
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2018-07-31

Overview of using visualisation in

programming learning

Alhammad, S

http://hdl.handle.net/10026.1/12492

International Journal of Advances in Electronics and Computer Science

IRAJ

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

International Journal of Advances in Electronics and Computer Science, ISSN(p): 2394-2835 Volume-5, Issue-7, Jul.-2018
http://iraj.in

Overview of using Visualisation in Programming Learning

20

OVERVIEW OF USING VISUALISATION IN PROGRAMMING
LEARNING

1SARAH ALHAMMAD, 2SHIRLEY ATKINSON, 3LIZ STUART

1,2,3 School of Computing, Electronics and Mathematics, Plymouth University, Plymouth, United Kingdom

1,2Collage of Computer Sciences, Princess Nora bint Abdulrahman University, Riyadh, Saudi Arabia

E-mail: 1sarah.alhammad@plymouth.ac.uk, 2shirley.atkinson@plymouth.ac.uk, 3L.stuart@plymouth.ac.uk

Abstract - There is a high demand for mechanisms that support programming teaching, particularly in finding a solution to
the bottleneck in programming education. Nowadays, different methods of teaching can support the learning process and
motivate students to learn. These methods improve the thinking and creativity that lead to defining and analysing the
problem of supporting programming learning to devise ideal solutions. Approaches such as visualising the code or using a
memory diagram to trace the program’s execution have made a vital contribution to the process of teaching and learning how
to program.
The purpose of this paper is to provide an overview of studies that have been conducted in visualisation to support
programming learning. Moreover, tools that follow the visualisation and memory-referencing approach will be investigated
in this paper.

Index terms - Memory diagram, Memory Transfer Language, Programming learning, Visualisation.

I. INTRODUCTION

Memory reference visualisation, or memory transfer
language (MTL), is defined in [1] as a language or
device used by programmers to describe the impact of
lines of code on computer memory (RAM).
Visualising the impact of each line of code on
memory allows novices to grasp the purpose and
impact of each instruction. In this way, students’
comprehension will improve because they can predict
the result during the execution time. A memory
diagram as a pedagogical tool is carefully designed to
aid students’ understanding of programming. The use
of a memory diagram has a direct relationship
between code and its effect. It does not require a
student to learn any concepts, compared to a
flowchart, which requires students to know the
meanings of symbols and their connections. A
memory diagram is a portable, flexible and scalable
tool, as it is machine- and language-independent. It
could also be used as a code design and testing tool
[1],[2].
This paper will provide a literature review to
contribute to the use of visualisation and memory
diagrams in programming learning. Moreover, the
paper will present studies that have been conducted to
evaluate the visualisation method. In the final part of
the paper, an overview of the most common tools that
rely on visualisation will be presented to show their
effects on students’ comprehension.

II. OVERVIEW OF VISULISATION METHOD

Many researchers have pointed out the advantages of
using visualisation in programming learning. In [2],
the researchers tested hypotheses regarding the use of
a memory diagram in teaching programming to
enhance students’ ability to write code. A class

experiment was conducted on 100 students, who were
divided into two groups (control and experimental
groups) and whose test scores in the final exam were
compared. There was a significant difference in the
test scores of the two groups (the average score was
64.67% for the experimental group and 60.02% for
the control group), so the hypothesis was accepted at
a certain level.
Mselleand Twaakyondo in [2] also considered the
impact of using MTL on reducing misunderstandings
in programming teaching. An experiment using MTL
to teach programming used error counts in the exam
for two groups of students, one of which used MTL
and the other a conventional approach. The statistical
numbers indicate that the number of errors made by
the MTL group (208 total errors) was less than the
number of errors made by the control group (392 total
errors).
The study in [3] found that a visualisation
environment contributes to increasing apprehension
and reducing the effort and time consumed during
programming lectures. The visualisation also
overcomes the barriers to programming, such as
mechanical and sociological barriers.
The researchers in [4] evaluated the “Turtlet” tool as
an approach to using visualisation in teaching
programming. Two surveys were distributed to and
completed by students at the end of the course. The
studies measured aspects such as complexity, interest
and ease of use. The first survey was analysed to
evaluate students’ opinions of the tool. The results
showed that 35% of students liked the tool, 20% did
not like it and the rest were neutral. The second
survey analysed the demonstration and course
exercise used by the tool. The results collected from
the second study proved that 81% of the students
preferred taking the course project with Turtlet, 96%
enjoyed the exercise that was created using Turtlet

