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Abstract: In this study, random codes are applied to the classical syndrome coding scheme to achieve secrecy of
communications. By analysing the effect of the values of the columns of the parity check matrix on the resulting security level of
communications, a code design method is presented which constructs a class of random codes, termed random permutation
codes, which achieve high security levels and are easily generated. A theoretical analysis method is presented which
determines the security level achieved by randomly chosen, linear binary codes, and compared with simulation results obtained
by Monte Carlo analysis. The results verify the theoretical approach. In particular, the theoretical method is also suitable for
analysis of long codes having a large number of parity check bits which are beyond evaluation by computer simulation. The
results show that the security performance of any randomly chosen permutation code is close to that of the best equivocation
code having the same code parameters. This has the practical advantage in syndrome coding of being able to use an
ephemeral code for each communication session, thereby providing forward secrecy, a desired feature of modern, secure
communication systems.

1 Introduction
The study of randomly chosen codes is a common topic in
information theory starting from Shannon's random chosen code
analysis in 1948 [1]. Most random code research focuses on using
random codes for error correction so as to increase the reliability of
digital communications [2–5]. Besides the reliability of
communications, another significant research topic in present-day
communications is physical layer security, modelled by the wiretap
model of Wyner [6] in which the information gained by an
eavesdropper, intercepting a communication link, is analysed. The
secrecy of communications in this model is measured by the
equivocation of the eavesdropper caused by imperfect interception.
In the wiretap model, secrecy capacity is defined as the maximum
rate at which a message can be reliably received by the legitimate
receiver whilst communicating zero knowledge to the eavesdropper
and is well studied for a large class of channels [7, 8].

Syndrome coding is an important secure coding scheme in
physical layer communications. There has been considerable
research aimed at the design of codes which achieve secrecy
capacity for several specific wiretap channels based on the
structure of Wyner's syndrome coding scheme [9, 10]. In [11],
Csiszár and Körner studied the secrecy of randomly chosen codes
in syndrome coding for the broadcast channel. In [12], Cohen
demonstrated that a randomly chosen code in syndrome coding can
ensure the security of communication by showing that the most
likely syndrome does not have too high a probability of occurrence.

Recently, Chen and Vinck [13] proved as the code length tends
to infinity, both reliability and security can be guaranteed, for
random codes applied to syndrome coding in the model where both
the main channel and the eavesdropper channel is a binary
symmetric channel (BSC). Zhang et al. [14] presented a code
design method to construct codes having the best performance, the
best equivocation codes (BECs) for syndrome coding. These codes
achieve the highest security level for any given set of code
parameters. In this study, we assume that the legitimate receiver
has an error-free communication channel whilst the eavesdropper,
with an imperfect interception, experiences a BSC, with a non-zero
transition probability α. This can be arranged by the nature of the

communication system physical design or by providing the
legitimate users with private error correction by means of hidden
Goppa codes [15].

Modern, secure communication systems commonly feature a
protocol known as perfect forward secrecy in which an ephemeral,
encryption key is used for each communication session. The idea is
to limit the effects of any security breach in the event of an
adversary breaking an encryption key. In this context, a new code,
unknown to the eavesdropper, needs to be used for each
communication session [16]. Typically, for each session, a new
code is generated by a key derivation function (KDF) starting from
a secret seed known by both legitimate users. In such a system we
want these codes to provide secrecy levels comparable to the
BECs. The BECs themselves cannot be used because there are
insufficient inequivalent codes for any given code parameters.

To achieve perfect forward secrecy, choosing codes randomly is
a potential solution. However, as is shown below, some randomly
chosen codes have poor performance. By analysing the code
properties of these poor codes, a class of random codes known as
random permutation codes (RPCs) is defined. It is shown that these
codes may easily be generated from a KDF so as to provide
forward secrecy and good performance.

