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Abstract—Lattice Quantum ChromoDynamics (QCD), and by
extension its parent field, Lattice Gauge Theory (LGT), make
up a significant fraction of supercomputing cycles worldwide.
As such, it would be irresponsible not to evaluate machines’
suitability for such applications. To this end, a benchmark has
been developed to assess the performance of LGT applications
on modern HPC platforms. Distinct from previous QCD-based
benchmarks, this allows probing the behaviour of a variety of
theories, which allows varying the ratio of demands between on-
node computations and inter-node communications. The results
of testing this benchmark on various recent HPC platforms are
presented, and directions for future development are discussed.
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I. INTRODUCTION

Quantum ChromoDynamics (QCD), the theory of the strong

interaction of quarks and gluons, is a highly successful theory

with high-precision predictive power. However, calculations

of physical interest are rarely analytically tractable, instead

requiring Monte Carlo simulation of a discretised treatment

referred to as Lattice QCD (LQCD). Lattice QCD codes are

developed by a number of theoretical particle physics re-

search groups internationally, and these codes use a significant

fraction of available supercomputing capacity worldwide—for

example, NVIDIA quote that up to 20% of North American

supercomputing cycles are used for QCD research [1].

QCD lies in a family of models known as gauge theories,

and the numerical techniques developed to study QCD can also

be applied to other gauge theories, forming a broader area of

research known as Lattice Gauge Theory (LGT). Such theories

may differ from QCD in a number of ways; computationally,

the difference is typically the dimensionality and structure

of the sub-matrices related to each point in the discretised

space. These differences can have an impact on the demands

that LGT code makes of the computer on which it runs—for

example, altering the ratio of computations to communications

demands.

Non-QCD LGT has become of interest recently as a tool for

theoretical physicists to probe physics Beyond the Standard

Model (BSM), for example relating to recent discoveries at

the Large Hadron Collider at CERN. Recent reviews of such

techniques include [2], [3].

Benchmarks have previously been developed out of QCD

codes, and many of these benchmarks have been adopted in

common benchmark suites used for machine evaluation (for

example, the NERSC MILC benchmark developed from the

MILC research code [4]). However, the QCD codes used

for these benchmarks do not have sufficient flexibility to

probe BSM theories of physical interest. Thus in order to

characterise the diverse performance demands of BSM LGTs,

a novel benchmark is necessary, derived from (or at least

approximating) a flexible LGT code.
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In this work, we present BSMBench, a benchmark satisfying

this criterion, derived from the HiRep research LGT code

[5], [6]. In the remainder of this paper, in section II we will

outline the relevant details of LGT (in particular highlighting

differences from QCD), then in section III, we will describe

the methodology of the benchmark. In section IV we will

then present some selected results, characterising some recent

machines’ performance in the tests set up by the benchmark,

before concluding and suggesting future directions our work

will take.

II. LATTICE GAUGE THEORIES

A. Field content

The “lattice” in Lattice Gauge Theory is a hypercubic array

of points (“sites”), forming a discretised space (or spacetime).

This space is most frequently four-dimensional, and the length

in the three spatial directions is generally made to be the same,

giving a total number of sites L3 × T . Each lattice site has

eight nearest neighbours (up and down in each of the four

dimensions); the lines joining a point to a nearest neighbour

is referred to as a “link”. The lattice typically has periodic

boundary conditions, so the number of links is four times

the number of sites (avoiding double counting positive and

negative links), with no edge corrections.

A gauge theory will typically have one gauge field (the

gluon field of QCD), and Nf ≥ 1 “flavours” of fermion (the

quark fields). On the lattice, the gauge field is an N × N
complex-valued matrix on every link, while the fermion fields

are M-dimensional complex-valued vectors at every site. N
and M are integer-valued tunable parameters of the theory;

N ≥ 2 may be freely chosen, while M ≥ N is constrained to

certain values allowed by group theory (specifically, the M-

vector must transform under some non-trivial representation

of the group of which the N × N matrix is an element).

