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Abstract - This paper presents an analytical investigation on the free vibration, static buckling 

and dynamic instability of channel-section beams when subjected to periodic loading. The 

analysis is carried out by using Bolotin’s method. By assuming the instability modes, the 

kinetic energy and strain energy of the beam and the loss of the potential of the applied load 

are evaluated, from which the mass, stiffness and geometric stiffness matrices of the system 

are derived. These matrices are then used to carry out the analyses of free vibration, static 

buckling and dynamic instability of the beams. Theoretical formulae are derived for the free 

vibration frequency, critical buckling moment, and excitation frequency of the beam. The 

effects of the lateral restraint applied to the flange, the section size of the beam and the static 

part of the applied load on the variation of dynamic instability zones are also discussed. 

 

Keywords: Cold-formed steel; buckling; dynamic instability; vibration; lateral-torsional; 

beam. 

 

 

 

1. Introduction  

 

Cold-formed steel (CFS) has been widely used in construction industry. Typical examples 

include purlins and rails for supporting roof and wall in buildings, racks for supporting 

storage pallets, structural members used for plane and space trusses, and corrugated sheets 

used for composite floors. Because of the thin thickness and open section features the CFS 

members are very susceptible by buckling. The buckling models, which a CFS member can 

have, include local, distortional and global buckling model, depending on the geometry of the 

member, the type of loading on the member, and the restraint conditions imposed to the 

member. Numerous studies have been carried out in recent decades on the local, distortional 

and global buckling and their corresponding post-buckling behaviour of CFS beams and 

columns [1-7]. A review presented by Li [6] summarises the recent development in 

determining the moment capacity of CFS members with a particular focus on the calculation 

of bending strength due to local, distortional and lateral-torsional buckling. 

 

Existing research work on CFS purlins and rails showed that the sheeting, which is supported 

by the CFS members, has a significant influence on the distribution of pre-buckling stresses 

[8-11], the web crippling [12], the buckling behaviour [13-18], and the post-buckling 

behaviour [14,19-21] of the members. Although the importance of dynamic response to 
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machinery loading and to extreme environmental loads such as wind and earthquakes has 

been recognised for some time, the current design for the CFS members is still dominated by 

the static load. It is acknowledged that the presence of a static load on a structure can 

considerably affect the free vibration characteristics of the structure. On the other hand, the 

vibration of a structure induced by dynamic loading can also affect the buckling behaviour of 

the structure. Therefore, it is important to understand the behaviour of structures that work 

under dynamical loading conditions. In the present paper our work will focus on the dynamic 

buckling behaviour of CFS members subjected to periodic loading.  

 

Vibration induced buckling of beams has been studied as early as in 1960s. For example, 

Morris [22] discussed the nonlinear vibration problem of a two hinged beam-column 

subjected to a harmonic load of any space distribution. The fundamental mode and the 

dynamic instability region of the system were obtained by using a perturbation method. 

Huang and Hung [23] investigated the dynamic instability of a simply supported straight 

beam under periodic axial excitation by using the averaging method and the Routh-Hurwitz 

stability criteria. Huang [24] and Chen et al. [25] investigated the dynamic instability of 

generally orthotropic beams and thick bimodulus beams subjected to periodic axial loads, 

respectively, by using the Bolotin’s method. Yeh et al. [26] investigated the dynamic 

instability problem of a sandwich beam with a constrained layer and an electrorheological 

fluid core subjected to an axial dynamic force by using the finite element method and the 

harmonic balance method. They examined the influences of the natural frequencies and static 

buckling loads on the dynamic instability behaviour. Gürgöze [27] examined the instability 

behaviour of a pre-twisted beam subjected to a pulsating axial force by using the Mettler 

method and derived the equations describing the instability regions, which could be applied 

to beams with various different boundary conditions. Kar and Sujata [28] investigated the 

dynamic instability of rotating beams with various different boundary conditions, subjected to 

a pulsating axial excitation, and examined the effects of the boundary conditions and 

rotational speed on the static buckling loads and the regions of parametric instability. Yoon 

and Kim [29] analysed the dynamic instability problem of a spinning unconstrained beam 

with a concentrated mass arbitrarily located on the beam, subjected to a combined static and 

harmonic load, by using the finite element method. Their results showed that the concentrated 

mass increased the dynamic stability of the spinning unconstrained beam subjected to a thrust. 

