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ABSTRACT 23 

Coastal and offshore waters in the South China Sea are warming and becoming 24 

acidified due to rising atmospheric levels of carbon dioxide (CO2), yet the combined 25 

effects of these two stressors are poorly known. Here, we carried out shipboard 26 

incubations at ambient (398 μatm) and elevated (934 μatm) pCO2 at in situ and in 27 

situ+1.8 oC temperatures and we measured primary productivity at two coastal and 28 

two offshore stations. Both warming and increased CO2 levels individually increased 29 

phytoplankton productivity at all stations, but the combination of high temperature 30 

and high CO2 did not, reflecting an antagonistic effect. Warming decreased Chl a 31 

concentrations in off-shore waters at ambient CO2, but had no effect in the coastal 32 

waters. The high CO2 treatment increased night time respiration  in the coastal 33 

waters at ambient temperatures. Our findings show that phytoplankton assemblage 34 

responses to rising temperature and CO2 levels differ between coastal and offshore 35 

waters. While it is difficult to predict how ongoing warming and acidification will 36 

influence primary productivity in the South China Sea, our data imply that predicted 37 

increases in temperature and pCO2 will not boost surface phytoplankton primary 38 

productivity.  39 

 40 

Keywords: Chl a; night time respiration; ocean acidification; ocean warming; 41 
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1. Introduction 45 

 46 

Rising atmospheric carbon dioxide (CO2) concentrations are warming and 47 

acidifying the oceans worldwide (Caldeira and Wickett, 2003; IPCC, 2014), including 48 

the South China Sea (Ji et al., 2017). On average, surface seawater temperatures are 49 

projected to increase by 1.51–3.22 oC by the end of this century and CO2 levels to 50 

increase from the current level of about 400 μatm up to 1000 μatm (Boyd et al., 2015). 51 

Ocean warming and acidification are expected to affect the physiology, distribution 52 

and structure of phytoplankton communities (Hare et al., 2007; Feng et al., 2009; 53 

Taucher et al., 2012; Sommer et al., 2015; Riebesell et al., 2017). 54 

Rising CO2 levels can increase the availability of dissolved inorganic carbon (DIC) 55 

for phytoplankton carbon fixation, but they are also causing seawater acidification, 56 

and this may inhibit algal calcification and photosynthetic carbon fixation (Falkowski 57 

and Raven, 2007; Gao and Zheng, 2010; Gao et al., 2012; Brodie et al., 2014). Thus, 58 

algal responses to increasing CO2 levels are dependent on the balance between the 59 

positive effects of increasing DIC and the negative effects of decreasing pH (Wu et al., 60 

2008; Bach et al., 2015; Liu et al., 2017). Several studies report that, in comparison to 61 

current CO2 levels, elevated CO2 (800–1000 μatm) increases productivity of 62 

phytoplankton assemblages that are dominated by diatoms (Kim et al., 2006; Tortell et 63 

al, 2008; Domingues et al. 2014; Engel et al., 2014; Johnson et al. 2015). Others have 64 

found that rising CO2 levels can decrease the productivity of phytoplankton 65 

communities dominated by the coccolithophore Emiliania huxleyi (Delille et al., 2005; 66 
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Riebesell et al., 2017). Paradoxically, an increase in CO2 concentrations from 385 to 67 

800 μatm decreased the productivity of surface phytoplankton assemblages dominated 68 

by diatoms in the South China Sea under natural fluctuating solar radiation (Gao et al., 69 

2012). These discrepancies highlight the fact that the effects of rising CO2 on 70 

C-fixation are dependent on algal community composition as well as regional 71 

environmental conditions (Egge et al., 2009; Gao et al., 2012; Celis-Pla et al. 2015; 72 

Holding et al., 2015; Hoppe et al., 2018). 73 

On a global scale, by using satellite records and in situ monitoring, rising 74 

temperatures have been shown to reduce phytoplankton productivity in the open 75 

ocean (Boyce et al., 2010; Siegel et al., 2013), because increased thermal stratification 76 

of the water column can starve the algae of nutrients (Doney et al., 2006; Kletou and 77 

Hall-Spencer, 2012). In general, it seems that photosynthetic C-fixation increases with 78 

increasing temperature, reaches a maximum and decreases thereafter (Beardall and 79 

