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INTRODUCTION

Inter-individual trait variation has important im -
plications for conservation, ecology, and evolution
 (Bolnick et al. 2003, Araújo et al. 2011). For example,
consistent individual variation in foraging behaviour,
or foraging specialisation, can impact predator−prey
interactions, parasitism risk, and population and com-

munity dynamics, and it can lead to disruptive selec-
tion and evolutionary divergence (Darimont et al.
2007, Johnson et al. 2009, Duffy et al. 2010).

Individual foraging specialisation is common among
a wide range of marine taxa, including birds, fish,
and mammals (for reviews, see Bolnick et al. 2003,
Araújo et al. 2011, Ceia & Ramos 2015). In marine
species, individuals specialise in terms of their diet
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ABSTRACT: Inter-individual variation in behavioural traits has important implications for evolu-
tionary and ecological processes. Site fidelity, where individuals consistently use the same forag-
ing site, is common among marine predators. Sex differences in foraging are also well studied in
marine vertebrates, but the extent to which consistent inter-individual differences in foraging vary
between the sexes is poorly known. Here we quantified the effects of sex on individual foraging
site fidelity (IFSF), both within and between years, in chick-brooding Campbell albatross Thalas-
sarche impavida. Using bird-borne global positioning system loggers, we calculated route fidelity
(nearest-neighbour distance), repeatability of site fidelity (terminal latitude and longitude), and
foraging effort (total distance travelled and trip duration) during 2 to 10 repeat trips. Overall,
Campbell albatrosses showed a high degree of site fidelity. Birds travelled to similar sites not only
within the same year, but also between 2 consecutive years, suggesting that the within-year con-
sistency is not simply in response to short-term patches of food. Moreover, within the same year,
we found differences in terms of IFSF between the sexes. Females that foraged closer to the colony
in neritic and shelf waters were more likely to follow similar routes on repeated foraging trips and
were more consistent in their foraging effort than males. Males that foraged further offshore in
pelagic waters had more repeatable foraging longitudes than females. Our study provides further
evidence of the importance of IFSF among marine vertebrates. However, it also reveals that the
strength of such specialisations may vary with sex.
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(Newsome et al. 2009, Tinker et al. 2012), searching
behaviour (Woo et al. 2008, Torres & Read 2009,
Baylis et al. 2012, Patrick et al. 2014), isotopic niche
(Bearhop et al. 2006, Jaeger et al. 2009, Votier et al.
2011), and, in particular, foraging location (Woo et al.
2008, Torres & Read 2009, Baylis et al. 2012, Wake-
field et al. 2015). Individual foraging site fidelity
(IFSF), where an individual consistently uses only a
small part of the population-level foraging range
(Wakefield et al. 2015), is a particular form of individ-
ual specialisation that may arise as a consequence of
predictable oceanographic conditions that generate
foraging areas consistent in time and space (Weimers -
kirch 2007). However, variation in environmental
con ditions and sex-specific constraints such as those
imposed by reproductive duties may influence the
degree of site fidelity (Weimerskirch 2007, Patrick &
Weimerskirch 2017). Here we tested for sex differ-
ences in IFSF in a marine predator engaged in cen-
tral-place foraging, the Campbell albatross Thalas-
sarche impavida.

Sex differences in foraging behaviour are well
studied in marine vertebrates, including many sea-
birds (e.g. brown boobies Sula leucogaster, Miller
et al. 2018; black-browed albatrosses T. melanophris,
Huin 2002; northern gannets Morus bassanus, Stauss
et al. 2012, Cleasby et al. 2015; Hawaiian petrels
Pterodroma sandwichensis, Wiley et al. 2012; Cory’s
shearwaters Calonectris borealis, Paiva et al. 2017;
northern giant petrels Macronectes halli, González-
Solís et al. 2000). The mechanisms thought to influ-
ence sexual segregation include divergent parental
roles or nutritional requirements, niche partitioning,
competition, and social dominance (Weimerskirch et
al. 2009). However, the extent to which IFSF varies
between the sexes is not well known. One of the few
study systems that have tested for sex differences
in foraging individuality, in chick-brooding black-
browed albatrosses, found that females were more
generalist than males (Patrick & Weimerskirch 2014),
although males showed stronger habitat fidelity than
females (Patrick & Weimerskirch 2017).

