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Abstract 

This paper aims to understand the relationship between the chemical, mechanical and geometrical 

properties by investigating basalt fibre from three commercial manufacturers and comparing to an 

industry standard glass fibre.  The chemical composition of fibre was investigated through XRF, 

highlighting that basalt and glass fibres are comprised by a similar elemental composition with the 

main differences being variations in content of primary elements.  A significant correlation between 

the ceramic content of basalt and its tensile properties is demonstrated, with a primary dependence 

on Al203 content.  Single fibre tensile tests at various lengths and two-way ANOVA revealed that the 

tensile strength and modulus were highly dependent on fibre length with a minor dependence on 

manufacturer.  Results demonstrate that basalt has a higher tensile strength and a comparable 

modulus to E-glass. Considerable improvements in quality of basalt fibre manufacture are 

demonstrated over a three year period through geometrical analysis, showing reduction in standard 

deviation of fibre diameter from 1.33 to 0.61, comparable to tested glass fibre at 0.67.  Testing of 

single basalt fibres with diameters of 13µm and 17µm indicates that tensile strength and modulus are 

independent of diameter, following an improvement in fibre diameter consistency in line with glass 

fibres.   
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1. Introduction 

Environmental issues such as waste and recyclability of composites are becoming increasingly 

important to industry and government, which has led to the promotion of natural fibres as 

reinforcement for polymer composites [1-3].Typical fibres used as reinforcement are Glass (GF) or 

Carbon (CF) because of their high mechanical properties, especially strengths; however, they are not 

environmentally friendly [4,5]. Natural fibres, including vegetal fibres, such as kenaf and flax show low 

mechanical properties and are prone to thermal degradation [6,7], making them unsuitable to 

compete with GF and CF.  This has led to a focus on basalt fibres (BF).  Continuous basalt fibres 

have a simple manufacturing process requiring no additives as seen with GF [8]. It consists of melting 

basalt rock at temperatures between 1350 and 1700
o
C [9] and then pulling the molten material 

downwards through a platinum-rhodium die (bushing) via the spinneret method.  The melting of basalt 

rock is conducted in two stages: firstly it is fused in the initial furnace and then transferred to the 

primary furnace which controls the temperature of the melt and feeds the bushings [10].  Heating of 

glass fibre materials for processing is achieved primarily by overhead gas heaters.  For basalt, the 

dark colour absorbs the infrared energy from these gas burners close to the surface of the melt, 

creating difficulties in obtaining a homogeneous melt.  There are two methods to overcome this; 

holding the basalt melt in the heating stage for longer or more commonly by using immersed 

electrodes to electrically heat the melt [10,11].   Due to the nature of basalt rock its chemical 

composition can vary depending on the geographical location and conditions of source.  Basalt is a 

chemical rich rock consisting primarily of silicon, aluminium, calcium and iron oxides, not unlike glass 

fibre [12-14].  Fibres produced from basalt comprise of olivine, plagioclase, pyroxene and 

clinopyroxene minerals [15].  Basalt is classed according its SiO2 content where alkaline basalts 

contain up to 42% SiO2, mildly acidic basalt contains 43-46% SiO2 and acidic basalt contain over 46% 

SiO2.  To manufacture continuous basalt fibre, the basalt rock must fall within the acidic class (>46% 

SiO2) [16].  Recent research [17] has shown that the melting properties of basalt used for manufacture 

varies depending on the mineral class of the basalt rock.  The melting process is a crucial stage of 

continuous basalt fibre (CBF) production where homogeneity of the melt can have effects on the 

quality, fibre diameter and performance stability of basalt fibre.  The ability to produce BF with 

consistent fibre diameter is significant in order to compete with fibres such as glass.  Significant 
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variations in fibre diameter will affect quality, the ability to model basalt composites, fibre volume 

fraction and potentially interfacial adhesion through increased or reduced surface area [18,19]. 