In the following, this paper is organised as follows: Section 2
briefly reviews syndrome coding and the analysis of the
equivocation for the BSC. In Section 3, we study random codes,
analyse the effect of choices for the columns of the parity check
matrix on the equivocation, and propose the RPC class of codes for
syndrome coding. Section 4 presents both a theoretical analysis
technique and a simulation methodology to determine the security
level of a given (n,k) RPC employed in syndrome coding. Several
examples of (n,k) RPCs are given in calculating the equivocation
using both methods as confirmation of the validity of the
theoretical approach. Section 5 gives simulation results for
different code parameters.
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2 Outline of syndrome coding
In the wiretap channel model considered here, it is arranged by
system design that the main channel is error free and the
eavesdropper channel is a BSC with an error probability α.

A binary (n,k) linear block code is defined by a k × n generator
matrix, G or equivalently by a parity check matrix, H, and is the
basis of syndrome coding. The relationship between error patterns
and parity check syndromes is usually provided by a syndrome
look up table [12], which is assumed to be known by the sender,
the legitimate receiver, and the eavesdropper. We denote the bit
length of the syndrome, n − k by m for brevity.

The sender, Alice, encodes a m-bit message M into a n-bit
vector X as follows:

• The m-bit syndrome, ST, is set equal to the message to be sent,
M so that ST = M.

• An independent, random n-bit codeword, CT, is generated from
a random k-bit vector DR by CT = DR × G.

• Based on the error-syndrome look up table, or calculated
algorithmically, the n-bit error patten e corresponding to ST is
added to the codeword CT to form the transmitted n-bit vector, X
so that X = CT ⊕ e. The information rate is given by R = m/n.

The legitimate receiver, Bob, receives the error-free output of
the main channel, Y , and uses the parity check matrix of the code
to determine the message as follows: M = Y × HT = X × HT = ST.

The eavesdropper, Eve, receives the bit stream of the
eavesdropper BSC channel, usually containing bit errors, Z, and
estimates the message, as follows
M^ = SE = Z × HT = X+E × HT = ST + Se.

The secrecy of communications, as a function of a specific code
and BSC transition probability, is traditionally measured by the
equivocation of the eavesdropper decoder output [14]. This is
given by

H(M | M^ ) = H(Se) = − ∑
Se

p(Se)log2p(Se), (1)

in which, for the (n,k) code, there are 2m distinct syndromes, Se.
The probability mass function (pmf) of the syndromes is denoted
by p(Se). The equivocation can be calculated, based on the pmf of
the syndromes caused by the errors from the BSC, p(Se), as a
function of the parity check matrix, H of the (n,k) code.

3 Random permutation codes (RPCs)
3.1 Random codes

A random binary code may be generated by repeatedly
constructing a n × m matrix with random 1s and 0s until a full rank
matrix is obtained. The probability of this matrix being full rank
with m independent rows is asymptotically 0.2887 [17]. The full
rank matrix can be put into systematic format H by using Gauss–
Jordan elimination

H =

1 0 ⋯ 0 h0m ⋯ h0(n − 1)

0 1 ⋯ 0 h1m ⋯ h1(n − 1)

⋮ ⋮ ⋯ ⋮ ⋮ hji ⋮
0 0 ⋯ 1 h(m − 1)m ⋯ h(m − 1)(n − 1)

, (2)

in which 0 ≤ j ≤ m − 1, m ≤ i ≤ n − 1 and hj, i has a value of 0 or
1.

Alternatively, H may be constructed directly by appending the
identity sub-matrix with random 1s and 0s for the hj, i values and
the matrix is always full rank.

We can represent H by n packed integers as follows:
bi = ∑ j = 0

m − 1 hji ⋅ 2 j, in which 0 ≤ bi ≤ 2n − k − 1. Then the parity

check matrix in (2) can be represented by the following integer
sequence (Form 1):

[1, 2, 4, …, 2m − 1, bm, …, bn − 1] . (3)

We can construct a random code, by choosing the values of
bm, …, bn − 1 randomly between 1 and 2m − 1.

