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Abstract 

River deltas and associated turbidity current systems produce some of the largest 

and most rapid sediment accumulations on our planet. These systems bury globally 

significant volumes of organic carbon and determine the runout distance of 

potentially hazardous sediment flows and the shape of their deposits. Here we seek 

to understand the main factors that determine the morphology of turbidity current 

systems linked to deltas in fjords, and why some locations have well developed 

submarine channels whilst others do not. Deltas and associated turbidity current 

systems are analysed initially in five fjord systems from British Columbia in Canada, 

and then more widely. This provides the basis for a general classification of delta 

and turbidity current system types, where rivers enter relatively deep (>200 m) water. 

Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained 

bedload delivered by steep mountainous rivers produces small Gilbert-type fan-

deltas, whose steep gradient (11°-25°) approaches the sediment’s angle of repose. 

Bigger fjord-head deltas are associated with much larger and finer-grained rivers. 

These deltas have much lower gradients (1.5°-10°) that decrease offshore in a near 

exponential fashion. The lengths of turbidity current channels are highly variable, 

even in settings fed by rivers with similar discharges. This may be due to resetting of 

channel systems by delta-top channel avulsions or major offshore landslides, as well 

as the amount and rate of sediment supplied to the delta front by rivers.  

 

Keywords: fjords, geomorphology, turbidity currents, processes, submarine 

channels, deltas  
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Introduction 

River deltas and associated turbidity current systems are important because they 

produce submarine fans, which are some of the largest and most rapid sediment 

accumulations on our planet (Nielsen et al., 2007). These thick deposits hold 

valuable oil and gas reserves (Weimar and Pettingill, 2007) and efficiently bury large 

volumes of organic carbon thereby playing a significant role in the global carbon 

cycle (Galy et al., 2007; Smith et al., 2015). Submarine deltas can produce 

remarkable submarine channel systems that extend offshore for tens or sometimes 

even thousands of kilometres (Clarke and Pickering, 1996; Babonneau et al., 2010; 

Conway et al., 2012; Peakall and Sumner, 2015); rivalling even the largest terrestrial 

river networks. The factors that determine the origin and final extent of submarine 

channels are currently poorly understood compared to their terrestrial counterparts. 

The morphology of delta and turbidity current systems matters for several 

reasons. First, turbidity currents are notoriously difficult to monitor directly (Inman et 

al., 1976; Talling, 2014), and direct measurements of deltaic processes are also 

challenging (Geyer et al., 2000). The processes that move sediment offshore within 

delta-fed turbidity current systems are also worthy of study because they pose a 

major hazard to expensive and strategic seafloor infrastructure, which includes oil 

and gas pipelines or fibre-optic telecommunication cables (Cooper et al., 2013; 

Carter et al., 2014). For example, well-developed submarine channels allow powerful 

turbidity currents to runout for much greater distances (Carter et al., 2014). System 

morphology may therefore provide important insights into how sediment transport 

processes work (Orton and Reading, 1993). Second, system morphology strongly 

influences the shape and location of valuable oil and gas reservoirs. This affects the 
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shape and distribution of sand layers deposited by submarine channels, or in delta 

lobes (Weimer and Pettingill, 2007; Sylvester and Covault, 2016).  

Most of the world’s largest river deltas presently occur in shallow water on the 

flooded continental shelf. These river deltas can be characterised by factors 

influencing their morphology, including the characteristics of the rivers that feed 

them, the characteristics of the bodies of water the river enters, sediment load of the 

river, degree of wave and tidal currents, submerged gradient and presence of 

features such as mouth bars (Wright, 1977; Orton and Reading, 1993). Deltas 

entering deep-water were much more common during sea-level low-stand when 

rivers reached the continental shelf edge (Burgess and Hovius, 1988).  

The largest delta-fed turbidity current systems that form submarine fans in the 

deep ocean are extremely expensive and time consuming to study in any detail. 

Here we study smaller-scale systems in a set of fjords in British Columbia. These 

marine fjords have been mapped and monitored in exceptional detail (Prior et al., 

1987; Bornhold et al., 1994; Ren et al., 1996; Hughes Clarke, 2016; Shaw et al., 

2017) and display a wide range of morphologies (Conway et al., 2012), making them 

an excellent natural laboratory to understand links between sedimentary processes 

and the resulting seafloor morphology. A characteristic feature of these fjords is that 

river mouths enter into waters that rapidly reach depths of up to 600 m (Fig. 1). 

Rivers that feed these British Columbia fjords almost never have hyperpycnal 

(plunging) river discharges, as suspended sediment concentrations are rarely great 

enough to generate hyperpycnal flows with average sediment concentrations <1 

kg/m3 (Macdonald, 1983; Hickin, 1989; Bornhold et al., 1994; Mulder and Syvitski, 

1995; Hill et al., 2008; Hughes Clarke et al., 2014; Clare et al., 2016; Hughes Clarke, 

2016). Settings dominated by hyperpycnal river discharges may thus experience 
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different processes (Kostic et al., 2002; Mulder et al., 2003) and have different 

morphologies to those considered here (Best et al., 2005; Piper and Normark, 2009).  

This study is timely because it uses high-resolution multibeam echo-sounder 

data that has recently become available across a wide range of fjords in British 

Columbia (Conway et al., 2012; Hughes Clarke et al., 2014, Hughes Clarke, 2016), 

and indeed elsewhere (e.g. Hill, 2012; Corella et al., 2013; Turmel et al., 2015; Clare 

et al., 2017). In some cases, repeat multibeam surveys provide novel and 

informative time-lapse images that document how systems evolve (Conway et al., 

2012; Hughes Clarke, 2016). Previous work in these British Columbian fjords 

includes some of the most detailed measurements yet made of active turbidity 

currents (Prior et al., 1987; Zeng et al., 1991; Bornhold et al., 1994; Ren et al., 1996; 

Hughes Clarke et al., 2014; Hughes Clarke, 2016; Hage et al., 2018), which help to 

understand links between process and morphology. Such direct monitoring data also 

constrain the timing and hence triggers of turbidity currents (Hughes Clarke et al., 

2014, Hughes Clarke, 2016), including their relationship to fluctuations in river 

discharge or tides (Ayranci et al., 2012; Clare et al., 2016; Hizzett et al., 2018). 

Previous studies of the fjords have been influential, for example producing detailed 

facies models (Syvitski and Farrow, 1983; Prior and Bornhold, 1989). These 

previous studies used information from the subaerially-exposed areas, together with 

offshore data from sub-bottom profilers, sidescan sonars and sediment cores. We 

are thus able to combine these previous facies models and high-resolution surveys 

to determine how system morphology is related to flow processes. These insights 

are captured here in a series of general models for turbidity current channel and 

delta systems in fjords and other deep-water settings.  

