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Abstract: Uncertainty and sensitivity analysis of building energy has become an active 13 

research area in order to consider variations of input variables and identify key variables 14 

influencing building energy. When there is only limited information available for 15 

uncertainty of building inputs, a specific probability for a given variable cannot be 16 

defined. Then, it is necessary to develop alternative approaches to probabilistic 17 

uncertainty and sensitivity analysis for building energy. Therefore, this paper explores the 18 

application of the Dempster-Shafer theory (DST) of evidence to conduct uncertainty and 19 

sensitivity analysis for buildings. The DST method is one of imprecise probability 20 

theories to allow combining uncertainty from different sources in terms of interval-valued 21 

probabilities in order to construct the belief and plausibility (two uncertainty measures) of 22 

system responses. The results indicate that the DST uncertainty analysis in combination 23 

with machine learning methods can provide fast and reliable information on uncertainty 24 

of building energy. It is recommended that at least two inherently different learning 25 

algorithms should be applied to provide robust simulation results of building energy. A 26 

spectrum of distributions should be implemented in global sensitivity analysis with the 27 

DST method because there are no specific distributions for intervals of input factors. 28 

Moreover, the stability of results from uncertainty and sensitivity analysis should be 29 

assessed when applying the DST method in building energy analysis.  30 
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Abbreviations 39 

BPA Basic probability assignment 

CBF Cumulative belief function 

CCBF Complementary cumulative belief function 

CCPF Complementary cumulative plausibility function 

CDF Cumulative density function 

CHP Combined heat and power 

CL Cooling set-point temperature (
o
C) 

CPF Cumulative plausibility function 

CSWD Chinese standard weather data 

DST Dempster-Shafer theory 

ED Equipment peak value (W/m
2
) 

FT Infiltration rate (ACH) 

HT Heating set-point temperature (
o
C) 

LD Lighting power density (W/m
2
) 

MARS Multivariate adaptive regression splines 

OD Occupancy density (people/m
2
) 

RMSE Root mean square error 

SHGC Solar heat gain coefficient 

SVM Support vector machine 

VAV Variable air volume system 
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1 Introduction 41 

Building energy is affected by a number of inherently uncertain variables, including 42 

weather conditions, internal heat gains, and occupant behaviours [1, 2]. Therefore, uncertainty 43 

analysis of building energy has become an active research field [3-5]. Most previous studies 44 

have implemented probabilistic uncertainty methods to consider the influences of these 45 

uncertain parameters [6-8]. Urbanucci and Testi [9] use the Monte Carlo risk analysis to 46 

estimate the long-term uncertainty of energy demands for a hospital facility in order to 47 

optimize the size of CHP (combined heat and power) system. Tian et al. [10] consider the 48 

influences of variations of building form on energy performance of buildings located at 49 

Harbin (China) based on the Monte Carlo sampling method. Faggianelli et al. [11] implement 50 

sampling-based sensitivity analysis by regarding input factors as uniform or normal 51 

distributions. Hopfe and Hensen [12] assume the normal distributions for input factors to 52 

assess energy performance of an office building using the Latin hypercube sampling method. 53 

These examples demonstrate that probabilistic uncertainty and sensitivity analyses have 54 

become very popular and widely used in the field of building performance simulation. 55 

However, variations of building variables are difficult to obtain and it can be a challenge to 56 

gather sufficient information for the definition of a specific probability (such as uniform, 57 

normal, triangle, and lognormal) when predicting energy use, especially in the stage of 58 

building design [13]. Hence, the alternative approach to probabilistic analysis is needed to 59 

handle the imprecise building data in properly estimating energy performance of buildings.  60 

The Dempster-Shafer theory (DST) of evidence can be regarded as a generalization of 61 

classical probability theory that allows one to deal with the imprecise information on data, 62 

often in the form of interval-valued data. The mathematical foundations of DST analysis have 63 

been well established [14] and the DST approach has been used in various fields, including 64 

studies on reliability of pressure vessels [15], petroleum engineering [16], urban environment 65 

[17], and computer voice detection [18]. More recently, the DST analysis is also being 66 

applied to the analysis of building energy. Tian et al. [3] implement the DST to assess 67 

uncertainty of energy performance for an office building using the EnergyPlus program. Four 68 

scenarios are used in their research to represent the level of availability for uncertain inputs 69 

from the simple to detailed information. Chaney et al. [19] use the DST to add multiple-70 

sensor data in a house simulation model. They found that the evidence theory is a reasonable 71 

approach for providing rich information about occupant interaction with systems in the house. 72 

Kim et al. [20] report that the DST can be used to effectively combine uncertainties from five 73 

experts into single uncertainty when predicting energy use for a 33-storey office building in 74 

Seoul, Korea.  75 

These previous studies provide valuable information on the implementation of DST 76 

analysis in building energy assessment. However, there are several issues that have not been 77 

explored when applying the DST method in building energy assessment. One issue is how to 78 

reduce high computational cost of DST analysis in building simulation using engineering-79 

based energy models. A large number of simulation runs are usually required to provide the 80 

minimum and maximum output values in order to obtain the stable results of output range for 81 

the DST method. Another issue is how to implement sensitivity analysis within the context of 82 

DST analysis in assessing building energy performance. The sampling-based sensitivity 83 

analysis requires the structured distributions of input variables to obtain a matrix of inputs and 84 

outputs. The DST method, however, does not include specific distributions for the data within 85 

the intervals.  86 

Therefore, this paper explores a systematic approach towards implementation of the DST 87 

method in uncertainty and sensitivity analysis of building energy when only limited 88 

information on building input variables is available. An office building located in Tianjin 89 

(China) is used as a case study to demonstrate the suitability of DST method in assessing 90 



building energy performance. The building energy simulation is carried out with the 91 

