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Abstract

Theories of embodied cognition agree that the body plays some role in human cog-
nition, but disagree on the precise nature of this role. While it is (together with the
environment) fundamentally engrained in the so-called 4E (or multi-E) cognition stance,
there also exists interpretations wherein the body is merely an input/output interface for
cognitive processes that are entirely computational.

In the present paper, we show that even if one takes such a strong computationalist
position, the role of the body must be more than an interface to the world. To achieve
human cognition, the computational mechanisms of a cognitive agent must be capable not
only of appropriate reasoning over a given set of symbolic representations; they must in
addition be capable of updating the representational framework itself (leading to the titu-
lar representational fluidity). We demonstrate this by considering the necessary properties
that an artificial agent with these abilities need to possess.

The core of the argument is that these updates must be falsifiable in the Popperian
sense while simultaneously directing representational shifts in a direction that benefits
the agent. We show that this is achieved by the progressive, bottom-up symbolic abstrac-
tion of low-level sensorimotor connections followed by top-down instantiation of testable
perception-action hypotheses.

We then discuss the fundamental limits of this representational updating capacity,
concluding that only fully embodied learners exhibiting such a priori perception-action
linkages are able to sufficiently ground spontaneously-generated symbolic representations
and exhibit the full range of human cognitive capabilities. The present paper therefore
has consequences both for the theoretical understanding of human cognition, and for the
design of autonomous artificial agents.

1 Introduction

In cognitive science, theories that cognition is, in some sense, embodied, can be traced back
to two distinct origins (Chemero, 2009): a reaction to the perceived inadequacies of purely
computationalist accounts, and a continuation of eliminitavist/anti-representationalist theories
of mind. The latter aims to understand cognitive systems by characterising the dynamics
of their behaviour and interactions within the world (often using the language of dynamical
systems), and is usually explicit about positing fundamental roles for the body in cognition.
The former, meanwhile, aims to characterise the computations taking place, and thereby often

∗Department of Computer Science, School of Science and Technology, Middlesex University, The Burroughs,
London NW4 4B, UK
†Centre for Robotics and Neural Systems, University of Plymouth, Plymouth PL4 8AA, UK and School of

Informatics, University of Skövde, 54128 Skövde, Sweden.
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ends up producing an account in which the role of the body is reduced to an interface with the
world.

The observation that the precise role or details of the body are often unclear if not explicitly
ignored is not new (see, e.g. Ziemke, 2003; Wilson, 2002). Robotic implementations of models
of cognition contribute to this as they can lead to the false assumption that merely acquiring
inputs from cameras and sending outputs to motors are sufficient to provide an embodied model.
Such approaches “. . . reduce the body to a mere sensorimotor interface for internal processes
that are still just as computational as they were 30 - 40 years ago” (Ziemke and Thill, 2014, p.
1). The main motivation often stated in robotics research is that such a minimal embodiment
is necessary to ground symbols so that they acquire a meaning intrinsic to a cognitive agent as
opposed to one that is given by an external observer (as per the symbol grounding problem,
see Harnad, 1990). Once that intrinsic meaning has been established, cognition using such
symbols can be entirely computational1. In the present paper, we argue that reducing the role
of the body to such an interface is insufficient, even if it is accepted that human-level cognition
can be adequately modelled in a computationalist framework assuming a body as a source
and destination of data. This is because the body fundamentally shapes the computationalist
framework itself.

As far as theories of embodiment go, we therefore intentionally take a very weak position.
The contribution that follows from this is two-fold. First, as already stated, we demonstrate
that the role of the body – even given this weak interpretation – must necessarily go beyond
that of a sensorimotor interface. It must also go beyond what is required by symbol grounding
considerations because it provides and shapes necessary computational mechanisms that cannot
be disembodied. We note that this is not an anti-functionalist argument; we merely reject the
claim that models that are implemented in a physical agent, but merely use the available sensors
and actuators to collect and deliver information for otherwise computational approaches, are
in any sense embodied (therein following Ziemke and Thill, 2014, albeit for different reasons).

Second, we demonstrate that if one were to instead approach this topic from a machine
cognition angle (see, e.g., efforts in so-called Artificial General Intelligence), then a body will
again be necessary to enable the full range of human cognitive abilities. This remains the case
even if one otherwise rejects stronger, possibly non-representationalist positions on embodiment
(for example, so-called 4E cognition, which emphasises the embedded, embodied, enactive, and
extended nature of cognition).

Of particular importance is that our argument does not rely on circumstantial evidence of
the involvement of sensorimotor cortices in higher-level cognition. Although such an involve-
ment is often put forward as support for embodied theories (see Chersi et al., 2010, for an
example on language processing), it is just as often summarily rejected by critics (e.g. Mahon
and Caramazza, 2008). We also avoid the traditional symbol grounding (Harnad, 1990) route
as a motivation (we do, however, end up with an account in which symbols are also grounded
by design). Rather, the argument is simply driven from identifying the computational abilities
that human cognition requires, and demonstrating that those necessitate action and percep-
tion to be able to generate useful representational frameworks. While our argument therefore
uses some terminology from ecological approaches, the focus on computation distinguishes the
present argument from those approaches, which link cognition to both the environment and
action/perception abilities through the concept of meaning (Gibson, 1979).

We build the argument by first showing that an autonomous adaptive agent needs both the
ability to adapt to novel data and to update its representational capabilities in relation to that
data. We then show that achieving the latter step requires the ability to generate falsifiable
hypotheses about novel representational frameworks. This, in turn, requires the ability to act

1Note that such a minimal embodiment whereby a computational model is implemented in a robot is precisely
the scenario that Searle (1980) considers – and then rejects – as the “robot reply” to the Chinese Room argument.
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and perceive in the world (in particular, it requires an a priori notion of action states); thus the
action possibilities and perceptive abilities of an agent are shown to be fundamental to shaping
the representational frameworks used by the agent.