Aims 



 

 
This article is protected by copyright. All rights reserved. 

We seek to understand what controls the morphology of deep-water deltas and 

associated turbidity currents systems, and thus how their morphology records key 

sedimentary processes. The aims are to (1) identify distinct types of delta and 

turbidity current systems in a series of deep-water fjords in British Columbia, and 

constrain the processes that control these highly variable morphologies; (2) to 

understand why well developed (up to 50 km long) submarine channel systems 

occur in some fjords, but not in others (Fig. 1; Conway et al., 2012); and (3) to 

present a general model that subdivides different morphologies of delta and turbidity 

current systems in locations such as these fjords, where river mouths discharge 

directly into relatively deep water.   

 

Study area  

This study focusses on five fjords in British Columbia, Canada, which are Howe 

Sound, Bute Inlet, Toba Inlet, Knight Inlet and Kitimat Arm (Fig. 1; Table 1). These 

glacially-carved fjords have a number of common characteristics (Table 1; Fig. 1). 

They are relatively deep and steep-sided; such that deltas prograde into water that 

rapidly reach depths of up to 650 m (Fig. 1). They are fed by one or more major 

rivers at the fjord heads, which drain from large watersheds within the mountainous 

hinterlands (Table 1). Small and steep river systems occur along the fjord flanks. The 

river catchments are influenced by seasonal spring and summer melt of glaciers. 

Peak river discharges during summer are up to ten times the baseline during winter, 

with short-lived flood discharges reaching over 1,000 m3/s and sometimes 3,000 

m3/s in the summer and early autumn (Bornhold et al., 1994; Canadian Hydrographic 

Office data available from http://wateroffice.ec.gc.ca). The mean annual and 

maximum discharges for individual large fjord-head rivers are summarised in Table 
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1.  Typically, these fjord-head river beds and delta tops are dominated by fine-to-

coarse sand or fine gravel (Syvitski and Farrow, 1983; Hickin, 1989; Hughes Clarke, 

2016). The steeper and smaller catchments along the fjord sides tend to be even 

coarser grained (Prior and Bornhold, 1989). All of the fjords are affected by relatively 

strong tides, with ranges of 4-5 m during spring tides and generally experience small 

wave heights due to limited fetch for most wind directions (e.g. Hughes Clarke, 

2016).  

  

Methods 

This study is based on new analyses of system morphology captured by multibeam 

bathymetry mapping, together with environmental data including river drainage area 

discharge, sediment concentration, glacial area and precipitation. This is combined 

with previously published insights into sedimentary processes from studies that 

monitored active flows (e.g. Hughes Clarke, 2016) or cored and mapped deposits 

using other geophysical methods (e.g. Prior and Bornhold, 1989; Stacey et al., 2018; 

Hage et al., 2018).  

Bathymetric data constraining seafloor morphology 

Multibeam bathymetric data were collected in Kitimat Arm, Knight Inlet, Bute Inlet, 

Toba Inlet and Howe Sound (Figs 2-6). These surveys were obtained by two 

vessels; the RV Vector operated by the Canadian Coastguard Service and the RV 

Heron operated by the University of New Brunswick. The Vector used a 100 kHz 

Kongsberg-Simrad EM1002 system in 2005-2008, and a 70-100 kHz Kongsberg-

Simrad EM710 system from 2010 onwards. The RV Heron used an EM710 

multibeam operating at 70–100 kHz. Multibeam surveys were processed by the 
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Canadian Hydrographic Service (CHS) and at the Universities of New Hampshire 

and New Brunswick. Data were processed using the Kongsberg SIS system and 

CARIS-HIPS (CUBE extension). The horizontal data resolution is 1-2 m due to 

navigational limitations, and the vertical resolution of the bathymetric measurements 

was typically <0.5% of the water depth (Conway et al., 2012; Hughes Clarke et al., 

2014).  

ArcGIS software was used to produce hillshaded bathymetry, slope, 

roughness and bathymetric difference maps where repeat multibeam data were 

available. Difference plots of seafloor elevation were calculated using the Raster 

Calculator tool in ArcGIS. The difference plots are affected by cumulative errors in 

positioning in regions of rapid vertical change (e.g. at channel walls, fjord flanks). A 

small horizontal error may then lead to significant vertical error (Conway et al., 

2012). ArcGIS software was also used to produce delta and submarine channel 

profiles by extracting bathymetric and slope gradient profiles.  

Statistical analyses of river drainages and delta morphology 

The relationship between river basin and delta morphology was analysed 

statistically. Principal component analysis (PCA) was used to determine which 

variables were most important in distinguishing between different delta types. Input 

variables included: delta area (km2), delta gradient and area of associated river 

basins (km2). Minitab v15 was used for PCA analysis. The data were normalised into 

dimensionless units and a correlation matrix calculated to determine correlations 

between the variables. Principal components were then calculated and those 

explaining <10% of the variance in the data were excluded. Component scores were 

calculated to identify which parameters explained the most variance within the data. 
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K-means clustering in Matlab was used to determine whether groups of submarine 

deltas identified through visual examination were indeed statistically significant. The 

statistical significance of the groups was calculated using the T-test and standard 

deviations were calculated to test whether the variance within the groups was less 

than the variance between the groups. 

 

River characteristics: drainage basin area, discharge and sediment 

concentration 

Daily river discharges were downloaded from Environmental Canada monitoring 

stations (https://wateroffice.ec.gc.ca) and all available data (up to 50 years-worth) 

were used to generate mean annual discharge values (m3/s). River stage and hence 

discharge measurements were available for the Kitimat River (station 08FF001), 

Homathko River that enters Bute Inlet (station 08GD004), Klinaklini River that enters 

into Knight Inlet (station 08GE002), Squamish River that enters Howe Sound 

(08GA022) and the Tahumming River (08GC003) (Table 1) that feeds into Toba 

Inlet. No discharge measurements are available for the Upper Toba river delta; the 

main river entering into Toba Inlet. To assess how often, and by how much, each 

river system was affected by elevated river discharge, the percentage of time that 

each river system exceeded mean annual river discharge was calculated along with 

the mean discharge value this was exceeded by for each river system.  

