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Abstract 
This paper explores long-term trends in human population and vegetation change in the Levant 

from the Early to the Late Holocene in order to assess when and how human impact has shaped the 

region’s landscapes over the millennia. To do so, we employed multiple proxies and compared 

archaeological, pollen and palaeoclimate data within a multi-scalar approach in order to assess how 

Holocene landscape dynamics change at different geographical scales. We based our analysis on 14 

fossil pollen sequences and applied a hierarchical agglomerative clustering and community 

classification in order to define groups of vegetation types (e.g. grassland, wetland, woodland, etc.). 

Human impact on the landscape has been assessed by the analysis of pollen indicator groups. 

Archaeological settlement data and Summed Probability Distribution (SPD) of radiocarbon dates 

have been used to reconstruct long-term demographic trends. In this study, for the first time, the 

evolution of the human population is estimated statistically and compared to environmental proxies 

for assessing the interplay of biotic and abiotic factors in shaping the Holocene landscapes in the 

Levant.  
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1. Introduction 
The Levant represents an excellent case study for investigating the impact of anthropogenic activity 

on landscape transformation and land-use change throughout the Holocene. This area, which saw 

the earliest onset of agriculture and a complex economy, the emergence of urban systems and their 

collapse, the rise and fall of regional kingdoms, and the domination by vast empires over the region, 

is a mosaic of different cultural and environmental landscapes (Gophna and Portugali 1988; 

Finkelstein 1995 and 2013; Greenberg 2002; Rosen 2007; Savage et al. 2007; Finlayson and 

Warren 2010; Asouti et al. 2015; Enzel and Bar-Yosef 2017; Fall et al. 2018). These landscapes are 

linked in certain ways, but ultimately can be shown to have followed varied socio-ecological 

trajectories (Bar-Yosef and Belfer-Cohen 2002; Issar and Zohar 2004; Cordova 2007; Rosen 2007; 

Rambeau 2010; Philip 2011; Langgut et al. 2015; Porter 2016; Kaniewski et al. 2017; Rosen and 



Rosen 2017; Lu et al. 2017; Roberts et al. 2018). Recent studies have shown that population size 

substantially increased at the beginning of the Holocene with the introduction of farming economies 

and ameliorated climatic conditions, while population levels were lower when hunter-gatherers 

were still active in the Levant (cf. Goring-Morris and Belfer-Cohen 2010; Maher et al. 2011; Borrel 

et al. 2015; Roberts et al. 2018). A higher rate of population growth, characterized by patterns of 

booms and busts, occurred with the rise of the earliest urban societies in the Bronze Age and peaked 

in the Late Holocene with the establishment of Iron Age territorial kingdoms and the rule over the 

region by vast empires (e.g. Assyrian, Persian, Babylonian, Roman, etc.; cf. Finkelstein 1996 and 

1998; Bar 2004; Falconer and Savage 2009; Greenberg 2017). The regional archaeological records 

reflect these processes and events, demonstrating sharp settlement fluctuations and episodes of 

destruction. In the Late Holocene, the thriving of population, often nucleated in large urban centres 

demanding agricultural surplus from the surrounding intensively farmed rural hinterland, led to 

heavy anthropogenised landscapes (Neumann et al. 2007; Finkelstein and Langgut 2018).  

 

In this perspective, scholars have developed a research agenda addressing how population growth 

contributed to transforming the environment from nature-dominated to culturally modified by 

making use of pollen-based reconstruction of Holocene vegetation change (see Butlin and Roberts 

1995; Hajar et al. 2010; Kaniewski et al. 2013; Langgut et al. 2013-2016; Roberts et al. 2011 and 

2018). Although human activity could have altered the local landscape via land management 

practices such as agriculture, grazing and burning (Roberts et al. 2011), pollen data suggest that 

Early Holocene regional composition of woodland and landscape openness in the Levant were 

mainly linked to natural drivers (van Zeist and Bottema 1991; Djamali et al. 2010; Litt et al. 2012; 

Cheddadi and Khater 2016). Instead, a strong human impact on vegetation starts being more evident 

from the Chalcolithic and Bronze Age onwards and peaked in the Roman and Byzantine periods 

(see Schwab et al. 2004; Hajar et al. 2010; Langgut et al. 2013 and 2016; Izdebski et al. 2016a; 

Schiebel and Litt 2017). Overall, the Holocene vegetation changes in the Levant are to be 

interpreted as the results of multiple factors interplaying with each other such as climate events, 

ecological dynamics and anthropogenic impacts (cf. Rosen 2007; Kaniewski et al. 2008; Roberts et 

al. 2011). Likewise, episodes of population increase punctuated by periods of stagnation and 

decrease could be related to multiple causes not necessarily mutually exclusive such as climate 

change, migrations, warfare, exceeding carrying capacity of the land, environmental disasters, etc. 

(Leroy 2006; Rosen 2007; Leroy et al. 2010).   

 

With these premises in mind, estimating Holocene landscape dynamics and population fluctuations 

over the longue durée and assessing their relationships is pivotal for how we understand cultural 

and environmental change. Most studies concerning human impact on the landscape during the 

Holocene in the Levant have used a limited corpus of archaeological evidence or have focused on 

assessing human and environmental responses to one or more major rapid climate changes (e.g. the 

so-called 9.4 ka, 8.2 ka, 4.2 ka and 3.2 ka cal. yr. BP events) and within well-defined cultural 

periods. In this work, we will draw upon a large corpus of archaeological data (in the form of 

archaeological settlement data and radiocarbon dates) and pollen records available in the Levant 

and assess how the impact of anthropogenic and natural factors on the landscape varies significantly 

by region and depends, in part, on the longer-run socio-ecological dynamics prevailing in different 

areas from the Early to the Late Holocene (ca. 11,700 – 500 cal. yr. BP).  

 



The advantage of this multi-proxy approach is that the divergences and convergences among the 

patterns defined by each archaeological and environmental proxy will provide powerful insights and 

a wider range of explanations in describing demographic and vegetation change both throughout the 

Holocene time span as a whole and in particular sub-periods. In addition, we will use a multi-scalar 

approach to detect specific patterns on local scales  (North Levant, Transjordan, Cisjordan) and to 

tackle possible misunderstandings derived from analysing data just on a single scale of analysis. 

Furthermore, we compare the pollen and archaeological data with paleoclimate records in order to 

assess the relative impact of climate and human population size on the Holocene vegetation 

composition in the Levant (Izdebski et al. 2016b).  

 

2. Geographical setting and materials 
 

2.1 The study area 
The portion of the Levant examined here covers around 65,000 sq. km, encompassing present-day 

Lebanon, Israel, the West Bank and part of western Jordan and south-western Syria (Fig. 1). This 

region can be subdivided into four geographical units: Lower North Levant, Cisjordan highlands 

(i.e. West Bank) and lowlands, and Transjordan (Fig. 1). The spatial coverage of the present study 

area has been selected (1) according to the regions where a sufficiently high intensity of 

archaeological excavations and surveys have been conducted, and (2) because of the need to 

provide a coherent framework both spatially and chronologically for analysing comparatively 

archaeological data and pollen records. 

 

The area under study shows a varied topography that moving from west to east, includes a 

landscape of coastlands and plains, the mountain ranges of Lebanon and Anti-Lebanon in the north, 

the Cisjordan highlands in the south, and the Syrian and Transjordan deserts to the east of the Syro-

African Rift valley (Suriano 2013, 14-20). The altitudinal gradient ranging from the highest peak of 

the Qurnat as Sawda’ (3,088 m above mean sea level) in Lebanon to the lowest point in the Dead 

Sea Rift (413 m below mean seal level) results in marked differences in terms of climate and 

vegetation composition (Zohari 1962 and 1973; Danin 1988). Average annual rainfall shows a 

latitudinal gradient with values exceeding 1000 mm in the northern mountain chains of Lebanon to 

approximately 100 mm at the shores of the Dead Sea (Ziv et al. 2006; Cheddadi and Khater 2016, 

147-148). As a result, the present study area is sub-divided into three different vegetation zones (cf. 

Danin 1988; Langgut et al 2014, 282-283; Schiebel and Litt 2017, Fig. 2a): 1) a desert (Saharo-

Arabian) territory along the shores of the Dead Sea and in the Arava Valley characterized by 

Chenopodiaceae plants; 2) a semi-desert (Irano-Turanian) zone distributed along the eastern slopes 

of Cisjordan highlands and in the Moab plateau; 3) and a Mediterranean vegetation dominated by 

maquis and evergreen and deciduous oaks over Cisjordan, Lower North Levant and large parts of 

the Transjordanian plateau.  

 

2.2 Archaeological data 

The archaeological datasets (archaeological settlement data and radiocarbon dates) have been 

collected as exhaustively as possible via harmonisation of existing online databases and both 

electronic and print publications to create two georeferenced databases (unprojected LatLon 

coordinate system, WGS84 datum), one for radiocarbon dates (Fig. 1a) and one for archaeological 

sites (Fig. 1b). A total of 2,173 uncalibrated radiocarbon dates have been identified from 230 sites 

and either collected from several existing online databases in some cases (EUROEVOL, RADON, 



EX ORIENTE) or more often added from a wide range of publications (see Supplemental material 

1 for a full list of sources; Fig. 1a). This number exceeds the suggested minimum threshold of 200-

500 to produce reliable Summed Probability Distribution (SPD) of radiocarbon dates with reduced 

statistical fluctuation for a time interval of 10,000 years (cf. Michczyńska and Pazdur 2004; 

Michczyńska et al. 2007; Williams 2012, 580-581). All of these radiocarbon dates come from 

archaeological contexts, with the majority being samples of bone, charcoal and wood. Radiocarbon 

dates obtained from marine samples such as shell have been removed (and are not part of the above 

total) in order to avoid complicating issues arising from unknown or poorly understood marine 

reservoir offsets.  

 

[Insert Figure 1 about here] 

 

To create the database of archaeological sites used below we conducted a comprehensive synthesis, 

and standardisation of Holocene settlement data from two online databases which represent an 

excellent source of more than 47,000 sites across the Levant: 1) The Digital Archaeological Atlas of 

the Holy Land (Savage and Levy 2014)1; 2) The West Bank and East Jerusalem Archaeological 

Database (Greenberg and Keinan 2009)2. Settlement data were recorded as geo-referenced points 

per cultural period. The use of the term ‘period’ here refers to familiar archaeological episodes in 

the region such as Chalcolithic, Early Bronze Age, Iron Age, etc. These cultural units were found to 

be the most common level of aggregation and standardization, but were typically expressed without 

any absolute calendric dates. By recording both the stated cultural period and approximate 

estimated start and end dates in calendrical years, we have sought to provide maximum comparative 

potential across archaeological sites from different regions, standardizing period-based terminology 

where necessary (see Table 1 for the chronological scheme adopted). One major caveat is that the 

estimated site extent per cultural period was not recorded for all the sites stored in the two online 

databases. As a consequence, in this work we use site counts as a proxy for population. A total of 

20,688 sites and 66,183 occupation phases have been collected using the above approach (with 

these numbers showing that most sites experienced multiple periods of occupation; see Fig. 1b). 

[Insert Table 1 about here] 

 

2.3 Pollen data 
The fossil pollen dataset includes 14 sequences from 13 sites (Fig. 1 and Table 2), and the modern 

pollen dataset includes 35 surface pollen samples from locations across the Southern Levant. The 

pollen data primarily derive from collaborators (Table 2), and the European modern (Davis et al., 

2013) and fossil pollen databases (Leydet et al., 2007-2017). These records formed part of a 

Mediterranean-wide analysis of vegetation change based on cluster analysis and community 

classification (see Woodbridge et al., 2018, and Fyfe et al., 2018 for further details). Only pollen 

sequences with reliable chronologies were selected for analysis (see Giesecke et al., 2014). Hence, 

new chronologies were made for collaborators’ datasets and confirmed with the original authors. 

This allows us a more reliable control on the reconstruction of vegetation change than has been 

possible in previous studies.  
 

 

                                                            
1 The Digital Archaeological Atlas of the Holy Land (DAAHL) was a project conducted by S. H. Savage and T. E. Levy 

and contains more than 47,000 sites from Cyprus, Israel, Jordan, Lebanon, the Sinai Peninsula, and the West Bank: 

https://daahl.ucsd.edu/DAAHL/Home.php.   
2 The West Bank and East Jerusalem Database was created by R. Greenberg and A. Keinan and includes approximately 

6,000 surveyed sites and 1,000 excavated sites: http://digitallibrary.usc.edu/cdm/landingpage/collection/p15799coll74.   

https://daahl.ucsd.edu/DAAHL/Home.php
http://digitallibrary.usc.edu/cdm/landingpage/collection/p15799coll74


2.4 Palaeoclimate data 

The palaeoclimate data derive from analyses of caves speleothem archives at Soreq and Jeita (Fig. 

1) and provide past precipitation proxies inferred from stable isotopes δ18O (Bar-Matthews et al. 

1999 and 2003; Cheng et al. 2015). The isotope values of these two datasets have been normalised 

around their Holocene’s mean and standard deviation to produce a z-score (Fig. 6), which has been 

transformed in order to have higher positive values indicating wetter climatic conditions and lower 

negative values for dry climate.   

 

[Insert Table 2 about here] 

 

3. Methods 

3.1 Demographic trends from archaeological data 

Population estimates build on the assumption that an observable density of archaeological evidence 

over time and across a study region is proportional to population (see Drennan 2015 et al. for a 

good overview). In this work, we use two types of archaeological data as proxies for estimating 

population fluctuations over the long run: 1) SPDs of radiocarbon dates; 2) settlement data 

including site counts.  

 

We reduced the potential “wealth-bias” of oversampling specific site-phases by aggregating 

uncalibrated radiocarbon dates from the same site that are within 100 years of each other and 

dividing by the number of dates that fall in this bin (Timpson et al. 2014). Dates having a gap of at 

least 100 years from the previous one are assigned to a new bin. In this step, our 2,173 radiocarbon 

dates have been grouped into 837 bins. The probabilities from each calibrated date are combined to 

produce a summed probability distribution (SPD). Following previous works (Williams 2012; 

Weninger et al. 2009 and 2015) demonstrating that normalized calibrated dates emphasize narrow 

artificial peaks in SPDs due to steepening portions of the radiocarbon calibration curve, we opted to 

use unnormalised dates prior to summation and calibrated via IntCal13 curve (Reimer et al. 2013; 

see former applications in Palmisano et al. 2017; Bevan et al. 2017; Roberts et al. 2018). 

Consequently, a logistic null model representing expected population growth and plateau has been 

fitted to the observed SPD in order to produce a 95% confidence envelope (composed of 1,000 

random SPDs) and to statistically test if the observed pattern significantly departs from this model 

(for a detailed explanation of the method, see Timpson et al. 2014, 555-556; Bevan et al. 2017; 

Crema and Bevan 2018). Deviations above and below the 95% confidence limits of the envelope 

respectively indicate periods of population growth and decline greater than expected according to a 

logistic model of population growth. This theoretical null model of population change builds on the 

assumption that a population's per capita growth rate decreases to zero as population size 

approaches a maximum imposed by limited resources in the environment as there might be an upper 

bound to pre-Iron Age population growth. However, It is important to bear in mind that a logistic 

model cannot be considered strictly as a realistic model for population growth, but rather as an 

elementary model useful for quantitatively testing population fluctuations (cf. Turchin 2001). In this 

case, we preferred a logistic model to other possible null-models (e.g. uniform, exponential) given 

the observed shape of SPD of radiocarbon dates in our study area (see Fig. 2a). 

 

We calculated the sites count for 200-year time slices starting with periodt1 (12000 -11800 cal. yr. 