As the spinning speed of the beam was increased, the instability regions were reduced, but 

various slight instability regions were additionally developed. Uang and Fan [30] evaluated 

the cyclic instability of steel moment connections with reduced beam sections. Based on the 

test results of 55 full-scale specimens, regression analyses were performed to develop the 

relationships between the response quantities and the slenderness ratios for the local buckling 

modes of both web and flange. Apart from the straight beams, the dynamic instability of 

curved beams such as arches subjected to radial and follower distributed loading has been 

also studied [31-33]. 

 

The aforementioned literature survey shows that there have been numerous studies on the 

dynamic instability of beams. However, most of them are for the beams subjected to periodic 

axial excitation. For CFS beams frequently used as the secondary beams in buildings the 

dynamic loads are normally the machinery loading, wind loading and earthquake loading, for 

which the dynamic buckling mode is dominated by the lateral-torsional buckling. This kind 

of problems has not been addressed in literature. In this paper the dynamic instability of 

channel-section beams subjected to periodic loading is investigated. The analysis is carried 

out by using Bolotin’s method. By assuming the dynamic buckling modes, the kinetic energy 

and strain energy of the beam and the loss of the potential of the applied load are evaluated, 
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from which the mass, stiffness and geometric stiffness matrices of the system are derived. 

These matrices are then used to carry out the analyses of free vibration, static buckling and 

dynamic instability of the beams.  

 

 

2. Governing equations for dynamic instability analysis of channel-section beams 

 

Consider the dynamic instability of a channel-section beam that is used to support sheeting 

under the action of a periodic loading, as shown in Fig.1. In the system the load is assumed to 

act on the sheeting, which is transferred to the beam through the fixings and contact between 

the sheeting and flange of the channel-section beam. The sheeting in the system provides 

translational and rotational restraints to the beam due to its membrane and bending rigidities. 

For most types of sheeting the lateral displacement at the fixing point may be assumed to be 

fully restrained since the membrane rigidity of the sheet is sufficiently large. However, the 

rotational restraint depends upon several factors, including the number, type and positions of 

the screws used for the fixings as well as the dimensions of the beam and sheeting. In the 

present study, the rotational restraint is ignored due to the weak bending rigidity of the 

sheeting and thus the corresponding results are considered to be conservative [8,10,13].  

 

The dynamic instability problem of elastic structural members, such as columns and beams, 

induced by periodic loadings has been discussed by many researchers. Early work on this 

subject was reported by Evan-Iwanowski [34] and Nayfeh and Mook [35]. Bolotin [36] 

provided an extensive introduction to the analysis of dynamic stability problems of various 

structural elements, in which the equation of motion of the structure can be generalised using 

the matrices of the mass, stiffness, and geometric stiffness of the structure. In the present 

study, the Bolotin’s method is employed, in which the mass and stiffness matrices of the 

channel-section beam are derived by evaluating the kinetic energy and strain energy of the 

beam, whereas the geometric stiffness matrix is derived by examining the loss of the potential 

of the applied load. 

 

Let x, y, and z be the three coordinate axes of the right-hand rectangular coordinate system, 

with x being the longitudinal axis, y and z being the cross-sectional axes parallel to the web 

and flange lines, respectively. The origin of the coordinates is defined at the shear centre of 

the section. Note that, for the channel-section beam the centroid point and the shear centre are 

not at the same point. Let v and w be the transverse and lateral displacement components of 

the beam at the shear centre, and be the rotation of the beam section (see Fig.1). The kinetic 

energy and strain energy of the channel-section beam with simply supported boundary 

conditions due to the transverse displacement, lateral displacement and rotation thus can be 

expressed as 
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where  is the density, A is the cross-section area, Ip is the polar moment of inertia, E is the 

Young’s modulus, G is the shear modulus, Iy and Iz are the second moments of area about y- 

and z-axis, J is the torsion constant, Iw is the warping constant, kz is the artificial spring 

constant representing the translational restraint of the sheeting applied to the upper flange, h 

is the web depth, and l is the beam length. It is obvious that kz=0 represents the case where 
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the sheeting has no restraint to the upper flange of the beam, whereas kz=∞ represents the 

case where the sheeting produces a lateral restraint to the upper flange of the beam. Note that 

the dot above a symbol in Eq.(1) represents the derivative of the symbol with respect to time t 

and the prime of a symbol in Eq.(2) represents the derivative of the symbol with respect to 

space coordinate x.  

