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Summary

1. Priority question exercises are becoming an increasingly common tool to frame future agendas in
conservation and ecological science. They are an effective way to identify research foci that advance
the field and that also have high policy and conservation relevance.
2. To date, there has been no coherent synthesis of key questions and priority research areas for pal-
aeoecology, which combines biological, geochemical and molecular techniques in order to recon-
struct past ecological and environmental systems on time-scales from decades to millions of years.
3. We adapted a well-established methodology to identify 50 priority research questions in palaeoe-
cology. Using a set of criteria designed to identify realistic and achievable research goals, we
selected questions from a pool submitted by the international palaeoecology research community
and relevant policy practitioners.
4. The integration of online participation, both before and during the workshop, increased interna-
tional engagement in question selection.
5. The questions selected are structured around six themes: human–environment interactions in the
Anthropocene; biodiversity, conservation and novel ecosystems; biodiversity over long time-scales;
ecosystem processes and biogeochemical cycling; comparing, combining and synthesizing informa-
tion from multiple records; and new developments in palaeoecology.
6. Future opportunities in palaeoecology are related to improved incorporation of uncertainty into
reconstructions, an enhanced understanding of ecological and evolutionary dynamics and processes
and the continued application of long-term data for better-informed landscape management.
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7. Synthesis. Palaeoecology is a vibrant and thriving discipline, and these 50 priority questions high-
light its potential for addressing both pure (e.g. ecological and evolutionary, methodological) and
applied (e.g. environmental and conservation) issues related to ecological science and global change.

Key-words: Anthropocene, biodiversity, conservation, ecology and evolution, human–environment
interactions, long-term ecology, palaeoecology, palaeoecology and land-use history, research priori-
ties, Palaeo50

Introduction

Palaeoecology combines biological, geochemical and molecu-
lar information from natural archives to reconstruct ecological
and evolutionary systems deep into the past. Because ecologi-
cal monitoring records do not typically extend beyond the
past few decades, palaeoecology is key to understanding how
ecosystems have responded to past disturbance, evaluating
their resilience to perturbations and defining their pre-anthro-
pogenic variability (Jackson 2007; Willis et al. 2010).
High-resolution sediment sequences, for example, were pivotal
in assessing the timing and extent of lake acidification across
large areas of northern Europe and North America in the
1980s, and for attributing the cause to acidifying compounds
derived from the combustion of fossil fuels since the Indus-
trial Revolution (Battarbee et al. 2010). Today, European leg-
islation such as the Water Framework Directive (WFD)
requires the assessment of ecological quality in relation to
pre-anthropogenic baselines. Palaeoecology has been demon-
strated to be the best approach to provide objective informa-
tion about past conditions (Bennion et al. 2010).
Long-term insights are also crucial for identifying and

understanding ecological and evolutionary processes. From
around 50 000 years ago, a disproportionate number of large-
bodied mammals and birds (megafauna) began to go extinct
in Eurasia, Australia and the Americas (Barnosky 2004).
Accurately dated chronologies of Pleistocene fossils have
allowed the timing and potential causes of these megafaunal
extinctions to be constrained (Burney & Flannery 2005). In
addition, recent studies have demonstrated that the loss of
large herbivores led to the formation of novel ecosystems
(Gill et al. 2009) and resulted in major changes in vegetation
composition and fire regimes (Rule et al. 2012). In this case,
integrated analysis of palaeoecological records revealed the
unexpected legacies of extinction events on current ecosystem
functioning; this cannot be accomplished by studying modern
systems alone.
But what are the future important questions that palaeoeco-

logical studies could and should be addressing? This paper
describes the results from an exercise to identify 50 priority
research questions in palaeoecology. This was inspired by
previous studies, which have used specific criteria to identify
priority research questions to advance the field of a given dis-
cipline (Sutherland et al. 2006, 2009, 2011, 2013; Pretty
et al. 2010; Grierson et al. 2011; Petrokofsky, Brown &
Hemery 2012; Walzer et al. 2013). Here, we present the results
of a two-day workshop held at the Biodiversity Institute,

University of Oxford, in December 2012 and discuss both
pure (e.g. ecological and evolutionary, methodological) and
applied research questions (e.g. environmental and conserva-
tion) on time-scales covering decades to millions of years.