Basalt fibres demonstrate superior mechanical properties compared to vegetal fibres and compare, or 

are higher, to those of glass [3,18,20].   The density of basalt is between 2.6-2.7 g/cm
3
 whereas E-

Glass density is 2.5-2.6 g/cm
3
 [21].  Basalt fibres are further characterised by excellent sound 

insulation, thermal resistance higher than that of glass, good chemical resistance to both acidic and 

alkaline conditions (higher than E-glass) and biologically inert [12,22,23].  The cost of basalt fibres 

(~£6/kg) is currently higher than E-glass (~£1.5/kg) though lower than S-glass (~£16/kg).  E-glass 

fibre manufacturing costs have economies of scale as an established reinforcement, whereas basalt 

fibre production costs are compromised by the early stage small scale production.  As basalt rock is 

the most common bedrock on earth there is an abundant supply available; however, as basalt fibre 

requires a certain level of SiO2 content there are currently approximately three dozen mines and 

quarries that have certified rock that is suitable for fibre manufacture with the most common found in 

Ukraine and Russia [24].  These factors, together with its environmentally friendly nature [25], mean it 

displays significant potential as a competitor or replacement of glass fibres and a new fibre for various 

applications. As a result, short and continuous basalt fibres have been the focus of recent research 

with an aim to identify their potential applications [12,21,26-34].   

With the increased demand for basalt, there has been an increase in the number of basalt fibre 

manufacturers becoming established.  Glass fibres have a relatively standardised performance 

whereas the performance and quality of basalt fibre from different sources or manufacturers is not yet 

been fully examined; therefore it is important to understand the variations of basalt fibre from different 

manufacturers; such as chemical composition, diameter consistency and mechanical properties.  

Therefore the aim of this paper is to analyse these factors and to determine if there are any variations 

or relationships between each of these factors. 

 

2. Materials and methods 

Materials 

Several types of commercial basalt fibres were characterised in this study alongside commercially 

available glass fibre for comparison purposes.  Fibres used are indicated in Table 1. Each fibre was 

provided in direct roving form with a general purpose sizing which is primarily suitable for epoxies.  
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Company A and C were chosen due to their long establishment and are classed amongst world 

leaders in basalt fibre manufacture while Company B is relatively new (5 Years) and fast emerging 

competitor within the market.  Similarly, E-glass was selected from Company D as they are a well 

established glass fibre manufacturer. 

Table 1 Basic data of investigated fibre 

 

 

 

 

Methods 

X-ray fluorescence analysis   

The chemical composition of fibres was determined through X-ray fluorescence (XRF) analysis.  

Fibres were initially placed in a muffle furnace at T=650
o
C for 30minutes to remove any sizing present 

on the fibres. Pyrolysis is a commonly used method for the removal of sizing with the used 

temperatures and time showing to be higher than the temperature required to remove all organic 

sizing [35-37].  After cooling, the de-sized fibres were milled using a Retsch PM100 planetary ball 

milling machine for two minutes at 520 rpm in order to achieve a consistent powder form.  Powder 

fibre samples were mixed with CEREOX® Licowax (Fluxana, BM-0002) at a ratio of 4:1 to bind the 

powder together and then pressed (Retsch PP25) to produce pellets for analysis.  CEREOX was used 

as a binding agent as it is clean and stable under x-rays and designed specifically for XRF as it does 

Designation Fibre Type Manufacturer Nominal Diameter (µm) Linear Density (Tex) 

BF1 Basalt Basaltex 13  150 

BF2 Basalt Mafic 13 300 

BF3 Basalt GBF 13 400 

BF4 Basalt Basaltex 17 600 

BF5 Basalt Mafic 17 500 

GF Glass PPG 14 300 
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not influence results.   XRF was performed using a Thermo Scientific Niton FXL FM-XRF analyser.  

Each sample was tested in three spots with a testing time of 150seconds per spot. 

Fibre diameter analysis   

To determine the actual fibre diameter of basalt and glass samples, a Scanning Electron Microscope 

(SEM) was used (JEOL JSM-6010) to perform measurements.  Fibres were firstly gold coated to 

improve image quality and accuracy.  A set of 100 measurements were recorded from 15 mm 

samples taken at 1 metre intervals, along the roving length, to total 300 measurements per fibre type.  

Fibre sizing was not removed prior to measurements since the calculated sizing thickness was less 

than 16nm and therefore negligible. SEM was used over standard optical microscopy due to its 

increased image quality. 

Mechanical testing   

Single fibre tensile tests were performed according ASTM D3379 using an Instron 5564 with a 200N 

loadcell.  As received fibres were separated and bonded to cardboard templates, clamped in the grips 

of the test machine, then the template was carefully cut before test start. A minimum of 10 tests for 

each sample were performed at a constant crosshead rate of 1mm/min for 25, 50 and 100mm gauge 

lengths.  As it was not possible to use an extensometer or strain gauges due to the small diameter 

and fragile fibres, the load vs displacement recorded by the Instron was used in conjunction with the 

compliance method stated within ASTM D3379.  Indicated compliance was first calculated using Eq. 