BP) and ending with periodt57 (800-600 cal. yr. BP). Bearing in mind that archaeological cultures 



result in larger or shorter time spans according to the dating precision of archaeological artefacts, 

we applied a probabilistic approach known as aoristic analysis to deal with the temporal uncertainty 

of occupation periods (for a more detailed explanation of the methodology see Crema et al. 2010, 

1118-1121; Crema 2012, 446-448; Palmisano et al. 2017, 63-65). In addition, to mitigate the 

discrepancy between wide chronological uncertainties and narrower likely site durations, we 

applied Monte Carlo methods to generate randomised start of occupation periods for sites with low-

resolution information (cf. Crema 2012, 450-451; Kolář et al. 2016, 518-519; Orton et al. 2017, 5-6; 

Palmisano et al. 2017, 63-64). The resulting probabilistic distributions of site frequencies through 

time, based on the aoristic sums and Monte Carlo simulations, provide useful comparisons with the 

raw site frequency data. 

 

3.2 Pollen inferred land cover vegetation 

Pollen count data have been summed into 200-year time windows through the Holocene and 

vegetation cluster group change is presented as the percentage of samples assigned to each 

vegetation type. Descriptions of the methodological approaches developed and applied to the pollen 

datasets are provided in Woodbridge et al. (2018) and Fyfe et al. (2018). 

Simpson’s diversity index has also been applied to the data to explore major changes and shifts in 

diversity patterns over time. Simpson’s index has been calculated for each pollen sample using 

pollen percentage data. This index takes both species richness and evenness into account and is 

often used to explore diversity change in pollen datasets (e.g. Morris et al. 2014; Woodbridge et al., 

2018). Values for a number of pollen indicator groups have been calculated. This includes: Arboreal 

Pollen (AP%), an Anthropogenic Pollen Index (API: Artemisia, Centaurea, Cichorioideae, 

Plantago, cereals, Urtica and Trifolium type; Mercuri et al., 2013a), an indicator group for 

cultivated trees (OJC: Olea, Juglans, Castanea; Mercuri et al., 2013b) with the addition of Vitis 

(OJCV), and a group of pastoral land use indicators (Artemisia, Chenopodiaceae, Plantago 

lanceolata and Plantago major/media, Asteroideae, Cichorioideae, Cirsium-type, Galium-type, 

Ranunculaceae and Potentilla-type; adapted from Mazier et al., 2006 and 2009). An additional 

pollen indicator group including ruderal weeds (Polygonaceae, Urticaceae, Plantago lanceolata) 

and grazing-resistant plants such as Cirsium, Carduus and different species of Centaurea (C. nigra, 

C. solsticialis and 

C. cyanus) has been calculated (adapted from Langgut et al. 2014). Because this latter group 

encompasses together secondary anthropogenic (ruderal weeds) and grazing indicators, an increase 

of these taxa reflect more generally a more intense human impact on the vegetation such as 

woodland clearance, increase of pasture lands, building activity (e.g. settlements, mining, roads, 

etc.) and agriculture (e.g. terracing, abandoned fields, irrigation, etc.).  

It is important to point out that the regional pastoral indicators group was developed using the same 

grouping of taxa used in France, so is less informative about landscape change in the Levant, but 

has been included to allow comparisons between different case study regions within a 

Mediterranean-wide synthesis (Roberts et al., in press). 

Amalgamated results are shown for the entire region and the Arboreal Pollen (%), OJCV index, API 

and regional pastoral indicators are also presented for individual sites. The Arboreal Pollen (%) 

does not include the cultivated trees. Indicator groups are useful to assess the anthropogenic impact 

on landscape tranformation across time. Although the indicator groups are based on literature that 

describe the taxa as ‘anthropogenic indicators’, some of these taxa are also indicators of natural 

vegetation types, for example, Chenopodiaceae Asteroideae, Cichorioideae indicate natural steppe 

vegetation.  



4. Results 

4.1 Demographic trends 

Figure 2a shows the SPD of 2,173 unnormalised calibrated radiocarbon dates from 12000 to 2500 

cal. yr. BP compared with a 95% confidence envelop for a logistic null model. Deviations above (in 

red) and below (in blue) the null model represent respectively patterns of population growth and 

decline beyond than expected under a long-term logistic demographic trend. The observed SPD 

(black solid line) shows a significant overall departure from the envelope of the logistic model 

(global p-value= 0.001).  

From the end of the Younger Dryas at ~11700 cal. yr. BP, corresponding to the onset of the 

Holocene, a steady increase of population occurs until 9500 cal. yr. BP. Then, population starts 

decreasing during the PPNB and falls below the null model in the PNA (8400 – 7600 cal. yr. BP). 

The population rises in the late PNB and in the Chalcolithic, and it reaches a peak above that 

expected between 6100 and 5800 cal. yr. BP. The Bronze Age is characterized by peaks of 

population in the EBA (5300 – 4600 cal. yr. BP) and MBA (this one is not statistically significant) 

punctuated by significant population decrease in the IBA (4200 – 4000 cal. yr. BP) and in the LBA 

(3400 – 3200 cal. yr. BP). A further dramatic increase of population occurs at the start of the Iron 

Age (~3100 – 2800 cal. yr. BP). After this period, the radiocarbon population proxy gradually 

decreases until the end of the Iron Age. In addition, it is important to point out that the later periods 

(after 2500 cal. yr. BP) have been excluded in the present analysis because the SPD of radiocarbon 

dates massively underestimates a widely-agreed and widely-evidenced boom in population during 

the Roman and Byzantine periods (Broshi 1979; Bar 2004; Geva 2014). This is due to the reliance 

by most Roman and Byzantine archaeologists on typo-chronological schemes defined by short-lived 

pottery types and coins for dating rather than using radiocarbon samples. Furthermore, a caveat in 

the patterns described by the SPD of radiocarbon dates is represented by the fact that certain 

chronological periods are more likely to be sampled than others. For instance, the significant growth 

of population during the EBA and the IA could reflect research biases related to the interest of 

many archaeologists in providing a better chronology for the EBA sub-periods and the LBA/IA 

transition (cf. Mazar and Bronk Ramsey 2008 and 2010; Finkelstein and Piasetzky 2010 and 2011; 

Braun 2012; Regev et al. 2012).    

Figure 2b shows the frequency per 200-year time-block of 66,183 site occupation phases from 

20,688 sites. Three different versions have been derived from archaeological settlement data to infer 

population dynamics over the long run: raw site counts, aoristic sum and randomised start date of 

site-phase. The results show for all three proxies an increase of population from the onset of the 

early Holocene (at least more pronounced for the site counts) and a decrease during the PNA (~ 

8500 – 7500 cal. yr. BP). Then, population starts growing again during the Chalcolithic and is 

characterized by patterns of boom and bust during the Bronze Age (see Figure 2c). The results show 

a substantial growth of population in the Iron Age (~3100 – 2700 cal. yr. BP), in the Roman-

Byzantine period (~ 2000 – 1300 cal. yr. BP), and in the Middle Islamic (900 – 600 cal. yr. BP). 

These episodes are punctuated by a population decline in the Babylonian-Persian period (~ 2500 – 

2300 cal. yr. BP) and in the Early Islamic (1300 – 900 cal. yr. BP). 

 

[Insert Figure 2 about here] 

 

Figure 3 shows the regionally subdivided SPD of unnormalised radiocarbon dates compared against 

the pan-regional trend (grey envelope) described above. In this case, we assess to which degree the 

demographic patterns of each sub-region depart from the pan-regional trend via a permutation test 



(see Crema et al. 2016 for a detailed description of the methodology). Such a technique also deal 

with the issues represented by the size of the samples, as the resulting grey envelopes of the pan-

regional trend are larger in those sub-regions with less radiocarbon dates (see Fig. 3). Therefore, the 

grey envelopes are larger because more uncertainty. It is important to emphasise that this approach 

allow us to compare relative change through time of the SPDs (and so the proportional change of 

population) within each sub-region and not their differences as absolute magnitudes in terms of 

population. Cisjordan lowlands (Fig. 3b) and highlands (Fig. 3c) show significant departures from 

the pan-regional trend (p-value < 0.05), while the Lower North Levant (Fig. 3a) and Transjordan 

(Fig. 3d) do not depart significantly from the overall shape of the pan-regional trend (p-value > 

0.25). Although the latter ones have global demographic trends similar with the pan-regional one, 

they still show some local deviations. In fact, in the Lower North Levant (Fig. 3a) the population 

density is significantly above the pan-regional pattern in the PPNB (9700 – 9500 cal. yr. BP), in the 

PNA (7700 – 7500 cal. yr. BP) and in the EBA (4800 – 4500 cal. yr. BP). Transjordan (Fig. 3d) 

shows short-local deviations above the general trends through the PNA and a significant negative 

deviation in the IA (~3200 – 2800 cal. yr. BP). In the Cisjordan lowlands (Fig. 3b) the population 

trend is flat and lies below the pan-regional confidence envelope in the PPNA (11400 – 11100 cal. 

yr. BP) and significantly exceeds the global pattern in the IA (~3200 – 3100 cal. yr. BP). The 

Cisjordan highlands (Fig. 3c) are characterized by a local positive demographic departure in the 

PPNA (12000 – 10800 cal. yr. BP) and a significant decrease below the pan-regional trend in the 

PNA (~7900 – 7400 cal. yr. BP).  

 

[Insert Figure 3 about here] 

 

Fig. 4 shows settlement dynamics in the four sub-regions. In all regions, population as inferred by 

this particular proxy seems to increase since the beginning of the Holocene and then is stable until 

the PNA (~8500 – 7500 cal. yr. BP), at which time it decreases in Cisjordan and (Fig. 4b-c) 

Transjordan (Fig. 4d). Then, population starts increasing rapidly in the Chalcolithic and Bronze 

Age, and peaks during the Iron Age and Roman-Byzantine periods. Episodes of marked population 

decline occur in all four regions during the Late Bronze Age (~3300 – 3100 cal. yr. BP) and in the 

Early Islamic (~1200 – 800 cal. yr. BP).  

Unlike the radiocarbon dates, the three proxies derived from archaeological settlement data (raw 

count, aoristic sum, and randomized start date) provide a better coverage both chronologically and 

spatially in the area under investigation, as they are the results of intensive and extensive 

archaeological surveys carried out across the Levant. A pairwise Spearman's correlations between 

all demographic proxies show that they are strongly correlated and describe similar patterns (Table 

3). In particular, the demographic trends defined by SPD of radiocarbon dates are strongly 

correlated with the ones derived from the archaeological settlement data (r > 0.68) during the period 

from 12000 to 2600 cal. yr. BP.  

 

[Insert Figure 4 about here] 

 

4.2 Land cover vegetation change 

The 14 pollen records from 13 sites have been used to infer Holocene vegetation change in the 

study area as a whole. Unfortunately, the patchiness of data in terms of spatial and chronological 

coverage of the records does not allow us to subdivide vegetation cluster group trends into two or 

more sub-regions, as patterns are highly influenced by a small number of sites. The pollen samples 



have been divided into 16 pollen-inferred vegetation clusters via hierarchical clustering according to 

the classification of Mediterranean pollen assemblages described by Fyfe et al. (2018) and 

Woodbridge et al. (2018). In the Levant, not all the 16 vegetation clusters are represented (see Fig. 

5). The main groups are 1.1 (sclerophyllous parkland), 1.3 (steppe parkland), and 1.4 

(parkland/grassland). Moderately prominent are the groups 1.2 (evergreen shrubland: Oleaceae) and 

2.0 (evergreen shurbland: Quercus). Cluster 1, which is the aggregation of four groups, is the 

dominant vegetation feature across the whole Holocene. This cluster represents open and human-

modified vegetation and includes several constant taxa such as Poaceae, Chenopodiaceae, 

Artemisia, Quercus, and Asteraceae. Evergreen shrubland (Oleaceae, group 1.2) starts appearing at 

7000 cal. yr. BP and reaches its peak (~ 30%) at around 6500 cal. yr. BP. Since then, it gradually 

decreases and disappears between 4500 cal. yr. BP and 2400 cal. yr. BP. It starts increasing again at 

~2000 cal. yr. BP and constantly represents the 20-25 % of the pollen assemblage until the 1000 cal. 

yr. BP before declining again. Evergreen shrubland (Quercus) is recorded between 10500 and 9800 

cal. yr. BP and then from 6400 cal. yr. BP onwards until the present. Deciduous oak parklands and 

woodlands (cluster 6.1 and 6.2) are recorded only between 11000 and 9200 cal. yr. BP.  

 

[Insert Figure 5 about here] 

 

Arboreal Pollen (AP%) fluctuated between 15 and 45% throughout the Holocene with a gradual 

decline from 10000 to 6600 cal. yr. BP (Fig. 6). After this, the arboreal pollen percent starts 

increasing steadily until 4000 cal. yr. BP and it gradually decreases until 1500 cal. yr. BP. 

Following this time, it grows steadily (Fig. 6). A marked increase of cultivated trees (Olea, Juglans, 

Castanea and Vitis) occurs between 6500 and 1000 cal. yr. BP as indicated by the OJCV index (Fig. 

6). This general trend is punctuated by a decline of cultivated trees between 4000 and 1500 cal. yr. 

BP, and from 1000 cal. yr. BP onwards. It is important to point out that the dominant taxa in the 

OJCV index in this region is represented by Olea. The API indicates an increase of anthropogenic 

activity from 9000 to 6500 cal. yr. BP, and a gradual decrease after this time. The inferred 

anthropogenic activity starts increasing again from 4000 cal. yr. BP onwards. Similar trends 

throughout the Holocene occur also for the regional pastoral indicators. The ruderal and gazing 

resistant plants suggests an increase of human pressure on the natural environment between 11000 

and 9500 BP, followed by a sharp decline until 6500 BP. After this, the ruderal weeds and grazing 

resistant plants increase again until 4500 BP, and then starts decrease gradually until the modern era 

(Fig. 6). However, it is important to point out that the regional pattern provided by this latter 

indicator is mostly skewed by the pollen assemblage from Al Jourd (see Fig.9), which is 

characterised by a substantial peak during the 5500-4500 BP reflecting a stronger human activity 

such as oak and cedar deforestation (Hajar et al. 2010). Simpson’s index suggests that landscape 

diversity increased since the Early Holocene and increased further from 2500 cal. yr. BP onwards.  

 

[Insert Figure 6 about here] 

 

4.3 Comparing landscape dynamics vs. population proxies 

The demographic proxies (SPD of radiocarbon dates, aoristic sum, and raw count) and the z-score 

of the palaeoclimate records are binned into 200-year time slices to match the time windows used in 

the analysis of pollen sequences. The use of a 200-year time window for all the proxies is justified 

by the fact that this is the finest chronological resolution provided by the pollen data. We also 

calculated the median of the envelope of the randomised start date of sites, which is the result of 



1,000 randomised runs, and binned this into 200-year time slices. This step provides a measurement 

comparable with the other demographic and environmental proxies. A Spearman’s Rank correlation 

matrix between pollen indicators, archaeological demographic proxies and palaeoclimate records 

for the period from 11000 to 600 cal. yr. BP is given in Table 3. Pairwise Spearman’s correlations 

between SPD of radiocarbon dates and all other proxies have been calculated in a shorter time span 

between 11000 and 2600 cal. yr. BP, because after this time the radiocarbon dates are not a good 

proxy for inferring demographic trends as discussed above. Spearman’s correlations between all 

demographic proxies indicate strong positive correlation (p-value < 0.001) and suggest that the 

archaeological data depict similar population dynamics over the long run. The palaeoclimate 

records are negatively correlated with all demographic proxies and pollen indicators such as AP 

percent and OJCV index. Instead, the API and the regional pastoral indicators show a positive 

relationship with climate proxies. The clearest significant correlations (p-value < 0.001) are 

between the demographic proxies and OJCV index, which implies that cultivated trees were more 

abundant when there was a higher population. Regional pastoral indicators are negatively correlated 

with population, while the AP percentage is positively related with demographic proxies. The 

Simpson Index does not show any correlation with the demographic proxies. The positive 

correlation between all demographic proxies and AP percent suggests that demographic growth is 

not associated with a decline of trees as would be expected in the case of negative correlation. 

Positive correlations between ruderal weeds + grazing resistant plants and demographic proxies 

indicate that disturbed lands are a result of human activity. The palaeoclimate records from Soreq 

and Jeita caves are positively correlated (p-value < 0.001) throughout the Holocene (Table 3). Their 

averaged z-scores indicate wetter conditions in the Early and Mid-Holocene (until ~ 7000 cal. yr. 