In the following sections, we begin with considering requirements on the representational
frameworks of agents, and how it may be updated. We first presents insights from the literature
on biological agents (including humans), and then discuss how one might approach this in an
artificial agent.

2 Updating the representational framework

2.1 In biological agents

For biological agents generally speaking, the matter has been considered in epistemological
terms in biosemantics, a sub-branch of biophilosophy proposed by Millikan (1987) as an at-
tempt to subsume certain philosophical questions of representation and perception within the
purview of biology. This includes, in particular, the contingencies that arise from consistency
with respect to natural selection, where organisms are naturally-selected for efficiency of their
representative capability in terms of either overall neuronal budget or total energy of processing.
Thus, the biological organism’s representative capability must, in addition to being maximally
or near-maximally efficient, also be of utility to the organism in perpetuating its genetic code
(i.e. it must be consistent with natural selection) if it is to be consistently propagated.

In practical terms, this means that the organism must be able to discriminate those entities
(food, predators, mates, and more), that are key to its survival and reproduction Piaget (1970).
However, the biological agent will also have simultaneously acquired, by natural selection, an
active capability that is likewise evolved to maximize the organism’s ability to propagate its
genetic code; i.e. its ability to interact with the environment is adapted to maximize its survival
and reproductive capability (a lobster’s claws are evolved for opening shells; its eyes provide the
appropriate visual capacity to achieve this end). The perceptual and the active capabilities of
most organisms have thus evolved in lock-step; the organism perceives (since it must maximize
efficiency of representation) only that which is relevant to its survival and reproduction with
respect to its active capacity to achieve these ends.

While this primarily describes biological entities with a fixed post-natal representational
framework Sipper (1995), humans have, to a larger degree than other animals, additionally
acquired the capacity to reconfigure their neuronal and perceptual structure in relation to the
environment in ways that go far beyond (whilst still incorporating) the immediate biological
requirements (cf. e.g. Stevens and Neville (2006)). In other words, we have additionally
evolved the capability of adapting our representational directly to the world on a life-time
scale. Moreover, our perceptual re-configurations can be very abstract. Two principal operative
criteria for this adaptive perceptual updating are apparent:

1. The need to obtain a maximally efficient representation of the environment

2. The need to ensure the discriminability of the active capabilities of the agent, as well as
key entities related to survival/reproduction/nutrition.

By the “discriminability of the active capabilities” in the latter criterion, we mean the ability
to perceive the outcomes of intended actions undertaken by the agent. That is, an intentional
action (one initiated by the goal-setting aspect of the agent’s cognition) should be susceptible
to the sensory determination of its having taken place as intended. In straightforward terms we
might say that an intentional action is one that has a specific percept as its success criterion.
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2.2 In artificial agents

In an artificial learner, perceptual data generally exists on a manifold with an intrinsic coor-
dinate set. Equally, however, perceptual data can consist of discrete entities within a common
class (for example, specific physical cups within the class ‘cup’). In first-order logical terms
these may be equivalently represented by scoped variables; we shall refer to both as perceptual
parameters.

An artificial agent that interacts with the physical world will typically need to learn online;
this is a standard machine-learning setting in which data (as the above) is presented serially in
time (e.g. in response to the agent’s actions). It is necessarily forward-looking, predicting the
label values of data not yet presented to the system, adjusting to any disparity with observed
action outcomes. Such a system is thus inherently adaptive; although the degree of adaptation
will vary from agent to agent (sophisticated variants may incorporate notions such as transfer
learning (Pan and Yang, 2010; Taylor and Stone, 2009), anomaly detection (Chandola et al.,
2009), and active learning (Settles, 2010; Koltchinskii, 2010)).

Interestingly, however – and despite this tendency towards increasing adaptivity – the ma-
jority of existing approaches typically assume an underlying consistency in the representational
characteristics of the data; the data-stream presented to an agent is generally delineated in
terms of a fixed set of classes, or a fixed set of features (for example, spatial interest points
or texture-descriptors). Techniques exist that partially address these limitations, such as in
learners incorporating Dirichlet processes or similar to spawn novel states in relation to the
requirements of the data (Hoffman et al., 2010), which are thus capable of expanding their rep-
resentational characteristics to a limited extent. However, such a learner would typically not be
capable of spontaneously carrying out as fundamental a representational shift as that involved
in the transition from, say, a low-level feature-based representation of the world (delineated e.g.
in terms of CCD camera pixels) to an object-based representation of the world (delineated in
terms of indexed entities with associated position, orientation, equivalency classes etc), unless
a prior capacity for object representation had been incorporated into it.

Taking the notion of autonomously adaptive agency to its conceptual limit would thus require
that both the representational capabilities of the learner as well its capacity to attain objec-
tive knowledge with respect to this capability should be included in the autonomous learning
process. In other words, ideal artificial autonomous agents would be capable of spontaneously
reparametrizing their representation of the world in relation to novel sensor data. They must
not just be capable of updating their model of the world, generated in terms of some particular
representational framework; they must also be able to find an appropriate transformation of
the representational framework itself so that it most effectively2 represents the totality of the
temporal data.

Artificial agents, in the ideal case, therefore need to mimic the ability of biological agents
of updating representational frameworks as sketched above. In the next section, we clarify the
details of what this entails; in particular for an artificial agent designed to function, in some
sense, in the real world.