Raven, 2004). Optimal temperatures for C-fixation differ between latitudes and 80 

seasons, with small phytoplankton species functioning optimally at higher 81 

temperatures than larger species (Daufresne et al., 2009; Finkel et al., 2010; Sommer 82 

et al., 2015; Wolf et al., 2017). Carbon fixation was reduced when temperatures were 83 

experimentally increased in cold adapted phytoplankton assemblages (Wohlers et al., 84 

2009; Wolf et al., 2017). However, increases from 27 oC to 30 oC enhanced 85 

photosynthetic C-fixation in incubations of samples of surface phytoplankton 86 

assemblages from two stations off China (Gao et al., 2017). Regional differences in 87 

physicochemical conditions may drive different responses of phytoplankton to ocean 88 
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climate change.  89 

Temperature affects cellular membrane permeability,  cell size of a single 90 

phytoplankton cell and the uptake of dissolved inorganic carbon (Beardall and Raven, 91 

2004) and so has fundamental control over the effects of changing carbonate 92 

chemistry on photosynthetic C-fixation. For example, when CO2 concentrations were 93 

increased from 390 to 690 μatm, C-fixation of a phytoplankton community at 12 oC 94 

(in situ temperature) decreased in the North Atlantic spring bloom area, whereas at 16 95 

oC rising CO2 levels enhanced C-fixation (Feng et al., 2009). Increasing CO2 levels 96 

(from 150 to 300 μatm) combined with rising temperature (from –1 oC to 7 oC) 97 

synergistically enhanced phytoplankton productivity in the European Arctic Ocean, 98 

and the positive effect of rising CO2 on productivity was lower at 6 oC than at 1 oC 99 

(Holding et al., 2015). Furthermore, elevated temperature reversed the positive effect 100 

of rising CO2 on phytoplankton assemblages off Svalbard and did not affect the 101 

response of phytoplankton primary productivity in coastal Arctic and subarctic 102 

seawater to rising CO2 (Coello-Camba et al., 2014; Hoppe et al., 2018). These results 103 

show that rising temperature and increasing CO2 can have synergistic or antagonistic 104 

effects on the productivity of marine phytoplankton assemblages. Given that the 105 

carbon cycle underpins the ecology and fisheries productivity of marine ecosystems, 106 

region-specific research is urgently needed to assess whether rising atmospheric CO2 107 

levels will positively or negatively affect photosynthetic production.  108 

In this work, we performed shipboard incubations at two coastal and two off-shore 109 

stations in the western South China Sea in autumn 2017 and measured photosynthetic 110 
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C-fixation rates and Chlorophyll a (Chl a) concentrations. Our aim was to assess how 111 

rising levels of pCO2 and temperature are likely to affect coastal and offshore 112 

productivity in the South China Sea.  113 

 114 

2. Materials and methods 115 

 116 

2.1. Sampling and culture condition 117 

This study was carried out aboard RV ‘Shiyan III’ in off-shore and coastal waters of 118 

the South China Sea from 11th September to 12th October, 2017 (Fig. 1). Surface 119 

seawater (0–2 m) was collected with a 8 L acid-cleaned plastic bucket and stored in a 120 

30 L acid-cleaned polycarbonate tank at 9:00 a.m. to 10:00 a.m., at station S1 (12.99o 121 

N, 113.50o E) on September 21, station S2 (14.01 o N, 113.01 o E) on September 22, 122 

station S3 (17.75 o N, 110.65 o E) on October 2, and station S4 (18.30o N, 111.29o E) 123 

on October 3, respectively. Surface seawater at each station was filtered through a 200 124 

μm mesh, and then dispensed into twelve 2 L Nalgene bottles. 1 μmol L–1 NaNO3 and 125 

0.5 μmol L–1 NaH2PO4 was added into the seawater in all treatments to stimulate 126 

phytoplankton growth (Chen et al., 2004; Tseng et al., 2005; Celis-Plá et al., 2015). 127 

Six bottles for ambient temperature treatment were put into one deck incubator 128 

(120 cm × 85 cm × 25 cm) bathed with flowing surface seawater. Six bottles for the 129 

elevated temperature treatment were put into another deck incubator with an 130 

auto-temperature control system (Fig. S1) which fitted with two circulating coolers 131 