Measured suspended sediment concentrations were obtained from 

Environmental Canada monitoring stations, where available. No data was available 

for Knight Inlet and Toba Inlet; therefore, these measurements were taken from the 

literature (Table 1). Mean sediment concentration values are provided that are 

averaged over the water column depth (Table 1). It must be noted that 

https://wateroffice.ec.gc.ca)/
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measurements in the fjords are sparse in places and measured using a range of 

equipment (e.g. D49 sampler in Kitimat; P61 sampler in Bute), therefore values of 

suspended sediment concentration should be used with caution.  

A 30 m resolution terrestrial DEM of British Columbia (Canadian Hydrographic 

Survey) was used to assess drainage basin character. A shapefile of glacial 

coverage created by the Canadian Hydrographic Survey was used to infer glacial 

area. The glacial component of the drainage area (Table 1) was calculated by 

extracting the percentage glacial cover for each river drainage basin. Precipitation 

data were downloaded from Environmental Canada monitoring stations (Table 1). 

River drainage areas were obtained from Environmental Canada monitoring stations 

(http://wateroffice.ec.gc.ca).  For Toba, only data from the Tahumming River were 

available which has a very small drainage area. A larger river (Upper Toba River) is 

present to the west with potentially greater drainage basin size and river discharge, 

hence two river drainage areas are provided for Toba Inlet (Table 1).  

 

Results 

The fjords can be subdivided into three main parts based on their morphology and 

longitudinal profile (Figs 2-6). Delta-fronts offshore from river mouths are relatively 

steep (~4°) and tend to have decreasing gradients that produce a concave-upward 

long profile. A distinct break in slope occurs at the base of the delta front, and 

separates the delta-front from a lower, linear gradient (~1°) area on which submarine 

channels are well developed (e.g. Bute Inlet, Knight Inlet, or Toba Inlet; Figs 3-5) or 

absent (Howe Sound and Kitimat Inlet (Figs 2 and 6)). Finally, a second slope break 

defines distal basin floors with particularly low (<0.05°) gradients. Frontal moraines 
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with up to several hundred meters of relief form the termination of these mainly 

upper fjord systems (Fig 2A).   

 

Bimodal size and morphological character of deltas 

We first analyse the overall extent and morphology of these fjord-deltas. The total 

(subaerial and submarine) area and average seafloor gradient define two main types 

of fjord-deltas. First, high-gradient deltas are associated with small and steep 

drainage basins, which we term type 1 deltas. Second, low-gradient deltas are 

associated with distinctly larger drainage basins and are termed type 2. Type 1 

deltas (123 examples; Fig. 7A) are much more common than type 2 deltas (14 

examples; Fig. 7A), although they are much smaller. Type 1 and type 2 deltas plot as 

distinct clusters on an area versus gradient graph (Fig. 7A). The standard deviations 

of the standardized mean delta gradients (0.51 and 0.45) and areas (0.36 and 1.78) 

for the two clusters are less than the difference between the means. This shows that 

the differences between the clusters are greater than the variance within the dataset, 

suggesting that the clusters are significant. The results of the T-test show that the 

results fall within the 95% significance level thereby suggesting that a significant 

difference exists between type 1 and type 2 deltas.  

Type 1 deltas: Smaller and steeper deltas fed by small mountainous 

rivers 

Type 1 deltas can be further subdivided into two types based on their morphology. 

Type 1a deltas have a near uniform gradient (and thus linear profile) of ~25°, and a 

mean offshore area of 0.24 km2. The surface of these type 1a deltas is 

predominantly smooth, such that lobes, channels, chutes and gullies are poorly 
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developed or absent. In contrast, type 1b deltas have a concave-upward profile (Fig. 

8A-F). Near to the source, type 1b deltas have a mean gradient of 25°, but the 

average gradient on their lower reaches drops to 11°. The higher gradient upper 

delta-front is relatively smooth; but on the lower gradient lower reaches these deltas 

have well developed gullies, chutes, small-scale mass-wasting and sediment lobes 

(Fig. 8A-F). Type 1b deltas are typically somewhat bigger than type 1a deltas with a 

mean area of 0.67 km2 compared to 0.24 km2.  

Type 2 deltas: Larger and lower gradient fjord-head deltas fed by larger 

rivers  

Distinctly larger and lower gradient (type 2) deltas are formed by rivers with much 

larger drainage basins. These rivers have continuous discharges that contrast with 

the smaller rivers with episodic discharges that produce type 1 deltas. Type 2 deltas 

occur at fjord heads and include the Kitimat River Delta in Kitimat Arm (Fig. 6), 

Klinaklini and Franklin River Deltas in Knight Inlet (Fig. 5), Homathko and Southgate 

River Deltas in Bute Inlet (Fig. 3), Toba River Delta in Toba Inlet (Fig. 4), and 

Squamish River Delta in Howe Sound (Fig. 2). Type 2 deltas are characterised by 

well-developed gullies that in some cases coalesce to form one or more channels 

that are incised into the delta front (Figs 2B, 5B). The gullies and channels contain 

ubiquitous bedforms that migrate upslope. Monitoring studies indicate that these 

delta-front gullies and channels are highly active, primarily during the summer 

freshet when river discharges are elevated (Hage et al., 2018); sometimes with over 

100 individual flow events during a single year (Hughes Clarke et al., 2014, Hughes 

Clarke, 2016).  

 

Submarine channel development 
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The development of submarine channels in the five studied fjords is highly variable 

(Table 2; Figs 2-6), with channel lengths varying from a few kilometres on delta-

fronts to over 40 km. In some fjords, channels are absent completely. The 

morphology of these channel systems are described below and in Table 2, starting 

with the best developed examples.  

 

Well-developed submarine channel systems extending from deltas 

(Knight, Bute and Toba Inlets) 

Channel systems in Bute, Knight and Toba Inlets are particularly well developed. In 

Bute and Knight Inlet, channels extend for over 40 km from the shoreline to water 

depths of 480-580 m. In both locations, the channel system is fed by two large rivers 

with type 2 deltas. The channels have well developed terraces and their thalweg is 

typically 200 m to 300 m wide (Table 2; Figs 5A and 3A). The channel systems are 

eroded into the surrounding fjord floor, and depositional levees are weakly 

developed or absent. A striking feature of both channel systems is a series of steps 

along the channel profile (termed knickpoints), which have 10-40 m of relief (Figs 3C, 

3D, 5C and 5D). The channel gradient is relatively uniform between these 

knickpoints. Time-lapse repeat bathymetric surveys of Conway et al. (2012) indicate 

that some of the knickpoints in Bute Inlet migrate up-slope (Figs 3C and 3D).  