Random codes of this type can be put into a standard form.
Since a permutation of the columns of the parity check matrix
produces an equivalent code, the bm, …, bn − 1 integers may be
placed in any order. We will order the parity check matrix as an
identity matrix, followed by the integers that are distinct, followed
by those integers that are repeats of earlier integers (Form 2):

[1, 2, 4, …, 2m − 1, pm, …, pn1, qn1 + 1, …, qn − 1], (4)

in which 1, 2, …, 2m − 1, pm, …, pn1 are the distinct integers,
pm, …, pn1 are selected from bm, …, bn − 1, and qn1 + 1, …, qn − 1 are the
repeated integers from bm, …, bn − 1, which have already appeared in
1, 2, …, 2m − 1, pm, …, pn1. Of course it is possible for a code to have
no repeated integers in which case n1 = n − 1 and the q set of
integers is empty. The parity check matrix in Form 1 of a random
code will be reconstructed in Form 2.

We next explore the effect of the repeated integers, the q set of
integers, on the equivocation.

3.2 Effect of repeated columns of the parity check matrix

We can represent any error pattern as follows:

Fig. 1  Equivocation rate versus the number of repeated columns of the
parity check matrix

 

Fig. 2  Pmf of the syndromes in rank order for different numbers of
repeated columns
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e = [e1 e2 ⋯ en]
= [e1 0 ⋯ 0] + [0 e2 ⋯ 0] + ⋯ + [0 0 ⋯ en],

(5)

where each term denotes a 1-bit error event, ei = 1 with a
probability of occurring of α and ei = 0 with a probability of
occurring of 1 − α. As the code is a linear code, the syndrome
derived from any error pattern is the modulo 2 sum of the
syndromes arising from each single bit error pattern

Se = e × HT = [e1 e2 ⋯ en] × HT (6)

= b1δ(e1 − 1) ⊕ b2δ(e2 − 1)⋯ ⊕ bnδ(en − 1) . (7)

Since the probabilities of e1, e2, …, en are independent, the
probability of Se is the product of the probabilities of n separate
error events. From [14], there is the following theorem, replicated
here for convenience

 
Theorem 1: The pmf of S j for j = 0 to 2m − 1 may be defined as

p(S j) = β( j) where β( j) are coefficients of the probability
generating function using the Z transform, denoted as pz(S) and
this depends only on the columns of the parity check matrix and α.

pz(S) = ∑
j = 0

2m − 1
β( j)Z j = ∏

i = 0

n − 1
(1 − α) + αZbi , (8)

where bi are the packed integer representations of the columns of
the parity check matrix and exponent sums of powers of Z are
added modulo 2.

Equation (8) shows that the choice of bi is the main influencing
factor on the pmf of S j. From the security viewpoint, we want the
pmf of S j to be as uniform as possible since then the equivocation
will be as high as possible. If bi = bj, where 0 ≤ i, j ≤ n − 1, then
bi ⊕ bj = 0 and a double error event on bit positions i and j counts
as no error event. Single errors in bit positions i and j will double
the probability of syndrome value bi at the expense of other
syndrome probabilities. The net effect will be to cause the pmf of
the syndromes to be less uniform than the case where there are no
repeated columns of the parity check matrix.

The effect of repeated columns of randomly chosen codes is
shown by Monte Carlo analysis of the equivocation rate where the
average equivocation for a large number of random codes is
determined. Fig. 1 plots the average equivocation versus the
number of repeated columns of the parity check matrix for code
parameters (n = 60, m = 13) and (n = 50, m = 10). The results
clearly demonstrate that as the number of repeated columns is
increased, the equivocation rate is reduced.

Based on Theorem 1, we are able to calculate the pmf of the
syndromes of any code by evaluating

pz(S) = ∏
i = 0

n − 1
(1 − α) + αZbi . (9)

Also, by ordering the syndrome probabilities in decreasing
order for each evaluated code it is easy to demonstrate the effect of
the repeated columns of the parity check matrix on the syndrome
pmf, on average. Fig. 2 plots the pmf of Se for randomly, permuted,
shortened Hamming codes with parameters (22, 12) and also for
the same parameter, random codes with different numbers of
repeated columns in the parity check matrix. It is clearly evident
from Fig. 2 that as the number of repeated columns increases, the
pmf of the syndromes deviates further from a uniform distribution
explaining why repeated column codes have poorer equivocation.