EnergyPlus program [21]. The originality of this paper is two-fold: (1) implementation of 92 

global sensitivity analysis in conjunction with the DST analysis in assessing building energy 93 

performance; (2) demonstration of using machine learning models to reduce high 94 

computational cost of building energy simulation for both uncertainty and sensitivity analysis 95 

within the DST analysis. Moreover, this research discusses two important issues in the 96 

application of DST analysis: how to choose reliable machine learning models and how to 97 

assess the stability of uncertainty and sensitivity analysis. This provides practical guidance in 98 

applying the DST method into building energy assessment. The combination of DST and 99 

machine learning algorithm can significantly expedite computation, which can make DST 100 

analysis feasible in building energy assessment. However, a number of machine learning 101 

models should be evaluated to choose suitable ones for replacing building energy models on a 102 

case-by-case basis. More discussion on the method used will be presented in section 2.  103 

The remaining parts of this paper are structured as follows. Section 2 describes the 104 

statistical methods applied in this research, including the DST analysis, machine learning 105 

models, and sensitivity analysis. Section 3 presents a case study of building energy model to 106 

implement DST analysis. Section 4 discusses the results from these three types of statistical 107 

approaches when assessing the energy performance of an office building. Section 5 presents 108 

the conclusions and further research required in this field.  109 

2 Method 110 

 111 
Figure 1. Flow chart used in this research  112 
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The computational procedure used in this study is shown in Figure 1. The first step is to 113 

collect the data for uncertainty and sensitivity analysis of building energy assessment. The 114 

data should be processed based on the requirement of the DST analysis (as described in 115 

sections 3). The second step is to create fast-computing machine learning models based on the 116 

engineering-based energy models (sections 2.2). These computationally cheap models then 117 

will be used for the uncertainty and sensitivity analysis of DST method. The third step is to 118 

implement DST uncertainty analysis with the data obtained from the first step using the 119 

learning models from the second step (section 2.1). The fourth step is to apply global 120 

sensitivity analysis in conjunction with the DST analysis based on the machine learning 121 

models obtained from the second step (section 2.3).  122 

2.1  Dempster-Shafer Theory 123 

For most engineering problems, the relationships among inputs and outputs can be written 124 

as, 125 

𝑦 = 𝑓(𝑥)                 (1) 

where x is a vector of system inputs, y is a vector of system outputs, and f is a function to 126 

describe the relationships among x and y. In this case study, x represents input variables in 127 

building energy assessment, such as occupant density, equipment heat gains, and heating set-128 

point temperature, while y is energy performance, such as annual heating energy, annual 129 

cooling energy, annual total electricity, or carbon emissions. The f functions in this research 130 

are to represent complex relationships among building input variables and energy 131 

performance that can be computed using building simulation programs, such as EnergyPlus, 132 

ESP-r, and DOE-2 [22].  133 

It is common practice to define probabilities for building input variables in uncertainty 134 

analysis of building performance. The sampling-based probabilistic uncertainty propagation 135 

could be used to obtain uncertain performance of buildings by running building energy 136 

models with a large number of times. However, in the case of limited information for these 137 

input data, it may be difficult to justify the choices of specific probabilities. As a result, a less 138 

structured representation of uncertainty for building input factors is needed instead of specific 139 

probabilities. The Dempster-Shafer theory (DST) of evidence is a generalization of classical 140 

probability theory to handle the imprecise information on input data [14].  141 

For the DST analysis, an evidence space for input data x is specified as a triple (X, XE, 142 

mEX), where X is the set of all possible values (i.e sample space), XE is a set of subsets of X 143 

(i.e. focal elements), and mEX is a function for a subset U of X (i.e. basic probability 144 

assignment, BPA). 145 

mEX(U) > 0 if U⊂X and U∈ XE     (2) 146 

mEX(U) = 0 if U⊂X and U ∉ XE     (3) 147 

The mEX(U) function denotes the amount of information assigned to U. Similar to the 148 

probability theory, the sum of basic probability assignment equals one. However, in the DST 149 

method, there are two uncertainty measures: belief and plausibility defined as follows, 150 

𝐵𝑒𝑙𝑋(U) =  ∑ 𝑚𝐸𝑋(𝑉)                 (4)

𝑉⊂U

 

Pl𝑋(U) =  ∑ 𝑚𝐸𝑋(𝑉)                 (5)

𝑉∩U≠∅

 

 BelX(U) can be interpreted as a measure of the amount of information to support U 151 

containing true values, while Plx(U) represents the absence of information to support U 152 

containing false values. In a similar way, the uncertainty of system output defined in Eq.(1) 153 

can be obtained with an evidence space of triple (Y, YE, mEY). The resultant uncertainty of 154 

outputs can be summarized with a cumulative belief function (CBF) and a cumulative 155 



plausibility function (CPF) by the corresponding beliefs and plausibilities. More detailed 156 

descriptions on the DST can be found in [14, 23]. 157 

 As shown in Figure 1, the computation procedure for the DST uncertainty analysis can be 158 

divided into three steps. The first step is to define a hypercube that is the combination of focal 159 

elements for input variables and then calculate the composite evidential measure (i.e. BPA) of 160 

each hypercube. For the case study building as will described in section 3, the numbers of 161 

hypercubes in case A and case B are 32 and 512, respectively. These two values can be 162 

calculated based on the fundamental of combination from the numbers of intervals listed in 163 

Table 1 and Table 2.  164 

 The second step is to compute the minimum and maximum values of the system response 165 

in each hypercube, which are the most computationally intensive procedure in the DST 166 

analysis. The computational methods available are optimization, sampling, and vertex 167 

techniques [14, 24]. To reduce computation cost,  machine learning algorithms are used to 168 

provide reliable results with fast computing as will be described in section 2.2. The sampling 169 

method is chosen in this paper since the whole output space can be sufficiently explored by 170 

using machine learning energy models. The conventional probability sampling method [25, 171 

26] is used to obtain the uncertainty of outputs for each hypercube cell. The uniform 172 

distribution for all input variables is assumed to propagate input uncertainty to output 173 

uncertainty and then find the minimum and maximum output values for this hypercube space. 174 

Note that this does not mean the distribution within intervals is uniform and the purpose of 175 

assuming uniform distribution is only to obtain the minimum and maximum values within the 176 

intervals. Latin Hypercube sampling with a sampling size of 10,000 is used due to its high 177 

stratification. Discussion of convergence of outputs with sample size will be presented in 178 

section 4.2.1.  179 

The third step is to form the cumulative belief (CBF) and plausibility functions (CPF) by 180 

aggregating the minimum and maximum values of system response obtained from the second 181 

step. The uncertainty results with the DST method are bounded between the CBF and CPF. 182 