(1). 

𝐶𝑎 = (𝐼/𝑃)𝑥(𝐻/𝑆)            (1) 

Where I = total extension for straight line section of load-time curve, extrapolated across full chart 

scale, P = full scale force, H = crosshead speed and S = chart speed.  True compliance is then 

calculated as: 

𝐶 = 𝐶𝑎 − 𝐶𝑠            (2) 

Where Cs = system compliance.  The Young’s modulus is calculated as a corrected value using the 

following equation: 

𝐸 = 𝐿/𝐶𝐴            (3) 

Where L = specimen gauge length and A = average filament area. 
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3. Results and Discussion 

The chemical composition of studied fibres can be seen in Table 2. The primary compound found 

within both basalt and E-glass fibres is SiO2, with basalt fibres having a relatively consistent 

proportion between 48.82 and 49.69 mass percent (mass%) across different manufacturers, 

consistent with the requirements to spin continuous basalt fibres.  Glass fibres had a higher SiO2 

content at over 53 mass% which is in agreement with previous studies and specifications 

[9,12,38,39].  Basalt fibres contain five essential elemental groups of: SiO2, Al2O3, CaO, MgO and 

Fe2O3.  Similarly, glass fibres were found to be mainly formed from five primary groups consisting of: 

SiO2, Al2O3, CaO, MgO and B2O3.  Measurements of Boron were not within the scope of equipment 

used, however it is known that glass fibres still contain Boron in the 0.4 – 5 mass% range, with the 

exception of some new boron-free glass fibres, but is not present in basalt [9,38,40,40,41].  Glass 

fibres shared further oxides with basalt fibres, e.g TiO2, K2O, Na2O and Fe2O3, however in much lower 

quantities (<1mass%) than basalt. These elements highlight the chemical differences between glass 

and basalt fibres with the higher content of Fe2O3 contributing to the increased temperature resistance 

and darker colour of basalt fibre. With the exception of a small variation seen in SiO2 and Al2O3 

content (~1mass%), BF1 and BF2 have a very similar chemical composition.  On the other hand, BF3 

has a very similar SiO2 content to BF1 and BF2 but varies consistently by 1-2mass% for all other 

elements.  Higher content of CaO reduces the melting temperature of basalt and thus allowing easier 

homogenisation of the melt, known to aid fibre production [42].  BF1 and BF2 have a very similar 

content of CaO whereas BF3 is ~1.25% lower which may result in an inhomogeneous melt unless 

accounted for in furnace temperature.  

Table 2 Chemical composition of basalt and glass fibres 

Element Oxide 

BF1 BF2 BF3 GF 

Element 
mass% 

Oxide 
mass% 

Element 
mass% 

Oxide 
mass% 

Element 
mass% 

Oxide 
mass% 

Element 
mass% 

Oxide 
mass% 

Si SiO2 22.52 48.82 23.22 49.69 23.26 49.58 24.78 53.02 

Al Al2O3 6.79 12.83 7.12 13.45 6.11 11.54 5.91 11.16 

Ca CaO 4.50 6.02 4.51 6.03 3.62 4.85 12.53 16.77 

Fe Fe2O3 5.18 7.41 5.25 7.51 4.87 6.96 0.17 0.24 

Mg MgO 2.45 4.06 2.03 3.36 3.08 5.10 1.82 3.02 

Ti TiO2 0.56 1.18 0.58 1.21 0.43 0.90 0.05 0.10 

K & Na 
K2O 

+Na2O 
1.12 2.44 1.20 2.50 1.67 2.13 0.27 0.36 
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Fibre from BF2 was chosen for further investigation to determine the consistency of fibre manufacture 

over time.  Details of the fibres tested and results are seen in Table 3.  Fibres batches were 

manufactured approximately one year apart from each other.  It is noted that the average measured 

diameter does not vary significantly between each year; however, a clear change in standard 

deviation is evident with an improvement from 1.33 to 0.61.  This deviation value clearly shows 

considerably improvements in the consistency of fibre manufacture.  Fibre diameter is related to 

parameters such as velocity of molten material, haul off rate and internal diameter of the bushing [43].   