 Both Bute and Knight Inlets have several secondary channels that either 

extend from the main channel and terminate on the fjord floor, or are disconnected 

from the main channel thalweg (termed here as headless channels). In many cases, 

the channels are associated with knickpoints (Fig. 5D). The headless channels are 

mainly concentrated on the lower section of the fjords where there is a distinct 

decrease in slope gradient to <1°.  
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 Toba Inlet contains a well-developed channel that extends to water depths in 

excess of 400 m. However, the main channel is not connected to the river-mouth, 

with the channel starting several kilometres beyond the delta-front at a major 

knickpoint (Fig. 4B). The main channel in Toba Inlet is therefore not directly 

connected to the highly active delta-front gullies and channels (Fig. 4), unlike the 

channels seen in Bute and Knight Inlets. A number of large (10-40 m high) 

knickpoints occur along the main channel axis in Toba Inlet, which also contains 

several headless channels (Fig. 4C). Difference calculations from repeat bathymetric 

surveys over consecutive years show migration of the knickpoints up-slope (Fig. 4C).  

 

Poorly developed submarine channel systems (Squamish and Kitimat 

Delta) 

Squamish Delta has much more poorly developed submarine channels. Three 

channels are restricted to the delta-front, extending for only 2 km before terminating 

in lobes covered by active bedforms (Hughes Clarke et al., 2014; Hughes Clarke, 

2016). Two partly infilled channels that are slightly longer (~3 km) were previously 

abandoned, due to a man-made diversion of the main river course in 1971. The mid-

lower part of the fjord is covered by numerous up-slope migrating bedforms. No 

channelization occurs here even though its gradient (~2°) is comparable to that of 

channels in Bute and Knight Inlet. Finally, there is a distinct slope break to smooth 

distal basin floor (Fig. 2). Some shallow depressions that may represent incipient 

channel features occur in water depths of ~180 m. Channels are even more poorly 

developed offshore from the Kitimat River, as they extend for less than 1 km from the 

shoreline (Fig. 6). This location has been affected by a number of particularly large 
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landslides in the 1970s, and potentially earlier. These large and overlapping 

landslide deposits have obscured any previously developed channels (Fig. 6).  

 

Flat deep-water basins 

Distinct slope breaks occur in the distal parts of Howe Sound, Bute Inlet, Knight Inlet 

and Toba Inlet (Figs 2-5) where particularly low gradients occur (< 0.05°). We term 

this area the flat basin floor. Kitimat Arm lacks such a low gradient area in its distal 

parts and also lacks a ponded basin, as seen in other fjord systems (Fig. 6).  

 

Large-scale failure of fjord walls 

These five fjords display evidence of large-scale failure of fjord walls between deltas 

(e.g. Squamish Delta; Fig. 2C) or delta-fronts (e.g. Kitimat Delta; Fig. 6). These 

large-scale failures produce characteristically blocky landslide deposits that infill the 

fjord floors or channels.  

 

Discussion 

The main factors that determine delta-front morphology are discussed initially, 

followed by controls on the development of submarine channel systems. Insights 

from these five fjords in British Columbia are combined with wider global 

observations and compared to previous theoretical or numerical models. We then 

outline a series of general models for deltas and linked turbidity current systems in 

locations where river discharges enter deep water rather than forming plunging 

hyperpycnal flows (Fig. 9).  

 

How is delta-front morphology linked to sedimentary process?  
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Delta area is found to be strongly bimodal with steep and small fan deltas (type 1) 

and shallow and large fjord-head deltas (type 2).  

Type 1a deltas: 123 high-gradient type 1 deltas associated with small and 

steep drainage basins occur within the five Canadian fjords. Eighty-six of these type 

1 deltas show a linear geometry with mean slope gradients of ~25° and relatively 

homogenous surfaces (type 1a). The low drainage basin sizes (<15 km2) suggest 

low levels of bedload and suspended sediment transport and low stream discharge 

(Jopling, 1964; Allen, 1970). These systems are formed by avalanching of coarse-

grained bedload delivered by steep mountainous rivers to produce small Gilbert-type 

fan-deltas, whose steep gradient (11°-25°) approaches the sediment’s angle of 

repose (25° to 45°; Carrigy, 1970; Pohlman et al., 2006). The sediment transport 

carrying capacity is suddenly reduced causing sediment to be rapidly deposited, 

resulting in steep gradient foresets near the angle of repose (Gilbert, 1880). Finer 

sediment bypasses the slope-settling further down-fjord. 

 Type 1b deltas: 37 deltas have a non-linear geometry (type 1b deltas) where 

a distinct break in slope gradient occurs at ~11-16° (Fig. 8A-F). Above the break in 

slope, mean slope gradient is 25° and the surface is relatively homogenous and 

similar in morphology to type 1a. Below this break in slope, mean gradients are ~7°. 

Here, debris lobes, gullies, chutes and in some cases small channels and bedforms 

occur indicating that a threshold may exist for gully and chute formation on 

submarine deltas at ~11-16° as opposed to bypass or the delta remaining stable. 

These deltas are at the dynamic angle of repose, where gradients above the angle of 

repose (~25°) occur, causing avalanching and destabilisation of the delta surface.  

 Type 2 deltas: There are 14 larger fjord-head (type 2) deltas that are 

associated with significantly larger drainage basin areas (>990 km2). These deltas 
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have much lower gradients (1.5°-10°) that decrease offshore in a near exponential 

fashion.  

There has been a considerable body of work on the profile of deltas offshore 

from rivers, and continental shelves away from riverine input (Wright and Coleman, 

1973; Syvitski et al., 1988; Wright, 1995; Pirmez et al., 1998; Friedrich and Wright, 

2004). Here we consider deltas that are built into relatively deep water, and which 

are not dominated by wave action and resuspension of sediment (cf. Wright, 1995; 

Friedrichs and Wright, 2004). As in many other delta systems (Pirmez et al., 1998), 

there is a sigmoidal shape to the overall delta profile with a low gradient top-set, and 

a steep upper delta slope (fore-set) whose slope decreases offshore (toe-set). In 

general, this sigmoidal shape is linked to maximum sedimentation rates that occur 

on the upper fore-set (Pirmez et al., 1998). In the fjords analysed, there is a 

particularly sharp inflexion point between the topset and foreset, which coincides 

with avalanching of bedload at the river mouth (Fig. 9); whilst in other types of setting 

the inflexion point can be in deeper water (Pirmez et al., 1998).  