The CBF is a lower bound on a probability value consistent with the evidence space, whereas 183 

the CPF is an upper bound on a probability value consistent with the evidence space. Hence, 184 

uncertainty results can be interpreted by the CBF (the smallest probability) and CPF (the 185 

largest probability) that are combined together to have the complete information of all 186 

possible output values (i.e. energy use in this case study). Similar to the probability theory, 187 

the CCBF (complementary cumulative belief function) and CCPF (complementary 188 

cumulative plausibility function) may be more useful in the field of risk analysis or reliability 189 

analysis.  190 

2.2 Machine learning algorithms 191 

Machine learning is used to create reliable and fast-computing models (also called meta-192 

models or surrogate models) based on the inputs and outputs computed from the EnergyPlus 193 

program. In this study, 400 EnergyPlus models are used to construct a matrix containing 194 

inputs variables and outputs for this office building using the Sobol sequence. This Sobol 195 

sequence is a quasi-random low-discrepancy sequence with a better performance in 196 

comparison with the Monte Carlo sampling [27, 28]. The 400 simulation runs of EnergyPlus 197 

models are used in this case study based on preliminary studies to create reliable meta-models 198 

of building energy use. This simulation number is higher than ten times of input variables 199 

used in most of building energy simulation studies [13]. The simulation number of energy 200 

models required for creating accurate energy models can be evaluated using the RMSE (root 201 

mean square error) of energy models. In this study, the RMSE for three performance indicator 202 

has become stable after around 300 times and the extra 100 times of simulation models (total 203 

number 400) are used to ascertain better performance of energy analysis. The determination 204 

of simulation number for constructing reliable meta-models is likely to be problem dependent, 205 

depending on number of input variables, simulation output, complexity among inputs and 206 



outputs, and accuracy required by building projects. The R caret package [29] is used to 207 

create these machine learning models in this study. The R caret package combines more than 208 

100 machine learning models to provide a streamlined process for creating predictive models.  209 

Five machine learning algorithms have been selected since they have better performance 210 

in terms of predictive capability and are also widely used in the field of building energy 211 

analysis [30, 31]. These five models are linear regression, MARS (multivariate adaptive 212 

regression splines), bagging MARS, SVM (support vector machine), and Cubist model. The 213 

reason for exploring these five options is as follows. (1) The linear model is still used here 214 

because the linear model has good performance with better interpretation [32]. (2) MARS 215 

creates a piecewise linear model to replace original predictors with new surrogate features to 216 

account for non-linear effects [33]. If necessary, the interaction terms of these new features 217 

can be also considered in MARS models to further improve predictive performance. The 218 

number of new features and the number of degrees of interactions can be determined using an 219 

automatic pruning procedure. (3) The bagging MARS approach implements the bagging 220 

(bootstrap aggregating) technique to stabilize the predictive results from MARS models. The 221 

bagging technique, an ensemble learning method, simply creates a number of new data set 222 

using the bootstrap method (i.e. randomly sampling with replacement) to crease a number of 223 

corresponding models instead of only one regression model [33]. Then the prediction results 224 

are averaged from these regression models to reduce the variance of outcomes. A 225 

disadvantage of the bagging technique is high computational cost because more 226 

computational time is required with an increase in the number of bootstrap samples. A multi-227 

core workstation is used here to expedite the calculation using parallel computing. (4) The 228 

SVM is similar to robust regression that tries to mitigate the influence of influential 229 

observations. Several kernel functions (polynomial, radial basis, hyperbolic tangent) are 230 

available in SVM to encompass nonlinear functions of inputs. The radial basis function is 231 

chosen in this study based on the suggestion from Kuhn and Johnson [33]. (5) The Cubist 232 

belongs to the rule-based models with the boosting technique. The boosting technique is one 233 

of ensemble methods to provide the unequally weights for different models in terms of model 234 

errors [3]. More detailed information on these machine leaning techniques is available in [33, 235 

34]. 236 

In the five models above, model variables need to be tuned except for the linear model. 237 

The cross-validation method is used to find the optimal values for these models. The cross 238 

validation in this study is based in randomly dividing the original data set into ten sets of 239 

roughly equal size (also named ten-fold) [34]. Then one new data set is used as a test set to 240 

assess the performance of regression models obtained from the remaining nine data sets as 241 

training data. This process repeats ten times until all the ten data sets are used as test sets. To 242 

further test the predictive performance of the optimal model for five algorithms, an extra 200 243 

EnergyPlus models are simulated except for the 400 simulation that are used for regression. 244 

Two measures are used to assess predictive performance of regression models: RMSE (root 245 

mean square error) and R
2
 (coefficient of determination). RMSE is widely used in the field of 246 

machine learning and is the absolute fit measure how the regression model predicts the 247 

outcomes. The lower RMSE, the better regression model is. R
2
 is the relative measure to 248 

account for the proportion of total variance explained by the model. The higher R
2
 indicate a 249 

better regression model.  250 

The choice of suitable machine learning models involves a lot of efforts, which is related 251 

to the prior knowledge of both building physics and machine learning algorithm. For instance, 252 

if there are interactions among input variables on building energy use, it is necessary to 253 

choose machine learning models that can consider interactions. For the MARS approach, 254 

second or higher degree terms should be added to tune optimal models. This is the case for 255 

London domestic gas use influenced by a number of factors, including dwelling type, 256 

household composition, and building area [30]. However, if there are no strong interactions, 257 



the MARS model without second degree terms should be used since more terms actually 258 

deteriorate model predictive performance. This is the case for assessing annual heating and 259 

cooling energy of an office building located in London [35]. When there exists highly 260 

nonlinear relationships between inputs and output in building energy performance, non-261 

parametric machine learning models usually perform better than linear models. However, if 262 

there are approximately linear relationships in building energy analysis, linear models would 263 

have more robust performance in comparison with most of complex non-parametric 264 

relationships. This has been confirmed in [36] to assess energy performance of campus 265 

buildings at Georgia Institute of Technology, USA. If using support vector machine, linear 266 

kernel function should be used instead of non-linear polynomial or radial basis functions. 267 