BP), which is followed by a drier climate until ~ 1000 cal. yr. BP.  

 

[Insert Table 3 about here] 

 

However, the results described here only provide us with an overall picture of long-term trends, by 

treating the Holocene as a whole. Instead, in order to have a better understanding of the human 

impact on the landscape, we have adopted a moving window approach. The advantage of this 

approach is to to identify periods of correspondence and divergence between human population 

size, vegetation change and palaeoclimate records over shorter time periods from the Early to the 

Late Holocene (11000 – 600 cal. yr. BP). Thus, a 2000 year-time moving window Spearman’s 

correlation has been used, with ten 200-year bins in each time window (see Supplemental Material 

2: Tables S1-S10). In addition, cross correlation analysis has been performed in order to assess if 

one time series “causes” changes in another and if they occur with a defined time-lag between each 

other. Here, the time lag unit is 200 years. Cross-correlation values have been indicated in 

Supplemental Material 2 (Tables S1-S10) only for those 2000-year time windows showing 

significant Spearman’s correlations.  

 

The results in Supplemental Material 2 (Table S1) show that population is positively correlated with 

AP percentage (trees and shrubs) during the Mid-Holocene. Most of the correlations have a lag 

equal to 0 indicating contemporaneity between demographic trends and vegetation change. This is 

also due to the fact that our 200-year resolution is quite coarse to assess time lags between 

demographic proxies and pollen indicators. The results in Supplemental Material 2 (Table S2) show 

a strong positive correlation between demographic trends and OJCV pollen during the Mid-

Holocene, encompassing those periods when population starts increasing from 7000 cal. yr. BP 



onwards. Also in this case almost all correlations have a lag equal to 0. Other strong positive 

correlations occur in the Late Holocene (from 3800 cal. yr. BP onwards). Negative correlation 

occurs between demographic proxies and API and regional pastoral indicators (Supplemental 

Material 2: Tables S3 and S4) in the Mid-Holocene, while they are positively correlated in the Late 

Holocene. In this case, some cross correlations have negative lags (-1), indicating that the increase 

of population anticipates by 200 years the increase of those taxa related to the anthropogenic 

activity and pastoral land use. Secondary anthropogenic indicators (ruderal weeds + grazing 

resistant plants) show positive correlation with demographic proxies during the Middle Holocene 

(~8600-4400 BP; Supplemental Material 2: Table S5). Not particularly strong correlations occur 

between population and Simpson’s diversity Index (Supplemental Material 2: Table S6). The pollen 

indicators AP percentage and OJCV are negatively correlated with the palaeoclimate records in the 

Mid-Holocene, indicating that these pollen taxa groups decreased despite wetter climatic conditions 

and increased when climate was drier (Supplemental Material 2: Tables S7 and S8). The API index 

shows a strong positive correlation during the Mid-Holocene (~ 7800 – 4600 cal. yr. BP) and a 

negative correlation during the Late Holocene (~ 4000 – 1600 cal. yr. BP) with palaeoclimate 

records from Jeita cave (Supplemental Material 2: Table S8). This indicates that anthropogenic 

pollen indicators decreased with drier climatic conditions during the Mid-Holocene and increased 

despite unfavourable hydroclimatic trends occurring between 4000 and 1600 cal. yr. BP.  The 

regional pastoral indicators are positively correlated with the palaeoclimate proxy from Jeita cave 

during the Early and Mid-Holocene (Supplemental Material 2: Table S8). The ruderal weeds + 

grazing resistant plants show no significant correlations with the paleoclimate records from Soreq’s 

cave and are negatively correlated in the Early and Mid-Holocene with the climate trends inferred 

from Jeita’s cave speleothem records.  

 

The archaeological proxies from Southern Levant show negative correlation with the palaeoclimate 

records from Soreq cave (Supplemental Material 2: Table S9), except for those windows 

encompassing Early Holocene (between 11000 and 9000 cal. yr. BP) and Late Holocene (4200 – 

2200 cal. yr. BP). In this latter case, we have a correlation with a positive time lag (+1) indicating 

that a decline of population is delayed by 200 years and represents a worsening of hydroclimate 

conditions. A pattern similar to the one described above occurs between demographic proxies from 

Lower North Levant and the palaeoclimate records from Jeita cave (Supplemental Material 2: Table 

S10). 

However, it is important to bear in mind that in this study we provide some general trends on a 

broad chronological scale of analysis. The interplay of human and environmental dynamics is 

difficult to disentangle with a 200-year resolution and micro-regional socio-ecological trajectories 

are not discernible at the spatial scale of analysis adopted in the present paper.  

 

5. Discussion: Socio-Environmental trajectories from the Early to the Late 

Holocene 

 

5.1 The Pre-Pottery Neolithic and Pottery Neolithic (ca. 11750 – 6450 cal. yr. BP / 9800 – 

4500 BCE) 

The Pre-Pottery Neolithic A (PPNA) is the period when people started living in sedentary 

communities and practicing farming activities, although it is still debated as to whether 

domestication of crops and animals occurred at this time (Colledge 1998; Colledge et al. 2004). 

However, the transition from a hunter-gatherer economy to sedentary agriculture occurred gradually 



and unevenly in time and space (Horwitz et al. 2000; Vrydaghs and Denham 2007; Finlayson 

2013). In the later Pre-Pottery Neolithic B (PPNB), a full development of the Neolithic lifestyle 

took place with an extensive use of crops and livestock management (Asouti and Fuller 2012), 

which culminated with large nucleated settlements such as Jericho and Yiftahel in Cisjordan, ‘Ain 

Ghazal and ‘Ain Jammam in Transjordan, and Tell Ramad in Syria (Bienert 2004; Goring Morris 

and Belfer-Cohen 2013). The wetter climatic conditions in the Early Holocene could have triggered 

high-risk but high-yield subsistence strategies, which coincide with the first increase in population 

from ~ 11700 until 9500 cal. yr. BP (Roberts et al. 2018; see Fig. 2a, Supplemental Material 2: 

Tables S9-10). Given the stable warm and wet climatic conditions, the decrease in population in the 

late PPNB from 9500 cal. yr. BP onwards is perhaps endogenous and related to the depletion and 

overexploitation of resources and the exceeded carrying capacity of the landscape (Goring-Morris 

and Belfer-Cohen 2010; Finlayson 2013, 130). Alternatively, the pronounced sub-centennial rainfall 

fluctuations between moist and dry conditions (not visible here in the 200-year averaged z-scores of 

the climate records from Jeita and Soreq’s caves) and a general decrease of the Dead Sea level 

suggest less favourable climate trends between ~9500 to 7000 cal. yr. BP, which could have 

affected the fragile socio-economic systems of the Levantine community (Bar-Yosef 2002; Stein et 

al. 2010). A decrease in population occurred in Northern Levant and Cisjordan (Fig. 3a-c), while 

the Transjordan communities did not experience a break in the occupation (cf. Rollefson 2001, 86; 

Betts 2013, 178; see Fig. 3d).  

 

The Early Holocene landscape shows the predominance of steppe and parkland/grassland 

vegetation, (clusters 1.1, 1.3-4) which could be the result of both anthropogenic activity and climate 

conditions. An increase of AP percentage is evident from the onset of the Holocene and is likely 

related to the increase in winter temperature and rainfall after the Younger Dryas (cf. Litt et al. 

2012; Cheddadi and Khater 2016; Roberts et al. 2018). The percentage of arboreal pollen starts 

decreasing gradually from 9500 to 6500 cal. yr. BP and seems not to be related to large-scale 

woodland clearance as the population decreases as well (Fig. 6). The pattern is also visible at a site-

scale in the Southern Levant (Ein Gedi, Dead Sea, Sea of Galilee, Huleh) and in Northern Levant 

(Ammiq, Al Jourd; Fig. 7). Therefore, the drop of the AP assemblage could be linked to a period of 

increased aridity (cf. Litt et al. 2012). The shift from wetter climatic conditions that occurred for 

most of the PPNB to more arid conditions, exacerbated by the 8.2 ka event, could have stressed the 

Levantine social and economic system and negatively impacted upon the population, which seems 

to decrease significantly in the PNA (between ~8500 and 7500 cal. yr. BP) and stagnates for most 

of the PNB (see Fig. 2a-b and Fig. 3; cf. Bar-Yosef 2002; Kujit and Goring-Morris 2002; Flohr et 

al. 2016). Overall, the archaeological evidence suggests low population densities in southern and 

Lower North Levant during the Neolithic and the decrease of the AP assemblage seem difficult to 

relate to extensive farming and widespread land management (Rosen 2007, 99). 

 

[Insert Figure 7 about here] 

 

5.2 Chalcolithic and Bronze Age (ca. 6450 – 3100 cal. yr. BP / 4500 – 1150 BCE) 

Between the mid-seventh and the early sixth millennium cal. yr. BP a series of cultural changes and 

successful adaptations culminated in more complex societies throughout the Levant, which was 

characterised by a substantial increase of population and expansion of villages that in some cases 

reached an extent of ten hectares (Levy 1998; Rowan 2013; see Figs. 2-4). An overall increase in 

the number of settlements occur in all the four sub-regions (Fig. 3 and 4), and while most of the 



sites are small in size, larger villages are known in the Lower Galilee (e.g. Beit Netofa, Horvat Usa, 

Tell Qiri), in the Cisjordan lowlands (e.g. Nazur, Meser) and in Northern Negev (e.g. Shiqmim, 

Abu Matar, Horvat Beter; cf. Levy et al. 2006; Rowan 2013). In this period, farming strategies 

became more intensive, with greater evidence for the production and consumption of cereals and 

newly domesticated olives (Galili et al. 1989 and 1997; Besnard et al. 2013), and of mixed 

livestock (but a prevalence of sheep and goat) that also became sources of secondary products such 

as milk and fibers (Levy 1992; Zohary et al. 2012). After 5800 cal. yr. BP population suffered a 

general decline and increased again during the EBA I, when the first proto-urban centres 

(measuring 10-30 ha) became common (Fig. 2 and 3). The Bronze Age is characterized by patterns 

of booms and busts where pronounced periods of population growth during the EBA I-III (~5300 – 

4500 cal. yr. BP) and the MBA (~4000 – 3600 cal. yr. BP) were punctuated by a marked decline in 

population at the end of the IBA (~4200 – 4000 cal. yr. BP) and in the LBA (~3400 – 3200 cal. yr. 

BP) throughout the Levant (see Figs. 2-4; cf. Finkelstein 1993, 1994 and 1996; Finkelstein and 

Gophna 1993; Ofer 1994; Falconer and Savage 2009; Greenberg 2017). While the role of the 4.2 ka 

event in explaining population decrease is debated (cf. Weiss et al. 1993; Staubwasser and Weiss 

2006; Rosen 2007; Kaniewski et al. 2008; Roberts et al. 2011; Finkelstein and Langgut 2014; 

Clarke et al. 2016), there is a broader consensus among scholars in recognizing the 3.2 ka event as 

having contributed to societal collapse (cf. Litt et al. 2012; Langgut et al. 2013; Kaniewski et al. 

2008, 2010 and 2015; Izdebski et al., 2016a). The impact of the 4.2 ka BP event is not easy to 

assess with the synthesised demographic proxies at 200-yr. resolution. The SPD of radiocarbon 

dates shows a significant decrease of population between 4200 cal. yr. BP and 4000 cal. yr. BP (Fig. 

2a and 3), while the demographic trends described by the settlement data do not show a sharp 

decline in population that, instead, seem to stagnate across the IBA in the Southern Levant (Fig. 4b-

d). This scenario could be the result of several factors such as the reduction of rainfall that would 

have hampered the creation of agricultural surplus, the lack of available marginal agro-pastoral 

areas given the successful expansion of walled settlements during the EBA II-III (~5000 – 4450 

BP) and the exceeded carrying capacity of the land (Wilkinson et al. 2014, 90-92). It seems that a 

pronounced decline in population occurred in the Lower North Levant (Fig. 3a), where the 

demographic proxies are positively correlated with the drier climatic conditions depicted by the 

isotopic records from Jeita cave (Supplemental Material 2: Table S10).  

The trend depicted by regional pastoral indicators seem to not corroborate the traditional view of 

the IBA as a period characterized by the spread of pastoral subsistence strategies (Horwitz 1989; 

Miroschedji 2009; Fig. 6). In fact, except the pollen record from Ein Gedi and Ammiq, the patterns 

showed by the other pollen sites do not show an increase of pastoral indicators (Fig. 8). Instead, the 

OJCV index from the Sea of Galilee, Birkat Ram and Ein Gedi (between 4200 – 4000 cal. yr. BP) 

indicate well-maintained orchards (Langgut et al. 2015; Fig. 7). All archaeological proxies show a 

substantial decrease in population in the LBA II-III (~3400 – 3200 cal. yr. BP; Figs 2 and 3). From 

the Chalcolithic onwards we observe a human-modified landscape as highlighted by a sharp 

increase of cultivated trees (OJCV: Olea, Juglans, Castanea, Vitis), which peaks in the EBA I at 

around 5500 cal. yr. BP (Fig. 6). A decrease of OJCV pollen values during the EBA II-III could be 

related to socio-economic causes rather than to climatic conditions as witnessed by the reduced 

demand of oil products from Egypt that established new trade relations with the communities in the 

North Levant (cf. Kaniewski et al. 2012; Langgut et al. 2014 and 2016). At a site-level scale this 

general trend is confirmed by all sites except Hula, which shows an increase of cultivated trees in 

the EBA II-III (~5000 – 4500 cal. yr. BP; Fig. 7). However, the OJCV pollen index is strongly 

related to the human activity and tends to vary according to the demographic dynamics (Table 3 and 



Table S2). The proportion of arboreal pollen increased during the Chalcolithic and was steady 

across the whole Bronze Age indicating no particular evidence of human or climate impact (Fig. 6; 

Tables 3 and Supplemental Material 2: Table S1). The same pattern occurs at a site-level scale 

except for Ammiq and Al Jourd that reflect a stronger human activity such as oak and cedar 

deforestation (Fig. 7; Hajar et al. 2010). In this case, the secondary anthropogenic indicators 

(ruderal weeds + resistant grazing plants) from Al Jourd indicate an increase open fields and 

disturbed lands during the Chalcolithic and Bronze Age (~6500 – 3500 cal. yr. BP; Fig. 9). The API 

and the pastoral pollen indicators decrease during the Chalcolithic and the Bronze Age and are 

negatively correlated with demographic trends (Supplemental Material 2: Tables S3-S4) indicating 

that highly sedentary communities mostly rely on horticulture products rather than herd-based 

economy (Figs. 6 and 8). In fact, the EBA II-III (~5000 – 4450 BP) was characterized by the 

spreading of nucleated walled settlements in marginal agro-pastoral zones practising intensive 

agricultures and exerting the control over the surrounding lands and the agricultural products (cf. 

Philip 2003; Wilkinson et al. 2014, 88-90). An increase of the API and pastoral indicators occur in 

the LBA, in concomitance with a decline in population and cultivated trees (OJCV) and drier 

climatic conditions, perhaps indicating a shift in subsistence strategies of some local communities 

from intensive farming to pasture (Fig. 6 and 8). An increase of secondary anthropogenic indicators 

(ruderal weeds + grazing resistant plants) from 6500 BP onwards indicate a higher human impact 

on the natural environment (Fig. 6; Supplemental Material 2: Table S5) in the Cisjordan highlands 

(Ein Gedi), in the Huleh basin and on the Golan Heights (Birkat Ram; Fig.9).  