2In general, this ‘most effective representation’ will be determined by an efficiency criterion: an agent would
typically seek a transformation that minimises complexity (e.g. via a Minimum Description Length (Rissanen,
2010) or an Occam’s Razor type criterion).
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3 Requirements for representational updating in artifi-

cial agents

Assuming a world model W (which captures the agents current understanding of the world)
and a representational framework R (which governs how this knowledge is represented), ideal
agents must – to put the reasoning from the previous section in semi-formal terms – perform
the double transformational mapping R[W ]→ R′[W ′], composed of the mappings R→ R′ and
W → W ′, such that the W and W ′ are guaranteed to both represent the same intrinsic set of
entities via some “noumenal equivalence” Equiv(R[W ], R′[W ′]).

Certain machine learning paradigms are inherently capable of such a reparametrisation (for
example, manifold learning techniques (Zhang et al., 2012) and non-linear dimensionality re-
duction techniques Debruyne et al. (2010)), but for the present purposes, the specific technique
adopted is not significant. The key point is that, at the termination of the process, the agent
arrives at both a reparameterised perceptual framework R′ (such as an orthonormal basis in
manifold or sub-manifold coordinates) and a revised data set description W ′ with respect to the
representational framework (e.g. following projection into the manifold coordinates). Since the
initial, pre-exploratory representational framework will necessarily contain much redundancy
with respect to an efficient post-exploratory representational framework, this reparameterisa-
tion will intrinsically involve a reduction in the number of parameters required to represent
the data3. For example, the determination of some data-derived sub-manifold, Ms, necessarily
implicates the existence of a projection operator such that the full range of data in the origi-
nal domain, W ⊂ M , can be mapped into Ms – for instance, by collapsing data points along
the orthogonal complement, W ′⊥ (M is the original sensory manifold, and Ms the re-mapped
representational framework equipped with a suitable basis).

However, whilst there thus exists an intrinsic (though likely incomputable) parameterization
of any given dataset when considered only in terms of the efficiency of representation, the ideal
choice of representation will also necessarily – and similarly to what we previously discussed
for biological agents – depend on the purpose to which the data set is put. When this purpose
is interaction with the physical world, the notion of optimal reparameterization of observed
data is not trivial. To give perhaps the simplest example of the resulting complications, we
can consider Simultaneous Location and Mapping (SLAM, Engelhard et al., 2011; Strasdat
et al., 2010). In this approach, the robotic agent’s model of the world necessarily depends
upon its calculation of its own position and orientation in the world (i.e. it must factor its
own perspectival world-view into the world model). However, this positional calculation is
itself dependent on (is relative to) the agent’s model of the world (i.e. the agent describes its
own position and orientation in relation to the world model). A SLAM agent will therefore
position itself in the world (perhaps using active learning (Fairfield and Wettergreen, 2010) to
minimize model ambiguity) by leveraging its own, uncertain model of the world. Interconnected
ambiguities are thus always present in both the agent’s self-model (of its location/orientation)
and its model of the world, and the hope of SLAM robotics is that, following full exploration
of the environment, these ambiguities converge to within some manageable threshold.

In general, the SLAM problem is not solvable unless certain a priori assumptions are made.
A key such assumption is that the environment remains reasonably consistent over time. If
an environment were to undergo some arbitrary spatial transformation at each iteration of
the SLAM algorithm, then no convergence would be possible (and in fact there would be no

3The criteria for applying such a reductive reparameterisation are open; we could, for example, employ a
model selection criterion such as the Akaike Information Criterion to arrive at a principled way to determine
the allocation of manifold parameters in relation to the characterization of out-of-model data (the latter is
related to minimum-description length (MDL) approaches, which in turn may be considered approximations of
the ‘intrinsic’ (incomputable) Kolmogorov Complexity of the observed data set).

5



meaning to the concept of world model). However, even much milder perturbations of the
spatial domain would be sufficient to ensure non-convergence of the algorithm.

A further key a priori assumption, one that shall be particularly important in the following,
but which is often overlooked, relates to the robotic agent’s motor capabilities. The robotic
agent’s motor capability may, in this case, be considered as that which initiates the change of
perspective/change of representation. However, as such, it cannot in itself be subject to em-
pirical uncertainty (unlike the world model), and must thus be assumed a priori. Colloquially,
the agent might thus doubt it’s location, or its world model, but it cannot, if it is to work at
all, doubt the fact that a specific motor impulse has taken place (for instance, a move forward
or turn left command). The agent cannot converge on a world model if, for instance, motor
impulses to the actuators were to undergo arbitrary permutation. Even non-arbitrary per-
mutation would not be distinguishable, even in principle, from a corresponding non-arbitrary
permutation of the observed world data. (This non-distinguishability of perceptual manipula-
tions from motor manipulations is absolutely fundamental, and has important consequences in
our later argument).

Thus, both the world-model and the agent’s (orientation/position-based) self-model are in-
herently posited relative to its motor impulses, which can be considered to represent the agent’s
intentions in the sense that the existence of a specific intention is necessarily not itself open to
doubt to the agent, however uncertain its perceptual outcome might be. Model convergence
on a complete world model occurs only when the outcome of all actions leads to predictable
perceptual consequences (to within some given threshold). We can thus consider the world
model as being mapped on to a grid of motor impulses such that, in a sense, the agent’s active
capabilities provide the metric for its perceptual data (see also Dewey, 1896; Glenberg, 1997;
Lakoff and Johnson, 1999)).