Materials and methods

We adapted the methodology of Sutherland et al. (2011) to incorpo-
rate an open application process and online voting over the course of
the workshop. We asked individuals to identify their top priority
questions in various branches of palaeoecological science (see Appen-
dix S1 in the Supporting Information). Prior to the workshop, 905
questions were submitted online from 127 individuals, laboratories
and organizations, which spanned 26 countries and five continents.
Workshop coordinators [AWRS, AWM, AGB] pre-screened the sub-
mitted questions for duplication, which resulted in 804 questions
organized into 55 topics (see Appendix S3). The questions were then
selected and refined through an iterative process of voting and
reworking using a simple scoring system (0, zero priority; 1, low pri-
ority; 2, high priority; Fig. 1). All participants are listed as co-authors
above. Questions are identified in the text by reference to their num-
ber (e.g. [Q1]) and are not ranked but are grouped thematically, both
between and within working groups.

Results

HUMAN–ENVIRONMENT INTERACTIONS IN THE

ANTHROPOCENE

1. When did human activities first trigger global environmen-
tal change and can we define the start of the Anthropocene
with reference to these activities?

2. How did changes in human livelihood, settlement strate-
gies and land-use affect land cover, ecosystem structure,
nutrient cycles and climate over the late Quaternary?

3. Why are some species and ecosystems more sensitive to
environmental change than others and therefore respond
first or to the greatest degree?

4. Why do different species and ecosystems experience vary-
ing time-lags in their response to environmental change?

5. What effect has Holocene landscape fragmentation had on
the ability of natural and semi-natural vegetation types to
respond to environmental change?

6. How can the relationships between climate, herbivory, fire
and humans be disentangled?

7. What are the impacts of pollutants on biota, including con-
taminants of emerging concern and their interactions with
other stressors?
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It has long been known that combustion of fossil fuels pol-
lutes the Earth’s atmosphere. The concept of the Anthropo-
cene recognizes that human activity has now transformed
many of the Earth’s ecosystems on a global scale (Crutzen &
Stoermer 2000), yet formalizing this as a new geological
epoch remains controversial (Zalasiewicz et al. 2011; Gibbard
& Walker 2013). One debate surrounds whether the Anthro-
pocene began at the onset of the Industrial Revolution, or thou-
sands of years earlier following the expansion of agriculture and
concomitant increases in atmospheric CO2 and CH4 (Ruddi-
man 2012). A key challenge for palaeoecologists is to under-
stand when specific human activities, including hunting, land
clearing and agriculture, began altering ecosystems at globally
relevant scales [Q1] and how ecosystems responded in these
human-mediated landscapes [Q2–6].
The broad theme of human–environment interactions was

identified as an area where a strong overlap exists between
ecological and palaeoecological research (see, e.g., Sutherland
et al. 2013). However, an additional challenge identified by
palaeoecologists concerned the threats posed by new and
emerging pollutants, especially when interactions with other
stressors such as climate change were considered (Noyes
et al. 2009; Murray, Thomas & Bodour 2010) [Q7]. For
example, widespread application of antifouling tributyltin
(TBT) on boats in the Norfolk Broads, England, resulted in
the decline in grazing organisms and subsequent proliferation
of phytoplankton, which led to the collapse of aquatic macro-
phyte communities (Sayer et al. 2006; Fig. 2). Palaeoecologi-
cal records were vital in identifying these major changes in
ecosystem structure and function and have much to offer in
disentangling the drivers and impacts of multiple stressors
(see also [Q35]).

BIODIVERSITY , CONSERVATION AND NOVEL

ECOSYSTEMS

8. In the context of global change and cultural landscapes, is
the concept of natural variability more useful than base-
lines in informing management targets and, if so, how can
it be defined and measured in the palaeorecord?

9. How can palaeoecological data be used to inform ecosys-
tem restoration, species recovery and reintroductions?

10. How can the palaeoecological record be applied to under-
stand the interactions between native, alien and invasive
species?

11. How can palaeoecology help define, characterize and
inform the management of novel ecosystems?

12. How can palaeoecology be applied to characterize the
dynamics of ecosystem services?

13. How should palaeoecological results be translated and
communicated effectively to ensure they are adaptively
integrated into environmental strategies for the present
and future?

14. What are the legacies of past environmental changes on
the current structure, resilience and dynamics of natural
and socio-ecological systems?