Tian et al [36] also discuss another important issue on correlation of input variables, which 268 

usually leads to unstable meta-models. For instance, equipment heat gains are usually 269 

associated with lighting use in office buildings. Then, the principal component approach or 270 

partial least square method can be used to reduce the number of correlated variables to 271 

increase the stability of meta-models. More research is required to choose suitable machine 272 

learning algorithms based on building features, building type, and thermal performance of 273 

buildings,  274 

2.3 Sensitivity analysis for Dempster-Shafer Theory 275 

The DST method causes two issues in implementing sensitivity analysis in building 276 

energy assessment. The first issue is that the DST analysis does not assume any distribution 277 

for the intervals of input variables. However, the sampling-based global sensitivity analysis 278 

requires to have the specific distributions for a variable, which may have significant influence 279 

on sensitivity results [37]. The second issue is the high computational cost for sensitivity 280 

analysis due to the nature of DST analysis as discussed in section 2.1. For the first issue, the 281 

sensitivity method used here is based on the recommendation from Helton et al. [38] to 282 

specify a spectrum of distributions to represent possible variations within the intervals of 283 

focal elements. Three types of distributions are considered to cover the larger values, middle 284 

value, and lower values with the left quadratic, uniform, and right quadratic distributions, 285 

respectively. For the second issue, similar to the DST uncertainty analysis,  reliable machine 286 

learning models as described in section 2.2 are used for running global sensitivity analysis 287 

instead of the engineering-based EnergyPlus models. The fast-computing machine learning 288 

models can assure the convergence of the global sensitivity analysis by running a large 289 

number of times of simulation models.  290 

The computational procedure for sensitivity analysis is illustrated in Figure 1. The first 291 

step is to sample each focal element with its BPA using random sampling. The next step is to 292 

sample within the corresponding focal element using three types of distributions (left 293 

quadratic, uniform, and right quadratic), respectively. The reasons for choosing these three 294 

distributions are to cover as many as possible situations within intervals defined from the first 295 

step. The left quadratic distribution can emphasize the smaller values with each focal element, 296 

whereas the right quadratic distribution can emphasize the larger values with each focal 297 

element. The uniform distribution can cover the whole range of each focal element. The 298 

density functions for left, uniform, and right distributions, respectively, are 299 

fleft (x) = 3 (b - x) / (b - a)
3
    (6)  300 

funiform (x) = 1 / (b - a)      (7)  301 

fright (x) = 3 (x - a) / (b - a)
3
    (8)  302 

where a and b are minimum and maximum values, respectively, within an interval defined in 303 

the first step. More detailed descriptions on these distributions are available in [38].  304 

The final step is to implement global Sobol sensitivity analysis with machine learning 305 

models to provide importance ranking of input variables [39]. The Sobol sensitivity method is 306 



one of variance-based approach to decompose the variance of output to the corresponding 307 

input variable. The detailed procedure for the Sobol sensitivity analysis is available in [37]. 308 

Two sensitivity indicators are often used in the variance-based method: main effect and total 309 

effect. The main effect represents the effects of one individual variable without considering 310 

other variables, whereas the total effect is due to the effects of this specific variable and 311 

interactions with the other variables. R sensitivity package [40] is used here to implement the 312 

Sobol sensitivity analysis.  313 

Note that the sensitivity analysis used here is different from quantitative risk assessment 314 

in which the probability of input variables need to be specified in the first place. For the DST 315 

sensitivity analysis, there is no assumption on the probability for input variables. The results 316 

from quantitative risk assessment are similar to the probabilistic sensitivity analysis by 317 

considering only one specified probability. In contrast, the results from the DST sensitivity 318 

analysis are the combined ranking importance to consider all the possibilities within the 319 

intervals. Hence, the results from the DST sensitivity analysis depend on a number of factors, 320 

including the BPA and the relationships among inputs and outputs, but not on the 321 

specification of probabilities within these intervals of input variables.  322 

3 A case study of building energy model 323 

 324 
Figure 2.  An office building used for this research 325 

Figure 2 illustrates an office building studied in this paper. It is a four-storey building 326 

with a total floor area of 6,000 m
2
. The window-wall ratio is 40%. The thermal properties of 327 

building envelope are commensurate with the requirements of energy efficiency for office 328 

buildings in China [41]. The U-values for wall and roof are taken as 0.45 and 0.23 W/m
2
K, 329 

respectively. The U-value and SHGC (solar heat gain coefficient) for windows are 2.40 330 

W/m
2
K and 0.35, respectively. A VAV (variable air volume) air system with perimeter 331 

hydronic baseboard heaters is used to provide ventilation, heating, and cooling to maintain 332 

indoor thermal comfort. A gas boiler is used to supply hot water, and a centrifugal chiller with 333 

air cooling is used to supply chilled water for the VAV system.  334 

Internal heat gains for occupants, lighting, and equipment are derived from two Chinese 335 

standards [41, 42] and expert opinions as listed in Table 1. The interpretation of values in 336 

Table 1 will be discussed in the end of this subsection. The office building is located in 337 

Tianjin, China and the typical year weather data (CSWD, Chinese standard weather data) is 338 

obtained from the EnergyPlus website [21]. The climate in Tianjin has a cold, windy winter 339 

and hot, humid summer, which requires heating in winter and cooling in summer.  340 

The EnergyPlus V8.8 program is used to simulate the thermal behaviours of the building 341 

[21]. EnergyPlus is widely used in the field of building energy analysis and has been 342 

validated extensively. Typical one-core and four-perimeter zones are used for zoning this 343 



building when creating an energy model. Three performance measures are annual heating 344 

energy, annual cooling energy, and annual carbon emissions normalized by the floor area. 345 

Heating and cooling energy values are directly obtained from the simulation results of 346 

EnergyPlus models. Carbon emissions are calculated by multiplying the carbon emission 347 

factors of electricity use (1.00 kgCO2/kWh) [43] and natural gas (0.20 kgCO2/kWh) [44], 348 

respectively, with annual electricity and gas use from the results of EnergyPlus models. Note 349 

that other performance measures can be also used for this method, such as overheating risk in 350 

natural ventilation buildings.  351 

Table 1. Intervals and BPA (basic probability assignment) from Expert I and Expert II  352 