To summarise, where there exists the capacity for updating the representational capacity
of an agent in relation to perceptual data that it has sought-out on the basis of its original
representation, there also needs to be some mechanism for guaranteeing that there is either
sufficient a priori noumenal knowledge of the external world, or else that sufficient a priori
assumptions are made regarding the mechanisms (specifically, agent actions) that initiate new
data acquisition for the representation-updating procedure to converge. While this is already a
concern in SLAM, the problem is much more acute in fully open-ended learning scenarios where
whole new categories of perception can be generated. These a priori principles are fundamental,
and have a long pedigree in philosophical terms; we discuss this next.

4 Fundamental epistemic restrictions on representational

cognitive agency

4.1 Noumenal continuity across representational changes

We are essentially asking how, in an adaptive online learning context, it is possible to empirically
validate a proposed change to an agent’s representative capability (how is it, in a Popperian
sense, possible to falsify a proposed representational update). Falsification of a world model
is, by comparison, straightforward in a standard autonomous robotic system, in that a world
model typically constitutes a set of proposed action possibilities (Gibson, 1979; McGrenere and
Ho, 2000) gathered at-a-distance by a vision system. Thus, the visual model typically denotes
a set of object hypotheses that may be verified via haptic contact (Saunders and Knill, 2004;
Schlicht and Schrater, 2003).

In robotics, haptic contact is consequently often considered to be prior to vision, or at
least a priori less prone to ambiguity than vision, something also evident in human terms.
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However, in a hypothetical agent where there exists complete representational fluidity, such
that a completely novel sensorium could be presented to an agent (for instance if sonar data
were combined with visual data in some hybrid world description without any prior information
as to the nature of the former), then it would not be possible to intrinsically favour one group
of senses/sensors over another in order to delineate hypotheses about the world. Moreover,
there would be no immediately obvious way to form hypotheses about the most appropriate
representational framework to adopt.

To address this, we borrow a key insight from the philosopher Kant; namely that object
concepts constitute orderings of sensory intuitions (Kant, 1999). Objects, as we understand
them do not thus constitute singular percepts, but rather synthetic unities built upon an a priori
linkage that must be assumed between sensory intuitions and the external noumenal world
(these a priori links cannot be in doubt since they are a condition of empirical validation for
synthetic unities). Implicit in this is the notion that actions can be deployed to test the validity
of these synthetic unities (which being synthetic rather than analytic are only contingently true,
and therefore falsifiable through experience). Actions are thus causally initiated by the agent
and serve to bring aspects of the synthetic unities to attention (within the a priori strata of
space and time) in a way that renders them falsifiable.

For Kant, assuming that spatiality and temporal causality are a priori means that they are
assumed by the agent in order to have falsifiable perceptions at all. In principle, other ordering
approaches to sensory data may be possible; however, it would be impossible for the agent
to retain the continuity and falsifiability of object representation across such a fundamental
transition of representation (it would also be impossible for a self-conscious agent to retain its
identity – or “synthetic unity of apperception” – across such a fundamental representational
chasm). This is the problem of “noumenal continuity”: how can an agent that undergoes a
change of representation framework at time t0 ever be sure that the objects delineated at t0−1
were the same objects as those delineated at t0 + 1? Indeed, would the number of objects even
be preserved?

In principle, there is thus a clear risk that an agent that undergoes a representational change
would be severely limited in the extent to which it could use existing knowledge across these
changes. One way to avoid this risk is when representational changes are built hierarchically.
Such an approach will preserve an agent’s ability to falsify both the representational changes as
well as any object hypotheses (synthetic unities) formed in terms of these. Moreover, it does so
while retaining online continuity of object identity when extended in perception-action terms.

We will demonstrate this for the example of hierarchical Perception-Action learning in the
next section. By way of example though, consider how we, as humans, typically represent our
environment when driving a vehicle. At one level, we internally represent the immediate envi-
ronment in metric-related terms (i.e. we are concerned with our proximity to other road users,
to the curb and so on, see Windridge et al., 2013b). At a higher level, however, we are con-
cerned primarily with navigation-related entities (—e.g. how individual roads are connected).
That the latter constitutes a higher hierarchical level, both mathematically and experientially,
is guaranteed by the fact that the topological representation subsumes, or supervenes upon,
the metric representation; that is to say, the metric-level provides additional “fine-grained”
information to the road topology: the metric representation can be reduced to the topological
representation, but not vice versa.

When goals and sub-goals are explicitly delineated at each level, this is known in robotics
as a subsumption hierarchy (Brooks, 1991). What we argue for in this paper is that per-
ceptual subsumption and task subsumption need to be directly related to each other in an
adaptive cognitive agent in order to achieve the maximal cognitive updating potential. In a
fully adaptive online learner, it is then possible to allow representational induction by adopting
a correspondingly hierarchical approach.
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Thus, on the assumption of the existence of a priori means of validating low-level hypotheses
(for example via haptic contact), it is possible to construct falsifiable higher-level representa-
tional hypothesis provided that these subsume the latter. For example, an autonomous agent
might, following active experimentation, spontaneously conceive a high-level concept of action
possibilities, or schema (Hintzman, 1986), such as that provided by a container. Clearly, in
this case, the notion container subsumes the concept of haptic contact.

Continuity of noumenal identity must thus be guaranteed by the lowest level of the hierarchy,
with the higher hierarchical levels then constituting progressive abstractions4 and enrichments
of the lower level representations. For example, an autonomous agent might initially represent
the world in terms of (hypothetical) volume elements such as voxels or 3d meshes (the a
priori bootstrap representation), but, following extensive experimentation, go on to generate an
enriched representation of its world at a higher level in which “containers” and “non-containers”
are the symbols in terms of which the world is delineated (note that the original, pre-symbolic
representation of the world in volumetric terms remains subsumptively present).