(AL36G-160, Shenzhen Aolinghengye Ltd., China) during the day, and heated at 132 
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night (Aqua Zonic, Shanghai AiKe Ltd., China). Temperatures in both incubators 133 

were measured hourly (Fig. 2A). Bottles were held in place using wire mesh with a 134 

pore size of 11.5 cm (Fig. S1). Three bottles of seawater in each incubator were 135 

bubbled with filtered (PVDF 0.22 μm pore size, simplepure, Haining) ambient air 136 

(~400 µatm) or air of elevated CO2 (~1,000 µatm) during the incubation periods, 137 

respectively. The high CO2 concentration was controlled using a CO2 enricher 138 

(CE100B, Wuhan Ruihua Instrument & Equipment Ltd., China). An Eldonet 139 

broadband filter radiometer (ELDONET, Real Time Computer, Germany) was used to 140 

measure the incident solar radiation (Fig. 2B), and solar light intensities and weather 141 

condition were similar during the incubation periods. The positions of the bottles were 142 

changed three times per day to ensure they were exposed equally to sunlight. Our four 143 

treatments were: low temperature and low CO2 (LTLC), low temperature and high 144 

CO2 (LTHC), high temperature and low CO2 (HTLC), high temperature and high CO2 145 

(HTHC). Each treatment had three replicates and the incubations were run for 6 days. 146 

 147 

2.2. pHnbs, total alkalinity and nutrient concentrations measurements 148 

pHnbs (NBS scale) was measured before incubation, 24 hrs after incubation and at 149 

the end of the 6 days experiment. At about 10:00 a.m., 20 mL samples for pHnbs 150 

measurements were taken from the bottles and measured immediately at 25 oC with a 151 

pH meter (Benchtop pH, Orion 8102BN) calibrated with an equimolar pH buffer (Tris152 

•HCl, Hanna) which is isosmotic with seawater (Dickson, 1993). Total alkalinity (TA) 153 

was measured before incubation and at the end of the incubation. At 10:00 a.m. to 154 
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10:30 a.m., 100 mL samples for TA measurements were filtered (GF/F filter) by 155 

gentle pressure with 200 mbar in the pump (GM-0.5A, JINTENG). 100 μL saturated 156 

HgCl2 solution was added into the TA samples which were stored at 4 oC. TA was 157 

measured at 25 oC in the laboratory by potentiometric titration (AS-ALK1+, Apollo 158 

SciTech) according to Dickson et al. (2003). Carbonate chemistry parameters were 159 

calculated from TA, pHnbs, phosphate, silicate, temperature, and salinity using the 160 

CO2SYS (Pierrot et al., 2006). 161 

At the beginning of the incubation, dissolved inorganic nitrogen (DIN) and 162 

phosphate (DIP) concentrations of seawater in situ were obtained from the dataset of 163 

this cruise . At the end of the incubation, at 10:30 a. m. to 11:00 a. m., 50 mL samples 164 

for determination of DIN and DIP concentrations were syringe-filtered (0.22 μm pore 165 

size, Haining), stored at –20 oC, measured using a scanning spectrophotometer (Du 166 

800, Beckman Coulter) in the laboratory after the nitrate had been reduced to nitrite 167 

according to Hansen and Koroleff (1999). 168 

 169 

2.3. Chlorophyll a analysis 170 

At each station, at about 14:00 p.m., 2 L surface seawater were filtered onto a GF/F 171 

glass filter (25 mm, Whatman) for in situ chlorophyll a (Chl a) measurement. At the 172 

end of incubation, at 11:00 a.m to 12:00 a.m., 700 mL samples were filtered onto 173 

GF/F glass filters, and all filters were stored at –20 oC until they were analyzed in the 174 

laboratory. The filters were placed in 5 mL 100% methanol and stored at 4 oC for 12 175 

hours. Then the solutions were centrifuged at 5000 g for 10 min and the absorbances 176 
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of the supernatant were determined using a scanning spectrophotometer (Du 800, 177 

Beckman Coulter). Chl a concentrations were determined as follows: Chl a = 13.27 × 178 

(A665 – A750) – 2.68 × (A632 – A750) (μg mL–1) (Ritchie, 2002). A632, A665, and A750 179 

represent absorbances of the supernatant at 632 nm, 665 nm and 750 nm. 180 

 181 

2.4. Primary productivity measurements 182 

Primary productivity was obtained according to the method described by Gao et al. 183 