International Journal of Advances in Electronics and Computer Science, ISSN(p): 2394-2835 Volume-5, Issue-7, Jul.-2018
http://iraj.in

Overview of using Visualisation in Programming Learning

21

and 85% preferred the demonstration. Overall,
comparing students from 2005 to 2007, there was a
decrease in the rate of course dropout, withdrawal or
failure. The rate was 55.1% and 27.3% before and
after Turtlet, respectively.
BackStop is another tool that uses visualisation in
teaching programming. In [5], the researchers
measured the usefulness of BackStopin relation to
two aspects: the time needed to find errors and solve
the errors in a given task (debugging a logical error).
Two experiments were conducted: the first recorded
the time required by the students to identify and fix
the logical errors related to a given task, while the
second was conducted to find logical errors in the
program. The results of the first research found that
76% of the total students were able to recognize the
mistakes and fix them within eight minutes. On the
other hand, the students in the control group who
were selected from the top students were able to
correct the errors in less than five minutes. However,
the reason it took so long was that the messages in
BackStop were too long, and it took time to read
them. In the second experiment, 47% students were
able to find the errors. The students claimed that the
debug tool (BackStop) helped them find the errors.
Hagan and Markham investigated the use of BlueJ as
a visualisation tool to collect students’ opinions of
and attitudes towards BlueJ. The focus of a study
conducted by Hagan and Markham [6] was not on
syntax, but on the full picture of programming. The
experiment was conducted at Monash University with
350 students who started to write a single class and
then gradually began to write more classes. The
students used the interactive visual environment of
BlueJ, so they advanced from that environment to
learn the object-oriented concept. During the
semester, a series of surveys were distributed to
evaluate the students’ expectations and their
performance in BlueJ. The study collected
information about the students and their background
knowledge in programming, and it then evaluated
their BlueJ experiences. The survey showed that the
majority of students had a positive shift in their
relation to BlueJ. However, they still doubted its
stability and reliability [6].
An example of using BlueJ as a pedagogical tool is
implementing a project-building clock. The students
should divide the problem into sub-problems; in our
case, they have to implement two classes:
DisplayNumber and DisplayClock. The
DisplayNumber class displays a time consisting of
two values, hours and minutes. On the other hand, the
DisplayClock class is used to describe the clock. The
solution steps can be implemented in the BlueJ
platform by drawing the classes and modifying them
at any time. Students benefit from the tool by learning
the concept of object-oriented programming using the
interactive mode [7].
The effectiveness of using Alice as a visual tool for
learning was examined by comparing Alice to other

platforms, such as SCRIBBLER, Microsoft Robotic
Developer Studio 2008R3, NXT Tech Virtual
Robotic Worlds and Lego NXT2.0.An experiment
was conducted in Icesi University involving 15
lessonscovering the basics of programming. Each
lesson containing video phones, and a workshop , the
videos included tutorials covering specific topics with
three parts: a theoretical introduction, a step-by-step
exercise and results. The result of their experience
suggested that using Alice raised the students’
interest in programming. A questionnaire was
distributed at a workshop held after the experiments
to examine the effectiveness of using the tool. The
results showed that students held a negative view of
programming languages in general before the
experiment, where 58% of students found them hard
to understand, 92% said they had enough experience
with the lessons and about 67% said they had fair or
good experiences with programming languages, such
as Java and C++. The result suggested that using
Alice raised the students’ interest in programming.
Alice helps strengthen the theoretical concepts, while
ROBOTICS and Lego help students to observe their
code becoming an action[8].
The study in [9] evaluated and tested the usability of
the Memview tool as a visual debugger in a
classroom experiment, as Memview uses a picture of
the memory. The authors found that the tool reduces
students’ misunderstanding, as well as the effort and
length of lectures.
AnimPascal has been evaluated as a visual tool used
in programming learning. A typical laboratory class
can be observed while students solve binary search
algorithms using AnimPascal. The recording features
in AnimPascal gave the instructors an overall idea of
students’ errors, which will consequently help them
to focus on these errors to avoid the
misunderstanding. The explicit messages in case of
failure assisted the students in problem-solving[10].
Does a memory diagram help students to understand
code execution? This question was raised in [11] to
evaluate the use of a memory diagram by using the
Code Memory Diagram (CMD) tool when used by
(developer/author). A survey consisting of a
questionnaire, video observation and participants’
(students’) observations was distributed for the
evaluation. Of 25 students in total, the questionnaire
and participant observation showed an increase in
understanding among 52% of students, while the
remaining 48% showed no change in understanding.
After that, the researcher tested the usability of CMD
during the teaching session. It revealed that the
software enhanced students’ comprehension of
structured programming during the teaching
session[12].