Variable 
Short 

names 

Expert I (case A) Expert II 

Intervals BPA Intervals BPA 

Infiltration rate 

(ACH) 
FT [0.3, 0.4], [0.4, 0.5] 0.6, 0.4 [0.3, 0.4] 1 

Equipment peak 

value (W/m
2
) 

ED [13, 15], [16, 17] 0.6, 0.4 [14, 15], [15, 16] 0.8, 0.2 

Lighting power 

density (W/m
2
) 

LD [6, 8], [7, 9] 0.3, 0.7 [6, 7], [7, 8] 0.4, 0.6 

Occupancy densi-

ty (people/m
2
) 

OD [8, 10], [11, 12] 0.5, 0.5 [9,10], [10, 11] 0.8, 0.2 

Heating set-point 

temperature (
o
C) 

HT [19, 21] 1 [20, 21] 1 

Cooling set-point 

temperature (
o
C) 

CL [24, 25], [25, 26] 0.6, 0.4 [24, 25] 1 

 353 

Table 2. The combined intervals and BPA (basic probability assignment) for case B 354 

from two experts 355 

Variable Intervals BPA 

Infiltration rate (ACH) [0.3, 0.4], [0.4, 0.5] 0.8, 0.2 

Equipment peak value (W/m
2
) [13, 15], [14, 15], [15, 16], [16, 17] 0.3, 0.4, 0.1, 0.2 

Lighting power density (W/m
2
) [6, 7], [6, 8], [7, 8], [7, 9] 0.2, 0.15, 0.3, 0.35 

Occupancy density (people/m
2
) [8, 10], [9, 10], [10, 11], [11, 12] 0.25, 0.4, 0.1, 0.25 

Heating set-point temperature (
o
C) [19, 21], [20, 21] 0.5, 0.5 

Cooling set-point temperature (
o
C) [24, 25], [25, 26] 0.8, 0.2 

  356 



The uncertain input factors considered in this study are listed in Table 1. The purpose of 357 

the case study is to explore how the DST can help to provide more reliable simulation outputs 358 

by considering uncertainty of new buildings in the preliminary design stage. These variables 359 

are closely related to occupant behaviour, including infiltration rate, equipment heat gains, 360 

lighting heat gains, heating & cooling set-point temperatures. The information on these input 361 

variables is obtained from two experts in the area of building energy engineering, Expert I and 362 

Expert II as summarized in Table 1. For the infiltration rate, Expert I states that the actual 363 

infiltration rate is in one of two contiguous intervals: in the interval [0.3, 0.4] with a 60% 364 

level of subjective belief (named as basic probability assignment in evidence theory), or in the 365 

interval [0.4, 0.5] with a 40% level of subjective belief. In contrast, in Expert II’s opinion, the 366 

infiltration rate lies in the interval [0.3, 0.4], with a 100% level of subjective belief. The other 367 

values in Table 1 can be interpreted in the same way. Based on the suggestion from these two 368 

experts and previous studies [8, 13], the infiltration rate is treated as a constant ACH (air 369 

exchange per hour) value in a whole year in this research since the infiltration rate is very 370 

uncertain, depending on building age, construction quality, building use, and weather 371 

conditions [13].  372 

Two cases (named as case A and case B) are considered in this paper to represent two 373 

different uncertain situations. Case A is directly obtained by the opinion of the Expert I as 374 

listed in Table 1. Case B is derived by combining the opinions from Expert I and Expert II as 375 

summarized in Table 2 in which the input variables can be explained in the same way as the 376 

values in Table 1. It is assumed that the two sources are weighted equally since both Expert I 377 

and Expert II are senior building engineers. The detailed calculation procedure is available in 378 

a book chapter written by Oberkampf and Helton [23]. A number of methods are available to 379 

combine the evidence from different sources; please refer to [45, 46].  380 

In order to compare the results from DST and probability-based analysis, the simulation 381 

results from uniform distributions are used as a special case for probability-based analysis to 382 

represent the results for conventional probabilistic method. The corresponding uncertainty 383 

results are named as cumulative distribution function (CDF) in this research. Note that the 384 

results from the DST method are interval-based for a specific probability, whereas the results 385 

from the probabilistic method are specific values for a given probability.  386 

4 Results and discussion 387 

4.1 Performance comparison of machine learning models 388 

Figure 3 shows the comparisons of predictive performance of five machine learning 389 

models (as described in section 2.2) for heating, cooling, and carbon emissions in order to 390 

choose reliable models for uncertainty and sensitivity analysis based on the Dempster-Shafer 391 

theory of evidence. The variations of RMSE (root mean square error) and R
2
 are expressed as 392 

95% confidence interval of two statistics in this study. A reliable machine learning model 393 

should have low RMSE values and high R
2
. Moreover, the variations for these two measures 394 

should be also low to provide stable estimation of simulation outputs for buildings in this case 395 

study.  396 

Figure 3a indicates that the Cubist model performs the best amongst the five models for 397 

estimating heating energy. The mean value of corresponding RMSE for heating energy is 398 

only 0.14 kWh/m
2
 and the variation of RMSE is also small in terms of 95% confidence 399 

interval. The next two models are the MARS and bagging MARS models with similar 400 

accuracy, which indicates that the bagging technique does not significantly improve 401 

predictive accuracy in this case study. The linear and SVM models do not perform well for 402 

predicting annual heating energy use. To further validate regression models, the extra 200 403 

simulation runs that are not used to obtain regression models are applied to the external 404 

validation of models. The statistics from this external validation are listed in Table 3 in which 405 

the Cubist model has the best performance in terms of both R
2
 and RMSE. The MARS and 406 



bagging MARS have similar predictive capability for heating energy. These conclusions are 407 

the same as those obtained in the internal cross-validation method, which indicates that the 408 