Here we studied IFSF in a large pelagic predator,
the Campbell albatross, when restricted to foraging
from a central place during the breeding season. The
Campbell albatross is endemic to Campbell Island,
New Zealand (52° 32’ 24’’ S, 169° 8’ 42’’ E) and travels
widely at sea to forage in waters off southern Aus-
tralia, the Tasman Sea, and the southern Pacific
Ocean (Waugh et al. 1999a,b, Sztukowski 2016, Sztu -
kowski et al. 2017). During chick-brooding, Camp-
bell albatrosses demonstrated sex differences in the
distance travelled while foraging, and also in habitat

use (Sztukowski 2016). Such variation may influence
IFSF between the sexes. Understanding the extent of
IFSF may also be important in terms of conservation.
The Campbell albatross population declined from
31 300 pairs in the 1940s to 21 648 pairs in 2012
(Waugh et al. 1999c, Sagar 2014); this habitat degra-
dation, in addition to its restricted breeding range
and the threat of fisheries bycatch, led to the Camp-
bell albatross being listed as Vulnerable by the IUCN
(BirdLife International 2017). Reversing this popula-
tion trend and improving the future prospects of this
species require a more detailed understanding of its
spatial ecology, including the degree of IFSF.

We used precision GPS loggers to reconstruct for-
aging behaviour during the chick-brooding period,
with the aim of studying IFSF in Campbell alba-
trosses. We first quantified the extent to which
Campbell albatrosses demonstrate IFSF during re -
peated foraging trips within the same breeding sea-
son, specifically in terms of foraging location (distal
point of trips), route fidelity (using nearest-neighbour
distance), and foraging effort (distances travelled
and duration). As well as tracking repeat trips by
the same individual within the same year, we also
tracked some birds across 2 years to test for long-
term IFSF. This enabled us to determine whether site
fidelity occurs in response to short-term availability
of prey patches, or is instead a longer-term foraging
strategy. Finally, we compared the degree of IFSF
between the sexes.

MATERIALS AND METHODS

Instrumentation and tracking

Chick-brooding Campbell albatrosses were tem-
porarily captured and tagged during the breeding
seasons of November and December 2011/2012 and
2012/2013 (hereafter referred to as 2011 and 2012,
respectively). Chicks hatched from late November
through mid-December (peak hatch during 2011 and
2012: 6−7 December, n = 81 nests). Modified GPS
loggers (GT-600 i-gotU, Mobile Action Technology)
were attached to the central back feathers of adult
albatrosses using Tesa© tape. Modification involved
removing the external plastic housing of each logger
and then applying heat shrink tubing (FiniShrink) to
waterproof each unit. The mass of each GPS unit was
~33 g (~1.1% of body mass) and GPS units were pro-
grammed to record their location every 10 min
(referred to as a ‘point’ hereafter). We studied at-sea
foraging behaviour during the early to mid-chick-
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rearing period; birds were re-captured on the nest to
remove the tag and retrieve the data following 2 or
more complete foraging trips determined from nest
attendance surveys, generally at the end of the
chick-brooding stage.

Analysis of tracking data

Foraging trips were reconstructed using the GPS
data, from which we calculated 3 indices for com-
plete foraging trips: (1) foraging route fidelity, (2) for-
aging site fidelity, and (3) foraging effort (details
below). All analyses were restricted to individuals
with 2 or more foraging trips; in most instances, our
data represent all foraging trips taken by an individ-
ual during the chick-brooding stage. The degree of
IFSF was calculated from 2 to 10 trips. Maps of forag-
ing trips were created using QGIS software. The
Ocean Basemap used the ETOPO1 dataset hosted
on the NOAA server, which was processed using
'marmap' in R (Amante & Eakings 2009, Pante &
Simon-Bouhet 2013).