III. VISUAL TOOLS FOR SUPPORTING
PROGRAMMING LEARNING
This section gives an overview of some tools that
have been used in programming learning in academic

International Journal of Advances in Electronics and Computer Science, ISSN(p): 2394-2835 Volume-5, Issue-7, Jul.-2018
http://iraj.in

Overview of using Visualisation in Programming Learning

22

institutions to increase comprehension among
students or novice programmers. The tools rely on the
concept of visualising or animating the program
execution.

A. The BlueJ Tool
eThe first use of BlueJ to teach Java was in 1999 in a
computer science introductory course. The BlueJ tool
was implemented based on the Unified Modeling
Language (UML) and Java language[13]. It uses a
graphical representation to show classes and objects
within a project (Fig.1). Students can create an object
thought a Graphical User Interface (GUI) without
writing codes, and they can make this object interact
with other objects, which can help the students
strengthen their understanding of the concepts of
object-oriented programming[14].

Figure 1: BlueJ

B. The Jeliot3 Tool
The visualisation of object-oriented programs has
been developed with Jeliot3 after several generations.
The first generation was Eliot, which was designed to
produce algorithm animations. After that, JeliotIwas
specially designed for Internet use, and Jeliot 2000
was dedicated to novice programmers. What makes
Jeliot3 different from the previous generations is the
extension of visualisingobject-oriented concepts.
Jeliot3 differs from BlueJ in its provision of dynamic
visualisation, which is absent from BlueJ. In Jeliot3,
many features have been added to suit user
requirements. These functions involve ease of use,
consistency ,continuous and complete visualisation
that is extensible both internally and externally. The
visualised components that show up in a separate
window of Jeliot3 are designed to simplify use of the
tool with an animation frame structure (Fig.2). Error
explanation and the ability to highlight the line of
error is also provided in Jeliot3, as it uses UML
notations to represent the objects and their relations to
clarify object-oriented concepts for students [15].

Figure 2: Jeliot3

C. The Alice Tool
The Alice tool uses a built-in drag-and-drop interface
to program a 3D world with interaction (Fig.3). Alice
is a project of Carnegie Mellon University in the
United States, and it is designed for young people to
introduce them to programming. They learn the
fundamentals of object-oriented programming
through the graphical representation of objects[8].

D. WebTasks
WebTasks is a programming task database tool that
runs entirely in a web browser, and it does not require
a program to be downloaded (even SDK on the
students’ devices). WebTasks contains JSP pages that
run on the Apache Tomcat Server (Fig. 4).
The students pick an assignment and then write the
body of the methods; most of the methods have a
predefined header. The code is then tested using
JUnit. The series of testing continues as recursion
until the problem has been solved. The Department of
Computer Science in Technology at Darmstadt
University (Germany) developed a system using
WebTasks to solve about 118 Java programming

Figure 2: The Alice Tool

 tasks. The computer science students can log into the
system and try all its tasks, and this encourages them
to write Java programs, submit them and receive fast
feedback on corrections [16].