For basalt fibre, it is believed that improvements in the melt homogeneity resulted in better control of 

the fibre diameter, as seen with glass fibres [44].   

 

 

Table 3 Results of fibre diameter measurements for BF2 

Manufacturer Date of 

Manufacture 

(MM-YY) 

Stated 

Diameter 

 (µm) 

Measured 

Diameter  

(µm) 

Standard 

Deviation 

Mafic 

02-14 13  13.39 1.33 

04-15 13 13.43 1.10 

08-16 13 13.31 0.61 

 

The improved results of BF2 were then compared to fibre diameter measurements of tested fibres 

from other manufacturers, seen in Table 4.  In addition to fibres tested in this work, results have been 

compared to previous studies on Technobasalt and D.S.E Group fibres designated BF6 and BF7 

respectively [45].  The stated nominal diameter by manufacturers of basalt fibres was 13µm across all 

samples. Glass fibres were measured at 13.87µm to the stated 14µm diameter with a low standard 

deviation of 0.67. Diameter consistency of basalt fibres is necessary for them to be competitive 

against glass fibres and to assist in the prediction and modelling of basalt composites. Fibre diameter 

distribution profile for each test fibre can be seen in Fig.1.  
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Fig.1 Diameter distribution of basalt and glass fibres 

 

 Fibre from one of the leading basalt manufacturers (BF1) was on average 1.16 µm larger than 

specified combined with a higher deviation of 1.2. Although BF3 was close to its stated diameter its 

deviation was more than double that of glass fibres.  BF6 fibres were more than a micron larger than 

specified with a very high deviation of 2.9, suggesting a poor consistency in fibre manufacture.  These 

results highlight the current gap between glass and basalt fibres in terms of fibre manufacture and 

quality.  However, the improved fibre of BF2 demonstrated significant improvements with a diameter 

close to that stated and more importantly a standard deviation of 0.61, lower than that of glass 

samples.  It is clear there have been some significant improvements in the manufacture and quality of 

basalt fibre in recent years.  Larger diameter fibres BF4 and BF5 show a high diameter consistency 

with a standard deviation of 0.83 and 0.69 respectively, although this is expected to be a result of 

easier manufacturer of larger fibres.   

 

Table 4 Results of fibre diameter measurements 

Sample 

Stated 
Diameter    

(µm) 

Average 
Diameter  

(µm) 

Standard 
Deviation 

Coefficient 
of Variation 

(%) 

BF1 13 14.16 1.20 8.46 

BF2 13 13.31 0.61 4.61 

BF3 13 12.61 1.38 10.97 

BF6[45] 13 14.1 2.9 4.76 

BF7 [45] 13 12.70 1.50 4.00 

GF 14 13.87 0.67 4.84 
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The tensile strength and tensile modulus of all 13µm fibres are presented in Fig.2(a) and Fig.2(b) 

respectively.  Initial observation of the tensile strength indicates that fibre strength decreases as the 

fibre length increases for all fibres.  This behaviour is widely associated with an increase in flaw 

population due to the longer fibre length and has been observed in both carbon and glass fibres 

[46,47]. 

 

 

 

 

Fig.2 Tensile properties of 13µm basalt and glass fibres 

 

There are two variables present within these samples which may influence the mechanical properties; 

these are fibre type/manufacturer and fibre length.  Two-way ANOVA was performed in order to 

determine the dependence of tensile strength and modulus of filaments on these two factors [48]. The 

pre-requisite of ANOVA to determine the equality of variances was determined by the Levene test 

[49].  The test statistic W was calculated by: 
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  𝑾 =  
(𝑵−𝒌)

(𝒌−𝟏)

∑ 𝑵𝒊(𝒁̅𝒊− 𝒁̿)𝟐𝒌
𝒊=𝟏

∑ ∑ (𝒁𝒊𝒋− 𝒁̅𝒊)𝟐𝑵𝒊
𝒋=𝟏

𝒌
𝒊=𝟏

         (4)

              

Where k is the number of different groups, N is the total number of measurements, 𝑍𝑖𝑗 = |𝑌𝑖𝑗 −  𝑌̅𝑖| 

where 𝑌̅𝑖 is the mean of the i-th group and 𝑌𝑖𝑗 is the value of the measured variable for the j-th case of 

the i-th group, 𝑍̿ is the mean of all 𝑍𝑖𝑗, 𝑍̅𝑖 is the mean of the 𝑍𝑖𝑗 for the i-th group.  The resulting P- 

values for tensile strength and tensile modulus were 0.23 and 0.49, which are significantly higher than 

the significance level α=0.05.  Therefore the null hypothesis theory of standard variations can be 

accepted.  ANOVA was then performed with the fibre type being Factor A and fibre length being 

Factor B.  Calculated P-values from ANOVA were used as results considering a significance level of 

α=0.05.  The null hypothesis of equal means is accepted when P>α and hence rejected when P<α. 