In the studied fjords, sediment transport and delta-morphology is dominated 

by delta-lip failures, and turbidity currents triggered by those failures, or settling from 

surface (homopycnal) plumes (Clare et al., 2016; Hughes Clarke, 2016; Hizzett et 

al., 2018). Hyperpycnal flows that are produced directly by river input with high 

suspended sediment concentrations are rare in these fjords because typical 

suspended sediment concentrations (e.g. 0.008-0.7 kg/m3; Table 1) are rarely great 

enough to overcome the excess density required for plunging flows (Mulder and 

Syvitski, 1995). Several processes combine to cause a decrease in sedimentation 

rate with distance offshore, and this decrease in sedimentation rate leads to the 

concave-up delta front (fore-set and toe-set) profile. First, the delta-lip itself can 
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prograde by up to 10 m in a single flood, as bedload is driven over the delta-lip 

(Hughes Clarke, 2016), leading to landslides. Second, sedimentation rates from the 

surface plume decrease offshore, and this may dominate sedimentation outside 

delta-front channels (Hughes Clarke, 2016; Stacey et al., 2018). Finally, turbidity 

currents are most commonly triggered from sediment settling from surface 

(homopycnal) plumes (Hizzett et al., 2018). These flows are associated with channel 

cutting, bedforms and sediment bypass into deeper water (Clare et al., 2016; 

Hughes Clarke, 2016; Hage et al., 2018; Hizzett et al., 2018; Stacey et al., 2018). 

Field examples where similar delta morphologies are observed include the Rhine 

Delta (Hinderer, 2001) and Colorado River Delta in Lake Mead (Smith et al., 1960).  

 

What controls the development of submarine channels?  

Large and deeply-entrenched channels occur in some of the studied fjords (Knight, 

Toba and Bute Inlets; and Howe Sound), although there is a striking difference in the 

length of the channels, even in settings fed by rivers with similar discharges (e.g. 

Bute Inlet and Howe Sound). Avulsion of the river mouth may cause submarine 

channel systems to be abandoned, and to regrow, as potentially seen in Squamish 

Delta (Hughes Clarke, 2016) and Toba Inlet, where the main channel begins several 

km after the delta front. In all fjord systems, the channels are cut below the 

surrounding seafloor and have rather poorly developed levees. Terraces occur in all 

systems (excluding Kitimat Arm) indicating well-developed and deep thalweg 

incision. This indicates that the systems are primarily erosional, rather than forming 

by the build-up of levees at the sides of the channel. The main channels within the 

fjords have distinctly linear channel long-profiles (Fig. 7C) with gradient decreasing 

with distance from the main delta-front at the fjord head, where high concavity 
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occurs. Here, terraces, deep channel entrenchment, crescentic shaped bedforms 

and scarps are common. In the following sections, we discuss how the observed 

differences in submarine channel characteristics relate to the processes controlling 

their morphology. 

 

Importance of knickpoints for channel formation and maintenance 

Below the delta-front, the channel long-axis are distinctly linear with extremely low 

variances in gradient over tens of km. Local variations along the thalweg are due to 

knickpoints causing localised increases in slope gradient in all channel systems and 

also within headless channels both connected to and disconnected from the main 

channel. These knickpoints are between 20 and 40 m high and cut into previous 

deposits. Although locally the knickpoints result in a section of anomalously steep 

gradient, mean slope gradient decreases between consecutive knickpoints, thus 

maintaining the channel linearity. High-resolution repeat surveys over the knickpoints 

(e.g. Figs 3C and 3D) show that these move up-slope toward the delta front, in some 

cases ~1300 m over five years. The knickpoints along the channel periodically fail, 

increasing the depth of the channel locally, thus increasing channel entrenchment. 

As sediment or debris lobes located down-slope of the knickpoints are uncommon, 

this suggests that either the knickpoint failure generated a debris flow which 

transformed into a turbidity current, or the failure deposit was flushed down-channel 

by a turbidity current event generated further up-slope of the knickpoint. As 

knickpoints are present down the entire channel axis, this may explain how the linear 

channel morphology is maintained.  

Knickpoints are common in other locations worldwide, although their 

morphology and formation mechanisms may differ. They are observed in erosional 
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canyons (e.g. Astoria Canyon, Oregon; San Antonia Canyon, Chile; Monterey 

Canyon, California; Scripts Canyon, California; Mitchell, 2006; Mitchell, 2014); on 

open continental slopes (New Jersey continental slope; Mitchell, 2006); as deep-

water ‘waterfalls’ (e.g. Monterey Fan; Masson et al., 1995); within headless channels 

(e.g. Lake Geneva; Girardclos et al., 2012); in lakes (e.g. Lake Geneva; Lake 

Wabush; Girardclos et al., 2012; Turmel et al., 2015); and in channel meander bed 

cut-offs (e.g. offshore Angola; Sylvester and Covault, 2016).  

 

Headless and proto-channels – the early stages of channel development?  

In Bute, Knight and Toba Inlets, headless channels occur either branching off the 

main channel thalweg or as isolated secondary channels. The occurrence of 

headless channels may indicate early stages of channel development. These 

headless channels have high-gradient heads and similar gradient axis to the main 

channel thalwegs. For some headless channels, small chute-like depressions are 

observed at the heads of the channels (Fig. 5D) and difference calculations from 

repeat bathymetric surveys over consecutive years (Fig. 3C, D) show erosion (in the 

range of metres) at the channel heads.  

The headless channels are mainly concentrated in the lower section of the 

fjords where a distinct decrease in slope gradient occurs to ~1°. Here, bedforms are 

not commonly observed within the headless channels but sediment lobes are 

observed at the main channel terminus. Headless channels are also observed in 

other locations, for example Lake Geneva, where they are also concentrated toward 

the terminus of the main channel axis (Girardclos et al., 2012). The inception of 

these channels, concentrated in the lower section of the fjords, likely form from the 
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interaction of overriding turbidity currents with seafloor perturbations or pits (Covault 

et al., 2014; Fildani et al., 2013).  

 

Relationship between submarine channels and river discharge 

Within the fjords analysed, river discharge characteristics (Table 1) exert a major 

influence on submarine channel development (Table 2). Knight and Bute Inlets are 

fed by the largest river systems, with greatest drainage basin area and highest mean 

annual discharges. These fjords have the longest channel systems, with well-

established and >40 km long channels. Clare et al. (2016) show that elevated river 

discharge was the primary control for the frequency of turbidity current events on 

Squamish Delta. For every 1 m3/s increase in river discharge above a threshold 

value (mean annual river discharge), the rate that turbidity currents occur increases 

by 0.6% (Clare et al., 2016). As suspended sediment concentrations from the fjord 

head rivers (Table 1) are not high enough to produce hyperpycnal flows (e.g. Mulder 

and Syvitski, 1995), the sediment flows are likely to be generated by failure of the 

delta lip and/or increased sediment concentration from hypopycnal river plumes. 

