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Ocean acidification (OA) poses a major threat to marine ecosystems globally,

having significant ecological and economic importance. The number and com-

plexity of experiments examining the effects of OA has substantially increased

over the past decade, in an attempt to address multi-stressor interactions and

long-term responses in an increasing range of aquatic organisms. However,

differences in the response of males and females to elevated pCO2 have been

investigated in fewer than 4% of studies to date, often being precluded by

the difficulty of determining sex non-destructively, particularly in early life

stages. Here we highlight that sex can significantly impact organism responses

to OA, differentially affecting physiology, reproduction, biochemistry and

ultimately survival. What is more, these impacts do not always conform to eco-

logical theory based on differential resource allocation towards reproduction,

which would predict females to be more sensitive to OA owing to the higher

production cost of eggs compared with sperm. Therefore, non-sex-specific

studies may overlook subtle but ecologically significant differences in the

responses of males and females to OA, with consequences for forecasting

the fate of natural populations in a near-future ocean.
1. Introduction
Ocean acidification (OA), changes in seawater carbonate chemistry induced by

oceanic uptake of anthropogenic CO2, is a significant challenge to marine

biodiversity [1], as well as to societies and industries reliant on marine living

resources [2], globally. Over the past 10 years, studies investigating the ecologi-

cal effects of OA have increased exponentially [3]. By incorporating the highly

dynamic nature of carbonate chemistry in many natural systems [4], as well as

multi-stressor interactions [5], and an ever-increasing range of organisms, life-

history stages, communities and multiple generations [5], studies have also

become increasingly complex. While this effort has contributed to help better

explain species tolerance and increase reliability of future change projections,

intraspecific variation in OA responses has received insufficient attention,

creating uncertainty in reported responses and their interpretation [6].
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Figure 1. An overview of the systematic map process. Values (n ¼ x) are the number of studies at each stage. An asterisk indicates a partial record for the number
of papers published in 2016 due to the literature being sourced on 22 June 2016. Fish image Kovalevska/shutterstock.com.
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Identifying the sources and consequences of variability in

biological responses is pivotal to understanding a population’s

ability to cope with environmental change [7,8]. However,

despite recent evidence that many physiological, behavioural,

immunological, molecular and neuro-toxicological functions

are influenced by sex-based differences [9,10], and despite

many of these same processes being impacted by elevated

pCO2 [5], the overarching role of sex in determining response

to OA remains understudied [11]. Here, we employ a systema-

tic map approach: a transparent, robust and repeatable method

to identify and collect relevant literature to answer the question

of how sex is considered within experimental OA research [12].

By critically reviewing existing literature, we highlight

evidence for, and discuss potential implications of, omitting

sex-based variation in species responses.
2. Material and methods
Following international guidelines, a systematic map protocol

(electronic supplementary materials) was used to assess existing

evidence (figure 1) addressing the research question: Do OA studies
consider the impact of sex on organism responses? Search term strings

using Boolean logic were run through Web of Science to collect

relevant peer reviewed literature, and subsequently narrowed to

target literature published between January 2008 and May 2016
and limited to studies on fish, crustaceans, echinoderms and mol-

luscs. This ensured a manageable literature set was reviewed

while providing a contemporary representation of the OA field.

Search results were further refined at three levels to exclude studies

irrelevant to our research question (figure 1 and electronic

supplementary material). Study inclusion was determined objec-

tively against a set of inclusion criteria, which defined pertinent

population, study type, intervention, comparator and outcomes

(see electronic supplementary material for details).