Table 5 Two-way ANOVA results for tensile properties of basalt fibres 

  Tensile strength Tensile modulus 

Sample Degrees of freedom F P value F P value 

Factor A (fibre type) 2 8.48 0.0364 9.46 0.0305 

Factor B (fibre length) 2 28.28 0.0044 16.38 0.0118 

Interaction 4 18.38 0.0077 12.92 0.0147 

 

Results of two-way ANOVA for tensile strength and tensile modulus are reported in Table 5. The 

reported F value is the variation between sample means/variation within the samples and is used for 

determining P-value.  For tensile strength the very low P value relating to the fibre length shows that 

variations in gauge length are relevant at the 5% significance level, indicating a strong dependence of 

strength on gauge length.  Low P values for Factor A also indicated a dependence of fibre strength on 

the fibre type/manufacturer.  Previous studies have further confirmed the strong dependence of basalt 

fibre strength on gauge length [15]  yet indicated there was no dependence on fibre type.  When the 

lower values of BF3 were removed from ANOVA analysis, the corresponding P value for fibre type 

increased to 0.5 which is in agreement with previous findings and highlighting the poor mechanical 

performance of BF3 fibres.  However as BF3 is a commercially available fibre it is important to include 

it into the analysis, hence, it can be suggested there is a dependence of tensile strength on the fibre 

type.  
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A similar trend for tensile modulus can be seen from ANOVA results.  The low P values for both 

Factor A and Factor B show that elastic modulus has a dependence on both fibre type and fibre 

length.  It has previously been suggested [15]  that there was no dependence of modulus on fibre 

length.  This change may be explained by the gauge lengths used during testing which have earlier 

focused on 10-40mm.  When values for 100mm gauge length are removed from ANOVA analysis, the 

corresponding P value for fibre length increases to 0.16 and therefore indicates the tensile modulus 

across different fibre lengths is not significantly different.  However, comparable testing performed on 

E-Glass fibres [43]  with lengths of   5-80mm showed that tensile modulus increased as the fibre 

length increased, in agreement with the results found for longer basalt fibres.  This increase, despite 

modulus correction, can be attributed to test equipment’s dependency on sample gauge length.  This 

dependency is manifested as an elastic deformation contribution from the testing equipment and is in 

agreement with the work of Pardini and Manhani [47] who saw an increase in modulus with gauge 

length for both glass and carbon fibres with the ASTM correction method and the rigidity method.   

Comparisons between glass and basalt fibres show that basalt is characterised by a higher tensile 

strength and a comparable elastic modulus as that of glass.  It is noted that the mechanical properties 

are lower than values stated in the technical data sheet. 

Tensile data was further analysed by applying Weibull statistics.  Data for each fibre and each gauge 

length was sorted in ascending order.  From this, the corresponding value of cumulative failure 

probability, PF, was determined using the median rank estimator [50]. 

𝑷𝑭 =
𝒊−𝟎.𝟑

𝑵+𝟎.𝟒
          (5) 

where i is the ith term of total number of tests N.  The Weibull parameters m (shape) and σo (scale) 

were determined for each fibre manufacturer and gauge length by fitting data points with the two-

parameter Weibull distribution in Eq. (6). 

𝒍𝒏[−𝒍𝒏(𝟏 − 𝑷𝑭)] = 𝒎 𝐥𝐧(𝝈) − 𝒎 𝐥𝐧 (𝝈𝒐)       (6) 

The Weibull plots obtained from Eq. (6) for BF2 fibres are reported in Fig.3.  The obtained parameters 

m and σo for all fibres and lengths are shown in Table 6.  Lower values of m for BF3 suggest that 

flaws are less evenly distributed throughout the fibre and thus resulting in a greater scatter in strength 

[47,50,51].  Fibres BF1 and BF2 have very similar values with the exception of 100 mm lengths where 
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the m value for BF1 is considerably lower indicating a less homogeneous material over longer 

lengths. 