Here, turbidity currents are generated through sediment settling where freshwater 

can become entrained, leading to excess density and the generation of turbidity 

currents (Maxworthy, 1999; Yu et al., 2000; Parsons et al., 2001; Snow and 

Sutherland, 2014; Jazi and Wells, 2018). Hizzett et al. (2018) show that these flows 

generated by settling plume events also tend to coincide with peaks in river 

discharge.  

Over the last 50 years (or data available), Bute Inlet exceeded its threshold 

discharge value (mean annual discharge) 60% of the time, whereas Knight, Kitimat 
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and Toba Inlets and Howe Sound exceeded their threshold values 36-40% of the 

time. The mean discharge that the threshold was exceeded by varied widely with 

Knight and Bute Inlets displaying the highest values (Table 1). For Bute Inlet, the 

threshold was exceeded 60% of the time by a mean discharge of 302 m3/s. For 

Knight Inlet, the threshold was exceeded 36% of the time by a mean discharge of 

326 m3/s. Howe Sound and Kitimat Arm had lower mean excess discharges of <200 

m3/s and Toba Inlet (Tahumming River) was significantly lower still (22 m3/s).  

Bute and Knight Inlets experience either prolonged periods of significantly 

elevated river discharges, and/or exceptionally high river discharges. As river 

discharge increases, the frequency of turbidity current events also increases leading 

to significantly greater turbidity current activity in Knight and Bute Inlets. These flows, 

most likely generated by settling plume events, also tend to have the longest run-

outs and therefore are most important in terms of channel extension (Hizzett et al., 

2018). The increased frequency of erosive, channel forming flows in Bute and Knight 

Inlets leads to the enhanced development of submarine channels.  

Increased river discharge over short time periods can also lead to increased 

sediment build-up on the delta-lip, which ultimately fail and generate turbidity 

currents which run-out down-slope (Hughes Clarke et al., 2014; Clare et al., 2016). 

The highest values of suspended sediment concentration are measured in Knight 

and Bute Inlets (0.7 kg/m3 and 0.5 kg/m3 respectively; Table 1). This elevated river 

discharge results in increased sediment build-up on the delta top and lip which may 

trigger delta-lip collapse. However, Hizzett et al. (2018) note that the size of the 

collapse does not necessarily influence the size of the sediment flow generated, with 

larger delta-lip collapse (up to 150,000 m3) often having relatively short runout 
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distances. Therefore it is likely that the increased frequency and erosive nature of 

sediment flows generated by settling of sediment from surface plumes tend to have 

the greatest influence on channel system morphology within these fjords.  

No hydrographic stations are present in the lower reaches of the Toba River; 

thus, the only available river discharge measurements are from the much smaller 

Tahumming River (Fig. 4). However, as river discharge is influenced by factors such 

as drainage basin area, watershed length and glacial component, which were 

calculated from regional DEMs (Table 1), river discharge from the Upper Toba River 

are assumed to be similar to Kitimat and Squamish Rivers. Toba Inlet is notable 

because it has a well-developed submarine channel that is separated from the main 

delta system by several km (Fig. 4B). We propose that the main channel once 

connected through to the river mouth, but that delta front avulsion (or other 

processes) then caused the main channel system to be abandoned, and the proximal part 

of that channel was then infilled and buried. Conway et al. (2012) show that the delta 

system is active with a new channel developing between 2008-2010 on the upper 

delta slope (Fig. 4C), similar in morphology to the short channels observed in 

Squamish Delta. The main channel is now disconnected from the delta system, and its 

previous character may reflect past conditions with enhanced annual river discharge. 

Reduced sediment discharge from the river may be due to factors such as the construction 

of run-of-the-river hydroelectricity generation plants in Toba Inlet in 2010, and which divert 

up to 98% of the stream capacity (Gower et al., 2012). However, as there is no data from 

the larger rivers monitoring stations, this remains uncertain. Kitimat Delta also has a 

comparatively low drainage basin area and river discharge and very poorly 

developed channels that incise submarine landslide deposits (Fig. 6), indicating a 

system reset by major slides (Fig. 9d). 
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General models: delta and submarine channel development  

Why submarine channels develop in some fjords and not others is central for 

understanding the factors influencing turbidity current systems. We provide a series 

of general models that summarise dominant processes and resulting morphologies 

of turbidity current systems linked to deltas entering deep water settings that are not 

influenced by hyperpycnal flows (Fig. 9).  

High gradient deltas dominated by avalanching of coarse bedload 

Gilbert (Type 1) deltas are associated with relatively small and steep river drainage 

basins, which supply coarse grained sediment (Fig. 9A). The associated delta is 

dominated by avalanching of this coarse bedload. Surface plumes of finer sediment 

are more poorly developed due to smaller drainage basin areas and associated 

watersheds. The delta front has steep gradients of 20-30° that approaches the angle 

of repose, favouring remobilisation of dense granular flows. In some cases (type 1b), 

the delta is concave-upward and its lower-gradient and more distal reaches are 

dissected by gullies. These erosional features may be formed by longer run-out 

turbidity currents generated by the initial bedload avalanches or small-scale slope 

failure.     

Hybrid surface plume and delta-lip failure deltas with no or poorly 

developed channels 

The second type of delta-system either completely lacks, or has poorly developed, 

submarine channels, such as Squamish Delta. This system has a concave-upward 

profile influenced by a combination of sediment settling from surface plumes and 

delta-lip failure (Fig. 9B). Channels occur where turbidity currents, generated by 
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sediment settling from surface plumes or delta-lip failure, are sufficiently powerful to 

cut weakly developed channels into the delta-front. These systems tend to have 

smaller drainage basins, river discharges and sediment concentrations (Fig. 9B), 

which reduces the frequency of turbidity currents, and thus likelihood of erosive 

turbidity currents reaching the channel terminus (Clare et al., 2016; Hizzett et al., 

2018). Turbidity currents within the proximal channels tend to be supercritical, and 

produce cyclic steps and coarse-grained bedforms that migrate upslope (Hughes 

Clarke, 2016; Stacey et al., 2018).  