4.2 Falsification of representational changes in terms of utility and
compressibility

The falsifiability of aspects such as the symbolic representational notion “container” is guaran-
teed, just as it is possible to guarantee the falsifiability of the hypothesis of the existence of any
specific container, by exploiting the fact that all such hypotheses can be linked to the lowest
level of the hierarchy, at which they are rendered falsifiable by haptic contact: simply put, just
as the agent can verify the presence of a container by testing whether the proposed container-
entity is, in fact, capable of containing another object, the high-level representational concept
“container” is rendered falsifiable by the fact that it is conceived along with a corresponding
high-level action possibility e.g. “placing an object into a container” that necessarily subsumes
lower-level concepts such as “haptic contact”. Thus, the representational concept is rendered
falsifiable on the basis of its utility and compressibility.

In other terms, the falsifiability of the representational notion “container” arises from ac-
tively addressing the question of whether this higher-level perception of the world (in terms of
a series of objects in space that are either container-objects or non-container-objects) in fact
constitutes a useful description of the world i.e. whether it yields a net compression in the
agent’s internal representation of its own possible interactions with the world. For example, if
there were only a single container in the world, or if it were not possible to train an accurate
classifier for containers in general, then it would be unlikely to constitute a useful description
of the world; it would likely be more efficient simply to retain the existing concept of object
without modification. However, when the world is in fact constituted of objects for which it is
indeed an efficient compression of the agent’s action-capabilities to modify the object concept
in this way, then it is appropriate for a representationally-autonomous agent to spontaneously
form a higher level of its representational hierarchy (for an example of this approach utilizing
first-order logic induction, see Windridge and Kittler, 2010)).

Very often, compressibility will be predicated on the discovery of invariances in the current
perceptual space with respect to randomized exploratory actions. Thus, for example, an agent
might progress from a pixel-based representation of the world to an object-based representation
of the world via the discovery that certain patches of pixels retain their (relative) identity under
translation, such that it becomes far more efficient to represent the world in terms of indexed
objects rather than pixel intensities (though the latter would, of course, still constitute the base

4These abstractions can be conceived of as symbolic. For example, Eliasmith (2013) proposes a cognitive
architecture in which the symbolic entities manipulated in higher level cognition are built from successive
(compressive) abstractions in the sensorimotor hierarchies.
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of the representational hierarchy). This particular representational enhancement can represent
an enormous compression (Wolff, 1987); a pixel-based representation has a parametric magni-
tude of P n (with P and n being the intensity resolution and number of pixels, respectively),
while an object-based representation typically has a parametric magnitude of ∼ no, o << n,
where o is the number of objects.

In positing this hierarchical approach to representational adaptation, we have thus outlined
a framework in which complete representational-autonomy for an embodied machine learner
becomes feasible, one in which representations are empirically falsifiable, and in which the
noumenal continuity of identified entities can be assumed across representational transforma-
tions. A key aspect of this falsifiability is the requirement that the spontaneous generation of
higher-level perceptions in the agent’s representational hierarchy correlates directly with higher
level actions. We now look more closely at this perception-action connection, and consider the
low-level a priori guarantees of representative falsifiability.

5 Example: hierarchical Perception-Action learning

To conclude our main argument, we demonstrate in this section, how the above considera-
tions can be implemented in practice in hierarchical Perception-Action learning architectures.
Perception-Action (P-A) learning is a paradigm in robotics that aims to address significant
deficits in traditional approaches to computer vision (Dreyfus, 1972). In particular, in the
conventional approach to autonomous robotics, a computer vision system will typically be em-
ployed to construct a world model of the agent’s environment prior to the act of planning the
agent’s actions within the domain. Visual data arising from these actions will then typically be
used to further constrain the environment model, either actively or passively (in active learn-
ing the agent actions are driven by the imperative of reducing ambiguity in the environment
model).

However, it is apparent that there exists in this approach, a very wide disparity between the
visual parameterization of the agent’s domain and its action capabilities within it (Magee et al.,
2004; Nehaniv et al., 2002). For instance, the parametric freedom of a front-mounted camera
will typically encompass the full intensity ranges of the Red, Green and Blue channels of each
individual pixel of the camera CCD; thus the range of possible images that might be generated
in each time-frame is of an extremely large order of magnitude, despite only a minuscule fraction
of this representational space being ever likely to be experienced by the agent. By contrast, the
agent’s motor capability is likely to be very much more constrained parametrically (perhaps
consisting only of the possible Euler angle settings of the various actuator motors). This
disparity leads directly to the classical problems of framing (McCarthy and Hayes, 1969), an
issue shared with alternative modalities to vision, such as LIDAR and SONAR.

5.1 P-A learning

P-A learning aims to overcome these issues by considering actions to be conceptually prior to
perceptions (Granlund, 2003; Felsberg et al., 2009).. In other words, perceptual capabilities
should depend on action capabilities and not vice versa. A P-A learning agent proceeds by
randomly sampling its action space (so-called motor babbling). For each motor action that
produces a discernible perceptual output in the bootstrap representation space S (consisting
of e.g. camera pixels), a percept pi ∈ S is greedily allocated. The agent thereby progressively
arrives at a set of novel percepts that relate directly to the agent’s action capabilities in relation
to the constraints of the environment (i.e. the action possibilities that exist in the environment):
the agent learns to perceive only that which it hypothesises that it can change. Thus, the set of
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experimental data points ∪ipi ⊂ S can, in theory, be generalized over so as to create a percept-
manifold that can be mapped onto the action space via the injective relation {actions} →
{perceptinitial} × {perceptfinal} (Windridge and Kittler, 2010, 2008; Windridge et al., 2013a).