Counting up, at each site the gauge field contributes 4

links ×(N × N ) elements × 2 real numbers; i.e. 8N2 real

numbers per site. The fermion fields, meanwhile, contributes

Nf × M × 2 = 2M Nf real numbers per site. The contributions

to the whole lattice are then multiplied by L3T ; i.e. the gauge

field comprises 8N2L3T real numbers, and the fermion fields

2M NfL3T . In the case of QCD, N = M = 3 (the three colors

of QCD—red, green and blue).

B. Dirac operator

The physics of the fermions is encoded in the so-called

“Dirac operator”; on the lattice this is a matrix relating all

elements of the fermion field to all elements of the fermion

field—that is to say, it is a (2M NfL3T )× (2M NfL3T )-element

matrix. The interactions in the fermion fields are taken to

be nearest-neighbour, resulting in the Dirac operator being

exceedingly sparse, and depend on the values of the gauge

field elements. The primary task of the Monte Carlo code is

to invert this matrix. This is typically done using a Conjugate

Gradient (CG) or related algorithm, and as such the dominant

(and to a reasonable approximation, only) contribution to the

runtime comes from the routine to multiply the fermion field

by the Dirac operator; we will call this Dphi1.

This overwhelming dominance of execution time by one

single subroutine has naturally led to it being the focus for

optimization; in QCD applications it is not uncommon for

Dphi to be hand-optimized with for example vector intrinsics

and manual prefetching, rather than written in a naı̈ve way

and relying solely on the compiler. For more general LGT

tools this kind of optimization is less practical; the need for

generality in N and M precludes us from hard-coding highly-

optimised code in the way that QCD codes can for a fixed

N and M . For example, the HiRep research code uses a code

generator to produce sets of macros for the matrix-matrix and

matrix-vector operations required, which are then called from

Dphi.

C. Parallelisation

The hypercubic geometry and nearest-neighbour interac-

tions found in the problem means that it naturally lends itself to

spatial parallelisation, with the lattice being sliced up in each

dimension, and each resulting piece of lattice being handled by

a dedicated process (with processes generally communicating

via MPI, although hybrid OpenMP+MPI approaches exist).

The need to store and communicate boundary terms places a

lower bound on the piece size that can be efficiently handled,

and thus an upper bound on the degree of parallelisation for

a particular problem size.

III. THE BENCHMARK

The priorities when developing BSMBench were to reflect

the computational demands and portability of the HiRep

research code, to be able to probe more than one theory

(i.e. set of values of (N,M) above—since the performance

demands change as a function of these parameters), to run

in reasonable time, and to spend sufficiently long that the

run time is not dominated by startup overheads. Additionally,

the test suite should be easily run by non-LGT specialists,

so that it may, for example, be used by hardware vendors

to quote performance of development machines early on in

procurement cycles, without having to grant system access to

end-users.

The strategy chosen to meet these criteria was based on

that of Lüscher [7]. It takes three tasks—two more elementary

vector and matrix-vector operations, followed by the full

Dphi—and in turn iterates them on randomly-generated fields

for a fixed period of time2. (The CG inversion is currently

not benchmarked, but can be requested as a check on the

machine’s numerics.) The number of floating point operations

for each task has previously been calibrated, and thus the

1Some other works refer to this as Dslash.
2To avoid spending excessive time on time checks, the numbers of iterations

between time checks doubles after each check.
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performance can be quantified by FLOPs/s = Number of

iterations × FLOPs per iteration / Time Taken.

The problem size is fixed, thus the benchmark probes strong

scaling behaviour. Since the problem size in production is

typically fixed by physical demands, research use of the

benchmark is less interested in weak scaling; however, it is

possible that it will be added in a future version.