15. Which factors make some systems more resilient to envi-
ronmental change than others?

16. Can palaeoecological records provide improved insight
into the theory, causes, consequences and modelling of
critical transitions and alternative stable states?

17. What can palaeoecology reveal about early warning sig-
nals of abrupt change?

Successful conservation and management of ecosystems
requires knowledge of long-term change and variability.

Discussion 

THEME 1 

Online question 
submissions 

(905 Q.) 

List corrected for 
duplicates, etc. 

(804 Q.) 

THEME 2 D
ay

 1
 Working group sessions 1–3  

Approx. 40 Qs per session 
Initial private vote (score: 0,1, 2) 
Assess pre-screening voting scores 
Identify non-supported questions and remove 
Amalgamate, reword 
Identify approximately 10 questions per session  

THEME 3 THEME 4 THEME 5 WGs 1–6 

D
ay

 2
 

THEME 1 THEME 2 THEME 3 THEME 4 THEME 5 WGs 1–6 

Working group sessions 5–7  
30 Qs per group. 
Identify non-supported questions 
Amalgamate, reword 
Assess overnight voting scores 

Question confirmation (30 per WG) Overnight voting 
Plenary session

Reports Final voting and discussion Consensus on 50 Qs 
Plenary session

Prescreening
exercise

Fig. 1. Schematic showing the procedure
used to reduce 905 submitted questions to the
final 50 priority questions.
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Several biodiversity intactness indices, for example, require
knowledge of a ‘baseline’ ecological state (Scholes & Biggs
2005; Nielsen et al. 2007), but this fundamental information
is often cited as a ‘key deficiency’ or knowledge gap (The
Royal Society 2003; Froyd & Willis 2008). Furthermore, in
novel ecosystems or in those that have experienced very rapid
change or species reshuffling, a return to baseline conditions
may not be achievable or even appropriate (Hobbs et al.
2006). ‘Conservation palaeobiology’ is emerging as a disci-
pline to address the challenges of using long-term data to
inform restoration and management (Dietl & Flessa 2011).
Important issues to be addressed in future include assessing
the degree of change from specified historical ecosystems
(Fluin et al. 2007; Gillson & Duffin 2007) [Q8]; determining
the viability and level of intervention required to restore such
historic conditions where desirable (van Leeuwen et al. 2008)
[Q9, 10]; investigating the extent of human influence and the
management of cultural landscapes (Chambers et al. 2013;
Shaw & White 2013) [Q8, 9, 11]; and identifying and guiding
conservation of emerging novel ecosystems in order to main-
tain ecosystem services (Jackson & Hobbs 2009) [Q11, 12].
Promoting and communicating palaeoecological data in
conservation planning could also play an important role in
informing ecosystem management [Q13].
Resilience theory is also becoming an influential frame-

work in landscape management, on account of its potential
for understanding ecological change in complex systems.
The theory highlights the importance of identifying slow
variables (i.e. processes occurring over decadal–centennial

time-scales or longer) that can lead to transitions between
alternative stable states (Holling 1973). For example, the
relationship between resilience, environmental change and
political dynasties in the Erhai lake catchment in Yunnan
Province, China, was analysed by Dearing (2008) (Fig. 3).
Analysis of lake sediment and historical records showed that
agricultural expansion ~1400 cal. years BP initiated wide-
spread gullying that continued for ~600 years. These long-
term records revealed the possibility of alternate steady
states in the catchment and suggested that the landscape is
characterized by low resilience today. Identifying critical
thresholds and predicting when they might be crossed has
been highlighted as a priority research area in ecology
(Scheffer & Carpenter 2003; Sutherland et al. 2013) and
one where palaeoecology has the potential to provide many
exciting insights [Q14–17].

BIODIVERSITY OVER LONG TIME-SCALES

18. What is the role of sea-level change in community and
diversity dynamics through time and across marine and
terrestrial environments?

19. What drives the spatial expansion and contraction of a
species over its duration?

20. At what rates have species ranges shifted during past
intervals of climate change, and what geophysical factors,
biological traits and their interactions have affected these
rates?
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21. How can the rate and spatial dynamics of extinctions in
the fossil record, together with palaeoclimate modelling,
help in predicting future ecological and biodiversity loss?