Cubist and MARS regression can be used to provide reliable heating energy use for this office 409 

building.  410 

 411 
(a) Heating energy use 412 

 413 
(b) Cooling energy use 414 

 415 
(c) Carbon emissions 416 

Figure 3. Comparison of five machine learning models for estimating performance of 417 

building  418 
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Table 3. Comparison of predictive performance from five machine learning models 420 

using external validation 421 

Model 

Heating energy Cooling energy Carbon emission 

R
2
 RMSE R

2
 RMSE R

2
 RMSE 

Linear 0.992 0.326 0.991 0.223 0.999 0.300 

MARS 0.998 0.176 0.998 0.085 0.999 0.343 

Bagging MARS 0.998 0.162 0.999 0.065 0.999 0.343 

SVM 0.990 0.365 0.990 0.245 0.987 1.315 

Cubist 0.999 0.136 0.999 0.041 0.999 0.204 

 422 

Figure 3b shows the comparison of five machine learning models for cooling energy use. 423 

The Cubist model is still the best performer in this case study, similar to heating energy use. 424 

The next model is the bagging MARS model, which is better than the MARS models in terms 425 

of both R
2
 and RMSE. Therefore, the bagging technique has more influence for cooling than 426 

heating energy in this office building by providing more stable predictions. The linear and 427 

SVM models do not perform as well as the other three learning models. The corresponding 428 

statistics of R
2
 and RMSE from external validation are summarized in Table 3 to indicate that 429 

the Cubist and MARS models are two best performers for predicting cooling energy in the 430 

office building. In terms of RMSE, the Cubist model is approximately 5 times better than the 431 

linear model.   432 

Figure 3c shows the predictive performance of five machine learning models for carbon 433 

emissions using cross validation. The best learning model is from the Cubist method. The 434 

next model is from linear regression, which may be unexpected. This suggests the linear 435 

model may have better performance compared to non-parametric models when the 436 

relationship between inputs and outputs is approximately linear. The linear model shows 437 

slightly better performance than the MARS and bagging MARS models. As a result, the 438 

Cubist and linear models are selected to validate the model performance using external 439 

EnergyPlus simulation runs. The corresponding RMSE and R
2
 from external validation are 440 

listed in Table 3 to show that two best models are the Cubist and linear model in this case 441 

study to estimate carbon emissions.  442 

The bootstrap approach is used as an alternative model selection method to compare the 443 

results from the cross-validation method. A bootstrap sample is a random sample of the 444 

original data set taken with replacement, which has the same size as the original data. Hence, 445 

the samples that are not selected in a bootstrap sample can be used as out-of-bag samples to 446 

validate models obtained from a bootstrap sample. The results indicate that most of results are 447 

similar to those obtained from the cross-validation method as shown in Figure 3 although the 448 

variations from the bootstrap approach are smaller than those from the cross-validation 449 

method.  450 

It is recommended to determine the accuracy of machine learning models required for 451 

building projects in order to decide when to stop choosing suitable machine learning models. 452 

This is because a large number of machine learning models are available [33] and it is 453 

unnecessary to try a large number of machine learning models for a specific building project. 454 

The acceptance criterion for model performance can refer to the values set out by ASHRAE 455 

Guideline 14 in which the coefficient variations of RMSE for energy models should be lower 456 

than 5% [47]. This threshold value has been widely used in building energy analysis [48]. The 457 



coefficient variations of RMSE for all three performance output (heating, cooling, and carbon 458 

emissions) are lower than this criterion in this case study. The mean coefficient variations of 459 

RMSE for Cubist models are 1.02%, 0.13%, and 0.09% for heating, cooling, and carbon 460 

emission, respectively. Therefore, the Cubist models have good performance in terms of 461 

ASHRAE Guideline 12 [47]. This criterion from ASHRAE can be regarded as the minimum 462 

requirement for performance of energy models. This is because buildings typically are 463 

bespoke, one-off products that are designed in response to a unique client brief. The 464 

translation of client brief to technical requirements is mostly conducted by expert consultants 465 

who have a considerable freedom in setting accuracy targets and thresholds [49], which is 466 

similar to the processes observed in Systems Engineering [50, 51].  467 

4.2 Results of uncertainty analysis 468 

4.2.1 Annual heating energy 469 

 470 
(a) sampling number 10   (b) sampling number 100 471 

 472 
(c) sampling number 1,000   (d) sampling number 2,500 473 

 474 
(e) sampling number 5,000   (f) sampling number 7,500 475 



 476 
(g) sampling number 10,000   (h) sampling number 20,000 477 

Figure 4. Comparison of stability of uncertainty results with sampling number for 478 

heating energy using the MARS model in case A 479 
For uncertainty analysis, it is necessary to assess the convergence of results. Figure 4 480 

compares change of cumulative belief function (CBF) and cumulative plausibility functions 481 

(CPF) for annual heating energy using the MARS model as the sample size increases. The 482 

area between the CBF and the CPF becomes larger with an increase in sample size because 483 

more resamples are required to find the minimum and maximum values for every cell defined 484 

in the DST analysis. For the sampling size of 10, the results are apparently inadequate and not 485 

converged by comparing the shapes of CBF and CPF for the case of sampling size 10 and 486 

100. As the sample size increases to 2,500, the uncertainty for the CBF and CPF tends to 487 

become stable. Beyond sample size of 5,000, the shapes of CBF and CPF only change 488 

slightly. To obtain fully converged results, sample size of 10,000 are used in this research for 489 

all three outputs: heating, cooling, and carbon emissions.  490 

Figure 5 shows the uncertainty results for annual heating energy of the office building 491 

based on the Dempster-Shafer theory with a sample size 10,000. The shapes of cumulative 492 

belief function (CBF) and cumulative plausibility functions (CPF) from the Cubist and 493 

MARS models are similar for case A although the predicted values from the MARS model 494 

are slightly larger than those from the Cubist model. The same conclusion can be also 495 

obtained for the case B as illustrated in Figure 5c and Figure 5d. Hence, both the Cubist or 496 

MARS models can produce reliable results instead of using the computationally expensive 497 

EnergyPlus models.  498 

 499 
(a) Cubist model for case A (b) MARS model for case A  500 



 501 
(c) Cubist model for case B (d) MARS model for case B 502 

Figure 5. Uncertainty analysis of annual heating energy from Dempster-Shafer theory 503 