The benchmark is provided with case scenarios, correspond-

ing with three theories: (N,M) = (2, 4) (communications-

dominated), (3, 3) (balanced, and equivalent to QCD), and

(6, 6) (compute-dominated). Rather than including the full

code generator, output header files for these theories are

included with the benchmark.

Even for the communications-dominated theory, each itera-

tion has a fixed number of FLOPs, and so the FLOP/s rate

for the benchmark gives a proxy to the performance. The

advantage of using the same measure for all three theories is

that the benchmark statistics may then be directly compared

between theories.

BSMBench was constructed by paring down the HiRep

research code to the essential elements, thus the benchmarked

code closely reflects the workloads in production runs. Further,

optimisations can cross-pollinate between HiRep and BSM-

Bench.

Owing to the need to be able to adopt new HPC infrastruc-

ture as it becomes available, the HiRep research code is highly

portable—in general, it can be run on a new machine simply by

setting the correct compiler and running make. This property

is inherited by BSMBench; in the results shown below, no

code changes needed to be made to allow the benchmark to

run, and to be reflective of the de factor usage of the research

code the only optimisation performed was some tuning of

the compiler flags. As mentioned, were system vendors to

adopt the benchmark and optimise it more aggressively, the

optimisations could be backported to the research code to

benefit all users.

The flexibility of the benchmark thus manifests in three

ways: it is easily portable to many architectures, it can run in

reasonable time on a diverse range of machine sizes, and most

importantly, it can tune the relative demands on computation

and inter-process communication.

IV. RESULTS

BSMBench has been tested on a variety of HPC platforms,

including IBM Blue Gene/P and /Q machines, an SGI ICE

XA system with Haswell CPUs, Fujitsu x86 clusters (West-

mere and Sandy Bridge-based, at HPC Wales), a Xeon Phi-

based cluster (at the Hartree Centre), commodity clusters

(both Infiniband and gigabit Ethernet setups), and a Mac

Pro workstation.3 Details of MPI libraries, compilers, and

3The benchmark has also more recently been used on other recent prototype
architectures; however, the results of these analyses are currently subject to
non-disclosure agreements.

compiler flags are shown in Table I; in all cases, the default

MPI configuration was used, with no hand-tuning of process

placement or run-time flags.

Full results of each sub-test on every machine tested would

be cumbersome to present here, thus we have chosen an

interesting subset of results to highlight. Since the Dphi test is

most representative of a typical production workload, it is this

test that we focus on in presenting results. Results are plotted

on a logarithmic scale, to avoid one or two data dominating

the plots; plots are shown both of the total FLOP/s, and also

of the FLOP/s normalised by the number of processes. In the

case of perfect scaling, the latter plot would be a flat line.

A. CPU-based machines

On machines with all but the most memory-constrained

nodes, all tests may be run on a single core, allowing an

accurate look at the scalability of the code. We observe this in

Fig. 1, where the three tests start off approximately compara-

bly in performance, but the differing communications demands

of the three theories used causes the scaling behaviour to differ.

The importance of good interconnects for code of this type

is clearly demonstrated by the sharp drop-off in performance

once the parallelisation goes beyond a single node (16 cores)

and starts hitting the network. Also shown are results for a

12-core Mac Pro workstation; this outperforms the cluster on

small core counts, but is outperformed core-for-core once core

counts increase. We do not expect HyperThreading to give

us any advantage on these workloads, since the code makes

heavy use of floating-point units, which are shared between

the hardware threads.

In Fig. 2, both Blue Gene/P and /Q machines show good

scaling behaviour; however, core-for-core, the two machines

have very similar performance, despite Blue Gene/Q’s higher

clock speed. The reason for this is vectorisation; as mentioned

above, the code does not vectorise well to vectors longer

than 2 double-precision floating-point numbers. This means

that the 2-double vector units on Blue Gene/P can be used,

but not the 4-double vector units on Blue Gene/Q. The

performance on Blue Gene/Q fluctuates more as a function

of number of processes than on Blue Gene/P; this illustrates

the need to tune the process placement to take advantage of the

network topology—in the case of Blue Gene/P, the problem

sits advantageously on the network topology without the need

for optimisation, whereas on Blue Gene/Q, the default layout

is non-optimal for some parallelisations.