 

Note that most channel-section beams are usually used in a pair so that the pre-buckling state 

of the beam can be treated as only bending about its major axis (i.e. z-axis). Assume that the 

transverse load is the uplift load acting at the upper flange when the sheeting is fixed with the 

upper flange (e.g. for wind-induced vibration) or the downward load acting at the lower 

flange when the sheeting is fixed with the lower flange (e.g. for machinery-induced vibration). 

In this case, the loss of potential energy of the transverse load qy can be expressed as [37,38], 

 

l
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y

y
l
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z dxq
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dxwMV 2

2
        (3) 

where qy is the distribution load, Mz=qyx(l-x)/2 is the pre-buckling internal bending moment, 

and ay=h/2 is the vertical distance between the loading point and shear centre. The second 

term in Eq.(3) is attributed to the effect of loading position, which, in the present case, has a 

positive effect on the stability of the beam and thus will increase the critical buckling load. 

 

Assume that when the dynamic lateral-torsional buckling occurs, the transverse displacement 

v, lateral displacement w, and rotation  of the beam can be expressed as follows,  

l

x
tqxv


sin)()( 1          (4)
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where qj(t) (j=1,2,3) are the functions of time. The displacement functions assumed here 

satisfy the boundary conditions of a simply supported beam. According to the Lagrange 

method, the equations of motion describing the lateral-torsional buckling of the beam can be 

expressed as follows, 
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where L = T - (U - V) is the Lagrangian function and q = {q1, q2, q3}
T is the general 

displacement vector. Substituting Eqs.(1)-(6) into (7), it yields,  
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where [M] is the mass matrix, [K] is the elastic stiffness matrix, [Kg] is the geometric 

stiffness matrix, }{q  is the generalized acceleration vector, and  is the loading factor. The 

mass, stiffness, and geometric stiffness matrices are expressed as follows, 
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The three equations in Eq.(8) represent the motion of the beam in the transverse, lateral and 

rotational directions. It is apparent from Eqs.(9)-(11) that, only the second and third equations 

in Eq.(8) are coupled. This means that, as far as the lateral-torsional vibration is concerned; 

only these two equations need to be examined. Assume that the externally applied load, qy, is 

periodic, in which case the loading factor can be divided into two parts as expressed in 

Eq.(12), 

tts  cos          (12) 

where s and t are the amplitudes of the static and dynamic parts, respectively, is the 

excitation frequency of the dynamic part of the load, and t is the time.  

 

The dynamic instability regions of the structure described by Eq.(8) can be determined by 

examining periodic solutions with the periods of T=2 and 2T=4[36,39-41]. The 

solution with the period of 2T is of particular importance, representing the primary instability 

region of the structure, which can be expressed using the form of trigonometric series given 

by Eq.(13), 
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where {ak} and {bk} are the vectors of coefficients of the assumed solution. Substituting 

Eqs.(12) and (13) into (8) and letting the coefficients of the series associated with sin(t/2) 

and cos(t/2) be zero, it yields, 

}{}{][
4

][
2

2
][ 1

2

0aMKK g 






 



 ts 

      (14) 

}{}{][
4

][
2

2
][ 1

2

0bMKK g 






 



 ts 

      (15) 

 



6 

 

For given values of s and t, one can calculate the two frequencies of  from Eqs.(14) and 

(15), which represent the boundary of dynamic instability region of the channel-section 

beams under periodic loading.  

 

 

3. Results and discussion 

 

The frequency of the lateral-torsional vibration of the channel-section beam can be calculated 

using Eq.(16) 

0][][ 2  MK           (16) 

where  is the free vibration frequency. Substituting Eqs.(9) and (10) into (16), the following 
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The frequencies given by Eqs.(17) and (18) are well-known which can be found from many 

vibration textbooks. Eqs.(17)-(19) indicate that, for the beam with no lateral restraint the 

lateral vibration and torsional vibration modes are independent, whereas for the beam with 

lateral restraint applied at the upper flange the lateral vibration and torsional vibration modes 

are combined together to form a single mode. As a numerical example, Fig.2 shows a 

comparison of the frequencies of a channel-section beam with and without lateral restraint, 

which also reflects the influence of the lateral restrain on the vibration behaviour of the beam. 