Upon inclusion, data on experimental subject (organismal

group and species) and life stage (gamete, embryo, larvae, juven-

ile, adults, as well as transgenerational and reproduction/

fertilization processes) were extracted. Each study was then

searched for the inclusion of seven sex-related terms within the

main body of text (sex, gender, male, female, imposex, intersex

or hermaphrodite), and scored according to one of five cat-

egories: (i) not mentioned, (ii) mentioned but not accounted

for, (iii) accounted for but not measured (e.g. only males used),

(iv) measured but not tested statistically, and (v) tested statis-

tically. For the last, endpoints measured and the significance of

sex-based differences were extracted.
3. Results and discussion
Despite an exponential increase in experimental OA studies

over the past decade (figure 1), only 3.9% of these statistically

http://rsbl.royalsocietypublishing.org/


Table 1. Overview of the systematic mapping of evidence. Data are pooled across organismal groups (n ¼ 504 articles, figure 1).

classification of sex no. % life stage investigated no. % publication year no. %

not mentioned 265 52.58 adult 245 48.61 2008 8 1.59

mentioned not accounted for 168 33.33 reproduction/fertilization 36 7.14 2009 20 3.97

accounted for not measured 53 10.52 gamete 38 7.54 2010 29 5.75

measured not tested statistically 6 1.19 embryo 127 25.20 2011 44 8.73

tested statistically 19 3.77 larva 185 36.71 2012 68 13.49

juvenile 116 23.02 2013 94 18.65

trans-generation 8 1.59 2014 94 18.65

2015 88 17.46

2016a 58 11.51
aPartial record for number of papers published in 2016, as the literature sourced on 22 June 2016.
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Figure 2. Systematic map results. These show the proportion of studies based on the inclusion of sex as a factor in (a) Echinodermata (n ¼ 122), (b) Crustacea
(n ¼ 115), (c) Mollusca (n ¼ 194) and (d ) fish (n ¼ 95), as well as on the life stage investigated in (e) Echinodermata (n ¼ 122), ( f ) Crustacea (n ¼ 115),
(g) Mollusca (n ¼ 194) and (h) fish (n ¼ 95). Fish image Kovalevska/shutterstock.com.
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assessed sex-based differences in OA responses (table 1 and

figure 2a–d ). Furthermore, only 10.5% of studies account

for possible sex effects by assessing males and/or females

independently, with over 85% of studies failing to mention

or account for sex (table 1). In the majority of instances

where tested, sex significantly modified the response of

aquatic organisms to OA. This suggests failure to account

for sex-based differences could significantly influence the

predicted impact of OA on populations.

The relative energetic investment of males and females

towards reproduction, in anisogamous systems, is central to

the variability observed in organism response to their environ-

ment [11]. Consequently, of the studies that differentiated

between males and females, around 30% did so by measuring

reproductive endpoints. In echinoderms, 6.6% of studies

tested for sex-based differences (figure 2a), with reproduction

and gamete functionality receiving the greatest attention

(figure 2e). Male sea urchins exposed to elevated pCO2 and

temperature fared worse than females, having significantly

lower gonad index and ‘spawnability’ [13,14]. This sex-specific

response to OA seems to contradict theory based on projected

reproductive strategy. However, gonads in echinoderms are

often used as an energy storage compartment that can be

filled or depleted depending on conditions [15]. Under OA,
females that invest more in gonadal development may then

have access to more energy to cope with stress (e.g. increased

costs of acclimation, homeostasis and repair) as compared

with males [16]. This outlines the importance of measuring

the impacts of OA in both males and females, avoiding overge-

neralization and elucidating impact mechanisms by observing

organism biology.

A key limitation to investigating male/female differences is

the ability to successfully determine sex non-invasively. Sexual

dimorphism exists in many adult organisms but in some,

including bivalve molluscs, morphological distinction can

be unreliable [17], precluding its inclusion experimentally.

Consequently, over 96% of studies on the Mollusca neglect to

mention or account for sex, the lowest of the four groups

investigated (figure 2b), despite Mollusca receiving the greatest

attention with respect to OA (figure 1). Conversely, in many

adult crustaceans, it is relatively easy to distinguish sex visu-

ally, resulting in this group having the greatest percentage of

studies that mention or account for sex (63.5%). However,

only 3.5% of studies on crustaceans used sex as a factor when

performing statistical tests, while 33.9% indirectly accounted

for sex by using females or males in isolation (figure 2c).