Based on the DST analysis, annual heating energy in this office building should be within 504 

the ranges of solid blue (CBF) and dashed black (CPF) lines in Figure 5. As might be 505 

expected, the red density plot (cumulative density function, CDF) falls between the CBF and 506 

the CPF associated with the evidence space as defined in Table 1 and Table 2. This is because 507 

the CDF with uniform distribution (as described in section 3) is a special case of the DST 508 

results. For this office building, annual heating energy is unlikely to be more than 23 kWh/m
2
 509 

and less than 5 kWh/m
2
. If the annual heating energy quota for office buildings (i.e. upper 510 

limit of energy use recommended or required by government) is 20 kWh/m
2
, then the lowest 511 

and highest probabilities above this quota in case A with the Cubist model are 0 and 12%, 512 

respectively, as shown in Figure 5a. If using the MARS model, the corresponding lowest 513 

probability is the same as the Cubist model (0%) and the highest probability is slightly higher, 514 

around 11 %.  515 

As also can be seen from Figure 5, the CBF and CPF are more smooth for case B than for 516 

case A. This is in line with the input uncertainty defined in Table 2. A large number of 517 

hypercube for input variables in the DST approach means more discretization and smaller 518 

intervals, which usually results in smoother output. The number of hypercubes in case B is 519 

512, whereas the number of hypercube in case A is only 32 as described in section 2.1. As a 520 

result, a smoother CBF and CPF is observed for case B in Figure 5.  521 

4.2.2 Annual cooling energy 522 

Figure 6 shows the uncertainty results for cooling energy using the Cubist and bagging 523 

MARS models in case A and case B for the office building. The shapes of CBF and CPF are 524 

similar from the Cubist and bagging MARS models in case A. This statement also holds true 525 

in the case B. Hence, the uncertainty of output is reliable using machine learning models 526 

instead of engineering-based EnergyPlus models.  527 



 528 
(a) Cubist model for case A (b) Baging MARS model for case A  529 

 530 
(c) Cubist model for case B (d)Baging MARS model for case B 531 

Figure 6. Uncertainty analysis of annual cooling energy from Dempster-Shafer theory 532 

The CDF results lie between the CBF and CPF since the uniform distribution used for the 533 

CDF is one of possible choices in evidence space of input variables using the DST method. 534 

Cooling energy is between 36 and 49 kWh/m
2
 in this case study. If the quota of annual 535 

cooling energy is 46 kWh/m
2
 for the office building, then the highest probability for the 536 

cooling energy above this quota value is around 38% using two machine learning models 537 

(Figure 6a and Figure 6b). Compared to the case A, there are less jumps for the CBF and CPF 538 

plots in the case B. As discussed in section 4.2.1, this is due to the increase of hypercube 539 

number of inputs that leads to smoother outputs.  540 

4.2.3 Annual carbon emissions 541 

Figure 7 shows uncertainty results of annual carbon emissions using the Cubist and linear 542 

models in case A and case B. The results from these two machine learning models are very 543 

close for both cases. Hence, the results are robust for showing the variation of carbon 544 

emissions using the fast-computing learning models.  545 



   546 
(a) Cubist model for case A (b) Linear model for case A  547 

 548 
(c) Cubist model for case B (d) Linear model for case B 549 

Figure 7. Uncertainty analysis of annual carbon emissions based on Dempster-Shafer 550 

theory 551 

It is apparent that in case A there are more obvious jumps in CBF and CPF for carbon 552 

emissions in comparison with heating and cooling energy use (Figure 5 and Figure 6). This 553 

can be explained by the sensitivity analysis as will be presented in section 4.3. The two 554 

dominant variables for carbon emissions are equipment and lighting heat gains that are listed 555 

in Table 1. As a result, the trends of carbon emissions are affected substantially by the 556 

specification of these two input variables. The equipment peak value has two discontinues 557 

intervals [13, 15] and [16, 17], which leads to significant jumps of CBF and CPF in Figure 7a 558 

and Figure 7b. The overlapping intervals from lighting peak values ([6, 8] and [7, 9]) also 559 

have important influence on carbon emissions. In case B (Table 2), the intervals for 560 

equipment and lighting equipment gains become more continuous by combining the opinions 561 

from two experts. Therefore, the CBF and CPF in case B become much smoother than those 562 

in case A.  563 

Based on the analysis in this subsection, the results from DST analysis are different from 564 

the results of assuming uniform distributions for input variables in building energy 565 

assessment. The uncertainty from uniform distributions is significantly less than possible 566 

variations for building energy performance. Hence, when there is only limited information on 567 

input variables, the uniform distributions cannot be regarded as good choices for uncertainty 568 

analysis in building energy analysis. Instead, the DST analysis should be implemented to 569 

properly estimate uncertainty of building performance.  570 



4.3 Results of sensitivity analysis 571 

 572 
(a) Heating energy with the MARS model 573 

 574 
(b) Cooling energy with the Cubist model 575 

Figure 8. Stability of total effects as a function of sample size from global sensitivity 576 

analysis 577 

The two machine learning models with better predictive performance are used to provide 578 

robust results of sensitivity analysis for three performance measures: heating, cooling, and 579 

carbon emissions. The sensitivity analysis is implemented with a sample size of 100,000 from 580 

uncertain variables and the associated three distribution possibilities (uniform, left quadratic, 581 

and right quadratic) as discussed in section 2.3. Figure 8 demonstrates the stability of total 582 

effects from the Sobol global sensitivity analysis as a function of sample size. The results 583 

vary a lot at the sample sized below 2,500. In Figure 8b, there are intersections of ranking 584 

importance for equipment and lighting heat gains for cooling energy use at the sample size 585 

less than 1,000. After the sample size of 10,000, the total effects become stable in both Figure 586 

8a and Figure 8b. The number of samples is chosen as 100,000 to confirm the convergence of 587 

sensitivity analysis.  588 



 589 
(a) Cubist model for case A   (b) MARS model for case A  590 

 591 
(c) Cubist model for case B   (d) MARS model for case B 592 

Figure 9.  Results of sensitivity analysis for heating energy from Dempster-Shafer theory 593 

(refer to Table 1 for full names of input variables) 594 

Figure 9 shows the total effects of six variables with three types of distributions using the 595 

global Sobol sensitivity analysis for annual heating energy use in the office building. The 596 

ranking results are similar for three distribution possibilities as can be seen from Figure 9a. 597 