3.3 Random permutation codes

The parity check matrix of a Hamming code may be represented in
a packed integer form by

[1, 2, 4, …, 2m − 1, bm, …, bn − 1], (10)

where n = 2m − 1 and each integer is distinct.
We can construct a random code of length 2m − 1, by choosing

the values of bm, …, bn − 1 randomly between 3 and 2m − 1 such that
all of the integers including those that define the identity part of the
parity check matrix are distinct. We call such a random code a RPC
because the resulting parity check matrix is defined by a
permutation of the sequence of integers from 1 to 2m − 1.

It is apparent that for n = 2m − 1 the resulting RPC is always a
permuted Hamming code and there exists some syndrome re-
ordering that will produce an identical syndrome pmf. Therefore
for n = 2m − 1, all RPCs have the same equivocation as a
Hamming code with the same parameters.

When n < 2m − 1 the RPC is a shortened, permuted Hamming
code but not all of these codes will be the same.

Since the repeated columns of the parity check matrix degrade
the equivocation of the code, we have the following conclusions:

• RPCs are a subset of random codes and on average will have
better equivocation than random codes.

• All RPCs of length 2m − 1 have identical equivocation and the
same equivocation as a Hamming code of the same length.

• The parity check matrix of the worst performing random codes
will have many repeating columns.

• In relation to cryptography, RPCs may be generated by a
random permutation oracle which represents the ideal cipher in
cryptography. Columns of the parity check matrix are defined by
the ideal cipher.

It is apparent that any RPC may be constructed easily by
generating a random code whilst taking measures to prevent
repeated columns of the parity check matrix. This will produce a
well performing code for syndrome coding and has a much lower
computation complexity than deriving an optimum BEC [14] code.
The parity check matrix of the RPC is defined as follows:

[p0 = 1, p1 = 2, …, pm − 1 = 2m − 1, pm, …, pn − 1], (11)

in which pm, …, pn − 1 is a truncated, random permutation of the
integers 3 ≤ i ≤ n − 1 excluding p0, …, pm − 1. When n = 2m − 1,
the RPC will be a permuted Hamming code which is known to be
optimum [14].

4 Security performance of RPCs when used in
syndrome coding
There are two ways to calculate the average equivocation of the
random permutation (n,k) codes

• Evaluate the average equivocation per code by simulation of a
large number of error patterns generated by a BSC, then average
over a large number of (n,k) RPCs using Monte Carlo analysis
to calculate the average equivocation over the ensemble of
RPCs.

• Analyse the effects of discrete error events on the BEC on (n,k)
RPCs in terms of syndrome statistics and combine the
probabilities to determine the average equivocation by
theoretical analysis.

4.1 Monte Carlo simulation

We employ Monte Carlo simulation to analyse the mean of the
equivocation for RPCs by generating |C| (|C| denotes the number of
codes simulated) binary linear (n,k) RPCs, and calculating the
equivocation of each code by using (1) averaged over a large
number of messages. The mean of the equivocation for a large
number, |C|, of randomly chosen (n,k) permutation codes is given
by the following equation:
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E[H] = 1
|C| ∑j

H j(M | M^ ) (12)

= 1
|C| ∑j

− ∑
Se

pj(Se) ⋅ log2 pj(Se) , (13)

where pj(Se) denotes the probability of each syndrome Se for the jth
code. There are |Se | = 2m distinct syndromes, Se, in total for each
(n,k) code.

Expanding (13), we have

E[H] = − |Se | × 1
|Se | × |C| ∑Se

∑
j

pj(Se) ⋅ log2 pj(Se) . (14)

In (14), for each code there are |Se | = 2m values of pj(Se) for all
2m syndromes, and there are |C| RPCs. Therefore, |Se | × |C| values
of p(Se) define a sample space S, and can be accumulated to obtain
the pmf, f S(x), of p(Se), which is defined as

f S(x) = Pr( x ∈ S:S = x ) = p(p(Se)) . (15)

Then (14) can be represented as

E[H] = − |Se | × ∑
p(Se)

p(p(Se)) × p(Se) ⋅ log2 p(Se), (16)

= − |Se | × ∑
x ∈ S

f S(x) × x ⋅ log2 x . (17)

Monte Carlo simulation works well for RPCs with small values
of m, but for codes with m ≥ 30 Monte Carlo simulation becomes
impractical, with long computer runs. For these codes, the
theoretical error event analysis method described below may be
used to determine the average equivocation.