Fig 3 shows results for three clusters; two HPC Wales

clusters, one Intel Westmere-based and one Sandy Bridge,

and one other Westmere-based cluster (BlueIce2 at Swansea).

As we might expect, at low process count the two Westmere

clusters perform very similarly, while the Sandy Bridge cluster

offers modest (∼ 2×) improvements in performance. At higher

process counts, the two Westmere systems diverge somewhat;

this is due to a greater freedom in choosing the job layout on

this system, with 8 rather than 12 MPI tasks per processor
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TABLE I. MPI LIBRARIES, COMPILERS, AND COMPILER FLAGS USED TO TEST EACH MACHINE.

Machine Compiler MPI Compiler flags
Blue Gene/P

IBM XL IBM (MPICH2-based)
-O5 -qstrict -qarch=450d -qtune=450 -qunroll -qinline -qhot=simd

Blue Gene/Q -O5 -qstrict=precision -qarch=qp -qtune=qp -qhot=level=2 -qsimd

Ethernet cluster GCC 4.1.2 OpenMPI 1.3.3
-Wall -std=c99 -O2 -fomit-frame-pointer -mfpmath=sse -msse -msse2

Mac Pro LLVM-GCC 4.2.1 MPICH2 1.5

Westmere GCC 4.1.2 OpenMPI 1.5.4 -Wall -std=c99 -O2 -fomit-frame-pointer -mfpmath=sse -msse -msse2

Sandy Bridge Intel 13.0 Intel 4.1 -Wall -std=c99 -O3 -xAVX -simd -ipo -finline-functions

BlueIce2 GCC 4.4.6 OpenMPI 1.6.4 -Wall -std=c99 -O3 -fomit-frame-pointer -mfpmath=sse -march=native

Xeon Host Intel 15.0.2 Intel 5.1.1 -Wall -ipo -std=c99 -parallel -O3 -xHost

Xeon Phi Intel 15.0.2 Intel 5.1.1 -Wall -O3 -ansi-alias -qopenmp -std=gnu99 -mmic

SGI ICE XA Intel 15.0.5 SGI MPT 2.14 -Wall -std=c99 -O2 -xCORE-AVX2 -simd -finline-functions -no-ipo
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Figure 1: Results for the Dphi test on an Ethernet-only cluster, and a Mac Pro, including a test of HyperThreading performance.
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Figure 2: Results for the Dphi test on Blue Gene/P and /Q machines.

dividing more nicely into the powers of 2 in the spatial

parallelisation. Also as expected, the performance at low

process count is very close between the three theories, but

starts to diverge once communications starts to play more of

a role.

In Fig. 4 we show results for an SGI ICE XA system with

Intel Haswell nodes (24 cores per node). This system has

a dual-plane enhanced hypercube interconnect topology (i.e.

there are two independent interconnect fabrics, each with their

own switches and cables). The figure shows the benchmark

results for both the single-plane (one fabric only) and dual-

plane (both fabrics work cooperatively) cases. At low process

counts, the per-core performance is similar to the previous-

generation Intel architectures; however, at higher parallelisa-
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Figure 3: Results for the Dphi test on Intel Westmere- and Sandy Bridge-based HPC Wales clusters, and a Westmere-based

cluster (BlueIce2) in Swansea.
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Figure 4: Results for the Dphi test on an SGI ICE XA system with Haswell CPUs.

tions, the system demonstrates significantly better scaling. The

effect of increasing the inter-node communications bandwidth

is particularly visible in the comms test.

To briefly summarise these results, all machines tested that

have high-speed interconnects (i.e. not Ethernet) show very

good strong scaling at small to intermediate parallelisations.