 

[Insert Figure 8 about here] 

 

[Insert Figure 9 about here] 

 

5.3 From Iron Age I to the Persian period (ca. 3100 – 2283 cal. yr. BP / 1150 – 333 BCE) 

The Iron Age is characterised by the decline of the Egyptian domination over the Southern Levant 

and by the establishment of medium-sized regional kingdoms such as Israel and Judah in the 

Southern Levant and Moab, Edom and Ammon in Transjordan, and Phoenician city-states in 

Lebanon and the northern coast of Israel.  This is a period of highly complex societies and is 

characterised by the thriving of population in the IA I and II (~3100 – 2700 cal. yr. BP) particularly 

in Cisjordan and Transjordan (Fig. 2a-b and Fig. 3b-d). Although the SPD of radiocarbon dates may 

overestimate the population in this period given the possible research biases in collecting 

radiocarbon samples, this picture is corroborated by the trends described by the archaeological 

settlement data (Fig. 2b-c). However, studies on micro-regional scales show a reduction in human 

occupation at Akko and Tel Dan during phases of enduring drought (~3200-2700 cal. yr. BP) and a 

resurgence after 2500 cal. yr. BP, during the Persian and Hellenistic periods (cf. Kaniewski et al. 

2013 and 2017). A decrease in population occurs in concomitance of the Persian domination (~ 

2600 – 2300 cal. yr. BP) across the Southern Levant (Fig. 4b-d). During the Early Persian period 

(~2470 – 2400 cal. yr. BP) drier climatic conditions caused the abandonment of those steppe-

marginal areas of the southern Levant, more fragile to climatic shifts, and prompted nomadization 

of some segments of the local population (cf. Langgut and Lipschits 2017).  

During the Iron Age and Babylonian/Persian period, despite drier conditions indicated by the 

isotopic records from Soreq and Jeita caves, the overall trend is that population increased 

dramatically and was negatively correlated with palaeoclimate trends (Table 3 and Supplemental 

Material 2: S9-10). In fact, in this period, we may see a decoupling of demographic trends and 



climate conditions because population is less vulnerable to climatic shifts due to advances in 

technologies coping with drought and food stress, and extensive trade networks and logistic 

infrastructures typical of state and empires, which are societies capable of transferring resources 

from areas with agricultural surplus to the ones with failed crops (Rosen 2007, 101; Wilkinson and 

Rayne 2010; Lawrence et al. 2016). Nevertheless, the patterns on micro-regional scale can depict a 

different scenario as local communities can experience different adaptation strategies to social and 

environmental stress. In the third millennium BP the parallelised gradual increase of OJCV, API, 

Simpson’s Index, and pastoral indicators, and a decrease in AP percentage suggest that the 

landscape became heavily anthropogenised and that Levantine communities could have adopted a 

diversified subsistence economy as a response to climatic shifts (cf. Langgut et al. 2015; Finkelstein 

and Langgut 2018; Fig. 6).  

 

5.4 Hellenistic, Roman and Byzantine Period (ca. 2282 – 1312 cal. yr. BP / 332 BCE – 638 

AD) 

Population started increasing in the latter half of the Hellenistic period and boomed throughout the 

Levant when the Roman Empire imposed its hegemony over the region (Bar 2004; Fig. 2b and 3). 

The population continued growing until the end of the Byzantine period (~1300 cal. yr. BP), when 

it reached the highest level ever, which was then reached again only in the twentieth century 

(Broshi 1979; Bar 2004; Scheidel 2007, 43). The Roman hegemony of the Mediterranean integrated 

the farming systems of the Levant into a large economic and political superstructure that mitigated 

the impact of climatic hazards and stimulated the production and management of highly demanded 

eastern Mediterranean products such as oil and wine (Alcock 2007). During this period the 

landscape was deeply transformed by human impact, reflecting the dramatic growth of population 

and a well-structured land management typical of imperial economies. The cultivated trees (OJCV) 

peaked across the Southern Levant (Fig. 6 and 7) and the olive-oil production occupied a very 

important role in the local economy as highlighted by the discovery of several heavy oil stone 

presses (cf. Safrai 1994; Ali 2014; Waliszewski 2014). The decrease of AP percentage (Figs. 5-6 

and 7) and the simultaneous increase of API and pastoral indicators (Fig. 6 and 8) show the 

woodland clearance and the widespread of agriculture and an intensification of pasture. In 

particular, the very low percentage of AP at Chamsine and Aammiq reveal a heavy deforestation in 

favour of grazing activities (Hajar et al. 2010, 753-754; Fig. 7 and 8).  

 

5.5 Early and Middle Islamic period (ca. 1312 – 458 cal. yr. BP / 638 – 1492 AD)  

After the end of the Byzantine hegemony, the Levant was dominated by the Arabs, and the region 

was characterised by a decrease of population that slightly recovered between 1200 and 1500 cal. 

yr. BP without reaching the magnitude recorded during the Roman-Byzantine period. In the Early 

Islamic period, a sharp decline of cultivated trees (OJCV) accompanied by an increase of the 

evergreen shrubland (Quercus) is seen as evidence of forest regeneration and lowered human 

impact on the region (Figs. 5-6 and 7). A decrease in the API and pastoral indicators suggests that 

not only agriculture but also herd-based economy was affected by a general decline of population 

and the collapse of the Roman-Byzantine economic structures (Fig. 6). This trend occurred 

throughout the Levant and gradually slowed down in the Middle Islamic period (~1200 – 1500 cal. 

yr. BP) when population started increasing again (Fig. 8). The palaeoclimate records from Soreq 

and Jeita caves depict increased wetter conditions from ~1000 cal. yr. BP onwards, after dry 

conditions between 1300 and 1000 cal. yr. BP (Fig 6). The decrease of cultivated trees (OJCV) is 

not significantly correlated with climatic conditions (Supplemental Material 2: Table S7-8), while 



shows a strong correlation with demographic proxies (Supplemental Material 2: Table S2). In fact, 

the decline of cultivation seems to slightly precede the climatic changes and is probably more 

related to the Arab conquest and the social and rural instability (Leroy 2010; Izdbeski et al. 2016, 

204-205). In the end, the forest regeneration during the Islamic period could be the combination of 

decreased population and better climatic conditions. 

 

6. Conclusions  
This work has shown the socio-ecological trajectories occurring in the Levant across the Holocene. 

We adopted a multi-proxy and multi-scalar approach in order to assess if patterns of convergence 

and divergence between archaeological and environmental proxies (pollen and palaeoclimate 

records) vary at different geographical scales of analysis. The human footprint seems not to play a 

determinant role in the evolution of the Early Holocene landscape that, instead, seems to be more 

affected by abiotic factors. Despite a demographic increase after the onset of the Holocene, perhaps 

favoured by wetter climatic conditions, the population density was fairly low if compared with later 

periods and the Neolithic communities may have been more vulnerable to climatic shifts. In the 

Early Holocene, fluctuations in the percentage of arboreal pollen seems to be more related to 

climate change than to human activity. From the Chalcolithic onwards, the sharp increase of 

cultivated trees is positively correlated with demography, indicating more extensive farming to 

sustain a growing population. The Late Holocene landscape is heavily anthropogenised and 

characterised by a large-scale agricultural and herd-based economy that caused a pronounced 

woodland clearance during the Hellenistic-Roman-Byzantine period. The Late Holocene is also the 

period where the demographic trends appear to decouple from the climatic shifts given the 

advancements in technology and the extensive social and extensive networks of empires that geared 

the capability of local communities to deal with environmental stress. However, it is important to 

point out that in this study we defined some general trends on a broad chronological scale of 

analysis. In addition, it is difficult to disentangle the interplay of human and environmental 

dynamics with a 200-year resolution. In fact, marked climate fluctuations occurred within shorter 

time spans and so human populations would have immediately responded and progressively adapted 

to those changes over similar sub-centennial timescales. In addition, the regional scale of analysis 

adopted in this study does not allow us to discern localised socio-ecological trajectories. A future 

research endeavour will be of analysing human population and environmental dynamics at a micro-

regional scale in order to assess how social behaviour varies in different ecological niches. 

Furthermore, a comparative approach on a broader geographical scale will be useful to assess how 

the socio-ecological dynamics occurring in the Levant are interrelated with the surrounding regions 

such as Egypt, Central Arabia and the Northern Fertile Crescent. It is clear from the present work 

that while a wealth of archaeological data exists in the Levant, a higher number of palaeoclimatic 

and pollen data are required to provide a more even spatial and chronological coverage and 

guarantee a more accurate interpretation. This could be possible with future tighter on-going 

interdisciplinary collaborations between archaeologists and natural scientists. 
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Period Absolute dates 
Pre-Pottery Neolithic A (PPNA) 9800 – 8700/8500 BCE  11750 – 10650/10450 BP 

Pre-Pottery Neolithic B  (PPNB) 8700/8500 – 6400 BCE  10650/10450 – 8350 BP 

Pottery Neolithic A/Late Neolithic 1 6400 – 5500 BCE  8350 – 7450 BP 

Pottery Neolithic B/Late Neolithic 2 5500 – 4500 BCE  7450 – 6450 BP 

Chalcolithic 4500 – 3800/3600 BCE  6450 – 5750/5550 BP 

Early Bronze Age IA 3800/3600 – 3300 BCE  5750/5550 – 5250 BP 

Early Bronze Age IB 3300 – 3050/3000 BCE  5250 – 5000/4950 BP 

Early Bronze Age II 3050/3000 – 2850/2800 BCE  5000/4950 – 4800/4750 BP 

Early Bronze Age III 2850/2800 – 2500 BCE  4800/4750 – 4450 BP 

Intermediate Bronze Age/Early Bronze Age IV 2500 – 2000/1950 BCE  4450 – 3950/3900 BP 

Middle Bronze Age I 2000/1950 – 1750 BCE  3950/3900 – 3700 BP 

Middle Bronze Age II-III 1750 – 1550 BCE  3700 – 3500 BP 

Late Bronze Age I 1550 -1400 BCE  3500 – 3350 BP 

Late Bronze Age II 1400 – 1200 BCE  3350 – 3150 BP 

Late Bronze Age III 1200 – 1150 BCE  3150 – 3100 BP 

Iron Age I 1150 – 950 BCE  3100 – 2900 BP 

Iron Age IIA 950 – 780 BCE  2900 – 2730 BP 

Iron Age IIB 780 – 680 BCE  2730 – 2630 BP 

Iron Age IIC 680 – 586 BCE  2630 – 2536 BP 

Babylonian 586 – 539 BCE  2536 – 2489 BP 

Persian 539 – 333 BCE  2489 – 2283 BP 

Hellenistic 332 – 63 BCE  2282 – 2013 BP 

Roman 63 BC – 324 CE  2013 – 1626 BP 

Byzantine 324 – 638 CE  1626 – 1312 BP 

Early Islamic 638 – 1066 CE  1312 – 884 BP 

Middle Islamic 1066-1492 CE  884 – 458 BP 

 

Table 1. A chronological scheme for the Levant (after Finkelstein 2010 and 2011; Regev et al. 2012; Sharon 

2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Code Site Name Latitude Longitude Elevation Contributor Site 

type 

Chronological 

coverage 

Reference 

AKKO Akko 32.91658 35.08695 3 Kaniewski coastal 6000 – 0 BP Kaniewski et 

al. 2013 and 

2014 

ALJOURD Al Jourd 34.35 36.2 2100 Cheddadi marsh 10800 – 0 BP Cheddadi and 

Khater 2016 

AMMIQ Aammiq 33.76667 35.766 850 Cheddadi wetland 11000 – 400 BP Hajar et al. 

2008 

BIRKAT Birkat Ram 33.23253 35.7663 940 Miebach lake 6400 – 0 BP Neumann et 

al. 2007 

CHAMSINE Chamsine 33.73333 35.95 856 Cheddadi wetland 11000 – 600 BP Hajar et al. 

2010 

DS7 Dead Sea 7 31.49111 35.4297 -415 Leroy and 

EPD 

off-

shore 

site 

2800 – 0 BP Leroy 2010 

and 2018 

DOR Dor 32.61743 34.9163 0 Langgut 

(Kadosh) 

coast 11000 – 9400 BP Kadosh et al. 

2004 

GEDI97 Ein Gedi 31.41889 35.3883 -415 Miebach  lake 10000 – 0 BP Litt et al. 2012 

HULA1 

HULA 2 

Huleh 33.10556 35.5283 70 Woldring lake 11000 – 400 BP 

11000 – 9200 BP 

van Zeist et al. 

2009 

TYRE Tyre 33.27806 35.2030 3 EPD ancient 

harbour 

2600 – 1600 BP European 

Pollen 

Database 

TELDAN Tel Dan 33.25007 35.6536 209 Kaniewski spring 4200 – 1800 BP Kaniewski et 

al. 2017 

SEAGALILEE Sea of 

Galilee 

32.8205 35.588 -211 Miebach  lake 9000 – 0 BP Schiebel and 

Litt 2017 

9509MARINE 9509_mari

ne 

32.03167 34.283 0 Langgut marine 11000 – 0 BP Langgut et al. 

2011; Langgut 

2018 

 

Table 2. List of fossil pollen sites and their contributors.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 AP (%) OJCV API Simpson 

diversity 

Ruderal 

weeds + 

Grazing 

plants 

Regional 

pastoral 

14C 

SPD 

Count Aoristic 

weight 

Random Soreq  

z-score 

Jeita 

z-score 

AP (%) 1            

OJCV **0.51 1           

API **-0.60 0.10 1          

Simpson -0.02 *0.38 -0.33 1         

Ruderal 

weeds + 

Grazing 

plants 

*0.54 0.29 **-0.42 0.14 1        

Regional 

pastoral 

**-0.76 -0.11 **0.82 -0.24 **-0.47 1       

14C   SPD  **0.69 **0.62 **-0.46 0.15 **0.61 **-0.47 1      

count **0.64 **0.74 -0.11 -0.05 *0.39 **-0.43 **0.81 1     

aoristic 

weight 

**0.64 **0.78 -0.07 0.13 *0.45 **-0.42 **0.68 **0.92 1    

random **0.64 **0.75 -0.08 0.14 *0.46 **-0.43 **0.68 **0.90 **0.97 1   

Soreq  

z-score 

**-0.42 **-0.55 0.10 0.07 -0.31 0.33 *-0.35 **-0.57 **-0.68 **-0.66 1  

Jeita 

z-score 

**-0.61 **-0.69 0.31 0.07 **-0.51 **0.53 **-0.71 **-0.81 **-0.81 **-0.79 **0.65 1 

 

Table 3.  Spearman’s Rank Correlation Coefficient (R-values) value matrix for the period 11000-600 cal. yr. BP (to 

2600 cal. yr. BP for 14C SPD). Significant correlations are indicated by bold numbers (*p-value <0.05, **p-value 

<0.01). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 1.  Map showing the distribution of a) sites with radiocarbon dates; b) archaeological sites, pollen 

records and palaeoclimate proxies.  

 

 

 

 

 

 

 

 

 

 

 



 

 

Fig. 2. a) Summed Probability Distribution (SPD) of unnormalised calibrated radiocarbon dates vs. a fitted 

logistic null model (95 % confidence grey envelope). Blue and red vertical bands indicate respectively 

chronological ranges within the observed SPD deviates negatively and positively from the null model. b) 

Comparison of sites raw count (solid line), aoristic sum (dashed line), and randomised start date of sites 

(grey envelope) from 12000 to 600 cal. yr. BP. c) Inset of population change between 6600 and 3000 cal. yr. 

BP.  

 

 



 

 

Figure 3. Regional summed probability distributions (SPDs) of calibrated radiocarbon dates for (a) Lower 

North Levant, (b) Cisjordan lowlands, (c) Cisjordan highlands, and (d) Transjordan compared with a 95% 

Monte Carlo envelope of the pan-regional model produced via permutation of sub-regional dates. 



 

 

Figure 4. Regional comparison of sites raw count (solid line), aoristic sum (dashed line), and randomised 

start date of archaeological sites (grey envelope) for (a) Lower North Levant, (b) Cisjordan lowlands, (c) 

Cisjordan highlands, and (d) Transjordan.  

 

 



 

Figure 5.  Pollen-inferred vegetation cluster groups (11,000 BP – modern) for the Levant.  

 

Figure 6. Pollen inferred indicator groups: arboreal pollen (%AP), sum of Olea, Juglans, Castanea and Vitis 

(OJCV), anthropogenic pollen index (API), Ruderal weeds + grazing resistant plants, pastoral indicators and 

Simpson’s diversity Index averaged for all sites in the study area (11,000 BP to modern) compared with 

proxy archaeological data and palaeoclimate records from Soreq and Jeita’s caves. Time windows with 

insufficient radiocarbon dates for reliable SDP of calibrated 14C dates are shown in white.  