When such a perceptual manifold is created (representing a generalization over the tested
space of action possibilities), this then permits an active sampling of the perceptual domain -
the agent can propose actions with perceptual outcomes that have not yet been experienced by
the agent, but which are consistent with its current representational model (which guarantees
falsifiability of the perceptual model). It is in this way that P-A-learning constitutes a form of
active learning: randomized selection of perceptual goals within the hypothesized perception-
action manifold leads more rapidly to the capture of data that might falsify the hypothesis
than would otherwise be the case (for example, if the agent were performing randomly-selected
actions within in the original motor domain). Thus, while the system is always “motor bab-
bling” in a manner analogous to the learning process of infant humans, the fact of carrying out
this motor babbling in a higher-level P-A manifold ensures that the learning system as a whole
more rapidly converges on the correct model of the world.

5.2 Hierarchical P-A learning

In principle, this P-A motor-babbling activity can take place in any P-A manifold, of whatever
level of abstraction; we may thus, by combining the idea of P-A learning with the notion of hi-
erarchical representation presented above, conceive of the notion of a hierarchically subsumptive
perception-action learner, in other words combining Brooke’s notion of task subsumption with
the P-A notion of action preceding perception. Such a system, employing iterative top-down
motor-babbling and bottom-up parametric reparameterization to generate a PA subsumption
hierarchy, was practically demonstrated, for example, by Windridge and Kittler (2007) and
Shevchenko et al. (2009).

In these systems, a vertical representation hierarchy is progressively constructed for which
randomized exploratory motor activity at the highest level of the corresponding motor hierarchy
rapidly converges on an ideal representation of the agent’s world in terms of its symbolic
affordance potentialities. These systems thus converge upon both a model of the world, and an
ideal strategy for its representation in terms of the learning agent’s action capabilities within
it (the generalization and parametric compression mechanisms in these systems, however, were
extremely different; employing string concatenation with redundancy elimination, and first-
order rule induction with reverse instantiation, respectively).

Perceptual goals thus exist at all levels of the perception-action hierarchy, and the sub-
sumptive nature of the hierarchy means that goals and sub-goals are scheduled with increas-
ingly specific content as high-level symbolic goals (such as “place ball in cup”) are progressively
grounded through the hierarchy. To pick up an earlier example, as humans, we may conceive
the high-level intention “drive to work”, which in order to be enacted, involves the execution
of a large range of sub-goals with correspondingly lower-level perceptual goals such as “stay in
the center of the lane”, and so on.

5.2.1 Bijectivity constraints between action possibilities and percepts

To ensure that these hierarchical goals are most efficiently represented, it is necessary to impose
a bijectivity between actions and possible percept transitions in order to induce the correct rela-
tionship between representational subsumption for percepts P and Brooke’s task subsumption
in relation to actions A. In particular, in order to retain falsifiability of a proposed new action
possibility, it is necessary to impose up on any hypothesized new hierarchical perception-action
level the bijective constraint {actions} ↔ {Pinitial} × {Pfinal}, where the initial percepts are the
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necessry observed state of the world to initiate the new high-level action and the final percepts
are the target observed state of the world expected at the end of the action.

Critically, this construction permits top-down instantiation of goal parameters: a high level
action naturally schedules a series of subtasks at different levels of the task hierarchy (the
actual sequencing of actions will depend on the optimisation mechanism). Also importantly,
each subtask has its own perceptual goal of the appropriate level of hierarchical complexity
(i.e. the appropriate ‘depth’). Each target object must thus have a representation at every
level of the hierarchy (e.g. a “container” is also an “object” and is also “voxel cloud”). This
representational subsumption is what allows the agent to falsify a spontaneously-hypothesized
P-A notion such as container5.

5.2.2 Representational shifts in hierarchical P-A learning

The learning mechanism required in a bootstrap hierarchical P-A learning agent is dictated by
the supervised classification problem intrinsic in generalising the outcome of exploratory actions
driven at the highest level of the hierarchy. In particular, the outcomes of exploratory actions
(predicated for instance on the proposed notion “container”) result either in the successful
achievement of the final perceptual state or its failure. Each exploratory action can thus be
accompanied by a binary label {achieved, not achieved}. The set of exploratory actions then
form a training set that a supervised classification system can generalize over. The generalized
set of actions (with appropriate perceptual goals) classified as achievable thus represents a set
of testable action hypotheses.

However, this generalization is not in itself sufficient to give rise to a new (hypothesized)
level of the hierarchy (and thus a new representational framework); for this, we require that
the set of percepts corresponding to the goal states of the generalised action can undergo
parametric reduction. In particular, they must be capable of parametric reduction such that
the bijectivity constraint {Action Possibilities} ↔ {Pinitial} × {Pfinal} holds (this perceptual
parametric reduction naturally implies a novel higher-level action hypothesis). Only in this
way can high-level symbolic propositions such “place the ball in the cup” be formulated ab
initio.

This cycle (exploration, induction, perceptual reparameterization/high-level action gener-
ation) can be iterated over until convergence is achieved (when all action goals hypothesized
to be achievable are in fact achievable). It was shown by Windridge and Kittler (2007) and
Shevchenko et al. (2009) that this is a form of active learning that can speed up world-model
learning by several orders of magnitude. Further, motor babbling within such an iterative boot-
strap P-A learning system can be shown to necessarily become increasingly intentional as time
progresses; an initial low level exploratory impulse generated randomly results in apparently
random movement similar to that of a new-born child, while a randomly-generated high-level
exploratory impulse instantiating the perceptual parameters of, for example, the conjectural
action possibility “put into” would result in the apparently-purposive action, such as placing a
ball into a cup.