22. Why do the co-occurrences of some species persist
through time? Is the stability of these associations caused
by similar environmental niches, co-evolutionary relation-
ships or randomness?

23. What processes control the stability/variability of realized
and fundamental niches through time?

24. How has varying atmospheric composition shaped biotic
interactions (e.g. between C3 and C4 plants, trees and
grasses, megaherbivores and forage, insects and plants)?

25. What are the appropriate null models in palaeoecology
for testing hypotheses about ecological and evolutionary
processes?

Biodiversity dynamics are primarily regulated through the
interaction between speciation and extinction rates through
time. Molecular phylogenies on extant taxa are limited in that
they typically only provide insights into the speciation pro-
cess. In contrast, palaeoecological records can be used to
track the waxing and waning of a species, and in some cases
(e.g. Cenozoic planktonic foraminifera), the record can be
interpreted as a single line of descent that begins with specia-
tion and ends in extinction (Simpson 1962). One important
consideration is the abiotic processes (including, but not lim-
ited to, temperature) influencing diversification rates. Sea-level
variations throughout the Phanerozoic, for example, are likely
to have had major influences on the evolutionary trajectories
of different species through reproductive isolation and specia-
tion. Sea-level changes may also influence evolutionary pro-
cesses by increasing chances of dispersal and changing
habitat type (Abe & Lieberman 2009). Similarly, environmen-
tal instability early on in a species’ life span has been shown

to influence species’ persistence over time (Liow et al. 2010),
but the rate and driving mechanisms of this process remain
poorly understood [Q18,19]. On shorter time-scales, changes
in climate over glacial–interglacial cycles have also been
demonstrated to influence migration rates, dispersal and range
size changes (Bennett 1997). Understanding how these envi-
ronmental variables influence geographical range and niche
dynamics is essential as geographical range directly impacts
on the extinction risk of species. This is an area of research
where palaeoecology has much to offer [Q20, 21, 23].
Biotic interactions can also shape evolutionary processes.

Whilst the Quaternary record shows constant turnover of
communities and development of novel ecosystems, particu-
larly at times of rapid climate change, on deeper time-scales
the persistence of some species, especially plants, is remark-
able (Willis & McElwain 2014). This leads to the question
of which factors lead to long-term persistence [Q22] and the
challenges of quantifying the interplay between abiotic
change and biotic interactions (Ezard et al. 2011). A classic
example of this is the relationship between C3 and C4
plants from the Oligocene (~33 Ma); how this biotic interac-
tion was influenced by changing atmospheric CO2 concentra-
tions and aridity is still poorly understood (Str€omberg 2011)
[Q24].
Interestingly, a question on ‘null models’ [Q25] emerged in

the priority list. Null models use permutation procedures on
ecological data in order to produce a distribution that would
be expected in the absence of a particular ecological mecha-
nism (Gotelli & Graves 1996). Although null models have
played a particularly important role for explaining patterns of
dispersal (Hubbell 2001), this approach is fundamental to all
scientific disciplines and yet is rarely considered (see also,
[Q49]).

Fig. 3. Landscape stability in alternative states from the Lake Erhai basin, China. Two ‘steady’ states can be identified from assessing the rela-
tionship between soil erosion rates and the % of non-arboreal pollen. A non-degraded state between 2960–1430 cal. years BP, 600-yr transition
period, and a degraded state between 800 cal. years BP and the present. T1 and T2 represent likely positions of major thresholds in the system.
The dashed arrows from T2 are possible future trajectories of landscape recovery, discussed in the original paper (Dearing 2008). This example
demonstrates the value of palaeoecological data for testing attributes of resilience theory and for better understanding complex system dynamics.
Copyright © 2008 by Dearing (2008). Reprinted by permission of SAGE.
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ECOSYSTEM PROCESSES AND BIOGEOCHEMICAL

CYCLING

26. How have terrestrial carbon, nitrogen and silica cycles
been linked in the past, specifically at times of abrupt cli-
mate change?

27. What was the effect of centennial-scale climate variability
on the carbon balance of terrestrial and aquatic ecosys-
tems at regional to global scales?

28. How can palaeoecological data from continental shelf
areas help characterize anthropogenic impacts on geo-
chemical fluxes (e.g. silica, C, N and P) from land to
shallow marine ecosystems during the Holocene?

29. How does species turnover (e.g. immigrations, extinc-
tions) and varying community composition affect ecosys-
tem function, including carbon sequestration?