Hybrid surface plume and delta-lip failure deltas with extensive channels 

The third type of delta-system has well developed and extensive submarine 

channels (Fig. 9C), such as Knight, Bute and Toba Inlets (Table 2). Channels eroded 

by turbidity currents become better developed as the percentage of time and 

magnitude that a river system exceeds the threshold mean annual discharge level by 

increases. These systems tend to have larger drainage basins, river discharges and 

sediment concentrations (Fig. 9C). This increases the frequency of erosive turbidity 

currents formed by settling from surface plumes and/or delta-lip failures as more 

sediment is deposited rapidly on the delta-lip which episodically fails, generating 

turbidity currents (Clare et al., 2016). Deeply entrenched submarine channel systems 

are formed, partly by series of up-slope migrating knickpoints. Headless channels 

may also form in distal regions. Avulsion at the delta front may cause an extensive 

channel system to become disconnected from the river mouth. The proximal part of 

the relict channel is then infilled and buried, and much shorter channels develop 

initially beyond the new river mouth (Fig. 4B). This disconnection of submarine 

channel and river mouth causes a change from a type 3 (Fig. 9C) to type 2 (Fig. 9B) 

system, as inferred for Toba Inlet (Fig. 4).  
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 Delta morphologies that are reset by widespread slope failure 

Widespread slope failures can wipe out any preceding channel systems on deltas, 

and thus reset the submarine channel systems (Fig. 9D). Slope failures can be 

triggered by earthquakes, or by low tides and other factors as seen at Kitimat Arm 

where there is evidence for at least 15 Holocene slides (Shaw et al., 2017).  

Conclusions 

This contribution seeks to understand the main factors that control the morphology of 

turbidity current systems linked to deltas, and why some locations have well 

developed submarine channels whilst others do not. Delta morphology is found to be 

strongly bimodal within a series of adjacent fjords in British Columbia, Canada. This 

is primarily due to bimodality in river drainage and basin character. The longest (>40 

km) and most established submarine channels were found in the fjords where 

threshold mean annual discharge values were exceeded over prolonged periods 

(e.g. Bute Inlet); or where the mean discharge this was exceed by was significantly 

high (e.g. Knight and Bute Inlets). River avulsion and widespread submarine 

landslides can both act to reset these submarine channel systems.  

These insights are captured in a series of general models for delta and 

turbidity channel systems (Fig. 9). This includes: 1) High-gradient deltas dominated 

by avalanching of coarse bedload. Here, Gilbert deltas are common on the flanks of 

fjords where the steep-sloped delta morphology (20-30) is largely controlled by 

small and steep river drainage basins. Gullies and chutes occur on some of the distal 

reaches. 2) Hybrid surface plume and delta-lip failure deltas with no or poorly 

developed channels. This system either lacks or has poorly developed channels. 

The concave-upward system geometry is formed by a combination of sediment 
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settling from surface plumes or delta-lip failure. These systems are characterised by 

smaller drainage basin sizes and lower river discharges. 3) Hybrid surface plume 

and delta-lip failure deltas with extensive channels. This system is characterised by 

well-developed and extensive submarine channels. Increased river discharge and 

magnitude that river discharge exceeds annual threshold values by, favours 

formation of longer erosive turbidity current channels. 4) Delta morphologies reset by 

widespread slope failure. These systems are characterised by widespread slope 

failure that may wipe out any preceding channels and thus reset the submarine 

channel system.  
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Tables 

Table 1. Environmental parameters associated with five Canadian fjord deltas. 

 

[1] Environment Canada (https://wateroffice.ec.gc.ca): Kitimat: 08FF001; Knight: 08GE002; 

Bute: 08GD004; Howe Sound: 08GA022; Toba: 08GC003 (Tahumming River; not main river 

input).  

[2] Numbers in brackets calculated from ArcGIS for Upper Toba river. There is no monitoring 

station for this river. 

[3] Calculated % glacial cover of total drainage area. 

Fjord Draina
ge 

area 
(km

2
) 

[1] 

Glacial 
compone

nt 
of the 

drainage 
area % [3] 

Mean 
annual 

discharg
e (m

3
/s) 

[1] 

Maximum 
annual 

discharge 
(m

3
/s) [1] 

Mean annual 
precipitation 

(mm)  

Measured 
suspended 
sediment 

concentrat
ion (kg/m

3
) 

 

Annual 
sediment 

discharge* 
(suspended 

load)  

% values 
exceeding 
threshold 

mean 
annual 

discharge 
[14]  

Mean 
excess 

threshold 
discharge 
(m

3
/s) [15] 

Kitimat 
Arm  

(Kitimat 
River 

 
 

 
1,990 

 
3.5 

 
123 

 
1065 

 
1,767[4] 

 

 
0.008-

0.047[7] 
 
 
 

18 x 10
6
 

tons yr [11] 
38 111 

Knight 
Inlet 

(Klinakli
ni River) 
 

 
5,780 

 
12.9 

 

 
266 

 

 
1,272 

 

 
2,316[5] 

0.7[8] 1.7 x 10
6
 

tons yr [12] 
36 326 

Bute 
Inlet 

(Homath
ko 

River) 

 

 
5,680 

 
20.6 

 

 
255 

 

 
1,492 

 

 
2,316[5] 

0.403-
0.689[9] 

1.7 x 10
6 

tons yr  [12] 
60 302 

Howe 
Sound 

(Squami
sh 

River) 
 

 
2,350 

 
27 

 
221 

 

 
1427 

 

 
2,341[6] 

0.04[10]  1.81  x 10
6
 

tons yr [13] 
40 198 

Toba 
Inlet 

(Tahum
ming 
River) 

233; 
(1,759) 

[2] 

8; (36) [2] 25 235 2,316[5] -  
 
 

-  38 22 

https://wateroffice.ec.gc.ca/google_map/google_map_e.html?searchBy=p&province=BC&doSearch=Go
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[4] 1971-2000 Environment Canada Long Term Average (LTA) calculated using weather 

records for 1971-2000. Kitimat LTA data is for Fire Hall Weather Station (“Kitimat Townsite”). 

Source: Climate Data Services, Environment Canada.  

[5] 1981-2010 Environmental Canada LTA calculated using weather records from 1981-2010 

for Chatham Point (85.6 km from Bute; 91.2 km from Knight; 67.8 km from Toba). Source: 

Climate Data Services, Environment Canada. 

[6] 1981-2010 Environmental Canada LTA calculated using weather records from 1981-2010 

Squamish Upper. Source: Climate Data Services, Environment Canada.[7] 1988-1992 

Average range between May-October (https://wateroffice.ec.gc.ca). Measurements are 

instantaneous suspended sediment averaged over the watercolumn depth and measured 

manually using a D49 sampler.  