In terms of the previously discussed P-A bijectivity, the high-level action “put into” is
parametrised by the symbolic notion of “container”. The parametrisation can be treated
in terms of first-order predicate logic, with the action predicate ‘Put Inton(On−1, Cn)’ being
scoped over the the object variable On−1 and the container variable Cn. The symbolic per-

5Interestingly, representational subsumption occurs spontaneous in convolutional neural networks and is a
key factor in their state-of-the-art performance (Ranzato et al., 2007; Girshick et al., 2014; Liu et al., 2017),
not least because of the ready transferability of representations (Oquab et al., 2014). The bijectivity constraint
can thus in principle be incorporated into the deep-learning objective function of an embodied agent to produce
an agent capable of open-ended learning (deep visuo-motor learning having already been demonstrated Porzi
et al., 2017; Levine et al., 2016).
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ceptual notion “container” hence subsumes the symbolic perception notion “object”. This is a
strict form of conceptual subsumption that, when translated via the bijectivity principle into
the action space, becomes equivalent to Brooke’s notion of task subsumption: the perceptual
goal implicit in the action specifies a target state that a lower-level task must be scheduled to
achieve – for example, tasks of the form “place hand around object”, “move hand” , and so on.
The P-A bijectivity principle does not specify how the task is to be optimally; this is a free (and
potentially hybrid) mechanical choice within the framework. For example, in an artificial agent,
optimal control may be used at some particular hierarchical level, while simulated annealing
might be employed on another level to optimize task scheduling.

Note that for this subsumptive task-scheduling to be possible at all, the perceptual target
must have a corresponding perceptual subsumption. To place and object in a container, the
agent must move its object-containing end effector toward a container object - on this level, the
target is an object, and only with respect to the higher-level action ‘Put Inton(On−1, Cn)′ is
the object also recognised as a container; i.e. it has an additional, higher-level action possibility
characterised by the variable Cn. In other words, a specific instantiation of a container in Cn

also necessarily implies a corresponding instantiation of an object in On−1, representing the
targeted entity considered only as an object. A cup is thus both an entity for containing coffee
and a solid object, with, for example, mass and a certain geometrical configuration).

The induced PA concept “container” is thus instantiated by specific container-objects, how-
ever the notion itself is a generalization of the action possibilities of containers in general. The
induced notion “container” is thus symbolic in that it can be employed (since it is capable
of entering into discrete, relational juxtapositions with other symbolic entities) to pursue po-
tentially counter-factual possibilities via instantiation (for example, by attempting to treat a
random object as a container).

6 Discussion and Conclusions

In this paper, we explored what necessary mechanisms an artificial agent needs to possess to
achieve certain aspects of human cognition. In particular, we highlighted the ability to update
representational frameworks in a manner that is useful to agent in question. We highlighted
the importance of noumenal continuity in relation to the question of empirical validity and
concluded that this can be achieved through an appropriate subsumptive architecture embody-
ing a perception-action bijectivity criterion. We went on to demonstrate that hierarchical P-A
learning is a framework in which such an architecture can be realised. Overall, the proposed
framework for spontaneous symbol abstraction in open-ended cognitive learning is thus in-
tended to be of maximal generality, being learning-mechanism agnostic, on the proviso that
the bijectivity constraint is observed. The contributions of this framework are two-fold, having
implications for both theories of cognition and the design of artificial agents, that we discuss
here.

Throughout the paper, we have retained the assumption that cognition can generally be
thought of as symbolic computation. As far as theories of embodiment go (Chemero, 2009),
this is a weak position: the body exists initially only because we are interested in agents that
operate in the physical world. Nonetheless, we quickly found that the body must play a role
that goes far beyond being a mere sensorimotor interface to the world. An agent that proposes
a representational update must also propose a way to falsify this representational update in a
Popperian sense. We have shown, following Kant, that this must be achieved through a priori
action possibilities. This is the crucial aspect that fundamentally involves the body in even
otherwise computational processes: the representational frameworks that are used are entirely
dependent on the embodiment of the agent.
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The role of the embodiment of an agent therefore goes beyond an interface between a com-
putational model and the physical world; it also goes beyond merely providing a mechanism by
which to ground symbols (Harnad, 1990); rather it determines the representational framework
used for computation itself. The theoretical contribution to the study of cognition therefore is
that, even on the computational end of the spectrum, the body has to be more than a mere
interface. It follows from this that the precise nature of the body must be considered even if
one is otherwise interested in constructing a purely computational account of cognition. First
of all, this is because perception is not purely external; living beings also integrate interoceptive
information (Stapleton, 2011) in cognitive mechanisms. Second, if an agent’s perceptive and
motor abilities shape the framework in which its cognitive processes take place, then character-
ising this fully might require a detailed understanding of the precise nature of these abilities.
For example, a human cannot pick up a red-hot piece of iron while a robot might, even if both
have appropriately shaped grippers. That said, it remains to be explored what precisely the
consequences of differences in body are for higher-level cognition in particular (see also Thill,
2018).

We note of course that in 4E approaches to cognition, or even non-representationalist in-
terpretations (Chemero, 2009), the role of the body is arguably embedded significantly further.
Ziemke (2016), for example, reviews a number of frameworks that focus on the role of inter-
nal bodily mechanisms – for example, homeostatic mechanisms – in grounding sensorimotor
interaction itself, concluding, “[a]t least in the case of natural cognition, that sensorimotor in-
teraction with the environment is itself deeply rooted in the underlying biological mechanisms,
and more specifically layered/nested networks of bodily self-regulation mechanisms”. P-A ar-
chitectures such as the one considered here have also been considered in more deeply embodied
terms than we do here; Vernon et al. (2015), for example, discuss the relevance of the internal
body (again, including mechanisms such as homeostatic regulation) in achieving such a P-A
coupling in natural agents.