Foraging route fidelity

We calculated individual route fidelity using near-
est-neighbour distance (NND, in km). This technique
quantifies the spatial similarity between a focal trip
and a comparison trip by calculating the distance
from each location along a track to its nearest neigh-
bour on the comparison track (Biro et al. 2007). The
NND calculated between 2 trips decreases with the
spatial similarity between the focal and comparison
tracks. NND was calculated for all possible pairs of
trips (within-individual trips, i.e. a measure of indi-
vidual route fidelity, and among-individual trips, i.e.
a measure of inter-individual variability). Locations
<2 km from the colony were removed to exclude
non-foraging rafting behaviour near the colony.

We used linear mixed-effects models (LMMs) to as-
sess whether albatrosses showed route fidelity, by
comparing within-individual NND to among-individ-
ual NND, first across all years (for the 10 birds tracked
in both years) and then within each year. To test for
long-term IFSF, we first tested whether individuals
followed more similar routes within the same year
than in different years. Next, we tested for potential
sex differences in route fidelity, by comparing within-
individual NND between males and fe males. All mod-
els included pair as a random effect and the difference
in trip length between each pair of trips as a covariate.

In models testing data from multiple years, year was
also included as a fixed effect. We compared each
model with the null (intercept only) model based upon
likelihood-ratio tests (LRTs). NND was square root or
log transformed to obtain normality.

Foraging site fidelity

To measure foraging site fidelity, we first estimated
the terminal latitude and terminal longitude (both in
decimal degrees; DD) of each foraging trip. Terminal
latitude and longitude were defined as the location at
the furthest point from the colony calculated as a
straight-line distance. Based on sea surface tempera-
ture (SST) and landing data, Campbell albatrosses do
not forage actively while commuting to foraging
zones (Weimerskirch & Guionnet 2002). We assumed
the primary foraging zone was located at the furthest
point from the colony, but also qualified route fidelity
(see above). We then compared the similarity of these
values between repeat distal locations based on
repeatability (R, i.e. the proportion of variance in a
character that occurs among rather than within indi-
viduals or intra-class coefficient; Lessells & Boag
1987) for each sex and year. We used an LMM with
restricted maximum likelihood and included individ-
ual as a random factor to account for multiple obser-
vations of the same bird. One thousand bootstrap-
ping runs were performed to estimate confidence
intervals and standard errors (Nakagawa & Schiel -
zeth 2010). For the subset of individuals tracked in
both years, we pooled the data from both years and
included sex as a factor in LMM resulting in an
adjusted repeatability (Radj). All LMM analyses were
undertaken using the ‘rptR’ package in R (Steffel et
al. 2017). Metrics for foraging behaviour were con-
sidered statistically repeatable if p-values were
<0.05 and the degree of specialisation increased as
repeatability index values tended towards 1.

Foraging effort

Foraging effort was calculated using 2 metrics:
total distance travelled (km) and trip duration
(hours), both calculated as the sum of the values from
each point-to-point location and then transformed
using Box-Cox transformations to obtain normality.
We compared individual consistency of foraging
effort between each sex and year by calculating
repeatability (R). For the subset of individuals tracked
in both years, we calculated Radj.
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RESULTS

Foraging trip summary

We obtained information on at-sea foraging behav-
iour from 63 birds (n = 237 foraging trips): 12 females
in 2011 (n = 42 foraging trips), 26 females in 2012 (n =
80 foraging trips), 11 males in 2011 (n = 36 foraging
trips), and 24 males in 2012 (n = 79 foraging trips;
Figs. 1 & 2, and see the Supplement at www.int-res.
com/articles/suppl/ m601p227_ supp. pdf). For 10 indi-
viduals (6 females and 4 males), we obtained data in
both 2011 and 2012 (Fig. 3). Total trip distances from
the colony were, on average, significantly longer for
males (mean ± SE: 1580.63 ± 97.93 km) than females
(1165.72 ± 70.74 km; t = −3.43, df = 209.76, p < 0.001).
Trip durations were also greater for males (56.53 ±
3.03 h) than females (47.59 ± 2.39 h; t = −2.32, df =
219.41, p = 0.02).