 

Figure 7. Pollen inferred indicator groups at a site-level scale: arboreal pollen (AP%), and sum of Olea, 

Juglans, Castanea and Vitis (OJCV). Sites ordered from left to right according to a South-North gradient.  

 

 

 



 

Figure 8. Pollen inferred indicator groups at a site-level scale: anthropogenic pollen index (API), and 

regional pastoral indicators. Sites ordered from left to right according to a South-North gradient. 

 

 

 

 



 

 

Figure 9. Pollen inferred indicator groups at a site-level scale: ruderal weeds + grazing resistant plants. Sites 

ordered from left to right according to a South-North gradient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplemental material 1   

Radiocarbon dates from archaeological sites were compiled from existing online databases and 

electronic and print. A total of 2,173 uncalibrated radiocarbon dates from 230 sites have been 

collected. Below the sources from which the radiocarbon dates have been collected.  

 

Databases/Datasets 

BANADORA. Banque Nationale de Données Radiocarbonne pour l'Europe et le Proche Orient, 

Centre de Datation par le Radiocarbonne, CNRS Lyon: http://www.arar.mom.fr/banadora/  

CalPal - The Cologne Radiocarbon Calibration & Palaeoclimate Research Package. Developed by 

Weninger, B., Jöris, O., and Danzeglocke, U: http://monrepos-

rgzm.de/forschung/ausstattung.html#calpal  

EX ORIENTE - PPND - the Platform for Neolithic Radiocarbon Dates:  

https://www.exoriente.org/associated_projects/ppnd.php  

EUROEVOL. Manning, K; Timpson, A; Colledge, S; Crema, E; Shennan, S; (2015) The Cultural 

Evolution of Neolithic Europe. EUROEVOL Dataset: http://discovery.ucl.ac.uk/1469811/  

IRPA/KIK. Royal Institute for Cultural Heritage web based Radiocarbon database.  Van Strydonck, 

M. and De Roock, E., 2011. Royal Institute for Cultural Heritage web-based radiocarbon database. 

Radiocarbon, 53(2), pp.367-370. http://c14.kikirpa.be/  

ORAU. Oxford Radiocarbon Accelerator Unit online database: 

https://c14.arch.ox.ac.uk/databases.html  

RADON. Martin Hinz, Martin Furholt, Johannes Müller, Dirk Raetzel-Fabian, Christoph Rinne, 

Karl-Göran Sjögren, Hans-Peter Wotzka, RADON - Radiocarbon dates online 2012. Central 

European database of 14C dates for the Neolithic and Early Bronze Age. www.jungsteinsite.de, 

2012, 1-4: http://radon.ufg.uni-kiel.de/  

 

 

References 

Al-Bashaireh, K. and Al-Muheisen, Z., 2011. Subsistence strategies and palaeodiet of Tell al-Husn, 

northern Jordan: nitrogen and carbon stable isotope evidence and radiocarbon dates. Journal of 

Archaeological Science 38(10), 2606-2612. 

Ambers, J. and Bowman, S., 2003. Radiocarbon measurements from the British Museum: datelist 

XXVI. Archaeometry 45(3), 531-540. 

Anderson, R.W., 2006. Southern Palestinian chronology: two radiocarbon dates for the Early 

Bronze Age at Tell el-Hesi (Israel). Radiocarbon 48(1), 101-107. 

http://www.arar.mom.fr/banadora/
http://monrepos-rgzm.de/forschung/ausstattung.html#calpal
http://monrepos-rgzm.de/forschung/ausstattung.html#calpal
https://www.exoriente.org/associated_projects/ppnd.php
http://discovery.ucl.ac.uk/1469811/
http://c14.kikirpa.be/
https://c14.arch.ox.ac.uk/databases.html
http://radon.ufg.uni-kiel.de/


Anfinset, N., Taha, H., al-Zawahra, M. and Yasine, J., 2011. Societies in transition: contextualizing 

Tell el-Mafjar, Jericho. Culture, Chronology and the Chalcolithic. Levant Supplementary Series 9, 

97-113. 

Arranz-Otaegui, A., Colledge, S., Ibañez, J.J. and Zapata, L., 2016. Crop husbandry activities and 

wild plant gathering, use and consumption at the EPPNB Tell Qarassa North (south Syria). 

Vegetation history and archaeobotany 25(6), 629-645. 

Asscher, Y., Lehmann, G., Rosen, S.A., Weiner, S. and Boaretto, E., 2015. Absolute dating of the 

Late Bronze to Iron Age transition and the appearance of Philistine culture in Qubur el-Walaydah, 

southern Levant. Radiocarbon 57(1), 77-97. 

Avner, U. and Carmi, I., 2001. Settlement Patterns in the Southern Levant Deserts During the 6th–

3rd Millennia BC: a Revision Based on 14 C Dating. Radiocarbon 43(3), 1203-1216. 

Badreshany, K. and Kamlah, J., 2013. Middle Bronze Age pottery from Tell el-Burak, Lebanon. 

Berytus 53, 81-113. 

Balbo, A.L., Iriarte, E., Arranz, A., Zapata, L., Lancelotti, C., Madella, M., Teira, L., Jiménez, M., 

Braemer, F. and Ibáñez, J.J., 2012. Squaring the circle. Social and environmental implications of 

pre-pottery neolithic building technology at Tell Qarassa (South Syria). PloS one 7(7), p.e42109. 

Banning, E.B., Siggers, J. and Rahimi, D., 1994. The Late Neolithic of the southern Levant: hiatus, 

settlement shift or observer bias? The perspective from Wadi Ziqlab. Paléorient 33.1, 151-164. 

Bar-Yosef, O., 1988. Le Paléolithique d'Israël. L’ Anthropologie 92(3), 769-795. 

Bar-Yosef, O. and Valla, F.R., 1979. L'evolution du Natoufien nouvelles suggestions. Paléorient 5, 

145-152. 

Bar-Yosef, O. and Vogel, J.C., 1987. Relative and absolute chronology of the Epipalaeolithic in the 

southern Levant. Chronologies in the Near East, 219-46. 

Belfer-Cohen, A. and Goring-Morris, A.N., 2005. Which way to look? conceptual frameworks for 

understanding Neolithic processes. Dialogue on the Early Neolithic origin of ritual centers. Neo-

Lithics 2(05), pp.22-24.  

Blackham, M., 1997. Changing Settlement at Tabaqat al-Bûma in Wadi Ziqlab, Jordan: A 

Stratigraphic Analysis. In: Gebel H.G.K. , Kafafi Z. and Rollefson G.O. (Eds.), The Prehistory of 

Jordan II. Perspectives from 1997. Berlin: ex oriente (Studies in Early Near Eastern Production, 

Subsistence and Environment 4), 345-360.  

Boaretto, E., Bar-Yosef, O, Gopher, A., Goring-Morris, A. N., and Kozlowski, S. K., 2010a. Gilgal: 

Early Neolithic occupations in the lower Jordan Valley: the excavations of Tamar Noy. Oakville 

CT: Oxbow Books Limited, 33-38.  

Boaretto, E., Finkelstein, I. and Shahack-Gross, R., 2010b. Radiocarbon results from the Iron IIA 

site of Atar Haroa in the Negev Highlands and their archaeological and historical implications. 

Radiocarbon 52(1), 1-12. 

Bonani G, Wölfli W., 1991. Radiocarbon dates from area B. In: Kempinski, A. and Niemeier, W.D. 

(Eds.), Excavations at Kabri: Preliminary Report of 1990 Season 5. Tell Aviv: Tell Kabri 

Expedition Tel Aviv University, 8.  



Borrell, F., Boaretto, E., Caracuta, V., Cohen-Sasson, E., Lavi, R., Lpui, R., Teira, L., and Vardi, J., 

2015. Nahal Efe A Middle Pre-Pottery Neolithic B Site in the North-eastern Negev Preliminary 

Results of the 2015 Pilot Season. Neo-Lithics 2/15, 33-41.  

Bourke, S.J. and Zoppi, U., 2007. Dating the Cultic Assemblages from the Bronze Age Fortress 

Temple Complex at Pella in Jordan. Progress Report for AINGRA 05013. Sydney: University of 

Sydney. 

Bourke, S., Zoppi, U., Meadows, J., Hua, Q. and Gibbins, S., 2009. The beginning of the Early 

Bronze Age in the north Jordan Valley: new 14 C determinations from Pella in Jordan. Radiocarbon 

51(3), 905-913. 

Braidwood, R. J., 1958. Near Eastern Prehistory. The swing from food-collecting cultures to 

village-farming communities is still imperfectly understood. Science 127, 1419-1430.  

Braun, E., 2001. Proto, Early Dynastic Egypt, and Early Bronze I-II of the Southern Levant: Some 

Uneasy 14 C Correlations. Radiocarbon 43(3), 1279-1295. 

Braun, E., Van Den Brink, E.C., Regev, J., Boaretto, E. and Bar, S., 2013. Aspects of Radiocarbon 

Determinations and the Dating of the Transition from the Chalcolithic Period to Early Bronze Age I 

in the Southern Levant. Paléorient 39(1), 23-46. 

Bronk Ramsey, C., Higham, T. F. G., Brock, F., Baker, D., & Ditchfield, P., 2009. Radiocarbon 

dates from the oxford ams system: archaeometry datelist 33. Archaeometry 51(2), 323-349. 

Bronk Ramsey, C., Higham, T., Brock, F., Baker, D., Ditchfield, P., & Staff, R., 2015. Radiocarbon 

Dates from the Oxford AMS System: Archaeometry Datelist 35. Archaeometry, 57(1), 177-216. 

Bruins, H.J., Mazar, A. and van der Pflicht, J., 2007. The end of the 2nd millennium BCE and the 

transition from Iron I to Iron IIA: radiocarbon dates of Tel Rehov, Israel (Vol. 37, pp. 79-100). 

Verlag der Österreichischen Akademie der Wissenschaften. 

Burleigh, R., 1981. Appendix C: Radiocarbon dates. In: Kenyon, K. M. (Ed.), Excavations at 

Jericho. Volume 3. The Architecture and Stratigraphy of the Tell. London: The British School of 

Archaeology in Jerusalem, 501-504.  

Burleigh, R., 1983. Appendix D: Radiocarbon dates. In: Kenyon, K. M. AND Holland T. A. (Eds.), 

Excavations at Jericho. Volume 5. The Pottery Phases of the Tell and Other Finds. London: The 

British School of Archaeology in Jerusalem, 760-765.  

Burton, M. and Levy, T.E., 2011. The end of the Chalcolithic period (4500–3600) in the northern 

Negev Desert, Israel. In: J. L. Lovell and Y. M. Rowan (Eds.), Culture, Chronology and the 

Chalcolithic. Theory and Transition. Oxford: Oxbow, 178-191. 

Byrd, B.F., 1989. The Natufian: settlement variability and economic adaptations in the Levant at the 

end of the Pleistocene. Journal of World Prehistory 3(2), pp.159-197. 

Carmi, I. and Segal, D., 1992. Rehovot Radiocarbon Measurements IV 1. Radiocarbon 34(1), 

pp.115-132. 

Churcher, C.S., 1994. The vertebrate fauna from the Natufian level at Jebel es-Saaïdé (Saaïdé II), 

Lebanon. Paléorient, 35-58. 



Clare, L., 2010. Pastoral clashes: Conflict risk and mitigation at the Pottery Neolithic transition in 

the Southern Levant. Neo-Lithics, 1(10), pp.13-31. 

Conrad, N., 2002. An overview of the recent excavations at Baaz Rockshekter, Damascus Province, 

Syria. In: Korfmann, M. and Aslan, R. (Eds.), Mauerschau: Festschrift für Manfred Korfmann. 

Remshalden-Grunback: Greiner, vol.2, 623-640.  

Contenson, H., De, 1975. Les fouilles à Ghoraifé en 1974. Annales Archéologiques de Syrie,  25, 

17-32.  

Dee, M., Higham, T.F.G. and Postgate, N., 2017. Section 2: The 14C determinations. In 

Excavations at Kilise Tepe 2007-2011: The Late Bronze and Iron Ages. University of Cambridge. 

doi:10.17863/CAM.10130   

Dever, W. G, Lance, H. D, Ballard, R. G, and Cole, D. P., 1974. Gezer II: Report of the 1967 70 

Seasons in Fields I and II. Jerusalem: Hebrew Union Coll/Nelson Glueck School Biblical 

Archaeology. 

Edwards, P. C., 2001. Nine millennia by Lake Lisan: the Epipalaeolithic in the East Jordan Valley 

between 20,000 and 11,000 years ago. In: Studies in the History and Archaology oj Jordan VII. 

Amman: Department of Antiquities of Jordan, 85-93.  

Edwards, P.C., Bocquentin, F., Colledge, S.M., Edwards, Y., Le Dosseur, G., Martin, L., Stanin, Z. 

and Webb, J., 2013. Wadi Hammeh 27: an Open-air ‘Base-camp’on the Fringe of the Natufian 

‘Homeland’. In:  F. Valla, O. Bar-Yosef (Eds.), Natufian Foragers in the LevantPublisher: 

International Monographs in Prehistory. Ann Arbor: International Monographs in Prehistory, 319-

348.   

Falconer, S.E. and Fall, P.L., 2016. A radiocarbon sequence from Tell Abu en-Ni ‘aj, Jordan and its 

implications for Early Bronze IV chronology in the Southern Levant. Radiocarbon 58(3), 615-647. 

Falconer, S.E. and Fall, P.L., 2017. Radiocarbon Evidence from Tell Abu en-Ni'aj and Tell el-

Hayyat, Jordan, and Its Implications for Bronze Age Levantine and Egyptian Chronologies. Journal 

of Ancient Egyptian Interconnections13, 7-19. 

Fantalkin, A., Finkelstein, I. and Piasetzky, E., 2011. Iron Age Mediterranean chronology: a 

rejoinder. Radiocarbon 53(1), 179-198. 

Finkelstein, I. and Piasetzky, E., 2007. Radiocarbon dating and Philistine chronology with an 

addendum on el-Ahwat. Ägypten und Levante/Egypt and the Levant 17, 73-82. 

Finkelstein, I. and Piasetzky, E., 2010. The Iron I/IIA transition in the Levant: a reply to Mazar and 

Bronk Ramsey and a new perspective. Radiocarbon 52(4), 1667-1680. 

Fischer, P., 2014. The Southern Levant (Transjordan) During the Late Bronze Age. In: Steiner, 

M.L. and Killebrew, A.E. (Eds.). The Oxford Handbook of the Archaeology of the Levant: c. 8000-

332 BCE. Oxford: Oxford University Press.  

Flohr, P., Fleitmann, D., Matthews, R., Matthews, W. and Black, S., 2016. Evidence of resilience to 

past climate change in Southwest Asia: Early farming communities and the 9.2 and 8.2 ka events. 

Quaternary Science Reviews 136, 23-39. 



Garfinkel, Y. and Kang, H.G., 2011. The relative and absolute chronology of Khirbet Qeiyafa: very 

late Iron Age I or very early Iron Age IIA? Israel Exploration Journal 61, pp.171-183. 

Garfinkel, Y., Streit, K., Ganor, S. and Reimer, P.J., 2015. King David's city at Khirbet Qeiyafa: 

results of the second radiocarbon dating project. Radiocarbon 57(5), pp.881-890. 

Garrard, A. and Yazbeck, C., 2013. The Natufian of Moghr el-Ahwal in the Qadisha Valley, 

Northern Lebanon. In: Bar-Yosef, O. and F, Valla (Eds.), Natufian Foragers in the Levant. 

Terminal Pleistocene Social Changes in Western Asia. Ann Arbor: International Monographs in 

Prehistory, 17-27.  

Genz, H., 2002. Die frühbronzezeitliche Keramik von Hirbet ez-Zeraqon: mit Studien zur 

Chronologie und funktionalen Deutung frühbronzezeitlicher Keramik in der südlichen Levante. 

Wiesbaden: Harrasowitz Verlag.  