Those with more advanced interconnects (Blue Gene) show

better strong scaling at the highest parallelisations than ma-

chines with simpler Infiniband arrangements. Both of these

effects are most pronounced for the more communications-

intensive task. All of the larger machines tested were able to

reach between 1011 and 1012 FLOP/s. Blue Gene required 4–8

times as many cores to reach comparable performance to x86.

Does this mean, then, that any machine with a fast intercon-

nect is suitable or preferable? This depends on a number of

factors. At smaller problem sizes, the maximum parallelisation

is reached more quickly, and so it would be preferable to

minimise the use of the communications links (by using

only one or a small number of nodes) rather than needing

to procure the fastest available links. Larger problem sizes

are only tractable through parallelisation, so the need for the

fastest available interconnects becomes more pronounced. This

analysis places Blue Gene/P and /Q as similarly desirable on

a per-core basis; however, other obvious considerations then

come into play—for example, that the footprint and power

demands of a Blue Gene/Q would be significantly lower than

those of an equivalent number of Blue Gene/P cores.

B. Xeon Phi

The benchmark has also been tested on a Xeon Phi (Knights

Corner) system at the Hartree Centre. No modifications were

necessary to allow the code to compile (beyond specifying the

compiler). While the Phi needs 240 threads to keep all cores

occupied and gain maximum performance, it was impossible

to run that many MPI tasks due to the size of the required

MPI buffers exceeding the card’s memory. It was therefore

necessary to use a hybrid MPI+OpenMP approach. Fig. 5

shows the results of these tests; where OpenMP was used,
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Figure 5: Results of testing the performance of a Xeon Phi

node at the Hartree Centre. The horizontal lines are the

performance of the host node, with two Xeon sockets, using

24 MPI processes (Per-process performance is not shown,

since for the OpenMP runs values for the number of processes

should attempt to use the entire card, with only the breakdown

between MPI and OpenMP changing.)

the number of threads was chosen as Number of threads =⌊
240

Number of MPI tasks

⌋
. For the comms and balance test, clearly

the hybrid approach gives a performance gain over straight

MPI; however, maximising the number of MPI tasks also

improves performance over using OpenMP only. (The drop in

performance of the compute test between 4 and 8 MPI tasks

is currently poorly understood.) The performance is at best

approximately half that of the two Xeon sockets on the host;

one would hope that this relationship could be inverted if the

code could be adapted to make use of the 512-bit vector unit

in the KNC processor.

V. CONCLUSION

We have developed a novel benchmark, BSMBench, based

on Beyond the Standard Model Lattice Gauge Theory. Unlike

previous benchmarks based on QCD, it has the capacity to

adjust the theory under study, and consequently modify the

workload’s demands in terms of the ratio of computations to

communications. Thanks to this, BSMBench could be applied

in a variety of user scenarios (e.g. as a monitoring and fault

diagnostic tool or as a general-purpose performance evaluation

utility) that transcend its original goals.

We have tested this benchmark on a variety of recent

supercomputing platforms, including CPUs and Xeon Phi

coprocessors. Our results show good strong scaling in the

presence of a sufficiently fast interconnect, and exhibit the

expected splitting between theories under study.

One limitation of the benchmark (and the underlying re-

search code) is an inability to make use of vector units wider

than two double precision floating-point numbers; work is

underway to lift this restriction, which would significantly

boost the performance on more modern architectures featuring

AVX and QPX vector instructions. Other future improvements

to BSMBench will be to reduce the reliance on parameter

sets, with the core code instead able to calculate the necessary

parameters, and potentially to introduce a weak scaling test.

Interesting potential tests of the benchmark currently under

investigation include assessing the relative performance of

different MPI libraries on the same architecture, and observing

how the results compare with those of other benchmarks—for

example, those based on QCD (for example, [4]), and those

based on Conjugate Gradient solvers (for example, [8]).

BSMBench is available at http://www.bsmbench.org/.
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