Foraging route fidelity

NNDs demonstrate that Campbell albatrosses
showed individually consistent foraging routes, with
repeat trips being more similar within than be -
tween individuals (Fig. 4); this result was consistent
whether drawing comparisons across all years or
within the same year (within 2011 LRT: χ2

1 = 17.515,
p < 0.001; within 2012 LRT: χ2

1 = 25.002, p < 0.001;
across all years LRT: χ2

1 = 26.124, p < 0.001). More-
over, route fidelity varied with sex; females had sig-
nificantly higher route fidelity compared with males
(data pooled for all years; LRT: χ2

1 = 4.5277, p = 0.033;
Fig. 5). Trip length and year were both retained in
the models, so these differences are not simply a
function of the shorter foraging trips of females.

Foraging site fidelity

During 2−10 repeat trips, both males and females
showed similar repeatability values (Table 1).
Repeatability of terminal latitude and longitude was
significant for both sexes and within years, with the
exception of females in 2011. Foraging site fidelity
was generally higher in 2012 than 2011, with the
highest repeatability estimates for male terminal lon-
gitude in 2012 (Table 1). For the 10 individuals with
data from both years (n = 59 foraging trips), repeata-
bility of terminal longitude was significant (Radj =
0.376 ± 0.155, p = 0.007), but latitude was not signifi-
cantly repeatable across years (Radj = 0.166 ± 0.125,
p = 0.158).
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Foraging effort

Analysis of within-individual varia-
tion in total distance travelled and
trip duration of foraging trips re -
vealed that females tended to have
higher within-individual variation than
among-individual variation (Table 1).
For females, repeatability of total dis-
tance travelled and trip duration were
significant within both years, whereas
repeatability of total distance travelled
by males was significant in 2012
(Table 1).

234

Fig. 4. Nearest-neighbour distance (NND ±
SD in km) shows that individual route
fidelity across all years is greater (lower
NDD) within individuals than among indi-
viduals. The box includes data between the
first and third quartile and has a midline
which indicates the median. The whiskers
extend 1.5× the interquartile range. Circles
represent data points outside the range of 

the whiskers

Fig. 3 (continued)
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Total distance travelled was consistent across both
years (Radj = 0.260 ± 0.137, p = 0.023), but duration of
foraging trips was not significantly repeatable across
years (Radj = 0.149 ± 0.116, p = 0.109).

DISCUSSION

During chick-brooding, Campbell albatrosses tended
to show consistent foraging routes, foraging sites, and
foraging effort, suggesting a degree of IFSF. More-
over, for 10 birds tracked in 2 breeding seasons, there
was evidence of inter-annual route and site fidelity,
indicating that the observed within-year patterns
were not simply a response to short-term profitable
foraging opportunities (Table 1, Figs. 1−4). Previous
studies of albatrosses have also shown variation with
respect to IFSF; for instance, individual shy alba-
trosses Thalassarche cauta consistently searched the
same broad patch of ocean within a breeding stage,
although individuals did not show fidelity to these
patches across years (Hedd et al. 2001). Wandering
albatrosses Diomedea exulans also showed short-
term consistency in habitat use and trophic level; in
the long-term, however, individuals were consistent
in habitat use but not trophic niche (Ceia et al. 2012).
Black-browed albatrosses showed similar patterns in
terms of IFSF as shown in the present study, with
strong within-year individuality that persisted, to an
extent, across years (Patrick & Wei mers kirch 2017).
Moreover, Patrick & Weimerskirch (2017) showed

235

Fig. 5. Nearest-neighbour distance (NND ± SD in km) shows
that females tend to have higher route fidelity (lower NDD)
than males. The box includes data between the first and
third quartile and has a midline which indicates the median. 