Gibbs, K., Kadowaki, S. and Banning, E.B., 2010. Excavations at al-Basatin, a late Neolithic and 

Early Bronze I site in Wadi Ziqlab, northern Jordan. Annual of the Department of Antiquities of 

Jordan 54, pp.461-476. 

Gilead, I., 1988. The Chalcolithic period in the Levant. Journal of World Prehistory 2(4), pp.397-

443. 

Gilead, I., 1991. The upper Paleolithic period in the Levant. Journal of World Prehistory 5(2), 

pp.105-154. 

Gopher, A. and Gophna, R., 1993. Cultures of the Eighth and Seventh Millennia BP in the Southern 

Levant: A Review for the 1990s. Journal of World Prehistory 7(3), 297-353. 

Gopher, A., Lemorini, C., Boaretto, E., Carmi, I., Barkai, R. and Schechter, H.C., 2013. Qumran 

Cave 24, a Neolithic-Chalcolithic site by the Dead Sea: A short report and some information on 

lithics. In:  Borrell, F., Ibáñez, J.J. and Molist, M., 2014. Stone Tools in Transition: From Hunter-

Gatherers to Farming Societies in the Near East. Barcelona: Servei de Publicacions de la 

Universitat Autònoma de Barcelona, pp.101-114. 

Goring-Morris, A.N., 1987. At the edge: terminal Pleistocene hunter-gatherers in the Negev and 

Sinai. Oxford: BAR International Series 361.  

Goring-Morris, A. N., 1991. The Harifian of the Southern Levant. In: O. Bar-Yosef and F. R. Valla 

(Eds.), The Natufian Culture in the Levant. Ann Arbor: International Monographs in Prehistory, pp. 

173–216. 

Gowlett, J.A., 1987. The archaeology of radiocarbon accelerator dating. Journal of World 

Prehistory, 1(2), pp.127-170.  

Gregoricka, L.A. and Sheridan, S.G., 2017. Continuity or conquest? A multi‐isotope approach to 

investigating identity in the Early Iron Age of the Southern Levant. American journal of physical 

anthropology 162(1), pp.73-89. 

Grosman, L., Munro, N.D., Abadi, I., Boaretto, E., Shaham, D., Belfer-Cohen, A. and Bar-Yosef, 

O., 2016. Nahal Ein gev II, a late natufian community at the sea of galilee. PloS one 11(1), 

p.e0146647. 



Hadas, G., Liphschitz, N. and Bonani, G., 2005. Two ancient wooden anchors from Ein Gedi, on 

the Dead Sea, Israel. International Journal of Nautical Archaeology 34(2), pp.299-307. 

Harrison, T.P. and Barlow, C., 2005. Mesha, the Mishor, and the Chronology of Iron Age Madaba. 

In: Levy, T. and Higham, T., 2005. The Bible and radiocarbon dating: archaeology, text and 

science. London: Routledge, 179-190. 

Höflmayer, F., Dee, M.W., Genz, H. and Riehl, S., 2014. Radiocarbon evidence for the Early 

Bronze Age Levant: the site of Tell Fadous-Kfarabida (Lebanon) and the end of the Early Bronze 

III period. Radiocarbon 56(2), pp.529-542. 

Höflmayer, F., Kamlah, J., Sader, H., Dee, M.W., Kutschera, W., Wild, E.M. and Riehl, S., 2016. 

New evidence for Middle Bronze Age chronology and synchronisms in the Levant: Radiocarbon 

dates from Tell el-Burak, Tell el-Dabʿa, and Tel Ifshar compared. Bulletin of the American Schools 

of Oriental Research 375, pp.53-76. 

Holdorf, P.S., 2010. Comparison of EB IV radiocarbon results from Khirbat Iskandar and Bab adh-

Dhra. In: S. Richard et al. 2010 (Eds.), Archaeological Expedition to Khirbat Iskander and its 

Environs, Jordan: Khirbat Iskander: Final Report on the Early Bronze IV Area C 'Gateway' and 

Cemeteries. Boston: American Schools of Oriental Research, 267-270. 

Housley, R.A., 1994. Eastern Mediterranean chronologies. The Oxford AMS contribution. 

Radiocarbon 36, pp.55-73. 

Jull, A. J. T., Donahue, D. J., Carmi, I, and Segal, D., 1998. In: Schick, T., 1998. The Cave of the 

Warrior: a fourth millennium burial in the Judean Desert (No. 5). Jerusalem: Israel Antiquities 

Authorit, 110-113.  

Kadowaki, S., Gibbs, K., Allentuck, A. and Banning, E.B., 2008. Late Neolithic Settlement in Wadi 

Ziqlab, Jordan: al-Basatîn. Paléorient 34 (1), pp.105-129. 

Kafafi, Z., 1993. The Yarmoukians in Jordan. Paléorient 19, pp.101-114. 

Korfmann, M. and Aslan, R., 2002. Mauerschau: Festschrift für Manfred Korfmann. Greiner. 

Kuijt, I., 1994. Pre-Pottery Neolithic A settlement variability: evidence for sociopolitical 

developments in the southern Levant. Journal of Mediterranean Archaeology 7(2), pp.165-192. 

Kuijt, I., 2001. Lithic inter-assemblage variability and cultural-historical sequences: A consideration 

of the Pre-Pottery Neolithic A occupation of Dhra', Jordan. Paléorient 27(1), pp.107-125. 

Kuijt I., Bar‐Yosef O., 1994. Radiocarbon chironology for the Levantine Neolithic: Observations 

and data. In: Bar‐Yosef O., Kra R. (Eds.), Late Quatemary Chronology and Paleoclimates of the 

Eastern Mediterranean. Cambridge. MA: Radiocarbon and the Peabody Museum, 227-246. 

Kuijt, I. and Goodale, N.B., 2006. Chronological frameworks and disparate technology: An 

exploration of chipped stone variability and the forager to farmer transition at'Iraq Ed-Dubb, Jordan. 

Paléorient 32(1), pp.27-45. 

Lawn, B., 1974. University of Pennsylvania radiocarbon dates XVII. Radiocarbon 16(2), pp. 219-

237. 



Lombardo, M., and Piloto, A., 2000. New Radiocarbond dates and assessment of all dates obtained 

for the Early and Middle Bronze Ages in Jericho. In: Marchetti, N. and Nigro, L. (eds.), 

Excavations at Jericho, 1998, Preliminary Report on the Second Season of Archaeological 

Excavations and Surveys at Tell es-Sultan, Palestine. Roma: Universita' di Roma La Sapienza, 329-

332. 

Lorentzen, B., Manning, S.W. and Kahanov, Y., 2014. The 1st millennium AD Mediterranean 

shipbuilding transition at Dor/Tantura Lagoon, Israel: dating the Dor 2001/1 shipwreck. 

Radiocarbon 56(2), 667-678. 

 

Lovell, J.L., Meadows, J. and Jacobsen, G.E., 2010. Upland olive domestication in the Chalcolithic 

period: new 14 C determinations from el-Khawarij (Ajlun), Jordan. Radiocarbon 52(2), 364-371. 

Maher, L.A., Banning, E.B. and Chazan, M., 2011. Oasis or mirage? Assessing the role of abrupt 

climate change in the prehistory of the southern Levant. Cambridge Archaeological Journal 21(1), 

1-30. 

Marcus, E. S., 2013. Correlating and combining Egyptian historical and southern Levantine 

radiocarbon chronologies at Middle Bronze Age IIa Tel Ifshar, Israel. In: Shortland A. J. and Bronk 

Ramsey C. (Eds.), Radiocarbon and the Chronologies of Ancient Egypt. Oxford: Oxbow Books, 

182-208. 

Mazar, A. and Rotem, Y., 2009. Tel Beth Shean during the EB IB period: evidence for social 

complexity in the late 4th millennium BC. Levant 41(2), pp.131-153. 

Mazar, A., de Miroschedji, P. and Porat, N., 1996. Hartuv, an aspect of the Early Bronze I culture of 

southern Israel. Bulletin of the American Schools of Oriental Research 302, pp.1-40. 

Mazar, A., Bruins, H.J., Panitz-Cohen, N. and Van der Plicht, J., 2005. Ladder of time at Tel 

Rehov: stratigraphy, archaeological context, pottery and radiocarbon dates In: Levy, T. and 

Higham, T., 2005. The Bible and radiocarbon dating: archaeology, text and science. London: 

Routledge, pp.193-255. 

Murphy, T.M., Ben-Yehuda, N., Taylor, R.E. and Southon, J.R., 2011. Hemp in ancient rope and 

fabric from the Christmas Cave in Israel: talmudic background and DNA sequence identification. 

Journal of archaeological science 38(10), 2579-2588. 

Nawrocka, D.M., Michczyńska, D.J., Pazdur, A. and Czernik, J., 2007. Radiocarbon chronology of 

the ancient settlement in the Golan Heights area, Israel. Radiocarbon 49(2), 625-637. 

Oren E., Yekutieli Y., 1992. Taur Ikhbeineh; earliest evidence for Egyptian interconnection. In: van 

den Brink E. C. M. (Ed.), The Nile Delta in Transition: 4th - 3rd Millennium BC. Jerusalem: Israel 

Exploration Society, 361-84 

Paz, S., 2010. Life in the City: The Birth of an Urban Habitus in the Early Bronze Age of Israel. 

Unpublished PhD Thesis, Tel Aviv University (in Hebrew). 

Pinhasi, R., Fort, J. and Ammerman, A.J., 2005. Tracing the origin and spread of agriculture in 

Europe. PLoS biology 3(12), p.e410. 



Rasmussen, K.L., Gunneweg, J., van der Plicht, J., Kralj Cigić, I., Bond, A.D., Svensmark, B., 

Balla, M., Strlic, M. and Doudna, G., 2011. On the age and content of jar-35 – a sealed and intact 

storage jar found on the southern plateau of Qumran. Archaeometry 53(4), 791-808. 

Rech, J.A., Fischer, A.A., Edwards, D.R. and Jull, A.T., 2003. Direct dating of plaster and mortar 

using AMS radiocarbon: a pilot project from Khirbet Qana, Israel. Antiquity 77(295), pp.155-164. 

Regev, L., Eckmeier, E., Mintz, E., Weiner, S. and Boaretto, E., 2011. Radiocarbon concentrations 

of wood ash calcite: potential for dating. Radiocarbon 53(1), 117-127. 

Regev, J., De Miroschedji, P. and Boaretto, E., 2012a. Early Bronze Age chronology: radiocarbon 

dates and chronological models from Tel Yarmuth (Israel). Radiocarbon 54(3-4), pp. 505-524. 

Regev, J., Finkelstein, I., Adams, M. J., and Boaretto, E., 2014. Wiggle Matched C14 Chronology 

of Early Bronze Megiddo and the Synchronization of Egyptian and Levantine Chronologies. Egypt 

and the Levant 24, 243-266.  

Regev, J., Regev, L., Mintz, E. and Boaretto, E., 2017. Radiocarbon Assessment of Early Bronze 

Arad: The 20 Year Lifespan of Stratum II. Tel Aviv 44(2), pp.165-177. 

Rollefson, Gary O., Simmons, Alan H., and Kafafi, Zeidan (1992), 'Neolithic cultures at 'Ain 

Ghazal'. Journal of Field Archaeology 19 (4), 443-70. 

Rollefson, G. O., 1998. The Aceramic Neolithic. In: D. O. Henry (Ed.) 1998, The Prehistoric 

Archaeology of Jordan. Oxford: BAR International Series 705, pp.102-126.  

Saidah, R., 1979. Fouilles de Sidon-Dakerman: L´ agglomération chalcolithique. Berytus: 

Archaeological Studies 27, pp. 29-56. 

Sayej, G., 2007. Lithic variability among the PPNA assemblages of the Dead Sea Basin. In:  L. 

Astruc, D. Binder and F. Briois (Eds.), Systèmes techniques et communautés du Néolithique 

précéramique au Proche-Orient (Technical Systems and Near Eastern PPNA Communities), pp 87-

102. APDCA: Antibes – France.  

Schick, T., 1998. The Cave of the Warrior: a fourth millennium burial in the Judean Desert (No. 5). 

Israel Antiquities Authority. 

Segal, D., & Carmi, I. (1996). Rehovot Radiocarbon Date List V. 'Atiqot, 29, 79-106.  

Segal, D. and Carmi, I., 2003. Radiocarbon dates from Horbat Hani (West). ‘Atiqot 44, 65-66. 

Segal, D., and Carmi, I., 2006. Radiocarbon dates. In: Getzov (Ed.), The Tel Bet Yerah Excavations, 

1994-1995. Jerusalem: Israel Antiquities Authority, 175-176. 

Shai, I., Greenfield, H.J., Regev, J., Boaretto, E., Eliyahu-Behar, A. and Maeir, A.M., 2014. The 

Early Bronze Age Remains at Tell eṣ-Ṣāfi/Gath: An Interim Report. Tel Aviv 41(1), pp. 20-49. 

Shugar, A.N. and Gohm, C.J., 2011. Developmental trends in Chalcolithic copper metallurgy: a 

radiometric perspective changed the world. In: Lovell, J.L., 2011 (Ed.), Culture, chronology and the 

Chalcolithic: theory and transition. Oxbow Books, pp.133-148. 

Simmons, A.H., Rollefson, G.O., Kafafi, Z., Mandel, R.D., al-Nahar, M., Cooper, J., Köhler-

Rollefson, I. and Durand, K.R., 2001. Wadi Shuʿeib, a Large Neolithic Community in Central 



Jordan: Final Report of Test Investigations. Bulletin of the American Schools of Oriental Research 

321, pp.1-39 

Stuckenrath, R., 1963. University of Pennsylvania radiocarbon dates VI. Radiocarbon 5, pp.82-103. 

Stuckenrath, R. and Ralph, E.K., 1965. University of Pennsylvania radiocarbon dates VIII. 

Radiocarbon 7, pp.187-199 

Taylor, J.E., Rasmussen, K.L., Doudna, G., van der Plicht, J. and Egsgaard, H., 2005. Qumran 

textiles in the palestine exploration fund, London: Radiocarbon dating results. Palestine exploration 

quarterly 137(2), pp.159-167. 

Toffolo, M.B., Arie, E., Martin, M.A., Boaretto, E. and Finkelstein, I., 2014. Absolute chronology 

of Megiddo, Israel, in the late Bronze and Iron Ages: high-resolution radiocarbon dating. 

Radiocarbon 56(1), pp.221-244. 

Webster, L., 2015. Developing a radiocarbon-based chronology for Tel Azekah: the first stage. 

Weinstein, J.M., 1984. Radiocarbon dating in the southern Levant. Radiocarbon 26(3), pp. 297-366. 

Weinstein-Evron, M., Yeshurun, R., Kaufman, D., Eckmeier, E. and Boaretto, E., 2012. New 14 C 

dates for the Early Natufian of el-Wad Terrace, Mount Carmel, Israel. Radiocarbon 54(3-4), 

pp.813-822. 

White, C.E., 2013. The emergence and intensification of cultivation practices at the Pre-pottery 

Neolithic site of el-Hemmeh, Jordan: An archaeobotanical study. Unpublished PhD dissertation. 