30. How can sedimentary records be used to address process-
based questions and to test mechanistic ecological models
so as to provide insights about the past functioning of
ecological systems?

31. How can ecological interactions (e.g. competition, predation,
mutualism, commensalism) and their possible evolutionary
consequences be inferred from palaeoecological data?

32. How can disturbances such as insect outbreaks or patho-
gens be detected in palaeoecological data?

33. What are the taphonomic characteristics of ancient DNA
(aDNA), in particular under different climatic and sedi-
mentary contexts?

Ecological systems are linked with the abiotic environment
through fluxes of energy and matter. Therefore, quantifying
the rate and magnitude of the biogeochemical cycling of

different nutrients, and how these rates respond to different
stressors, is fundamental to understanding how an ecosystem
functions and an area that palaeoecological science can
address [Q26–29]. It has long been recognized that the uptake
of carbon by terrestrial ecosystems in mid- to high latitudes,
for example, is limited by N availability (Mitchell & Chandler
1939). A key question for global change ecologists involves
understanding how these two cycles will covary in future,
particularly in the context of increasing carbon dioxide con-
centrations and excess nitrogen deposition (Galloway &
Cowling 2002) [Q27].
The utility of this approach has recently been demonstrated

in an integrated palaeoecological study from 86 sites globally
(Fig. 4). This revealed the slow response of the global N
cycle relative to major changes in CO2 during the last
glacial–interglacial transition (McLauchlan et al. 2013). Over-
all, a decline in N availability (indicated by declining values
of d15N) was observed between 15 000 and 7500 cal. years
BP, occurring at the same time as known increases in terres-
trial net carbon accumulation in plant and soil organic matter.
Surprisingly, there was not a comparable change in sedimen-
tary d15N over the past 500 years, which reflects the fact that
humans are altering both the C and N cycles in the present
time. Thus, the ultimate trajectory of N availability is being
controlled by local or regional factors. Such studies highlight
the important role that palaeoecology can play in understand-
ing ecological functioning, particularly at times of abrupt
climate change.
In ecological research, problems involving complex trophic

interactions, biogeochemical cycling and population dynamics
are often addressed using process-based models [Q30–31].

(a) (b)

Fig. 4. Changes in lacustrine sedimentary d15N during the late Pleistocene and Holocene from 86 sites globally. The d 15N record is a proxy for
nitrogen availability, with higher 15N values occurring when N supply is high relative to biotic demand. Palaeoecological evidence revealed both
the slow response of the nitrogen cycle to major changes in CO2 and temperature over the glacial–interglacial transition; and no net change in N
demand over the past 500 years. This is surprising since there has been doubling of the pre-industrial supply of nitrogen in the past 200 years.
(a) A smoothing spline curve (0.05 smoothing parameter) fitted to the means of sites in 100-yr bins is shown (red) with 95% bootstrapped confi-
dence intervals (grey). Declines in sedimentary d 15N from 15 000 cal. years BP to the breakpoint at 7056 � 597 cal. years BP correspond with
periods of global net terrestrial carbon gain (shaded green). Dotted black line is the breakpoint regression. (b) A different set of high-resolution
sedimentary d 15N records shows no net change over the past 500 years. Reprinted by permission from Macmillan Publishers Ltd: Nature (Mc-
Lauchlan et al. 2013), copyright 2013.
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This also represents an exciting area in palaeoecology, partic-
ularly for understanding demographic effects and biotic inter-
actions (Jeffers, Bonsall & Willis 2011). In other cases,
important biotic variables remain unknown. In research con-
cerning pest-pathogen outbreaks, for example, reliable detec-
tion methods of pest-pathogens are still required [Q32].
Similarly, major ecological insights can be gained from
understanding changes in genetic variability of populations
through the recovery and study of aDNA from fossil remains.
However, a remaining technical challenge concerns the under-
standing of taphonomic processes influencing aDNA preserva-
tion [Q33] (e.g. Haile et al. 2007).

COMPARING, COMBIN ING AND SYNTHESIZ ING

INFORMATION FROM MULTIPLE RECORDS

34. What methods can be used to develop more robust quan-
titative palaeoenvironmental reconstructions and ensure
reliable estimates of the associated uncertainties?