(2017). On the final day of the incubations, at about 5:00 a.m., subsamples were taken 184 

from each incubation bottle, dispensed into two 50 mL quartz tubes placed under a 185 

plastic plate which allowed 85% PAR and non UVR transmissions, assuring that the 186 

light environment was similar to that of incubations. 5 μCi (0.185 MBq) NaH14CO3 187 

(ICN Radiochemical, USA) was added to the subsamples, which were cultured in the 188 

corresponding deck incubators for 12 hrs (from 6:00 a.m. to 6:00 p.m.) and 24 hrs 189 

(from 6:00 a.m. to 6:00 a.m. next day) under solar radiation. Subsamples were then 190 

filtered onto GF/F glass filters, which were darkly stored at –20 oC until they were 191 

analyzed in the laboratory. Each filter was put into a 10 mL scintillation vial, fumed 192 

with HCl for 24 hours to remove inorganic carbon, and dried at 60 oC for 12 hrs. 3 mL 193 

scintillation cocktail (Hisafe 3, Perkin Elmer, Shelton, USA) was added to the vial 194 

and the activity of the fixed radiocarbon was measured using a liquid scintillation 195 

counting (LS 6500, Beckman Coulter, USA). The activity of photosynthetic 196 

C-fixation during 12 hrs incubation was defined to be the day-time primary 197 

productivity (DPP), and the photosynthetic C-fixation during 24 hours was considered 198 
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to be the net primary productivity (NPP) (Delille et al., 2005). The difference between 199 

DPP and NPP was taken as night time respiratory C loss.  200 

 201 

2.5. Data analysis 202 

Effects of temperature, CO2 and their interactions on Chl a, DPP, NPP and night 203 

time respiration rates were assessed by a two-way analysis of variance (ANOVA). The 204 

normal distribution of all data was assessed by a Shapiro-Wilk’s test, and 205 

homogeneity of variance was determined by a Levene’s test. A Tukey Post hoc test 206 

(Tukey HSD) was performed to show difference between temperature or CO2 207 

treatments. Statistical analysis was tested by using R and significant difference was 208 

indicated by p < 0.05. 209 

 210 

3 Results 211 

 212 

3.1. Incubation temperature, nutrient concentrations and carbonate chemistry 213 

parameters 214 

Incubation temperatures varied from 29.1 oC to 31.2 oC in our low temperature 215 

treatment (to match the surface seawater temperature at the time of sampling); and 216 

varied from 30.6 oC to 34.0 oC in our high temperature treatments (Fig. 2A). Average 217 

temperatures were 29.7 ± 0.29 oC for the low temperature treatments and 31.5 ± 218 

0.41 oC for the high temperature treatments, respectively.  219 

Dissolved inorganic nitrogen (DIN) and phosphate (DIP) concentrations in situ 220 
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surface water of the South China Sea were 0.03–0.12 μmol L–1 and 0.14–0.21 μmol 221 

L–1, respectively (Table 1). By adding NaNO3 and NaH2PO4 to the seawater, DIN and 222 

DIP concentrations at the beginning of the incubation were 1.03–1.12 μmol L–1 and 223 

0.64–0.71 μmol L–1, respectively. DIN concentrations at all treatments decreased 224 

below the detection limit (< 0.04 μmol L–1) and DIP concentrations were about 0.05 225 

μmol L–1 at the end of the experiments. This means that DIN and DIP concentrations 226 

appeared to be replete at the beginning of incubations, and low DIN concentration 227 

could have limited the phytoplankton abundance at the end of incubations. 228 

CO2 concentrations were 354–439 μatm at low CO2 levels and were 804–1059 229 

μatm at high CO2 levels (Table 2). Correspondingly, pHnbs values were 8.17–8.25 at 230 

low CO2 levels, and 7.85–7.95 at high CO2 levels. Total alkalinities ranged 231 

2319–2381 μmol L–1 in all treatments. 232 

 233 

3.2. Chl a concentration 234 

Chl a concentrations in situ were 0.080 μg L–1 at station S1, 0.091 μg L–1 at station 235 