 

Fig.3 Weibull plot for fibres BF2 

 

Table 6   Weibull parameters for strength of 13µm basalt fibres 

Fibre 

25 mm 50 mm 100 mm 

σo (MPa) m σo (MPa) m σo (MPa) m 

BF1 2065 38.19 1942 31.63 1730 12.71 

BF2 2066 42.52 1971 26.38 1765 25.69 

BF3 1972 18.56 1775 32.18 1477 15.67 

 

 

Furthermore, as Weibull parameters were obtained at different gauge lengths it allows for the 

predictions of tensile strength at lengths outside of the experimental range [52].  This can be achieved 

using Eq. (7), in particular at a cumulative probability failure PF = 0.5. 

𝝈 = 𝝈𝒐 [
𝟏

𝑨𝒐𝑳𝒇
𝒍𝒏𝟐]

𝟏/𝒎

         (7) 

where Ao is the cross section area and Lf is the gauge length of the fibre.  The resulting plot obtained 

using the parameters from Table 6 are reported in Fig.4.  It is observed that the predictions from 

Weibull statistics for BF1 and BF2 are very similar with an exception for BF3, in agreement with 

ANOVA in Table 5, high-lighting that there can be a difference between the strength of fibres from 

different manufacturers. 
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Fig.4 Tensile strength of 13µm basalt fibres as a function of gauge length 

 

The mechanical properties of 17µm fibre from Company B (BF5) and A (BF4) are presented in Fig.5. 

Fibres of 17µm show the same trend as 13µm fibre in that the tensile strength increases as fibre 

length decreases and the tensile modulus increases as the length is increased. 

 

 

Fig.5 Tensile properties of 17µm basalt and glass fibres 
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Weibull statistics was performed again for 17 µm fibres.  The m and σo Weibull parameters are shown 

in Table 7 while the prediction of strength at different lengths from Eq. (7) is presented in Fig.6. 

Table 7: Weibull parameters for strength of 17µm basalt fibres 

Fibre 

25 mm 50 mm 100 mm 

σo (MPa) m σo (MPa) m σo (MPa) m 

BF4 1962 13.32 1797 28.6 1476 20.2 

BF5 2210 20.2 2001 47.64 1634 15.66 

 

 

Unlike 13 µm fibres there is a notable difference in strength between the 17 µm fibres BF4 and BF5.  

BF4 has a consistently lower m value at 25 and 50 mm gage lengths and is comparable at 100 mm, 

indicating BF5 to have a better homogeneity [50].  At 100 mm the m value drops for both fibres 

confirming that it is more likely to encounter critical fibre flaws at longer gauge lengths.  The 

performance difference between BF4 and BF5 is further seen in Fig.6. 

 

 

Fig.6 Tensile strength of 17µm basalt fibres as a function of gauge length 

 

It has widely been thought that the tensile strength and modulus of natural fibre increases as the fibre 

diameter decreases [53-56].  This has been proven true by fibre from Company A where there is a 

clear decrease in tensile strength and tensile modulus as the fibre diameter is increased, Fig.7(a) and 

Fig.8(a). Contrary to this belief, it has been shown that tensile properties of glass do not depend on 

fibre diameter due to improvements and consistency in the manufacture of glass fibre [57]. 
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Comparisons of tensile strength and tensile modulus between 13µm and 17µm basalt fibre from 

Company B (BF2 and BF5) can be seen in Fig.7(b) and Fig.8(b).   

 

Fig.7 Diameter - Tensile strength for (a) BF4 and (b) BF5 

 

 

Fig.8 Diameter - Tensile modulus for (a)BF4 and (b) BF5 

 

The tensile strength between the two fibre diameters of BF2 and BF5 is near constant with the 

exception of the longer 100 mm lengths, where a slight reduction in strength is seen in the larger 

diameter.  The cause for this difference is unknown however; in longer fibre lengths it is more 

probable to encounter critical fibre flaws, which may be more prominent with larger diameters.  

Tensile modulus for BF5 had little deviation showing to be independent of fibre diameter.   