The whiskers extend 1.5× the interquartile range

F
or

ag
in

g
 e

ff
or

t
F

or
ag

in
g

 s
it

e 
fi

d
el

it
y

T
ot

al
 d

is
ta

n
ce

 (
k

m
)

T
ri

p
 d

u
ra

ti
on

 (
h

)
T

er
m

in
al

 la
ti

tu
d

e 
(D

D
)

T
er

m
in

al
 lo

n
g

it
u

d
e 

(D
D

)
20

11
20

12
20

11
20

12
20

11
20

12
20

11
20

12

F
em

al
e

0.
34

4 
± 

0.
17

2 
0.

34
0 

± 
0.

12
6 

0.
43

4 
± 

0.
16

7 
0.

32
2 

± 
0.

12
7 

0.
29

5 
± 

0.
17

2 
0.

55
4 

± 
0.

11
0 

0.
35

6 
± 

0.
17

3 
0.

53
8 

± 
0.

11
4 

(0
.0

39
)

(0
.0

03
)

(0
.0

16
)

(0
.0

03
)

(0
.1

15
)

(<
0.

00
1)

(0
.0

95
)

(<
0.

00
1)

M
al

e
0.

07
4 

± 
0.

12
9 

0.
21

5 
± 

0.
12

1 
0.

09
9 

± 
0.

13
4 

0.
05

9 
± 

0.
08

6 
0.

36
6 

± 
0.

17
9 

0.
39

4 
± 

0.
12

2 
0.

39
9 

± 
0.

17
3 

0.
60

3 
± 

0.
10

7 
(0

.3
62

)
(0

.0
39

)
(0

.3
27

)
(0

.3
36

)
(0

.0
24

)
(<

0.
00

1)
(0

.0
13

)
(<

0.
00

1)

T
ab

le
 1

. R
ep

ea
ta

b
ili

ty
 (

R
) 

± 
S

E
 (

p
-v

al
u

es
 in

 p
ar

en
th

es
es

) 
of

 f
em

al
e 

(1
2 

in
d

iv
id

u
al

s 
in

 2
01

1,
 n

 =
 4

2 
fo

ra
g

in
g

 t
ri

p
s;

 2
6 

in
d

iv
id

u
al

s 
in

 2
01

2,
 n

 =
 8

0 
fo

ra
gi

n
g

 t
ri

p
s)

 a
n

d
 m

al
e

(1
1 

in
d

iv
id

u
al

s 
in

 2
01

1,
 n

 =
 3

6 
fo

ra
g

in
g

 t
ri

p
s;

 2
4 

in
d

iv
id

u
al

s 
in

 2
01

2,
 n

 =
 7

9 
fo

ra
g

in
g

 t
ri

p
s)

 C
am

p
b

el
l 

al
b

at
ro

ss
 f

or
ag

in
g

 s
it

e 
fi

d
el

it
y 

an
d

 f
or

ag
in

g
 e

ff
or

t.
 S

ig
n

if
ic

an
t 

re
p

ea
ta

b
ili

ty
 e

st
im

at
es

 a
re

 h
ig

h
lig

h
te

d
 in

 b
o

ld
. D

D
: d

ec
im

al
 d

eg
re

es

A
ut

ho
r c

op
y



Mar Ecol Prog Ser 601: 227–238, 2018

that in creased site fidelity was linked to higher repro-
ductive success.