4.2 Error event-based equivocation analysis

We show below that the pmf f S(x) in (17), defined in connection
with Monte Carlo analysis above, can be described in terms of a
number of Poisson distributions following different weight error
events occurring on the communication channel.

For a BSC with an error probability, α, there are a total of 2m

syndromes, Se, for each evaluated RPC and whose probability is
derived from a total of 2n different error events, where each event
is denoted by e. Considering the expansion of a polynomial p(x)
representing the independent probabilities of error events

p(x) = (1 − α) + αx n

= (1 − α)n + n(1 − α)n − 1αx
(18)

+ n
2 (1 − α)n − 2α2x2 + ⋯ + αnxn . (19)

Each error event produces a resulting syndrome Se from 2m

possible syndromes and the overall probability from all 2n error
events is p(Se). It is evident that

p(x = 1) = ∑ p(Se) = 1.

The probability of a given error event e is a function of the
number of bit errors that occurred

p(e) = αw(e) × (1 − α)n − w(e), (20)

where w(e) is the Hamming weight of e. The resulting syndrome is
given by

Se = e × HT . (21)

Based on the weight of each error pattern, the 2n error patterns
may be divided into n + 1 types of distinct weight error events: the
0-error event, …, the i-error events, …, and the n-error event,
0 ≤ i = w(e) ≤ n. All the error patterns of the same weight have the
same probability as given by (20). The code through its parity
check matrix H determines the relationship between each error
pattern and the resulting syndrome, as indicated by (21). As the
code is linear, since there are 2n error patterns and 2m syndromes in
total, there are exactly 2n − m distinct error patterns that produce the
one same syndrome in each case. These different error patterns are
the result of adding, modulo 2, all of the 2n − m codewords to the
one same syndrome. This is because the syndrome of a codeword
is zero and all codewords are distinct. Accordingly, the probability
of each syndrome is determined by the summation of the
probabilities of 2n − m distinct error patterns.

Typical syndromes (TSs) are termed those syndromes that are
not weight 0-events or weight 1-events or weight 2-events.
Following from (18)

p(Se) = p(Se
0) + p(Se

1)(l) + p(Se
2) + p(Se

TS) (22)

and the pmf of Se is given by the convolution of the pmfs of the
syndromes resulting from the separate weight error events. Since
the codes are RPCs there is much that can be said about increasing
weight error events and the pmf of Se.

1. TSs are the syndromes produced by all error patterns of weight
higher than 2 since these are no 'a priori' deterministic if the error
event has a weight higher than 2. Weight 2-events are also not a
priori deterministic except that it is known that p(Se = 0) = 0,
given a weight 2 error event. Since the equivocation is averaged
over all randomly generated codes the probability of a given p(Se)
value due to all weight i-error events will follow a Poisson
distribution with parameters related to i. All of the syndromes that
are not due to the 0-error event or 1-error events or 2-error events
may be treated in the same way. Namely all 2m − n

2 − n
1 − 1

syndromes will have the same pmf of p(Se), f S(x).
2. The syndromes, which are generated by 1-error events, are
denoted by Se

1. Each separate single bit error event produces a
distinct syndrome because each column of H is distinct. Since the
syndromes in the pmf may be placed in any order each RPC
produces exactly the same pmf due to single error events. There are

n
1  1-error events which map into distinct syndromes, Se

1, and have
a probability of α × (1 − α)n − 1 for each syndrome. We have

p(Se
1) = p(Se

TS) + α × (1 − α)n − 1 . (23)
3. The zero syndrome, Se

0, which is contributed by 0-error event and
3 to n error events. 0-error event contributes an additional (1 − α)n

to p(Se
0), so

p(Se
0) = p(Se

TS − ) + (1 − α)n, (24)

where p(Se
TS − ) indicates that two-error events are excluded

because the columns of the parity check matrix for RPCs are
distinct and two columns can never sum to zero.