[8] Syvitski and Miliman (2007).  

[9] Average from June-August calculated over 3 years (1982-1984) 

(https://wateroffice.ec.gc.ca). Measurements are instantaneous suspended sediment 

averaged over the watercolumn depth and measured manually using a P61 sampler.  

 [10] Hughes Clarke et al., (2014). 

[11] Reading and Collinson (1996). 

[12] Syvitski et al., (1988).  

[13] Hickin (1989).  

[14] Percentage of daily discharge values that exceed mean annual discharge value. Daily 

discharge values taken from Environment Canada [1].  

[15] Mean discharge in excess of mean annual discharge value.  

 

 

https://wateroffice.ec.gc.ca/
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Table 2. Submarine channel morphometric parameters  

 

1Mea

n 

value

s 

along 

main 

chann

el 

thalw

eg; 

For Kitimat Arm, all categories are zero.  

 

 

  

Morphometric 

parameter 

Squamish 

Delta 

Toba 

Delta 

Bute 

Delta 

Knight 

Delta 

Gradient1 2 1.8 1.4 1.4 

Delta-front channels 5 2 4 >5 

Main channel length (km) 6.74 21.2 41.5 40.7 

Main channel width1 (m) 230 201 287.2 236 

Main channel relief1 (m) 12 12 19 20 

Main channel sinuosity  1.07 1.22 1.38 1.76 

Terraces (km cover) 0 4.5 12.9 16 

Headless channels 4 5 8 8 



 

 
This article is protected by copyright. All rights reserved. 

 

Fig. 1. A. Study area. Boxes locate (B-F). Bathymetric data is gridded at 75 m; 

Topographic data is gridded at 30 m. White shaded area is modern extent of 
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icefields and glaciers. Inset figure shows location of (A). B. Bathymetric map of 

Kitimat Arm. 2 m cell size. C. Bathymetric map of Knight Inlet. 2 m cell size. D. 

Bathymetric map of Bute Inlet. 2 m cell size. E. Bathymetric map of Toba Inlet. 2 m 

cell size. F. Bathymetric map of Howe Sound. 2 m cell size.  
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Fig. 2. A.  Morphology of Howe Sound. Black line is fjord long-axis profile in (D). Red 

circles are deltas used in quantitative analysis. Blue dashed lines are individual river 

basin areas used in analysis. Light blue lines are individual delta watersheds used in 

analysis. B. Slope map of head of fjord (inset figure in A). C. Slope map of deltas on 

fjord flank (inset figure in A). D. Fjord axis long-profiles (black). Dark green line is 

fjord axis gradient (subsampled by 15). Light green line is smoothed gradient plot. 

Locations are marked in A.  
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Fig. 3. A.  Morphology of Bute Inlet. Black lines are fjord long-axis profile and 

channel axis profile in (E). Red circles are deltas used in quantitative analysis. Blue 

dashed lines are individual delta basin areas used in analysis. Light blue lines are 
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individual delta watersheds used in analysis. B. Slope map of head of fjord (inset 

figure in A). C. Difference bathymetric map of data collected in 2008 and 2010 

showing knickpoint within channel (inset figure in A). D. Difference bathymetric map 

of data collected in 2008 and 2010 showing knickpoint within channel (inset figure in 

A). E. Fjord axis long-profiles (black dashed line) and channel long-profile (black 

solid line). Dark green line is fjord axis gradient (subsampled by 50). Light green line 

is smoothed gradient plot. Locations are marked in A. F. Inset figure of single 

knickpoint marked in part E.  
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Fig. 4. A.  Morphology of Toba Inlet. Black lines are fjord long-axis profile and 

channel axis profile in (D). Red circles are deltas used in quantitative analysis. Blue 

dashed lines are individual delta basin areas used in analysis. Light blue lines are 

individual delta watersheds used in analysis. B. Slope map of head of fjord (inset 

figure in A). C. Difference bathymetric map of data collected in 2010 and 2008 of the 

delta head and channel (inset figure in A). D. Fjord axis long-profiles (black dashed 

line) and channel long-profile (black solid line). Dark green line is fjord axis gradient. 

Light green line is smoothed gradient plot. Locations are marked in A. E. Inset figure 

of single knickpoint marked in part D. 
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Fig 5. A.  Morphology of Knight Inlet. Black lines are fjord long-axis profile and 

channel axis profile in (E). Red circles are deltas used in quantitative analysis. Blue 

dashed lines are individual delta basin areas used in analysis. Light blue lines are 

individual delta watersheds used in analysis. B. Slope map of head of fjord (inset 

figure in A). C. Slope map of knickpoint within channel (inset figure in A). D. Slope 

map of knickpoint within channel (inset figure in A). E. Fjord axis long-profiles (black 

dashed line) and channel long-profile (black solid line). Dark green line is fjord axis 

gradient (subsampled by 40). Light green line is smoothed gradient plot 

(Subsampled by 15). Locations are marked in A.  
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Fig. 6. A.  Morphology of Kitimat Arm. Black line is fjord long-axis profile in (C). Red 

circles are deltas used in quantitative analysis. Blue dashed lines are individual delta 

basin areas used in analysis. Light blue lines are individual delta watersheds used in 

analysis. B. Slope map of head of fjord (inset figure in A). C. Fjord axis long-profiles 
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(black solid line). Dark green line is fjord axis gradient. Light green line is smoothed 

gradient plot. Locations are marked in A.  
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Fig. 7. A. K-means analysis for 137 deltas (type 1 and type 2). Black symbol outline 

indicates channel is present on delta. B. Basin area and watershed length vs slope 

gradient for type 2 deltas. Deltas colour coded by fjord name.  Black outline indicates 

channel is present. C. Fjord and channel long-profiles.  
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Fig. 8. Morphology of type 1b submarine deltas. A, B, C, D, E and F are hillshaded 

bathymetric data with a cell size of 2 m. Black lines are delta long-profiles shown in 

inset figure below (for both long-profile and gradient). Inset figures: black line is delta 

long-profile. Green line is delta gradient profile. Red star marks same position on 

image and graph indicating break in slope (dashed line).  
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Fig. 9.  Schematic figure showing four types of turbidity current and delta system, for 

relatively deep offshore settings. A. Small-scale, high-gradient and low area ‘Gilbert’ 

deltas dominated by avalanching of coarse bedload. B. Hybrid surface plume and 

delta-lip failure deltas with no or poorly developed channels. C. Hybrid surface plume 

and delta-lip failure deltas with extensive channels. D. Delta morphologies that are 

reset by widespread slope failure.  