35. How can palaeoecologists disentangle the separate and
combined effects of multiple causal factors in palaeoeco-
logical records?

36. When using modern analogues, what measures can be
taken to be sure that the training set is sufficient to recon-
struct the full range of likely past conditions, and if not,
what else should be used to supplement these methods?

37. What methods can be used to identify and quantify the
effect of diagenetic and taphonomic processes on the pal-
aeoecological record?

38. How does taxonomic and numerical resolution affect the
recognition of community, metacommunity and other
ecological patterns?

39. How can common environmental signals be identified in
multiple records at different spatial and temporal scales?

40. What methods can be used to better assess the leads, lags and
synchronicities in palaeorecords at different spatial scales?

41. Given that palaeoecology relies on accurately dated chro-
nologies, how can the often incompatible dates derived
from different dating techniques (e.g. 210Pb &14C, 14C &
OSL) be reconciled to improve the dating of key time
periods (e.g. the Industrial period; Marine Isotope Stage 3)?

Modern research in palaeoecology focuses both on under-
standing the ecology and environment of single geographical
locations (via, for example, analysis of lake, peat, ocean and ice
core records) and on reconstructing past environments and eco-
systems at regional, continental and global scales. Whilst tools
for single-site analysis have been evolving since the earliest
work in palaeoecology (e.g. Fægri & Iversen 1950), tools for
inter-site comparison and regional synthesis are relatively
undeveloped and face two main challenges. The first is to disen-
tangle the effects of multiple causal factors on palaeoecological
records at single sites and across multisite networks (Cunning-
ham et al. 2013; Juggins 2013). The second is to quantify the
sources of uncertainty that accumulate as one moves through
the causal chain that links climate or other environmental driv-
ers to the palaeoecological observations (Fig. 5).

There are many sources of uncertainty in palaeoecology.
Some relate simply to the stochasticity of the natural world,
but others arise because of the often-indirect link between the
palaeoenvironment and the observations obtained. For exam-
ple, palaeoecological records typically comprise multispecies
assemblages from multiple biological groups (Birks & Birks
2006) that are preserved in long environmental archives and
that experience complex post-depositional processes (Birks &
Birks 1980). The transfer function methods used to quantify
the relationship between ecological assemblage and climate
are already used to formalize some of the links in the causal
chain from palaeoenvironment to field and laboratory observa-
tions (e.g. Haslett et al. 2006). However, explicitly causal
models are rare and many such links are simply described
qualitatively and not formally modelled. Five questions draw
attention to these issues in general or as they relate to specific
links in the causal chain [Q34–38].
An additional challenge involves the synthesis of informa-

tion from multiple sites [Q39–41]. For such projects, issues of
chronology often become a primary focus since, unless the
records to be combined are on a comparable time-scale (with
reliable estimates of uncertainties), robust synthesis is impos-
sible (Blaauw & Heegaard 2012). There is a need to improve
existing and develop new chronological techniques and to
understand and reconcile the differences observed between
the chronologies derived from different techniques (e.g.
Piotrowska et al. 2010; Blockley et al. 2012). The need to
develop new methods for dating 19th-century sediments is
seen as a particular priority (e.g. see Rose & Appleby 2005).
As sediments become older, this time period will eventually
fall beyond the range of 210Pb dating and the gap between
conventional 14C and 210Pb dating horizons will become pro-
gressively greater. To resolve this, novel dating techniques
such as 32Si hold great potential (Morgenstern et al. 2013)
[Q41].

Inference Target 

Analysis 

Diagenesis Vector 

Source 

? 

Fig. 5. A general conceptual model for representation of vegetational,
biogeographical or other entities in palaeoecological records. The tar-
get is the primary entity of interest, and the inference is the end point
in the chain. Each oval represents a series of processes by which
information is transferred and transformed, and each process is
accompanied by distinct uncertainties, distortions and loss of informa-
tion. The aim is to ensure that properties of the final inference will
correspond to those of the original target (i.e. reality). However, the
inference is usually accompanied by substantial uncertainty accumu-
lated along the chain. Reprinted from Jackson (2012). Copyright
2012, with permission from Elsevier.
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DEVELOPMENTS IN PALAEOECOLOGY

42. Do ecological principles, formulated to account for pres-
ent-day (10–100 years) patterns, hold when applied to
palaeoecological patterns (>100–1000 years), or are there
palaeoecologically important ecological processes that are
impossible to study with modern observational data?