S2, 0.130 μg L–1 at station S3, and 0.092 μg L–1 at station S4 (Fig. 3). At the end of 236 

the incubation, temperature and CO2 concentration did not significantly affect Chl a 237 

concentrations at stations S1 and S2, individually and interactively (Table S1; Fig. 238 

3A,B). Elevated temperature significantly reduced Chl a concentrations at station S3 239 

at both LC and HC levels (Tukey HSD, both p < 0.05), and at station S4 at LC level 240 

(Tukey HSD, p = 0.02) (Table S1; Fig. 3C,D). By the sixth day of the incubation, Chl 241 

a concentrations at station S3 were 47%–55% lower at HT than at LT (Tukey HSD, p 242 
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< 0.05) (Fig. 3C). At LC level, Chl a concentration at station S4 reduced by 52% with 243 

rising temperatures, while at HC Chl a concentration was not significantly affected by 244 

rising temperatures (Tukey HSD, p = 0.7) (Fig. 3D). 245 

 246 

3.3. Day-time primary productivity  247 

On the final day of the incubations, temperature and CO2 concentration 248 

interactively affected day-time primary productivity at stations S1 and S2, but not at 249 

stations S3 and S4 (Table S1). Compared to low temperature and low CO2 (LTLC) 250 

treatments, daytime productivity at station S1 was 41% higher at LTHC (Tukey HSD, 251 

p = 0.02) and 44% higher at HTLC (Tukey HSD, p = 0.01) (Fig. 4A). At station S2, 252 

daytime primary productivity was 12% higher at LTHC (Tukey HSD, p = 0.08) and 253 

39% higher at HTLC (Tukey HSD, p = 0.04) than at LTLC. Daytime productivity at 254 

stations S1 and S2 was similar between LTLC and HTHC treatments (Tukey HSD, p > 255 

0.1). At stations S3 and S4, daytime productivity was not significantly different 256 

between all treatments (Tukey HSD, all p > 0.05) (Fig. 4C,D). 257 

 258 

3.4. Net primary productivity 259 

On the final day of the incubations, at station S1, net primary productivity was 260 

lower at LTLC than at LTHC or HTLC conditions (Tukey HSD, p = 0.3 between 261 

LTLC and LTHC treatments; p = 0.04 between LTLC and HTLC treatments) (Fig. 262 

5A). Net primary productivity was not significantly different between LTLC and 263 

HTHC treatments at station S1. Similarly, at station S2, net primary productivity at 264 
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LTLC was significantly lower than at HTLC (Tukey HSD, p = 0.03), whereas it was 265 

not significantly different between LTLC, LTHC and HTHC (Tukey HSD, all p > 0.05) 266 

(Fig. 5B). At stations S3 and S4, net primary production did not differ between all 267 

treatments (Tukey HSD, all p > 0.05) (Fig. 5C,D). 268 

 269 

3.5. Night time respiration  270 

Temperature and CO2 concentration independently and interactively affected night 271 

time respiration rate at station S4, but not at the other stations (Table S1). At S1 and 272 

S2, at ambient temperature, night time respiration rates increased significantly at 273 

elevated CO2 (Tukey HSD, both p < 0.05, Fig. 6A,B); whereas at high temperature, 274 

night time respiration rates were not affected by elevated CO2 levels (Tukey HSD, 275 

both p > 0.05). At station S3, at HC, night time respiration rate was enhanced by 276 

rising temperature (Tukey HSD, p = 0.03) (Fig. 6C); at station S4, at LC, night time 277 

respiration rate was enhanced by rising temperature (Tukey HSD, p < 0.01) (Fig. 6D). 278 

 279 

4 Discussion 280 

 281 

Warming and increased CO2 levels both individually boosted primary productivity 282 

in samples of phytoplankton communities taken in nearshore and offshore habitats in 283 

the western South China Sea, although these were not all statistically significant 284 

increases (Figs. 4; 5). The effect of rising CO2 on primary productivity and respiration 285 

was temperature dependent, and the combination of elevated CO2 and temperature 286 
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resulted in antagonistic effects on production and respiration of the phytoplankton 287 

assemblages (Figs. 4; 5; 6). 288 

There were enhanced carbon fixation rates at elevated CO2 levels at all stations 289 

(Figs. 4; 5), a similar result to that obtained in other experiments using shipboard 290 

incubations, mesocosm experiments and CO2 seeps (Tortell et al., 2008; Engel et al., 291 

