate dynamic optimisation, we select a solution
Rd, which provides a good balance between minimum life-
time and average lifetime among the solutions in the original
Pareto front. The network is then simulated for 6 months,
and consequently Rd has a minimum lifetime of 0.47 years
and an average lifetime of 1.47 years as shown in Figure 7.
We noted that the node v19 has the minimum lifetime at
this stage.

To exemplify the effects of edge failure, we delete the link
between v19 and the base station. This edge was selected
as it is common among the solutions in the original front
with an average of 13 routes per solution using this link; the
failure of this link therefore represents considerable damage
to the network. As a result, all solutions in the original



Pareto set become infeasible. By combining the unaffected
routes with random routes from 10 shortest paths, we derive
an initial archive, Ie for a new optimisation. This archive
is then used to optimise the network as described in section
5.1.
The Pareto fronts resulting from the re-optimisation after

damage are shown in Figure 7. For both edge deletion (Fig-
ure 7a) and node failure (Figure 7b), a large portion of the
new optimal front is dominated by the original front. This
is unsurprising because in both cases the solution space has
been significantly reduced and new optimal routes to the
base station are necessarily longer than the original routes.
Interestingly, however, the re-optimisation has found solu-
tions that prolong the minimum life of the network in the
way as discussed in section 6. This leads to a consider-
able portion of the re-estimated front being mutually non-
dominating with solutions from the original Pareto front,
giving the network manager considerable flexibility to choose
a new operating point. We remark that because both objec-
tives are expressed in common units (years) it is straightfor-
ward to automatically choose the new routing scheme that
is closest to the original Rd using the Euclidean distance.
The utility of initialising the re-optimisation archive with

solutions constructed from the original archive is evident in
that, based on the hypervolume, the re-optimisation con-
verged roughly three times as fast as an optimisation start-
ing from random solutions, even in this case where the net-
work was considerably damaged.

8. CONCLUSIONS
Using mesh network topologies in low power Wireless Sen-

sor Networks poses a challenging problem of finding routes
that best preserve the lifetime of individual nodes and the
network as a whole. In this paper we have proposed a
multi-objective evolutionary approach to approximate the
optimum trade-off between local and global objectives, i.e.
minimum lifetime remaining for any node and average life-
time remaining for the whole network. The potentially vast
solution space is reduced by searching for routes among the
approximate k-shortest paths from each node to the base
station. This is made possible by associating energy costs
at nodes with the edges between them using a heuristic met-
ric. Use of the approximate k-shortest paths also provides
a convenient method of representing solutions in the evolu-
tionary optimiser.
We have shown in a real system, deployed in the Victoria

& Albert Museum, that the optimiser is able to estimate
the optimum trade-off between the minimum lifetime of any
node in the network and the average lifetime of the network
as a whole. Interestingly it was also found that the range
of minimum lifetimes available can also be significantly ex-
tended by using more than one routing scheme successively.
In essence this works by protecting during the first epoch
nodes that will bear a heavy load in the second epoch and
vice versa. To achieve these combined routing schemes two
optimisations were required and a solution from the first op-
timisation must be selected as the basis for the second op-
timisation. Current work focuses on efficient evolutionary
optimisation methods to simultaneously locate solutions for
both epochs which has the potential to achieve more efficient
networks.
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