By pooling data for males and females, or focusing on the

response of a single sex, it is possible that species responses

http://rsbl.royalsocietypublishing.org/
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to OA will be inaccurate [18]. This creates an average pheno-

type, which is a by-product of the mean response of the male

and female phenotype, that in realty does not exist. Instead,

this creates an artefact on the basis of which we may sub-

sequently make conclusions on how biological systems work

[7]. For example, in Crustacea, exposure to elevated pCO2 is

shown to result in higher mortality in female shrimps

(Palaemon pacificus) compared with males [19], while the

median lethal level (LC50) for CO2 is also lower in female co-

pepods (Acartia tonsa) compared with males [18]. Sex-specific

physiological impacts can result in a twofold increase in the res-

piration rate of male copepods under elevated pCO2, but

respiratory suppression in females [20]. Similarly in molluscs,

males and females respond differently to elevated pCO2 and

temperature, with sex-based differences demonstrated in the

mussel (Mytilus edulis) metabolome [10] and the biochemical

composition of limpet (Nacella concinna) gonad [21].

While sex has the potential to impact adult responses to

OA, differential mortality of early life stages of males and

females exposed to environmental stress clearly has the poten-

tial to influence populations [17]. For example, knobbled

whelks (Busycon carica) show a 1 : 1 sex ratio in the embryos,

and subsequent differential mortality of males and females is

proposed as an explanation for a sex ratio often greater than

10 : 1 in the adult population [22]. However, with respect to

OA impacts, sex-based differences in early life stages have

largely been restricted to maternal and paternal effects to

date, with various protective and inhibitory impacts being

shown in transgenerational studies [11]. Inability to non-

invasively determine sex in early-life stage individuals has

precluded the observation of any sex-based differences in

larval OA sensitivity. It is therefore unclear whether

sex-based differences are more or less pronounced during

early-life stages than in adults [9]. Importantly, any differential

mortality, or OA sensitivity, in larval stages could significantly

impact the sex ratio of larval recruits, and thus population

dynamics [17], as demonstrated in knobbled whelks [22].

In fish, only 3.2% of studies have tested for sex effects

(figure 2d ), likely because the largest proportion of fish studies

have investigated larval responses (figure 2h).

Sex determination is governed by a diverse suite of differ-

ent molecular, genetic and environmental factors [17,23].

For example, abiotic conditions (e.g. temperature) are shown

to impact sex differentiation and resulting larval condition in

fish [24]. Elucidating the possible sex-specific impacts of OA

during early-life stages, as well as the impacts of OA on sex

determination, is thus key for projecting future population

dynamics under climate change scenarios. Furthermore, sex
allocation may change during the lifetime of many marine

organisms. Many species of molluscs, crustaceans, annelids

and fish exhibit examples of protandrous (mature as male,

then change sex to female), protogynous (mature as female,

change sex to male), sequential (multiple sex changes during

life cycle) or simultaneous (individuals containing both

male and female sex organs) hermaphroditism [17]. At a popu-

lation level, the occurrence of hermaphroditism significantly

impacts measured sex ratios. Additionally, where sex-based

differences in the response of individuals to OA are shown,

any simultaneous hermaphroditism or sex change could alter

the perceived response of the population to OA over both a

temporal and spatial scale, a factor that has not been

considered within the OA literature to date.

Here, we demonstrate that while less than 4% of the OA lit-

erature tests for sex-based differences, there is a clear precedent

for differential responses to elevated pCO2 between sexes. It is

possible that studies that have investigated sex-based differ-

ences may have done so based on a priori reasoning. In doing

so, these studies may not offer a representative subsample of

the differential responses of males and females to OA. How-

ever, the fact that any differences have been demonstrated

supports the need for further investigation of this issue. If

sex-based differences do exist for economically important

species, as seems likely, then capturing this variance is crucial

for accurately forecasting the future societal and economic

repercussions of OA for dependent sectors, such as coastal

management, conservation, fisheries and aquaculture [2].

Unfortunately, the lack of a sufficiently wide evidence base

for sex-specific responses currently limits this ambition. As a

starting point towards fully elucidating population-level

impacts, stronger efforts are needed to consider the influence

of sex throughout an organism’s life cycle, and its contribution

to the variability in species-level responses.
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