2014; Holding et al., 2015; Johnson et al., 2015). The dominant phytoplankton groups 292 

at our offshore stations were Synechococcus, Prochlorococcus and picoeukaryotes 293 

(Zhong et al., 2013; Wu et al., 2014a) whereas diatoms (Pseudonitzschia pungens and 294 

Chaetoceros pseudocurvisetus) and dinoflagelates (Protoperidinium conicum) dominated at 295 

our inshore stations (Zhang et al., 2014). Rising seawater CO2 levels are expected to 296 

increase carbon fixation rates of larger species more than small phytoplankton species 297 

because it is more difficult for large species to take up sufficient inorganic carbon as 298 

they have a smaller cell surface:volume quotient (Wu et al., 2014b). Furthermore, 299 

elevated CO2 levels tend to increase the percentage of diatoms in phytoplanktonic and 300 

sessile algal communities (Tortell et al., 2002; Domingues et al., 2014). In our 301 

experiments, the different responses of offshore and inshore surface phytoplankton 302 

assemblages to increased levels of temperature and pCO2 could be due to differences 303 

in the phytoplankton communities. 304 

Temperature increases of about 2oC significantly increased phytoplankton 305 

assemblage productivity in coastal water at ambient levels of CO2. This can be 306 

expected, since warming is known to increase enzyme activity, and enhance cellular 307 

metabolic activity and so improve nutrient or CO2 uptake (Montagnes and Franklin, 308 
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2001; Beardall and Raven, 2004). However, warming did not lead to any increase in 309 

night time respiration in coastal water, which might indicate less effect of rising 310 

temperature on enzyme activity in our study (Fig. 6), suggesting that increased 311 

productivity may be due to more efficient nutrient or CO2 uptake. Another possible 312 

reason for greater primary productivity in the warming treatments may be a shift from 313 

predominantly large to mainly small sized algal cells during the incubation 314 

(Daufresne et al. 2009; Sommer et al. 2015). Unfortunately, we did not determine the 315 

community structure at the end of experiments. However, both ambient and elevated 316 

temperature treatments in this study are close to the upper thermal limit for growth of 317 

most phytoplankton species (Boyd et al. 2013). In this case, rising temperature is 318 

expected to shift community composition and cause an increase in the abundance of 319 

small-celled phytoplankton. Small species show stronger temperature responses in 320 

terms of their photosynthetic C-fixation compared with large species (Sommer et al., 321 

2015), which may lead to higher productivity in warmer coastal water (Figs. 4, 5). 322 

In the present work, we observed higher night respiratory under HC conditions 323 

(Fig. 6) in coastal waters at ambient temperature, this could be due to enhanced 324 

energy demand against the acidic stress such as maintaining the cell’s homoeostasis 325 

(Jin et al. 2015). However, such a respiratory enhancement was not observed at 326 

elevated temperature. It is possible that such a level of elevated temperature may 327 

increase cellular metabolic activity and periplasmic redox activity that counter-acted 328 

the acidic stress. On the other hand, small-sized species seem insensitive to increased 329 

pCO2 in terms of carbon fixation (Tortell et al. 2002; Domingues et al., 2014; Wu et 330 
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al., 2014b), and they are highly sensitive to high light intensities that cause severe 331 

inhibition of C-fixation (Li et al., 2011). Therefore, these effects might contribute to 332 

the observed similar response in primary productivity of offshore-water where 333 

small-sized species dominated (Zhong et al., 2013), and also contribute to the low 334 

primary productivity of coastal water at warming and acidification treatments with 335 

high percentage of small sized species (Figs 4, 5). Gao et al. (2012) reported that 336 

rising CO2 decreased phytoplankton productivity in surface seawater under 90% 337 

incident solar radiation in the South China Sea, due to enhanced photoinhibition. 338 

Different nutrient concentrations can be responsible for the discrepancy between our 339 

study and Gao et al., (2012), because seawater was enriched by 1 μmol L–1 NaNO3 340 

and 0.5 μmol L–1 NaH2PO4 in this study whereas initial DIN and DIP concentration 341 

were lower than 0.01 μmol L–1 and 0.15 μmol L–1, respectively, in the study of Gao et 342 

al. (2012). Rising CO2 is known to increase primary productivity at high nutrient 343 

concentrations, but the additional inorganic carbon does not boost productivity in 344 

nutrient limited conditions (Yoshimura et al., 2009; Celis-Plá et al., 2015).  345 