The material properties used in the numerical example are Young’s module E=210 GPa, 

Poisson ratio =0.3, and density =7850 kg/m3. It can be seen from the figure that the 

frequency of the laterally restrained beam is slight higher than the frequency of the lateral 

vibration but a little lower than the frequency of the rotational vibration of the unrestrained 

beam.  

 

The critical load of the lateral-torsional buckling of the channel-section beam subjected to a 

static load can be calculated using Eq.(20) 

0][][  gcr KK           (20) 

where cr is the loading factor. Substituting Eqs.(10) and (11) into (20), the following critical 

load is obtained: 
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For beam with lateral restraint (kz=∞): 
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Note that Eq.(21) is identical to the critical load derived by Boksun et al. [42] for a I-section 

beam when the downwards load is applied at the lower flange if the section properties used in 

Eq.(22) are calculated based on the I-section beam.  

 

Fig.3 graphically shows a comparison of the critical loads of the channel-section beam with 

and without lateral restrain, in which the critical moment has been normalized using the yield 

moment defined as My=2yIz/h where the yield stress is taken as y=390 MPa. It can be seen 

from the figure that the critical moment of the laterally-restrained beam is marginally higher 

than that of the unrestrained beam. 

 

The dynamic instability region of the channel-section beam can be calculated using Eq.(23)  
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Substituting Eqs.(9)-(11) into (23), it yields, 
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It can be noticed that Eq.(24) includes four independent equations, whereas Eq.(25) 

represents only two independent equations. The reason for this is because, in the former there 
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are two vibration modes from which four different 2 values can be obtained for each given 

loading factor; whereas in the later there is only one vibration mode from which only two 

different 2 values can be obtained for each given loading factor.  

 

Fig.4 shows the dynamic instability regions of the channel-section beam of 7 m length with 

and without lateral restraint under an uplift periodic load applied at the upper flange of the 

beam, in which the geometric stiffness matrix is evaluated using the static critical load, that is 

qy=qcr. Note that there are two zones (red and green lines) for the unrestrained beam and one 

zone (blue lines) for the restrained beam. It can be seen from the figure that, the dynamic 

instability region of the laterally restrained beam is quite different from that of the 

unrestrained beam. The former exhibits a standard “v” shape, whereas in the latter one of the 

two arms in each zone is warped (lines indicated by letter A and B, respectively). This is 

because the effect of the loading position on the critical load, which is sensitive to the loading 

direction when the beam is not laterally restrained. When the loading is applied above the 

shear centre, the uplift load stabilizes the beam whereas the downward load destabilizes the 

beam. For the laterally restrained beam, however, only the uplift load can cause the beam to 

buckle. This is why the two lines of the dynamic instability zone of the laterally restrained 

beam are close to the side lines of the two dynamic instability zones of the unrestrained beam.   

 

Fig.5 shows the dynamic instability region of the laterally restrained channel-section beam of 

7 m length under a combined static and periodic load applied at the upper flange of the beam. 

It can be seen from the figure that, when a static load of 40% of the critical load is involved, 

the dynamic instability zone shifts to lower frequency side and the corresponding width of the 

instability zone is extended largely.  

 

As an example of parametric study, Figs.6-8 shows the effect of section depth, flange width 

and lip length on the dynamic instability of the laterally restrained channel-section beam of 7 

m length. It can be seen from Fig.6 that the increase of section depth results in a shaft of the 

instability zone to lower frequency side and a slight decrease of the width of the instability 

zone. This is expected as both the vibration and buckling of the laterally restrained beam is 

dominated by the torsion about the restrained point, in which case the increase of the section 

depth does not make the section stiffer. However, when the flange width (see Fig.7) or the lip 

length (see Fig.8) is increased the instability zone is found to shaft to higher frequency side 

and the width of the instability zone is also slightly increased, which is opposite to the result 

by increasing the section depth.  