43. What common questions can be addressed by ecologists
and palaeoecologists to bridge the contrasting spatial and
temporal scales between the two disciplines effectively?

44. How can palaeoecological records contribute to and
advance key concepts that are currently central to ecolog-
ical thinking, including model comparison and stochastic
process modelling?

45. How can forest inventory data, modern pollen data bases
and pollen loading equations be integrated effectively to
facilitate the generation of robust estimates of tree and
land cover?

46. How best can palaeoecologists create an accessible, con-
sistent, usable and future-proof record of historical and
archaeological sources integrated with contemporary eco-
logical observations?

47. What new opportunities and research agendas, arising
from the availability of higher spatial, temporal and taxo-
nomic resolution data, will be created with the adoption
of automated counting systems for microfossils?

48. What are the developmental and genetic controls on mor-
phology, and how can the fossil record be used to study
phenotypic plasticity and the evolution of developmental
systems?

49. How do palaeoecologists encourage hypothesis testing
rather than data-dredging approaches when exploring
relationships between proxies and records?

50. How can closer collaboration between palaeoecologists
and statisticians be fostered in order to ensure development
and dissemination of appropriate statistical techniques?

In the last three decades, palaeoecology has been trans-
formed from a discipline dominated by studies on the compo-
sition and structure of fossil assemblages preserved in
sediments (e.g. Birks & Birks 1980) into a sophisticated mul-
tidisciplinary science involving not only palaeobotany, palae-
ozoology and archaeology, but also inorganic and organic
geochemistry, stable-isotope assays, geochronology, dendro-
chronology, aDNA studies, modelling and applied statistics
(Flessa & Jackson 2005; Birks 2008). Here, two outstanding
developments were identified. New identification and counting
systems (Holt et al. 2011; Punyasena et al. 2012) and multi-
variate morphometric techniques (Claude 2008) [Q47] have
the potential to investigate morphological variability observed
in the fossil record in detail. For example, when combined
with aDNA techniques [Q33], these new tools could be used
to investigate whether genotypic changes can be disentangled
from phenotypic shifts [Q48]. The second involves the rapidly
developing discipline of palaeoecoinformatics (Brewer, Jack-
son & Williams 2012), which is encouraging open-access data
bases of palaeoecological data (e.g. Neotoma Paleoecological
Database 2013). Rigorous data standardization of both fossil

and modern pollen is essential in data synthesis. Data-mining
exercises could be used to provide more reliable reconstruc-
tions of species dynamics, vegetation composition and land-
scape structure in space and time [Q45, 46].
However, despite these new developments, some funda-

mental issues remain to be addressed. Thus, the importance of
the essential links between palaeoecology and ecology was
emphasized, with a focus on integrating data across spatial,
taxonomic and temporal scales (e.g. Gray 2004; Helama et al.
2010) [Q42–44]. Finally, three questions were targeted at
challenging the research approaches of palaeoecologists them-
selves. There is an increasing need to exploit the full potential
of dynamic modelling, quantitative model comparison and
statistical hypothesis testing in palaeoecological analyses (Jef-
fers, Bonsall & Willis 2011; Jeffers et al. 2012) [Q44, 49] so
as to provide a rigorous basis for further quantitative analyti-
cal approaches in palaeoecology (Birks 1985, 2012) [see also
Q25]. This requires a close collaboration between palaeoecol-
ogists, ecological modellers and applied statisticians [Q50].

Discussion

EVALUATION

Our study follows other priority research exercises in, for
example, ecology, applied ecology and conservation science
(Sutherland et al. 2006, 2009, 2013). All of these exercises
are dependent on the individual skills, interests and expertise
of the participants, and our questions do not therefore repre-
sent a definitive list. We also noted that whilst the 804
screened questions were a mixture of both general and spe-
cific, questions became increasingly general through subse-
quent iterations. More than 100 questions involving pollen
analysis were submitted, for example, but these were trans-
lated into more general questions that could be applied to
multiple proxy groups or habitat types. The end result is a list of
questions that can be tailored to a variety of research problems.
As an example, a widespread decline of Tsuga canadensis