Evaluated over all of the randomly chosen codes, there will be a
pmf for the distribution of p(Se), f S(x). Since each of the error
events is independent, the pmf of p(Se), given by the sum of
independent events, may be derived from the convolution of their
pmfs as follows:

f S(x) = f S(x)0 ∗ f S(x)1 ∗ ⋯ ∗ f S(x)i ∗ ⋯ ∗ f S(x)n, (25)

in which f S(x)i ∗ f S(x) j denotes the convolution between f S(x)i and
f S(x) j.
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Considering each code, there are n
i  error patterns in total for i-

error events. Each i-error event maps into one syndrome out of 2m

syndromes. The average number of occurrences of an i-error event
mapping into the same syndrome over |C| codes is λ = (|C | n

i )/2m.
With the code being linear, there are 2k error patterns producing

the same syndrome and all error events are binomially distributed.
The quantity of the error events over all codes is large enough that
the Poisson distribution is applicable to describe the number of
occurrences l that a particular syndrome is produced averaged over
all i-error events

p(l) = λl ⋅ e−λ

l! , (26)

in which p(l) is the pmf of l occurrences and l! is the factorial of l.
For each code, one i-error event contributes the additive

probability of αi × (1 − α)n − i to the corresponding syndrome.
Therefore, the pmf f S(x)l, for x = p(Se), of the syndrome arising
from l occurrences, is given by

f S(x)l = p(l) = λl ⋅ e−λ

l! , (27)

where

x = p(Se) = l ⋅ αi × (1 − α)n − i . (28)

It should be noted that the syndrome probabilities fall into four
distinct classes and the cases of Se = Se

0, Se = Se
1, Se = Se

2 and SeSe
TS

are all distinct. Applying to (17) produces

E[H] = − |Se | × ∑
x ∈ S

f S(x) × x ⋅ log2 x

= − |Se | × ∑
x ∈ Se

0
f S(x) × x ⋅ log2 x

− n
1 ⋅ |Se | × ∑

x ∈ Se
1

f S(x) × x ⋅ log2 x

− n
2 ⋅ |Se | × ∑

x ∈ Se
2

f S(x) × x ⋅ log2 x

−(2m − n
1 − n

2 − 1 ⋅ |Se | ∑
x ∈ Se

TS
f S(x) × x ⋅ log2 x .

(29)

For an average (n,k) RPC, the mean of the equivocation can be
evaluated according to the analysis method above and compared
with the results derived from the Monte Carlo method. An example
of RPCs is considered next for code parameters (n = 100, k = 85).

4.3 Code example

The (10, 085) RPCs with (α = 0.05) are an example of mid-range
code parameters that are amenable to both methods of average
equivocation analysis. The Monte Carlo evaluation method is
compared with the f S(x) pmf analysis method described above for
the derivation of the average equivocation rate.

For (100,85) RPCs, where m = 15, there are 215 syndromes in
total and there are a total of 2n = 2100 error events making
exhaustive evaluation impossible. However there are only n = 100
different weight error events and only 100 convolutions need to be
carried out to determine f S(x) given by (25). There are only four
different syndrome types needed to construct f S(x)

1. The zero syndrome Se = 0, with x = p(Se = 0)).

Fig. 3  Pmfs
(a) Pmf f S(x) for S ∈ Se

TS)) obtained by event-based convolution, (b) Pmf f S(x) for S ∈ Se
1)) obtained by event-based convolution, (c) Pmf f S(x) for S ∈ Se

TS)) obtained by Monte

Carlo simulation, (d) Pmf f S(x) for S ∈ Se
1)) obtained by Monte Carlo simulation
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2. There are 100 Se
1 syndromes, with x = p(Se = Se

1)).
3. There are 4950 Se

2 syndromes, with x = p(Se = Se
2)).

4. There are 215 − 5051 syndromes with x = p(Se = Se
TS).

Using this method, the pmf f S(x) has been evaluated and it also
has been evaluated by the method of Monte Carlo based simulation
of 10.000 RPCs, for comparison purposes.

Fig. 3a shows a plot for S ∈ Se
TS)) and Fig. 3b) shows a plot for

S ∈ Se
1)). Figs. 3c and d show plots for the two similar pmfs

obtained by Monte Carlo simulation. It can be seen that the
convolution method and Monte Carlo simulation produce almost
identical results.