The temperature and CO2 concentrations of surface oceans are rising 346 

simultaneously, but the carbonate chemistry of coastal water is complex, due to the 347 

local effects of hydrography, metabolic activity, nutrient input and watershed 348 

processes (Duarte et al. 2013). The effects of CO2 on phytoplankton physiology and 349 

productivity has important biogeochemical implications. Increased productivity at 350 

elevated CO2 level could accelerate carbon sequestration of phytoplankton which may 351 

increase the CO2 uptake of coastal seawater from the atmosphere. Decreased 352 
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chlorophyll concentrations offshore due to warming may limit biological productivity 353 

because phytoplankton are the primary energy source for marine food chains. Our 354 

study shows that phytoplankton assemblages in different regions respond differently 355 

to increases in CO2 and temperature. However, if our shipboard tests reflect natural 356 

responses, then ongoing warming and acidification in the South China Sea is not 357 

expected to increase overall regional primary productivity due to a lack of nutrients in 358 

offshore waters. Other environmental factors such as changes in solar radiation, 359 

wind-speed induced mixing and deposition of dusts may also affect the primary 360 

productivity of phytoplankton communities. Therefore, shipboard incubations during 361 

different seasons or with waters influenced by episodic events might lead to 362 

differential responses to warming and acidification. 363 

  364 

5. Conclusion 365 

    The present study shows combined effects of ocean warming and acidification 366 

on phytoplankton primary productivity, Chl a concentration and night respiration of 367 

two coastal and two offshore waters in the western South China Sea. Warming and 368 

elevated CO2 levels individually increased primary productivity, especially in the 369 

coastal water. However, the combination of elevated temperature and increased CO2 370 

did not increase primary productivity at all stations. Different responses in primary 371 

productivity, Chl a concentration and night respiration to warming and acidification 372 

between the coastal and offshore waters may be due to differences in the 373 

phytoplankton community composition and in their sensitivity to elevated temperature 374 
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or CO2 levels. 375 

 376 

 377 

 378 
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Figure Legend 595 

 596 

Figure 1. Sampling stations in the western South China Sea in the cruise during 597 

autumn 2017. 598 

 599 

Figure 2. Water temperature in the deck incubators for the low and high temperature 600 

treatments during the incubations, and solar radiation.  601 

 602 

Figure 3. Chl a concentration of surface phytoplankton assemblages in situ and in the 603 

bottle after 6 days of incubation at different experiment conditions. Different letters 604 

indicated statistically difference based on Tukey post hoc test. The values represent 605 

the mean ± standard deviation (error bar) for three replicates. 606 

 607 

Figure 4. Daytime primary productivity (DPP) of surface phytoplankton assemblages 608 

in the bottle after 6 days of incubation at different experiment conditions. Different 609 

letters indicated statistically difference based on Tukey post hoc test. The values 610 

represent the mean ± standard deviation (error bar) for three replicates 611 

 612 

Figure 5. Net primary productivity (NPP) of surface phytoplankton assemblages in the 613 

bottle after 6 days of incubation at different experiment conditions. Different letters 614 

indicated statistically difference based on Tukey post hoc test. The values represent 615 

the mean ± standard deviation (error bar) for three replicates 616 



29 
 

 617 

Figure 6. Night time respiration rate of surface phytoplankton assemblages in the 618 

bottle after 6 days of incubation at different experiment conditions. Different letters 619 

indicated statistically difference based on Tukey post hoc test. The values represent 620 

the mean ± standard deviation (error bar) for three replicates 621 
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Table 1. Dissolved inorganic nitrogen (DIN) and phosphate (DIP) concentrations at 714 

the beginning and end of the incubation. 1 μmol L–1 NaNO3 and 0.5 μmol L–1 715 

NaH2PO4 was added into the seawater in the beginning of the incubation. Data in the 716 

bracket were DIN and DIP concentrations in situ. ND indicates that concentration was 717 

below the detection limit (< 0.04 μmol L–1). 718 

  DIN (μmol L–1) DIP (μmol L–1) 

S1 Before culture 1 (0.08) 0.5 (0.17) 