Boston University. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Time start 
BP 

Time end 
BP 

SPD of 
radiocarbon 

dates 

Raw count  Aoristic 
weight 

Randomised 
duration 

11000 9000 0.67 0.40 0.40 0.70 

10800 8800 0.67 0.41 0.41 0.28 

10600 8600 0.67 0.28 0.28 0.14 

10400 8400 0.62 0.37 0.37 0.24 

10200 8200 0.58 0.29 0.29 0.28 

10000 8000 0.49 0.35 0.35 0.24 

9800 7800 0.41 0.45 0.45 0.21 

9600 7600 0.21 0.40 0.40 0.10 

9400 7400 -0.31 0.33 0.27 0.10 

9200 7200 -0.37 0.22 0.14 0.05 

9000 7000 -0.39 0.10 0.17 0.16 

8800 6800 0.09 0.47 0.42 0.49 

8600 6600 0.02 0.59 0.31 0.47 

8400 6400 0.32 0.59 0.51 0.47 

8200 6200 0.52 0.73 0.73 0.72 

8000 6000 0.72 0.86 0.86 0.79 

7800 5800 0.77 0.91 0.91 0.82 

7600 5600 0.73 0.97 0.97 0.82 

7400 5400 0.71 0.97 0.97 0.70 

7200 5200 0.62 0.91 0.91 0.65 

7000 5000 0.47 0.81 0.80 0.58 

6800 4800 0.42 0.71 0.80 0.60 

6600 4600 0.30 0.56 0.80 0.56 

6400 4400 0.07 0.38 0.66 0.28 

6200 4200 -0.42 0.38 0.65 0.26 

6000 4000 -0.62 0.38 0.62 0.32 

5800 3800 -0.54 0.36 0.32 0.32 

5600 3600 -0.65 0.16 0.47 0.47 

5400 3400 -0.50 0.26 0.40 0.47 

5200 3200 -0.27 0.48 0.25 0.71 

5000 3000 -0.09 0.55 -0.15 0.42 

4800 2800 -0.32 0.22 -0.41 0.10 

4600 2600 -0.41 0.12 -0.44 0.02 

4400 2400 
 

-0.10 -0.52 -0.09 

4200 2200 
 

-0.26 -0.50 -0.20 

4000 2000 
 

-0.35 -0.45 -0.21 

3800 1800 
 

-0.42 -0.52 -0.32 

3600 1600 
 

-0.36 -0.45 -0.28 

3400 1400 
 

-0.44 -0.50 -0.39 

3200 1200  -0.24 -0.33 -0.18 

3000 1000  -0.07 -0.24 0.03 

2800 800  -0.36 -0.38 -0.24 

2600 600  -0.45 -0.38 -0.28 

 

Table S1. Spearman's correlations between all archaeological proxies and arboreal (tree) pollen (AP). 

Results for 200 year subsets of data in 2000-year moving time windows. The orange-blue scale values 

represent the statistical significance of correlation values, with orange representing p<0.05, red p<0.01, 

and blue p<0.001. Strongest cross-correlation (*lag -1; **lag -2; ***lag +1; no asterisk lag 0).  



 

Time start 
BP 

Time end 
BP 

SPD of 
radiocarbon 

dates 

Raw count  Aoristic 
weight 

Randomised 
duration 

11000 9000 -0.35 0.32 0.32 0.38 

10800 8800 -0.43 0.41 0.41 0.38 

10600 8600 -0.54 0.12 0.12 0.21 

10400 8400 -0.65 0.07 0.07 -0.12 

10200 8200 -0.37 0.29 0.29 0.03 

10000 8000 -0.22 0.24 0.24 0.04 

9800 7800 -0.16 -0.08 -0.08 -0.03 

9600 7600 0.25 0.16 0.16 0.24 

9400 7400 0.07 0.15 0.20 0.19 

9200 7200 0.08 0.16 0.18 0.22 

9000 7000 0.12 0.13 0.35 0.44 

8800 6800 0.31 0.15 0.48 0.54 

8600 6600 0.67 0.52 0.66 0.75 

8400 6400 0.76 0.68 0.72 0.70 

8200 6200 0.83 0.82 0.82 0.76 

8000 6000 0.84 0.88 0.88 0.84 

7800 5800 0.90 0.92 0.92 0.85 

7600 5600 0.77 0.92 0.92 0.83 

7400 5400 0.73 0.92 0.92 0.71 

7200 5200 0.31 0.49 0.49 0.27 

7000 5000 0.12 0.28 0.34 0.15 

6800 4800 -0.04 0.07 0.15 -0.07 

6600 4600 -0.36 -0.13 -0.16 -0.38 

6400 4400 -0.36 -0.40 -0.51 -0.60 

6200 4200 -0.12 -0.61 -0.61 -0.71 

6000 4000 -0.05 -0.48 -0.50 -0.68 

5800 3800 0.12 -0.16 -0.47 -0.59 

5600 3600 0.27 0.31 -0.48 -0.59 

5400 3400 0.33 0.53 -0.38 -0.20 

5200 3200 0.48 0.78 -0.22 -0.10 

5000 3000 0.19 0.57 -0.29 -0.16 

4800 2800 0.01 0.46 -0.38 -0.31 

4600 2600 -0.10 0.43 -0.31 -0.25 

4400 2400 
 

0.52 0.07 0.09 

4200 2200 
 

0.50 0.28 0.25 

4000 2000 
 

0.50 0.66 0.48 

3800 1800 
 

0.72 0.84 0.76 

3600 1600 
 

0.76 0.88 0.79 

3400 1400 
 

0.73 0.85 0.79 

3200 1200  0.73 0.85 0.72 

3000 1000  0.58 0.67 0.58 

2800 800  0.65 0.71 0.64 

2600 600  0.66 0.71 0.71 

 

Table S2. Spearman's correlations between all archaeological proxies and OJCV (Olea, Juglans, Castanea, 

Vitis) pollen. Results for 200 year subsets of data in 2000-year moving time windows. The orange-blue scale 

values represent the statistical significance of correlation values, with orange representing p<0.05, red 

p<0.01, and blue p<0.001. Strongest cross-correlation (*lag -1; **lag -2; ***lag +1; no asterisk lag 0). 



 

Time start 
BP 

Time end 
BP 

SPD of 
radiocarbon 

dates 

Raw count  Aoristic 
weight 

Randomised 
duration 

11000 9000 0.03 0.40 0.40 0.16 

10800 8800 -0.08 0.52 0.52 0.36 

10600 8600 -0.37 -0.11 -0.11 0.12 

10400 8400 -0.43 -0.12 -0.12 -0.05 

10200 8200 -0.41 -0.06 -0.06 -0.15 

10000 8000 -0.32 -0.10 -0.10 -0.03 

9800 7800 -0.18 0.05 0.05 0.12 

9600 7600 0.13 0.27 0.27 0.36 

9400 7400 0.67 0.41 0.46 0.45 

9200 7200 0.58 0.36 0.27 0.20 

9000 7000 0.58 0.50 0.11 -0.04 

8800 6800 0.56 0.41 0.20 0.01 

8600 6600 0.58 0.29 0.33 0.08 

8400 6400 0.19 -0.04 -0.02 0.03 

8200 6200 0.22 0.08 0.08 0.15 

8000 6000 -0.12 -0.23 -0.23 -0.16 

7800 5800 -0.42 -0.55 -0.55 -0.43 

7600 5600 -0.55 -0.77 -0.77 -0.62 

7400 5400 -0.60 -0.80 -0.80 *-0.62 

7200 5200 -0.59 -0.74 -0.74 -0.65 

7000 5000 -0.64 -0.70 -0.75 -0.66 

6800 4800 -0.62 -0.61 -0.75 -0.70 

6600 4600 -0.52 -0.44 -0.75 *-0.65 

6400 4400 -0.43 -0.24 -0.66 -0.55 

6200 4200 -0.10 -0.14 -0.66 -0.48 

6000 4000 0.05 -0.18 -0.71 -0.53 

5800 3800 0.05 -0.30 -0.63 -0.49 

5600 3600 0.13 -0.21 -0.50 -0.43 

5400 3400 0.15 -0.24 -0.33 -0.38 

5200 3200 0.05 -0.43 -0.19 -0.72 

5000 3000 -0.15 -0.50 0.05 -0.54 

4800 2800 0.21 -0.31 0.18 -0.41 

4600 2600 0.44 -0.13 0.18 -0.28 

4400 2400 
 

0.16 0.64 0.16 

4200 2200 
 

0.33 0.58 0.26 

4000 2000 
 

0.41 *0.60 0.38 

3800 1800 
 

0.54 0.73 0.59 

3600 1600 
 

0.56 0.76 0.64 

3400 1400 
 

*0.64 0.81 0.73 

3200 1200  0.58 0.75 0.58 

3000 1000  0.09 0.20 0.18 

2800 800  -0.08 -0.07 -0.04 

2600 600  -0.12 -0.13 0.03 

 

Table S3. Spearman's correlations between all archaeological proxies and API (Anthropogenic Pollen Index). 

Results for 200 year subsets of data in 2000-year moving time windows. The orange-blue scale values 

represent the statistical significance of correlation values, with orange representing p<0.05, red p<0.01, 

and blue p<0.001. Strongest cross-correlation (*lag -1; **lag -2; ***lag +1; no asterisk lag 0).  



 

Time start 
BP 

Time end 
BP 

SPD of 
radiocarbon 

dates 

Raw count  Aoristic 
weight 

Randomised 
duration 

11000 9000 -0.35 0.07 0.07 -0.01 

10800 8800 -0.42 0.17 0.17 0.26 

10600 8600 -0.58 -0.06 -0.06 0.15 

10400 8400 -0.58 -0.08 -0.08 -0.08 

10200 8200 -0.53 -0.17 -0.17 -0.24 

10000 8000 -0.42 -0.18 -0.18 -0.13 

9800 7800 -0.27 -0.23 -0.23 -0.02 

9600 7600 0.15 0.12 0.12 0.32 

9400 7400 0.64 0.23 0.27 0.45 

9200 7200 0.52 0.20 0.06 0.19 

9000 7000 0.59 0.31 0.16 0.21 

8800 6800 0.59 0.18 0.28 0.30 

8600 6600 0.59 0.09 0.38 0.36 

8400 6400 0.18 -0.02 0.02 0.31 

8200 6200 0.19 0.08 0.08 0.33 

8000 6000 -0.02 -0.07 -0.07 0.20 

7800 5800 -0.18 -0.26 -0.26 -0.03 

7600 5600 -0.41 *-0.62 -0.62 -0.36 

7400 5400 -0.48 *-0.73 -0.73 -0.41 

7200 5200 -0.56 -0.78 -0.78 *-0.59 

7000 5000 -0.53 -0.73 -0.75 *-0.60 

6800 4800 -0.50 -0.63 -0.75 -0.65 

6600 4600 -0.39 -0.46 -0.75 -0.62 

6400 4400 -0.26 -0.24 -0.66 -0.54 

6200 4200 -0.02 0.02 -0.52 -0.39 

6000 4000 0.24 0.05 -0.47 -0.36 

5800 3800 0.32 -0.01 -0.57 -0.33 

5600 3600 0.36 0.27 -0.67 -0.45 

5400 3400 0.33 0.26 -0.57 -0.32 

5200 3200 0.37 0.24 -0.28 -0.56 

5000 3000 0.08 0.10 -0.10 -0.49 

4800 2800 0.12 0.13 -0.05 -0.38 

4600 2600 0.18 -0.01 -0.20 -0.42 

4400 2400 
 

0.16 0.18 -0.08 

4200 2200 
 

0.20 0.41 0.07 

4000 2000 
 

0.26 0.47 0.19 

3800 1800 
 

0.43 0.64 0.42 

3600 1600 
 

0.42 0.66 0.47 

3400 1400 
 

0.56 0.77 0.65 

3200 1200  0.42 0.66 0.49 

3000 1000  0.02 0.16 0.15 

2800 800  0.16 -0.04 0.04 

2600 600  0.15 -0.07 0.15 

 

Table S4. Spearman's correlations between all archaeological proxies and Regional pastoral indicator. 

Results for 200 year subsets of data in 2000-year moving time windows. The orange-blue scale values 

represent the statistical significance of correlation values, with orange representing p<0.05, red p<0.01, 

and blue p<0.001. Strongest cross-correlation (*lag -1; **lag -2; ***lag +1; no asterisk lag 0).  



 

Time start 
BP 

Time end 
BP 

SPD of 
radiocarbon 

dates 

Raw count  Aoristic 
weight 

Randomised 
duration 

11000 9000 0.42 0.39 0.39 0.22 

10800 8800 0.42 -0.06 -0.06 -0.16 

10600 8600 0.39 -0.09 -0.09 -0.15 

10400 8400 0.54 -0.10 -0.10 0.21 

10200 8200 0.26 -0.17 -0.17 0.10 

10000 8000 0.22 0.04 0.04 0.09 

9800 7800 0.09 0.02 0.02 -0.01 

9600 7600 0.01 -0.02 -0.02 -0.01 

9400 7400 0.22 0.16 0.10 0.24 

9200 7200 0.38 0.03 0.23 0.30 

9000 7000 0.42 0.23 0.42 0.41 

8800 6800 0.55 0.24 0.50 0.44 

8600 6600 0.64 0.26 0.58 0.47 

8400 6400 0.66 0.67 0.61 0.56 

8200 6200 0.62 0.58 0.58 0.58 

8000 6000 0.66 0.60 0.60 0.65 

7800 5800 0.55 0.38 0.38 0.38 

7600 5600 0.38 0.36 0.36 0.31 

7400 5400 0.12 -0.07 -0.07 0.02 

7200 5200 0.41 0.26 0.26 0.33 

7000 5000 0.33 0.29 0.26 0.43 

6800 4800 0.50 0.45 0.47 0.62 

6600 4600 0.60 0.45 0.53 0.73 

6400 4400 0.60 0.39 0.53 0.77 

6200 4200 0.55 0.09 0.33 0.61 

6000 4000 0.47 0.17 0.51 0.62 

5800 3800 0.52 -0.01 0.20 0.61 

5600 3600 0.55 0.18 0.27 0.59 

5400 3400 0.67 0.36 -0.09 0.58 

5200 3200 0.64 0.52 0.27 0.37 

5000 3000 0.48 0.45 0.26 0.39 

4800 2800 0.15 0.32 0.12 0.22 

4600 2600 -0.18 0.05 -0.07 0.01 

4400 2400 
 

-0.09 -0.29 -0.20 

4200 2200 
 

-0.10 -0.28 -0.21 

4000 2000 
 

-0.13 0.01 -0.12 

3800 1800 
 

0.02 0.19 0.13 

3600 1600 
 

0.03 0.21 0.10 

3400 1400 
 

-0.35 -0.18 -0.25 

3200 1200  -0.58 -0.42 -0.35 

3000 1000  -0.28 -0.12 -0.10 

2800 800  -0.15 0.01 -0.01 

2600 600  -0.12 0.01 0.02 

 

Table S5. Spearman's correlations between all archaeological proxies and ruderal weeds + grazing resistant 

plants. Results for 200 year subsets of data in 2000-year moving time windows. The orange-blue scale 

values represent the statistical significance of correlation values, with orange representing p<0.05, red 

p<0.01, and blue p<0.001. Strongest cross-correlation (*lag -1; **lag -2; ***lag +1; no asterisk lag 0).  



 

Time start 
BP 

Time end 
BP 

SPD of 
radiocarbon 

dates 

Raw count  Aoristic 
weight 

Randomised 
duration 

11000 9000 -0.30 -0.22 -0.22 -0.52 

10800 8800 -0.32 0.17 0.17 -0.24 

10600 8600 -0.41 -0.36 -0.36 -0.38 

10400 8400 -0.48 -0.36 -0.36 -0.65 

10200 8200 -0.76 -0.52 -0.52 -0.70 

10000 8000 -0.66 -0.40 -0.40 -0.71 

9800 7800 -0.64 -0.57 -0.57 -0.76 

9600 7600 -0.43 -0.34 -0.34 -0.55 

9400 7400 -0.16 -0.19 -0.23 -0.36 

9200 7200 -0.03 -0.06 0.13 0.03 

9000 7000 -0.04 -0.02 0.27 0.26 

8800 6800 0.16 0.25 0.30 0.30 

8600 6600 0.04 0.19 0.15 0.14 

8400 6400 0.32 0.41 0.40 0.14 

8200 6200 0.32 0.33 0.33 0.02 

8000 6000 0.22 0.26 0.26 -0.02 

7800 5800 0.39 0.44 0.44 0.14 

7600 5600 0.22 0.39 0.39 0.02 

7400 5400 -0.02 -0.03 -0.03 -0.12 

7200 5200 -0.16 -0.26 -0.26 -0.19 

7000 5000 -0.35 -0.48 -0.46 -0.35 

6800 4800 -0.37 -0.57 -0.45 -0.28 

6600 4600 -0.62 -0.79 -0.64 -0.48 

6400 4400 -0.38 -0.68 -0.51 -0.21 

6200 4200 -0.01 -0.82 -0.60 -0.39 

6000 4000 0.30 -0.84 -0.53 -0.41 

5800 3800 0.47 -0.69 -0.33 -0.39 

5600 3600 0.66 -0.47 -0.05 -0.14 

5400 3400 0.64 -0.49 0.28 0.09 

5200 3200 0.48 -0.41 0.01 0.19 

5000 3000 0.50 -0.46 0.16 0.28 

4800 2800 0.14 -0.72 -0.11 -0.09 

4600 2600 0.05 -0.38 0.27 0.19 

4400 2400 
 

-0.07 0.40 0.28 

4200 2200 
 

0.10 0.36 0.33 

4000 2000 
 

0.16 0.39 0.39 

3800 1800 
 

0.18 0.42 0.35 

3600 1600 
 

0.13 0.38 0.27 

3400 1400 
 

-0.02 0.25 0.09 

3200 1200  -0.13 0.14 0.03 

3000 1000  -0.27 0.09 -0.19 

2800 800  -0.12 0.09 -0.13 

2600 600  -0.03 0.09 -0.01 

 

Table S6. Spearman's correlations between all archaeological proxies and Simpson’s Index. Results for 200 

year subsets of data in 2000-year moving time windows. The orange-blue scale values represent the 

statistical significance of correlation values, with orange representing p<0.05, red p<0.01, and blue 

p<0.001. Strongest cross-correlation (*lag -1; **lag -2; ***lag +1; no asterisk lag 0).  