To obtain a quantitative analysis of how closely matched are the
results the Kolmogorov–Smirnov (K-S) test may be employed [18].
Fig. 4 shows the CDFs of p(Se

1) and p(Se
TS). It can be seen in each

case that the plots are virtually on top of each other. The closeness
is borne out by the K–S supremum values of Dn = 0.01689 and
Dn = 0.02304, respectively.

For both methods, the calculation of the average equivocation
rate may be carried out for typical values of the BSC transition
probability by means of evaluation of equations (17) and (29),
respectively. We have considered α = 0.05. Monte Carlo analysis
produces E[Re] = 0.9905 whilst event-based analysis produces
E[Re] = 0.9886 indicating a close agreement between the two
methods.

5 Results for a range of RPC parameters
In this section, some results are given for the average equivocation
rate for different RPC parameters. Results are also compared
between the Monte Carlo method and the event-based analysis

method. The effectiveness of using RPCs in syndrome coding to
achieve secrecy is also demonstrated.

5.1 Monte Carlo simulation compared with the event-based
analysis method

Fig. 5a shows the mean of the equivocation rate versus the
information rate, R, for RPCs with various values for the code
parameter, m, noting that the code length is n = m/R. Curves are
plotted based on the event-based analysis method for
m = 20 and 30, and for Monte Carlo simulation using 10,000
different RPCs for m = 10, 15, 20, 25, 30. The differences in results
between the two equivocation evaluation methods, which are
shown for m = 20 and 30, are all < 0.3%, indicating a close
agreement. Moreover, the theoretical analysis method is also much
faster for those codes with large values of n and m, which can take
a long time using the alternative Monte Carlo simulation. For some
code parameters, the theoretical analysis method is the only
practical way to evaluate the average equivocation rate.

One advantage of Monte Carlo analysis is that it does show the
variation in equivocation rate between different RPCs with the
same code parameters. Fig. 5b shows the standard deviation of Re
for 10,000 different RPCs. It can be seen that the longer the code
the lower the standard deviation. Additionally, it is evident that at
m = 20 the standard deviation is insignificant for codes longer than
50 bits in length implying that any RPC is as good as any other
RPC with the same length and value of m = 20.

Fig. 5a also shows that for the BSC with error probability
α = 0.05, RPCs with information rate < 0.2 can achieve an
equivocation rate approaching 1, implying perfect secrecy (when
the equivocation rate tends to 1, the communication is perfect
secrecy) for syndrome coding using these codes.

Fig. 4  Cumulative distribution functions (CDFs) of p(Se
1) and p(Se

TS)
(a) CDF of p(Se

1), (b) CDF of p(Se
TS)

 

Fig. 5  Results of Monte Carlo simulation and event-based analysis
(a) Mean equivocation rate versus information rate for RPCs with different values of
m, (b) Standard deviation of the average equivocation rate versus n for RPCs with
m = 20
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5.2 RPCs in comparison with optimised codes, the BECs

Design methods are given in [14] that show how to construct codes
with the highest achievable level of equivocation for syndrome
coding. The resulting codes are known as the BECs, which are the
codes achieving the highest security level in syndrome coding. In
this section, we compare the security of RPCs with that of the
corresponding BEC having the same code parameters.

Fig. 6a plots the average equivocation rate of RPCs, Re(RPC),
and the equivocation rate of corresponding BEC, Re(BEC) for
m = 7, 10, 13. Fig. 6a shows that Re(RPC) is very close to Re(BEC)
for these values of m. More clearly, Fig. 6b shows the normalised
difference of Re between these two classes of codes,
(Re(BEC) − Re(RPC))/Re(BEC). The normalised difference is
< 2.5% and decreases as the value of m gets larger.

The design procedures for BECs mean that these are best
constructed off-line. If a communication application requires
several different codes then BECs will need to be stored by the
application. On the other hand, RPCs can easily be generated on-
the-fly as needed. Since RPCs have performance comparable to
BECs, RPCs are the preferred choice for these applications.

In some applications, it is desirable to have forward secrecy
where a different code is used for each communication session. A
fixed code such as a BEC is undesirable, even though the BEC has
the ultimate performance. Since RPCs are generated randomly and
a different code is used for each communication session, perfect
forward secrecy may be guaranteed.