International Journal of Advances in Electronics and Computer Science, ISSN(p): 2394-2835 Volume-5, Issue-7, Jul.-2018
http://iraj.in

Overview of using Visualisation in Programming Learning

23

Figure 3: WebTasks

E. The ANIMAL System
Visualising and animating algorithm methods are
used for solving more complicated problems in data
structures, such as binary trees and graphs, as well as
for sorting and searching for algorithms (Fig.5). The
process helps students to understand the behaviour of
these structures and algorithms. The ANIMAL
system is based on this method, and it follows the
concept of visualising the representation of source
codes and highlighting the current executing line
[16].

Figure 4: The ANIMAL System

F. DrJava
The purpose of the DrJava tool is to teach students
how to design programs in Java, as well as how to
test and debug the program. It consists of a window
with two panes linked by an integrated compiler
(Fig.6). The interaction pane is used to input Java
expressions, and the definition pane is used to enter
and edit class definitions. The features in DrJava
include the interaction window, which has a ‘read-
eval-print loop’ (REPL) to enable access to program
components without recompiling. Testing and
debugging features are also available using REPL to
test the methods individually. Moreover, students can

debug the code without the need to learn the
debugging mechanisms. DrJava includes an editor to
detect syntax errors; it can highlight the parenthesis.
DrJava also has an integrated compiler bundled with
the Java compiler [17].

Figure 5: DrJava

G. ProfessorJ
ProfessorJ is a pedagogical environment that presents
an interface for the Java compiler (Fig.7). The
ProfessorJ interface consists of two windows: a
definition window containing the code and an
interaction window that provides a REPL to
experiment with the code. It contains three levels of
difficulties: beginner, intermediate and advanced. In
the beginner mode, students can define the
declaration construction and its restriction. The
intermediatemode starts to teach object-oriented
programming. The advanced mode introduces loops
and arrays. The code in ProfessorJ highlights the
keywords and variables, and it contains a check
syntax tool. The students can track their variables by
a binding instant of the variable to all of its uses using
arrows. ProfessorJ has a feature that highlights errors
outside of the debugging environment, and that can
stop the execution at any time during the debugging
mode [18].

Figure 6: ProfessorJ

H. Online Python Tutor
Online Python Tutor is a web-based programming
tool that uses visualisation extensively. This open-

International Journal of Advances in Electronics and Computer Science, ISSN(p): 2394-2835 Volume-5, Issue-7, Jul.-2018
http://iraj.in

Overview of using Visualisation in Programming Learning

24

source software enables users to embed their code
into a web page, as shown on the left in(Fig.8).
Subsequently, the code can be traced using navigation
buttons. The visualisation of the codeis shown on the
right in the figure. This visualisation enables the user
to watch the dynamic execution of the program. As
the program executes, it depicts changes to frames
and objects. Additionally, it has a program output
area. The tool provides explanations of errors, with
the indicators pointing to the line on which the error
occurred [19].

Figure 7: Online Python Tutor

I. Visual Logic
Visual Logic uses the concept of iconic programming
(icons and flowcharts) to visualise the program.
Visual Logic has no code to be written (Fig.9).
Instead, the user creates a flowchart representing the
code. Subsequently, the tool traces the flow of the
code. The tool demonstrates the outcomes of
executing each icon in the flowchart in popup
windows. Visual Logic does not support object-
oriented programming[20].

Figure 8: Visual Logic

CONCLUSION

Visualisation tools have been introduced for learning
programming by many academic institutions. Some
of these tools achieve the goal of and make tangible
contributions to learning programming, at least from
tool developers’ perspectives. However, visualisation
tools need to be evaluated continuously to reach their
maximum benefits.

REFERENCES

[1] L. J. Mselle, “Enhancing Comprehension by Using Random
Access Memory (RAM) Diagrams in Teaching
Programming : Class Experiment,” Sci. Technol., 1989.

[2] L. J. Mselle and H. Twaakyondo, “The impact of Memory
Transfer Language (MTL) on reducing misconceptions in
teaching programming to novices,” Int. J. Mach. Learn.
Appl., vol. 1, pp. 1–6, 2012.