After culture ND 0.05±0.01 

S2 Before culture 1 (0.03) 0.5 (0.21) 

After culture ND 0.04±0.02 

S3 Before culture 1 (0.03) 0.5 (0.14) 

After culture ND 0.05±0.01 

S4 Before culture 1 (0.12) 0.5 (0.16) 

After culture ND 0.05±0.01 
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Table 2. Carbonate chemistry parameters of the seawater in the final day of the 731 

incubations at different temperature and pCO2 conditions. TA and pH samples were 732 

collected and measured. Different letters (a and b) indicated statistically difference 733 

based on Tukey post hoc test. pHnbs means the pH measurements in seawater on the 734 

NBS scale. 735 

 pCO2 

(μatm) 

pHnbs  TA 

(μmol 

L-1) 

DIC 

(μmol L-1) 

3HCO  

(μmol 

L-1) 

2

3CO   

(μmol 

L-1) 

CO2 

(μmol 

L-1) 

Ω 

calcite 

LTLC 419±13a 8.19±0.01a 2342±15a 2050±12a 1818±11a 220±5a 12±0.4a 5.5±0.1a 

LTHC 977±64b 7.88±0.03b 2349±18a 2210±16b 2060±17b 121±7b 28±1.8b 3.0±0.2b 

HTLC 376±14a 8.23±0.01a 2343±16a 2028±8a 1782±7a 235±8a 11±0.4a 5.8±0.2a 

HTHC 891±61b 7.91±0.03b 2348±22a 2194±18b 2038±18b 130±8b 26±1.8b 3.2±0.2b 
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Table S1. Results of two-way ANOVAs of the effects of temperature and pCO2 on Chl 749 

a, day-time primary productivity (DPP), net primary productivity (NPP) and night 750 

time respiration rate. Temp indicates temperature and significant difference was setup 751 

to p < 0.05. 752 

Station Parameter Treatment df F-value p 

S1 Chl a Temp 1 2.80 0.13 

CO2 1 0.30 0.61 

Temp × CO2 1 0.14 0.71 

DPP Temp 1 2.38 0.15 

CO2 1 0.68 0.43 

Temp × CO2 1 31.53 <0.01 

NPP Temp 1 1.65 0.21 

CO2 1 0.14 0.75 

Temp × CO2 1 14.77 <0.01 

Respiration Temp 1 1.36 0.26 

CO2 1 4.43 0.07 

Temp × CO2 1 3.56 0.09 

S2 Chl a Temp 1 2.43 0.15 

CO2 1 2.20 0.18 

Temp × CO2 1 0.38 0.53 

DPP Temp 1 0.006 0.94 

CO2 1 20.74 <0.01 

Temp × CO2 1 7.62 <0.05 

NPP Temp 1 0.37 0.57 

CO2 1 4.03 0.08 

Temp × CO2 1 3.98 0.08 

Respiration Temp 1 0.92 0.37 

CO2 1 4.65 0.06 

Temp × CO2 1 1.16 0.31 

S3 Chl a Temp 1 38.58 <0.01 

CO2 1 0.67 0.41 

Temp × CO2 1 0.32 0.61 

DPP Temp 1 2.43 0.17 

CO2 1 0.02 0.93 

Temp × CO2 1 0.34 0.59 

NPP Temp 1 0.88 0.39 

CO2 1 0.050 0.82 

Temp × CO2 1 1.77 0.21 

Respiration Temp 1 1.52 0.20 

CO2 1 0.14 0.71 
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Temp × CO2 1 1.03 0.34 

S4 Chl a Temp 1 7.53 <0.05 

CO2 1 0.005 0.95 

Temp × CO2 1 7.53 <0.05 

DPP Temp 1 0.39 0.55 

CO2 1 0.0001 0.99 

Temp × CO2 1 5.45 <0.05 

NPP Temp 1 1.64 0.23 

CO2 1 0.46 0.56 

Temp × CO2 1 2.50 0.16 

Respiration Temp 1 17.01 <0.05 

CO2 1 17.97 <0.05 

Temp × CO2 1 28.04 <0.05 
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Figure S1. Phytoplankton assemblages were cultured at low temperature (in situ 774 

temperature, A) and high temperature (in situ + 1.8 oC, B) treatments. 775 
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