5.3 Security level versus code length

In this section, we explore the relationship between the code
length, n, and the mean of the equivocation rate, Re for RPCs with
a given value of m for the BSC operating point, α = 0.05. Fig. 7
shows the average equivocation rate Re as a function of codelength
nand indicated 3σ limits in performance. Reave ± 3σ versus code
length. n for m = 20. Also shown in Fig. 7 are the 3σ limits so that
there will be 99% of codes with Re − 3σ ≤ Re ≤ Re + 3σ, where σ is
the standard deviation of Re. Fig. 7 shows that there is a monotonic
relationship between codelength and the average equivocation rate.

From the standard deviation of Re shown in Fig. 5b, it is evident
that the longer the code the lower the standard deviation. For a
code longer than 150 bits, any randomly chosen permutation code
achieves almost perfect secrecy.

5.4 RPCs compared with the worst unconstrained random
codes

The main use of RPCs is in modern communication applications
using syndrome coding that requires forward secrecy where an
ephemeral code is needed for each communication session. Rather
than using RPCs an unconstrained random code could be used
instead. As discussed above, the equivocation achieved by
unconstrained random codes can be bad. The very worst
unconstrained random codes will have many repeated columns of
the parity check matrix and will have corresponding poor levels of
secrecy, leaking information to the eavesdropper.

Fig. 8 shows the equivocation rate of the worst RPCs (Re − 3σ
performance) in comparison with the worst unconstrained
randomly chosen codes. These are random codes (generated in the
following ways: extended shortened Hamming codes with repeated
columns and extending the worst code with random columns for
the code. Fig. 8 shows extreme cases of repeated columns and their
deleterious effect in decreasing the value of the equivocation rate.
For all these codes m = 13. Also shown in Fig. 8 for comparison
purposes is the equivocation rate for the best codes, the BECs.

6 Conclusions
In this study, we described a class of (n,k) randomly chosen codes,
RPCs, for the syndrome coding scheme which is designed to
prevent leakage of information to an eavesdropper. We studied the
effect of the columns of the parity check matrix on the security
levels achieved as measured by the equivocation rate. A theoretical

Fig. 6  RPCs versus the best codes, BECs
(a) Mean of the equivocation rate versus information rate for RPCs compared with the
best codes, BEC, (b) Normalised difference of Re between RPC and BEC

 

Fig. 7  Mean of the equivocation rate versus n for RPCs with m = 20
evaluated over 10,000 codes

 

Fig. 8  Mean of the equivocation rate of RPC and random codes
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method based on the weight of error events in the BSC was
described for calculating the average equivocation rate that is
achieved by RPCs for a given bit error rate, and for given code
parameters. Both this method and the Monte Carlo simulation
method have been used to evaluate the equivocation rate of codes
with given code parameters. It has been shown that for randomly
chosen codes it is the repeated columns of the parity check matrix
that degrades the achieved security. Repeated columns can never
occur for RPCs.

The security performance of a wide range of (n,k) RPCs has
been studied. The error event weight analysis method models the
pmf of syndrome probabilities and makes it possible to calculate
the mean of the equivocation rate for general (n,k) RPCs, including
those code parameters where exhaustive evaluation is impossible.
Results have been compared with those from Monte Carlo
simulation showing a close agreement. The error event weight
analysis method is useful because it enables the average
equivocation rate to be calculated for those codes whose
parameters are such that Monte Carlo analysis cannot be carried
out in a reasonable computation time.

The security performance of various RPCs has been presented.
The results show that the longer the code the higher the mean of
the equivocation rate and the lower the standard deviation. The
results also show that the lower the information rate, the higher is
the mean of the equivocation rate and the secrecy achieved. When
20 or more parity bits are used almost complete secrecy is achieved
by any RPC whose code length is longer than around 120 bits, for a
BSC bit error rate of α = 0.05.

The Monte Carlo simulation results also show that the security
level of any RPC is virtually the same as that achieved by using an
optimum code, a BEC, for the same code parameters. This means
that RPCs are ideal for those communication applications which
require perfect forward secrecy where a different, ephemeral code
is used for each communication session.
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