Time start 
BP 

Time end 
BP 

AP sum OJCV  API Simpson’s 
diversity 

Regional 
pastoral 

Ruderal 
weeds + 

grazing plants 

11000 9000 0.56 0.12 0.32 -0.29 0.10 0.15 

10800 8800 0.62 0.18 0.04 -0.16 -0.09 -0.09 

10600 8600 0.54 -0.19 -0.36 -0.24 -0.35 -0.05 

10400 8400 0.45 0.01 -0.50 -0.03 -0.55 -0.28 

10200 8200 0.23 -0.09 -0.40 0.27 -0.59 -0.29 

10000 8000 0.34 -0.09 -0.50 0.30 -0.72 -0.32 

9800 7800 0.05 0.17 -0.47 0.59 -0.38 -0.39 

9600 7600 -0.12 0.09 -0.59 0.48 -0.38 -0.38 

9400 7400 -0.32 -0.12 -0.31 0.52 -0.21 -0.39 

9200 7200 -0.10 0.15 -0.10 0.43 -0.30 0.08 

9000 7000 -0.15 -0.08 -0.22 0.15 -0.27 -0.15 

8800 6800 -0.55 -0.27 -0.27 0.12 -0.30 -0.22 

8600 6600 -0.53 -0.58 -0.36 0.22 -0.43 -0.32 

8400 6400 -0.72 -0.74 -0.29 -0.04 -0.46 -0.35 

8200 6200 -0.66 -0.78 -0.24 -0.01 -0.49 -0.48 

8000 6000 -0.52 -0.68 -0.15 0.01 -0.46 -0.49 

7800 5800 -0.50 -0.56 0.07 -0.07 -0.26 -0.38 

7600 5600 -0.21 -0.23 0.05 0.16 -0.26 -0.07 

7400 5400 0.18 0.15 -0.12 0.16 -0.39 0.13 

7200 5200 0.39 0.61 -0.29 0.24 -0.16 -0.24 

7000 5000 0.38 0.60 -0.12 0.39 -0.09 -0.22 

6800 4800 0.10 0.59 0.19 0.36 0.30 -0.37 

6600 4600 0.33 0.38 -0.16 0.21 -0.01 -0.22 

6400 4400 0.08 0.30 0.04 0.39 0.16 -0.28 

6200 4200 0.03 0.49 0.03 0.56 -0.08 -0.08 

6000 4000 -0.15 0.20 0.25 0.64 0.03 -0.04 

5800 3800 0.03 0.31 0.21 0.60 0.10 0.14 

5600 3600 -0.16 0.21 0.14 0.47 0.22 0.01 

5400 3400 -0.15 0.04 -0.01 0.26 0.09 0.32 

5200 3200 -0.03 0.18 -0.13 0.26 0.12 0.25 

5000 3000 -0.01 0.18 -0.13 0.22 0.16 0.12 

4800 2800 -0.03 0.03 -0.05 0.03 0.44 -0.08 

4600 2600 -0.07 -0.21 0.38 -0.03 0.49 -0.59 

4400 2400 
 

-0.48 0.18 0.08 0.45 -0.55 

4200 2200 
 

-0.75 0.14 0.18 0.39 -0.58 

4000 2000 
 

-0.77 -0.31 -0.31 -0.03 -0.55 

3800 1800 
 

-0.78 -0.46 -0.55 0.04 -0.47 

3600 1600 
 

-0.80 -0.66 -0.58 -0.19 -0.35 

3400 1400 
 

-0.68 -0.51 -0.69 -0.12 -0.32 

3200 1200  -0.59 -0.33 -0.69 -0.29 -0.48 

3000 1000  -0.54 -0.23 -0.67 -0.18 -0.59 

2800 800  -0.29 -0.19 -0.45 -0.07 -0.48 

2600 600  -0.29 0.15 -0.45 0.04 -0.69 

 

Table S7. Spearman's correlations between all pollen indicators and the climate proxy from Soreq’s cave. 

Results for 200 year subsets of data in 2000-year moving time windows. The orange-blue scale values 

represent the statistical significance of correlation values, with orange representing p<0.05, red p<0.01, 

and blue p<0.001. Strongest cross-correlation (*lag -1; **lag -2; ***lag +1; no asterisk lag 0). 

 



Time start 
BP 

Time end 
BP 

AP sum OJCV  API Simpson’s 
diversity 

Regional 
pastoral 

Ruderal 
weeds + 
grazing 
plants 

11000 9000 -0.08 0.65 0.64 -0.08 ***0.65 -0.27 

10800 8800 -0.30 0.82 0.71 0.30 ***0.75 -0.72 

10600 8600 -0.67 0.66 0.71 0.38 0.78 -0.70 

10400 8400 -0.75 0.65 0.64 0.41 0.62 -0.77 

10200 8200 -0.77 0.49 0.60 0.83 0.52 -0.71 

10000 8000 -0.60 0.50 0.41 0.76 0.35 -0.53 

9800 7800 -0.43 0.30 0.19 0.65 0.22 -0.35 

9600 7600 -0.15 0.13 0.19 0.59 0.22 -0.28 

9400 7400 0.19 0.32 -0.14 0.47 0.04 -0.25 

9200 7200 0.31 0.08 -0.19 0.08 0.03 -0.37 

9000 7000 -0.01 -0.24 -0.16 -0.09 -0.16 -0.32 

8800 6800 0.01 -0.48 -0.42 -0.01 -0.45 -0.48 

8600 6600 0.08 -0.49 -0.65 0.02 -0.55 -0.65 

8400 6400 -0.43 -0.62 -0.54 -0.25 -0.31 -0.43 

8200 6200 -0.73 -0.68 -0.37 -0.27 -0.09 -0.53 

8000 6000 -0.88 -0.76 0.15 -0.22 0.26 -0.55 

7800 5800 -0.90 -0.84 0.58 -0.54 0.35 -0.30 

7600 5600 -0.94 -0.85 0.90 -0.48 0.77 -0.28 

7400 5400 -0.94 -0.85 0.90 -0.04 0.83 0.15 

7200 5200 -0.96 ***-0.68 0.89 0.05 0.84 -0.03 

7000 5000 -0.88 -0.66 0.89 0.25 0.76 -0.09 

6800 4800 -0.82 -0.47 0.87 0.28 *0.72 -0.28 

6600 4600 -0.71 -0.36 0.71 0.39 0.56 -0.22 

6400 4400 -0.55 -0.20 0.61 0.08 0.37 -0.16 

6200 4200 -0.44 -0.07 0.52 0.19 0.04 0.10 

6000 4000 -0.33 -0.35 0.47 0.18 -0.07 -0.07 

5800 3800 -0.25 -0.52 0.53 -0.05 -0.07 0.03 

5600 3600 0.01 -0.71 0.43 -0.09 -0.07 -0.12 

5400 3400 -0.04 -0.83 0.47 -0.07 -0.09 -0.35 

5200 3200 -0.05 -0.87 0.33 0.15 -0.27 -0.66 

5000 3000 -0.47 -0.84 0.49 0.33 -0.01 -0.67 

4800 2800 -0.10 -0.48 0.16 0.75 -0.50 -0.41 

4600 2600 0.04 -0.26 -0.16 0.53 -0.43 -0.08 

4400 2400 
 

-0.26 -0.24 0.30 -0.39 0.01 

4200 2200 
 

-0.42 -0.53 -0.02 -0.30 -0.01 

4000 2000 
 

-0.38 ***-0.73 -0.22 -0.39 0.13 

3800 1800 
 

-0.36 ***-0.67 -0.25 -0.26 0.12 

3600 1600 
 

-0.31 -0.42 -0.24 0.03 -0.16 

3400 1400 
 

-0.19 -0.19 -0.18 0.14 -0.12 

3200 1200  -0.01 -0.08 -0.07 0.62 0.25 

3000 1000  0.35 0.47 0.01 0.81 -0.14 

2800 800  0.07 0.56 -0.20 0.68 -0.21 

2600 600  -0.36 0.50 -0.61 0.45 -0.47 

 

Table S8. Spearman's correlations between all pollen indicators and the climate proxy from Jeita’s cave. 

Results for 200 year subsets of data in 2000-year moving time windows. The orange-blue scale values 

represent the statistical significance of correlation values, with orange representing p<0.05, red p<0.01, 

and blue p<0.001. Strongest cross-correlation (*lag -1; **lag -2; ***lag +1; no asterisk lag 0). 



Time start 
BP 

Time end 
BP 

SPD of 
radiocarbon 

dates 

Raw count  Aoristic 
weight 

Randomised 
duration 

11000 9000 0.50 0.70 0.70 0.87 

10800 8800 0.57 0.53 0.53 0.79 

10600 8600 0.54 -0.32 -0.27 0.70 

10400 8400 0.18 -0.08 -0.08 0.17 

10200 8200 -0.19 -0.41 -0.41 -0.19 

10000 8000 -0.13 -0.23 -0.23 -0.22 

9800 7800 -0.39 -0.52 -0.52 -0.53 

9600 7600 -0.67 -0.70 -0.70 -0.73 

9400 7400 -0.71 -0.73 -0.68 -0.93 

9200 7200 -0.22 -0.59 -0.23 -0.53 

9000 7000 -0.24 -0.49 -0.33 -0.62 

8800 6800 -0.33 -0.42 -0.39 -0.71 

8600 6600 -0.39 -0.39 -0.44 -0.78 

8400 6400 -0.56 -0.60 -0.55 -0.75 

8200 6200 -0.61 -0.55 -0.55 -0.68 

8000 6000 -0.55 -0.46 -0.46 -0.55 

7800 5800 -0.50 -0.43 -0.43 -0.46 

7600 5600 -0.36 -0.12 -0.12 -0.22 

7400 5400 -0.09 0.30 0.30 0.12 

7200 5200 -0.05 0.27 0.27 0.10 

7000 5000 -0.21 0.05 0.04 -0.08 

6800 4800 -0.68 -0.40 -0.35 -0.37 

6600 4600 -0.62 -0.36 -0.07 -0.20 

6400 4400 -0.64 -0.63 -0.32 -0.49 

6200 4200 -0.31 -0.70 -0.41 -0.53 

6000 4000 0.05 -0.81 -0.49 -0.50 

5800 3800 0.31 -0.48 -0.64 -0.35 

5600 3600 0.45 -0.05 -0.64 -0.30 

5400 3400 0.54 0.15 -0.60 -0.07 

5200 3200 0.55 0.23 -0.50 -0.14 

5000 3000 0.58 0.23 -0.41 -0.10 

4800 2800 0.49 0.29 -0.32 -0.08 

4600 2600 0.49 0.44 0.05 0.16 

4400 2400 
 

0.58 0.43 0.62 

4200 2200 
 

0.47 0.59 0.59 

4000 2000 
 

0.41 0.13 0.25 

3800 1800 
 

0.04 -0.22 -0.15 

3600 1600 
 

-0.19 -0.46 -0.33 

3400 1400 
 

-0.13 -0.40 -0.28 

3200 1200  -0.15 -0.39 -0.35 

3000 1000  0.01 -0.27 -0.24 

2800 800  0.25 0.07 0.10 

2600 600  0.23 0.07 -0.01 

 

Table S9. Spearman's correlations between all archaeological proxies from Southern Levant and the climate 

proxy from Soreq’s cave. Results for 200 year subsets of data in 2000-year moving time windows. The 

orange-blue scale values represent the statistical significance of correlation values, with orange 

representing p<0.05, red p<0.01, and blue p<0.001. Strongest cross-correlation (*lag -1; **lag -2; ***lag +1; 

no asterisk lag 0).  



Time start BP Time end BP SPD of 
radiocarbon 

dates 

Raw count  Aoristic weight Randomised 
duration 

11000 9000 0.31 0.81 0.81 -0.09 

10800 8800 0.19 0.73 0.73 0.12 

10600 8600 0.15 -0.32 -0.11 0.09 

10400 8400 -0.27 -0.08 -0.44 -0.01 

10200 8200 -0.26 0.06 0.06 -0.13 

10000 8000 -0.12 -0.10 -0.10 -0.09 

9800 7800 -0.02 -0.11 -0.11 -0.01 

9600 7600 0.37 -0.44 -0.44 -0.28 

9400 7400 0.21 -0.66 -0.66 -0.31 

9200 7200 0.43 -0.87 -0.87 -0.56 

9000 7000 0.58 -0.90 -0.90 -0.60 

8800 6800 0.65 -0.95 -0.95 -0.60 

8600 6600 0.65 -0.93 -0.93 -0.55 

8400 6400 0.31 -0.54 -0.90 -0.10 

8200 6200 0.36 -0.01 -0.92 -0.30 

8000 6000 0.43 0.33 -0.93 -0.52 

7800 5800 0.25 0.56 -0.93 -0.68 

7600 5600 0.16 0.68 -0.93 -0.79 

7400 5400 -0.24 0.26 -0.92 -0.72 

7200 5200 -0.22 0.02 -0.94 -0.71 

7000 5000 -0.37 -0.28 -0.91 -0.56 

6800 4800 -0.39 -0.53 -0.87 -0.53 

6600 4600 -0.28 -0.57 -0.78 -0.35 

6400 4400 -0.32 -0.58 -0.65 -0.12 

6200 4200 -0.33 -0.29 -0.26 0.20 

6000 4000 -0.12 0.18 0.15 0.41 

5800 3800 0.01 0.37 0.37 0.41 

5600 3600 0.07 0.53 0.51 0.49 

5400 3400 -0.18 0.41 0.61 0.59 

5200 3200 -0.15 0.24 0.76 0.72 

5000 3000 -0.35 0.19 0.69 0.62 

4800 2800 -0.03 0.30 0.68 0.67 

4600 2600 0.18 0.27 0.63 0.44 

4400 2400 
 

0.10 0.53 0.42 

4200 2200 
 

-0.14 0.15 0.32 

4000 2000 
 

-0.28 0.01 0.22 

3800 1800 
 

-0.31 -0.07 0.22 

3600 1600 
 

-0.31 -0.01 0.05 

3400 1400 
 

-0.20 0.07 0.21 

3200 1200  0.04 0.19 0.21 

3000 1000  0.39 0.12 0.21 

2800 800  0.27 -0.13 -0.15 

2600 600  0.25 -0.27 -0.08 

 

Table S10. Spearman's correlations between all archaeological proxies from Northern Levant and the 

climate proxy from Jeita’s cave. Results for 200 year subsets of data in 2000-year moving time windows. 

The orange-blue scale values represent the statistical significance of correlation values, with orange 

representing p<0.05, red p<0.01, and blue p<0.001. Strongest cross-correlation (*lag -1; **lag -2; ***lag +1; 

no asterisk lag 0).  



 

 

 

 

 