One of our key findings is that there were differ-
ences in the degree of IFSF between the sexes (Fig. 2,
Table 1; and see the Supplement). Males travelled
further and had longer trip durations and a more con-
sistent terminal longitude than females. However, fe -
males were more consistent in terms of their foraging
route and effort. Previous research into how sex af-
fects specialisation found diverse results. In the
closely related black-browed albatross breeding on
Kerguelen, males showed more consistent foraging
locations than fe males (Patrick & Weimerskirch
2014). The reasons for the difference from our study
are unclear, but may be related to density depend-
ence, since the degree of individual specialisation has
been shown theoretically and experimentally to
be linked to increased intraspecific competition
(Svan bäck & Bolnick 2005, 2007, Bolnick et al. 2010).
In our study, female Campbell albatross re mained
closer to the colony on the Campbell Plateau, where
competition is higher, and had a higher degree of
route fidelity compared with the more pelagic males. 

There may also be other factors at play. For in -
stance, studies of 3 species of inshore foraging pur-
suit-diving shags and cormorants found that females
tend to be more consistent in foraging behaviour
than males, which was ex plained by a combination of
morphological differences influencing resource ac -
cessibility, niche partitioning, and prey choice (Kato et
al. 2000, Cook et al. 2006, Ratcliffe et al. 2013). Size
may be important in our study species, since male
Campbell albatrosses are on average 7.2% heavier
than females (Sztu kowski 2016), which could affect
for aging energetics and behaviour. For example, in
the wandering albatross differences in the foraging
distribution of males and females are attributable to
sexual dimorphism in mass, wing length, wing area,
and wing loading. These morphological differences
may have evolved to reduce intersexual food compe-
tition, as the larger body size and heavier wing load-
ing of males makes them better adapted to forage in
windier regions than the females (Shaffer et al. 2001).
Niche partitioning may also be present. Individuals
foraging on the Campbell Plateau, the area favoured
by female Campbell albatrosses, fed predominantly
on fish, whereas male birds tended to forage in more
oceanic waters and around the polar front, where
most individuals fed on squid (Waugh et al. 1999b).
However, while size may influence sex-specific for-
aging specialisation and niche partitioning, speciali-
sation may be linked to competition through size
dimorphism, reproductive role, or competitive exclu-

sion (Phillips et al. 2004, 2011, Catry et al. 2006). Thus,
while the factors driving sexual variation in speciali-
sation may be similar to those factors associated with
sexual segregation, which include competitive exclu-
sion, or niche specialisation associated with breeding
role or morphology (Shaffer et al. 2001, Phillips et al.
2004, 2011, Weimers kirch et al. 2009), more research
is required to elucidate the mechanisms.

Highly repeatable terminal latitudes and longi-
tudes indicate that Campbell albatrosses commute to
consistent foraging locations, suggesting that indi-
viduals use previous knowledge to inform foraging
decisions (Votier et al. 2017). The birds tracked over
2 years also tended to show similar foraging site
fidelity, routes, and total distance travelled. Such
longer-term consistency suggests that the within-
year consistency is not simply a response to short-
term patches of food (e.g. a win-stay, lose-shift tactic;
Wakefield et al. 2015). Longer-term site fidelity, as
found in our study, may provide energetic advan-
tages over an individual’s lifetime despite environ-
mental variability (Bradshaw et al. 2004). Thus, for-
aging site fidelity, in conjunction with fine-scale
location adjustments within areas associated with
predictable resources, may confer consistent energy
intake (Bradshaw et al. 2004, Patrick et al. 2014).

To conclude, our study shows that there was gener-
ally a high degree of IFSF among chick-brooding
Campbell albatrosses, and individual consistency in
foraging sites persisted across 2 consecutive years.
However, females, which remained closer to the
colony to forage in neritic/shelf habitats, had a higher
degree of route fidelity and more repeatable foraging
effort compared with males, which tended to use
pelagic waters. While the causes of these differences
remain unclear, our research highlights the possibil-
ity that threats posed by fisheries bycatch are not
uniformly distributed across individuals or sexes
within the population, due to differences in their
overlap with fisheries and reliance on fisheries waste
(Ryan & Boix-Hinzen 1999, Bugoni et al. 2011, Torres
et al. 2011, Barbraud et al. 2013). Further work
should explore how these changes in site fidelity
vary across the breeding season, as well as quantify-
ing the potential impact of these risks.
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