 

Note that, in practice when the section depth is increased the flange width, lip length and 

section thickness are also increased in order to make the beam more effective in fighting 

different failure modes. The effect of the overall beam section size on the dynamic instability 

of the laterally restrained channel-section beam of 7 m length is shown in Fig.9. It can be 

observed from the figure that, with the increase of the section size, the dynamic instability 

zone moves towards to higher frequency side and the corresponding width of the instability 

zone is also increased remarkably. Herein, it should be noted that, the comparison of the 

widths of the instability zones for different beam sections shown in Figs.6-9 is made based on 

the frequencies obtained under a given relative loading factor, which is defined as the applied 

load divided by the static critical load of that beam. This means that if use the real value plot, 

the width of the instability zone may not be the same as that plotted in Fig.9. 

 

 

4. Conclusions 
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This paper has presented an analytical study on the dynamic instability of channel-section 

beams under the action of periodic loading. By using a combined Lagrange and Bolotin 

method, analytical expressions for the frequency of free vibration, the critical load of lateral 

torsional buckling, and the excitation frequency of dynamic instability region have been 

derived. From the obtained results the following conclusions can be drawn: 

 

 The lateral restraint of the sheeting has a marginal influence on the frequency of free 

vibration and the critical load of lateral-torsional buckling of the channel-section 

beam.  

 The lateral restraint has a significant effect on the dynamic instability behaviour of the 

channel-section beam. The dynamic instability zones of the channel-section beam 

with and without lateral restraint are quite different. 

 The increase of the section size of the channel-purlin leads to a shift of the dynamic 

instability zone towards to higher frequency side and the broad up of the width of the 

instability zone. 

 When the applied load involves a static load the dynamic instability zone will shift 

towards to lower frequency side and the width of the instability will be also expanded. 

 The increase of the section depth results in a shaft of the instability zone to lower 

frequency side and a slight decrease of the width of the instability zone; whereas the 

increase of the flange width or lip length results in a shift of the instability zone to 

higher frequency side and a slight increase of the width of the instability zone. 
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(a)                                                      (b) 

Figure 1. (a) Sheeting-beam system where h is the web depth, b is the flange width and c is 

the lip length. (b) Definition of lateral-torsional displacements in beam where o is the shear 

centre of the channel section. 

 

 

 
 

Figure 2. Comparison of frequencies of a channel-section beam with and without lateral 

restraint (web depth h=225 mm, flange width b=65 mm, lip length c=20 mm, thickness t=2.0 

mm). 
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Figure 3. Comparison of critical buckling moments of channel-section beam with and without 

lateral restraint (web depth h=225 mm, flange width b=65 mm, lip length c=20 mm, thickness 

t=2.0 mm). 

 

 

 
 

Figure 4. Comparison of dynamic instability regions of channel-section beam with and 

without lateral restraint (web depth h=225 mm, flange width b=65 mm, lip length c=20 mm, 

thickness t=2.0 mm). 
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Figure 5. Influence of static loading on dynamic instability region of channel-section beam 

with lateral restraint (web depth h=225 mm, flange width b=65 mm, lip length c=20 mm, 

thickness t=2.0 mm). 

 

 
 

Figure 6. Effect of section depth on dynamic instability of channel-section beams with lateral 

restraint (Young’s module E=210 GPa, Poisson ratio =0.3, density =7850 kg/m3, b=65 mm, 

c=20 mm, t=2.5 mm). 
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Figure 7. Effect of flange width on dynamic instability of channel-section beams with lateral 

restraint (Young’s module E=210 GPa, Poisson ratio =0.3, density =7850 kg/m3, h=250 

mm, c=20 mm, t=2.5 mm). 

 

 
 

 

Figure 8. Effect of lip length on dynamic c instability of channel-section beams with lateral 

restraint (Young’s module E=210 GPa, Poisson ratio =0.3, density =7850 kg/m3, h=250 

mm, b=65 mm, t=2.5 mm). 
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Figure 9. Dynamic instability regions of channel-section beams with lateral restraint 

(Young’s module E=210 GPa, Poisson ratio =0.3, density =7850 kg/m3). Section A: 

(h=120 mm, b=50 mm, c=15 mm, t=1.5 mm), Section B (h=225 mm, b=65 mm, c=20 mm, 

t=2.0 mm). Section C (h=345 mm, b=100 mm, c=30 mm, t=2.5 mm). 
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