Here, we have therefore merely demonstrated a minimally necessary role. This argument
also demonstrates that using a robot merely to ground symbols (e.g. Stramandinoli et al., 2011)
is not enough to claim an embodied model of cognition in a meaningful sense (though it is of
course valid, as in the cited study, to explore specific aspects of embodiment, such as symbol
grounding, in this manner).

For agents that have no particular embodiment, for example systems as sometimes envi-
sioned by some proponents of so-called Artificial General Intelligence, the lack of means to
falsify representational updates through action linkages in the Kantian sense means that there
is no way of meaningfully generating such updates since there is no principled way of falsifying
them. Any proposed representational framework would be feasible in principle, but without a
means to evaluate its utility in the world the sole remaining intrinsic criterion for favouring one
framework over another would be its compressive capability (natural selection as a means of
establishing framework utility would obviously also be inapplicable to a disembodied artificial
agent). The only fully model-independent (which is to say representation-independent) crite-
rion for compressibility that could be applied would involve a determination of the underlying
Kolmogorov complexity of the input stream; however, this is incomputable even in principle.
There would also be no principled a priori reason as to why compression could not be allowed
to be lossy, and therefore nothing to prevent the system from collapsing all inputs into a single
bit. To avoid this, some additional metric might be artificially imposed to assess whether the
framework update is useful to the functioning of the system; however this would necessarily only
implicate a criterion of success or completion with regard to the updating procedure rather than
a criterion of falsifiability. If the ability for representational updating is crucial for the general
nature of human intelligence, then the inability to achieve this without embodiment fundamen-
tally limits the utility of disembodied models of cognition, at least in terms of achieving such
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a generality.
There are a few points to note about the framework proposed here. First, at no stage

is there any requirement for global hierarchical consistency of representation (for example, as
humans, we do not embody a set of Cartesian coordinates or similar to describe the geography
of our locale; rather, we retain a series of motor imperatives that are triggered in relation to
key percepts: e.g. we thus ‘turn left at the town-hall’ rather than head to a particular set
of coordinates when navigating). For a Perception-Action learning agent, the environment
“becomes its own representation” (Newell and Simon, 1976), which naturally represents a very
significant compression of the information that an agent needs to retain. This further relates to
the issue of symbol grounding (Harnad, 1990) in that symbolic representations are abstracted
from the bottom-up here (Marr, 1982; Gärdenfors, 1994; Modayil, 2005; Granlund, 2003). In
principle, the present framework is thus a variation on the notion of perceptual symbol systems
(Barsalou, 1999), and a symbolic description is arrived at similarly than in related approaches
(for instance the so-called Semantic Pointer Architecture, see Eliasmith, 2013). As in those
approaches, symbols are thus always intrinsically grounded by nature of their construction.
The distinguishing feature is that in the current context, this grounding is also the guarantor
of their falsifiability, as required for representational upgrading6.

We also observed, in passing, that motor-babbling at the top of the representation hierarchy
would necessarily involve the spontaneous scheduling of perceptual goals and sub-goals at the
lower level of the hierarchy in a way that (as the hierarchy becomes deeper) looks increasingly
“intentional” (a phenomenon that is readily apparent in the development of motor movement in
human infants). This has implications for social robotics; in particular, it becomes possible to
envisage communicative actions. Here, the same bijectivity considerations apply to perceptions
and actions as before, however the induction and grounding of symbols can in principle now be
conducted through linguistic exchange. The utility constraint on generated symbols remains:
they have to relate to a compact and useful set of action possibilities. In addition, however, these
action possibilities must be common to the communicating agents since meaningful linguistic
exchange can only occur between agents with similar sensorimotor capabilities, a notion that
relates directly Wittgenstein’s concept of the language game for which the idea of a private
language is meaningless.

In principle, such an approach would implicitly be a hierarchical generalisation of Steels’s
(1997) famous talking heads experiment in artificial language formation. We can thus envisage
the coeval generation of perceptual symbols and their corresponding actions within a community
of agents employing P-A subsumption. Typically, the most efficient form of communication
between individuals is in terms of the highest levels of the P-A hierarchy, such that recipients
of a linguistic token ground its meaning via their internal P-A hierarchy (thus we tell someone
to “watch out for the car”, rather than instructing them on which specific muscles to activate
in order to accomplish this task). In related work, Thill and Twomey (2016) explore these
issues in more detail, and, in particular, discuss how a framework such as that of Eliasmith
(2013) – which also employs hierarchical structures to derive symbol-like entities – can be used
to investigate how exactly differences in the sensorimotor experiences of two agents (living or
artificial) might impact their ability to communicate about concepts.

To conclude, we have demonstrated how representational fluidity, a necessary component
of cognition, can be achieved in a computationalist framework. In addition to the specific con-
tributions discussed above, this is of general relevance for studying agents, living or artificial,
for whom such a fluidity might play a role in cognition. We note of course that this is to some
degree a philosophical question first: if one rejects representationalist frameworks outright as

6It can also be noted that, in humans at least, internal bodily mechanisms as reviewed by Ziemke (2016), are
likely relevant for this functionality. We do not explore it further here since we are primarily concerned with a
more computationalist stance.
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an adequate way of modelling cognition, then there is also little point in considering represen-
tational fluidity in the way we have here. There is, however, a point in considering the role of
hierarchical structures, and P-A coupling in cognition. In particular, the idea that agents might
guide the exploration of their abilities and environments using hypotheses that are falsifiable
through action does not depend on a computationalist account. As such, much of what we have
discussed in more theoretical terms in this paper still applies, even if a model to demonstrate
this will rather look rather different.
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