   

The demonstrated independence of fibre strength from diameter for Company B is in agreement with 

previous work [45].  Otto [57] demonstrated that when fibres of different diameter are formed under 

controlled, near identical conditions their break strengths are identical and hence reliant on the 

forming process rather than diameter, which applies for diameters larger than 9 µm.  With the 
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demonstrated increase in quality of basalt manufacture for fibre from Company B, basalt fibres have 

shown to behave in a similar manner.  These findings apply only to fibre on its own and not fibres 

embedded in a polymer matrix.  Fibres tows consisting of fibres with a smaller diameter but constant 

weight have an increased surface area which in turn generates more interaction and adhesion to the 

matrix resulting in higher mechanical performance [19].  However, as the fibres can now start off with 

the same mechanical properties it is thought that the effect of surface area may not be as large as 

fibres that have a different performance at varying diameters. 

 

 

The mechanical properties of basalt and glass fibres have been related to their chemical composition.  

As a result, it has been attempted to improve the mechanical properties of basalt fibre through the 

addition of extra elements to the manufacture, resulting in positive improvements [58].  A relationship 

between the ceramic like content (SiO2 + Al203), which is the primary composition of basalt, and the 

mechanical properties has been demonstrated; however, a correlation with the Al203 could not be 

revealed [42].  The relationship between the tensile strength and both the ceramic like content and the 

Al203 content is presented in Fig.9.   

 

 

Fig.9 Chemical Composition - Tensile strength relationships 
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Fig.10 Chemical composition - Tensile modulus relationships 

 

Although glass was presented on the same graph, it was not included in the correlation due to its 

differing chemical composition to basalt. There is a clear correlation between tensile strength and the 

ceramic like content (Fig.9(a)) but also a significant relation with Al203 content (Fig.9(b)).  Two-way 

ANOVA was performed for tensile strength with ceramic content as Factor A and Al203 as Factor B.  

Ceramic content generated a P value of 0.001, below the significant level α=0.05.  The resulting P 

value for Al203 was considerably lower at 1.3523E-7, suggesting the tensile strength is more 

dependent on the Al203 content.  Comparisons with the tensile modulus, seen in Fig.10, indicate that 

there is no significant correlation between the modulus and ceramic like or Al203 content.  Similar 

comparisons of mechanical properties with other elements found within basalt fibre yielded no evident 

relationships suggesting they have a low importance in directly determining the fibres mechanical 

properties. 

 

4. Conclusion 

In this work, the chemical composition, fibre diameter and mechanical properties of different basalt 

fibres were investigated through XRF, SEM and tensile testing.  The main components of basalt fibre 

were SiO2, Al2O3, CaO, MgO and Fe2O3 with small amounts of TiO2, K2O, Na2O.  Glass fibres shared 

similar chemical components/constituents as basalt with the main difference in composition being 

higher levels of Fe2O3 in basalt. Chemical composition of basalt between manufacturers remained 

largely consistent with only fibres BF3 showing a variation in Al2O3, CaO, MgO.   Diameter of basalt 

fibres varied between manufacturers with most showing a higher deviation compared to glass.  

Significant improvement in fibre diameter distribution is demonstrated for the first time with fibre BF2 
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being comparable to glass fibre standard, suggesting advancements in the quality manufacture of 

basalt. 

It was shown that the mechanical properties of basalt fibre can vary between manufacturers; however, 

when only fibre from Company A and Company B is considered the properties are comparable. Basalt 

fibres were characterised by a higher tensile strength than E-glass fibres and a comparable modulus.  

ANOVA was used to demonstrate the dependence of fibre strength on gauge length where shorter 

fibre lengths yielded higher tensile strength whereas longer fibre lengths over 50mm yielded a higher 

tensile modulus. 

For most commercial basalt fibres tested, basalt showed to have a dependence on fibre diameter.  

Contrary to common belief, the strength and modulus of basalt fibre has shown for the first time an 

independence on the fibre diameter for fibres from Company B, where fibres ranging from 13-17µm 

displayed comparable properties.  A clear correlation between the mechanical properties and 

chemical composition of basalt fibres was evident with fibres showing a strong dependence on the 

ceramic like content (SiO2 + Al203) but primarily Al203 content, confirmed by ANOVA, which had 

previously only been suggested.  Basalt fibre technology has reached a point where adoption should 

no longer constrained by product variability as demonstrated in this study.  The cost and performance 

of fibres currently lies between those for E-glass and S2-glass.  The wider adoption of basalt fibres as 

the reinforcement for composites will require mass production to meet the demand for fibres and 

should lead to them becoming cost competitive with the established E-glass reinforcement. 
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