[3] C. Kelleher and R. Pausch, “Lowering the barriers to
programming: A taxonomy of programming environments
and languages for novice programmers,” ACM Comput.
Surv., vol. 37, pp. 83–137, 2005.

[4] J. Kasurinen, M. Purmonen, and U. Nikula, “A Study of
Visualization in Introductory Programming,” Ppig ’08, no.
Winslow 1996, pp. 181–194, 2008.

[5] C. Murphy, E. Kim, G. Kaiser, and A. Cannon, “Backstop: a
tool for debugging runtime errors,” ACM SIGCSE Bull., vol.
40, no. 1, p. 173, 2008.

[6] D. Hagan and S. Markham, “Teaching Java with the BlueJ
environment,” Proc. Australas. Soc. Comput. Learn. Tert.
Educ. Conf. ASCILITE 2000, 2000.

[7] B. Sun, “Java teaching based on BlueJ platform,” 2nd Int.
Conf. Inf. Eng. Comput. Sci. - Proceedings, ICIECS 2010,
pp. 2–5, 2010.

[8] S. L. Salcedo and A. M. O. Idrobo, “New tools and
methodologies for programming languages learning using the
scribbler robot and Alice,” Proc. - Front. Educ. Conf. FIE, pp.
1–6, 2011.

[9] P. Gries, V. Mnih, J. Taylor, G. Wilson, and L. Zamparo,
“Memview: A Pedagogically-Motivated Visual Debugger,”
Proc. Front. Educ. 35th Annu. Conf., pp. S1J–11–S1J–16,
2005.

[10] M. Satratzemi, V. Dagdilelis, and G. Evagelidis, “A system
for program visualization and problem-solving path
assessment of novice programmers,” ACM SIGCSE Bull.,
vol. 33, no. 3, pp. 137–140, 2001.

[11] M. Dixon, “Code-Memory Diagram Animation Software
Tool : Towards on-Line Use,” proceeding IASTED Int. Conf.
WEB-BASED Educ., no. February 16–
18,2004,Innsbruck,Austria, pp. 601–603, 2004.

[12] M. Dixon, “year long 3-user trial of code-memory diagram
animation software for teaching computer programming :
learning ,object orientedprogramming ,& workloads” in
International conference in Computers and Advanced
Technology in Education, 2005, no. phase 3, pp. 238–243.

[13] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, “The
BlueJ system and its pedagogy,” Comput. Sci. Educ., vol. 13,
no. 4, pp. 1–12, 2003.

[14] J. Bennedsen and C. Schulte, “BlueJ Visual Debugger for
Learning the Execution of Object-Oriented Programs?,”
ACM Trans. Comput. Educ., vol. 10, no. 2, pp. 1–22, 2010.

[15] A. Moreno, N. Myller, E. Sutinen, and M. Ben-Ari,
“Visualizing programs with Jeliot 3,” Proc. Work. Conf. Adv.
Vis. interfaces - AVI ’04, p. 373, 2004.

[16] G. Rößling, “A family of tools for supporting the learning of
programming,” Algorithms, vol. 3, pp. 168–182, 2010.

[17] E. Allen, R. Cartwright, and B. Stoler, “DrJava: A
lightweight pedagogic environment for Java,” ACM SIGCSE
Bull., vol. 34, pp. 137–141, 2002.

[18] K. Gray and M. Flatt, “ProfessorJ: a gradual introduction to
Java through language levels,” Companion 18th Annu. ACM
SIGPLAN …, pp. 170–177, 2003.

[19] P. J. Guo, “Online python tutor: Embeddable web-based
program visualization for cs education,” SIGCSE 2013 -
Proc. 44th ACM Tech. Symp. Comput. Sci. Educ., pp. 579–
584, 2013.

[20] D. Gudmundsen and L. Olivieri, “Using Visual Logic © :
Three Different Approaches,” J. Comput. Sci. Coll., vol. 26,
no. 6, pp. 23–29, 2011.