The ranking order is also similar from two machine learning models (Cubist and MARS) as 598 

illustrated in Figure 9a and Figure 9b. The most important variable identified here is the 599 

infiltration rate (FT), which accounts for approximate 40% of output variation. Hence, it is 600 

necessary to obtain reliable information on infiltration rate for accurately predicting annual 601 

heating energy. From the perspective of energy saving, it is important to try to reduce 602 

infiltration rate in order to reduce heating energy use. The next important variable is the 603 

equipment heat gains (ED) that also has important influences on annual heating energy use. 604 

For the right quadratic distributions, the importance from equipment heating gains becomes 605 

more evident and its important is in the same level as infiltration rate in the office building. 606 

The lighting heat gains (LD) and heating set-point temperatures (HT) have medium effects on 607 

heating energy use. The occupancy density (OD) and cooling heat-point (CL) have almost no 608 

influence on output variable in this case study. There are apparent similarities for ranking 609 

results in case A and case B. Hence, the ranking results of sensitivity analysis are not 610 

influenced by opinions from different experts although the results of uncertainty analysis are 611 

quite different in two cases as discussed in section 4.2.  612 

Figure 10 shows the results of sensitivity analysis for annual cooling energy from two 613 

machine learning models in two cases. The Cubist and bagging MARS models present the 614 

similar results for ranking the importance of six variables influencing cooling energy use. The 615 



sensitivity rankings from case A are also similar to those from case B. In four subplots of 616 

Figure 10, the dominant variable is the occupancy density (OD), which accounts for around 617 

60% of variations of annual cooling energy in the office building. Then, it is necessary to 618 

obtain the reliable data on occupancy density in order to provide accurate estimation on 619 

cooling energy use in this building. The next three variables have similar importance, 620 

equipment heat gains (ED), lighting heat gains (LD), and cooing set-point temperatures (CL). 621 

The remaining two variables (infiltration rate and heating set-point temperatures) have almost 622 

no effect on output variable. As also can be seen from Figure 10, the sensitivity results from 623 

three distributions are similar for cooling energy use in the office building. Hence, the 624 

assumption of various distributions does not influence the validity of ranking results in this 625 

case study.  626 

 627 
(a) Cubist model for case A   (b) Baging MARS model for case A  628 

 629 
(c) Cubist model for case B   (d) Bagging MARS model for case B 630 

Figure 10.  Results of sensitivity analysis for cooling energy from Dempster-Shafer 631 

theory  (refer to Table 1 for full names of input variables) 632 

Figure 11 shows the ranking results from sensitivity analysis for annual carbon emissions 633 

from two machine learning models in two cases for this office building. As might be 634 

expected, equipment (ED) and lighting heat gains (LD) have significant influence on carbon 635 

emissions. This is because most of electricity use in office buildings is due to office 636 

equipment (such as computers, printing machine, projectors) and lighting. The variations of 637 

carbon emissions are almost not influenced by four remaining variables. It is also observed 638 

that the ranking results from the Cubist and linear models are very similar, which indicates 639 

that the sensitivity results obtained from this study are robust. In two cases, the trend of 640 

important variables is similar although three types of distributions lead to more disperse 641 

results in case B than those in case A.  642 



 643 
(a) Cubist model for case A   (b) Linear model for case A  644 

 645 
(c) Cubist model for case B   (d) Linear model for case B 646 

 647 

Figure 11.  Results of sensitivity analysis for carbon emissions from Dempster-Shafer 648 

theory (refer to Table 1 for full names of input variables) 649 

Sensitivity analysis applied in this subsection would be useful to make informed 650 

decisions, depending on project purposes. For instance, energy saving measures can be 651 

determined even in the case of the availability of limited information by using DST sensitivity 652 

analysis since a spectrum of distributions for these input factors have been considered. If the 653 

aim of project is to reduce variations of energy performance, then more efforts should be 654 

made to collect more information on these key variables identified by the DST sensitivity 655 

method.  656 

5 CONCLUSIONS 657 

This research implements uncertainty and sensitivity analysis for assessing energy 658 

performance of an office building based on the DST (Dempster-Shafer theory) approach. 659 

Machine learning methods are used to expedite the computation since a large number of 660 

energy models needs to be run. The following conclusions can be drawn from this study.  661 

(1) The DST analysis is applicable to provide informative uncertainty results of energy 662 

performance in buildings when only limited information on input variables is available. Note 663 

that the uncertainty results for energy use bounded between the CBF and CPF cannot be 664 

interpreted as being equally possible (similar to uniform distributions in probability theory). 665 

The energy performance may be any possible values within the intervals between the CBF 666 

and CPF based on the DST analysis. When the information on uncertainty of inputs is 667 

sufficient to specify distributions, the Monte-Carlo based sampling method is preferred in 668 

building energy assessment.  669 



(2) Machine learning algorithms can be used to reduce high computational cost in 670 

implementing DST analysis in building energy analysis, instead of directly using engineering-671 

based energy models. It is recommended to compare several machine leaning methods and 672 

then choose at least two learning methods that are inherently different in nature in order to 673 

provide robust analysis.  674 

(3) The DST analysis does not assume any distribution within the intervals of input 675 

factors. Hence, a spectrum of distributions should be used in implementing sampling-based 676 

sensitivity analysis to provide reliable sensitivity results for building energy analysis.  677 

(4) It is necessary to assess the stability of results as a function of sample size from 678 

uncertainty and sensitivity analysis in applying the DST into building energy assessment. This 679 

is often ignored in applying uncertainty and sensitivity analysis in the field of building energy 680 

analysis.  681 

 The conclusions obtained above and the methods proposed in this paper can be applied to 682 

other buildings in various climate zones. However, there are several issues that still need to be 683 

addressed in further studies. One is to compare the performance of more machine learning 684 

algorithms (such as deep learning and ensemble learning methods) when applying them in 685 

DST analysis of building energy performance. Another issue is to investigate whether it is 686 

possible to determine the rule-of-thumb sample size (for instance, in terms of variable 687 

number) on applying the DST method in building energy analysis in order to make this 688 

method more readily available.  689 
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