(Eastern hemlock) is observed in fossil pollen records ~5500
cal. years BP across its entire range in eastern North America.
Its drivers have been ascribed to climate (Foster et al. 2006;
Shuman, Newby & Donnelly 2009), a pest-pathogen outbreak
(Davis 1981) or a combination of the two. Whilst there is
some evidence for fossil head capsules of insect pests found
in limited sites around the time of the decline (Bhiry & Filion
1996), evidence for a range-wide outbreak remains inconclu-
sive. Thus, one obvious task is to find new ways of detecting
pest-pathogen outbreaks in the palaeoecological record [Q32].
Additional information could be obtained using process-based
models to infer population dynamics [Q31, 44]. If the hem-
lock decline was driven by climate, then an additional ques-
tion would be why this species responded more sensitively
than others [Q3], or whether it was the result of cross-scale
interactions between climate and the pathogen, or the interac-
tions between multiple stressors (Booth et al. 2012) [Q35,
39]. Thorough testing of the problem also requires integrating
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multiple palaeoecological sites [Q39]. Even the timing and
synchrony of the hemlock decline is now being debated so
that resolving age uncertainties between pollen and other cli-
mate records is vital [Q40].

LOOKING FORWARD

This exercise also provided an opportunity to reflect on the
status of the discipline today. How do our questions compare
to those identified in fundamental ecology and what can we
infer about the future directions? Von Post’s seminal work in
the early 20th century was heavily focused on describing pat-
terns of vegetation change as a relative dating tool over the
past 11 000 years. There was little consideration of the under-
lying ecological mechanisms responsible for the observed
changes. In contrast, from the 1980s onwards, many fossil
pollen data sets were developed specifically to reconstruct
past climate change with little attention given to the patterns
of vegetation change. In these studies, quantification and
reconstructions of single sites were the key focus, although
there were a growing number of studies that were being
applied to test specific ecological hypotheses related to, for
example, impacts of climate change on early agriculture;
causes of regional-scale declines or extinctions of major forest
trees; and the impacts of catchment vegetation changes on
lake ecosystems.
The questions identified in this study highlight a different sit-

uation for modern palaeoecological science. Only 8% of the
initial questions submitted to the website were specifically tar-
geted at filling data gaps or were concerned with a specific
regional study. None of these were selected in the final question
list. Instead, topics covered included community, species and
diversity dynamics (18%); ecosystem functioning (12%); glo-
bal change ecology and human impacts (18%); and ecosystem
management (12%). This suggests that the perceived discon-
nect between neo-ecology and palaeoecology that has been
reported in the past is being eroded (see, e.g., Froyd & Willis
2008), since common themes between these questions and
those in the recent fundamental ecology exercise can be identi-
fied (Sutherland et al. 2013). Examples include factors that
control species range shifts; biogeochemical cycling under
rapid climate change; and measuring and quantifying ecologi-
cal resilience. On these topics in particular, there is great poten-
tial for further integration between the two subdisciplines.
These developments are also reflected in the greater role

played by palaeoecology within other spheres of science.
There has been, for example, an increase in the use of palaeo-
ecological data within Intergovernmental Panel on Climate
Change (IPCC) reporting between 1990, when the data were
considered ‘encouraging’, and 2007, where palaeoecological
proxies contribute strongly to model testing and validation
(Jansen et al. 2007). Estimates of climate sensitivity (the
amount of warming produced by a doubling of CO2) can be
enhanced using the information of past temperature changes
from sediment records (Edwards, Crucifix & Harrison 2007).
Similarly, when palaeoecological data are combined with
higher-frequency tree-ring data sets, they can be used to

reconstruct millennial-scale climatic variability (Moberg et al.
2005). These reconstructions can then be used in conjunction
with modelling studies to determine the relative importance of
volcanic, solar and anthropogenic climate forcing (e.g. Jansen
et al. 2007).
One other striking feature of the 50 questions is the heavy

dependence on methods. Forty percent of the questions were
related to methodology, either directly by focusing upon
improved precision and accuracy or by finding new ways to
apply and interpret palaeoecological data to address broader
questions of, for example, landscape management. In palaeo-
ecological research, this is not surprising. Proxy data are indi-
rect measures of a targeted environmental variable, whilst
robust palaeoecological inferences are also heavily dependent
on indirect dating techniques. This is in contrast to, for exam-
ple, neo-ecology, in which the ecological units of analysis
can often be directly observed. This result does not under-
mine the capability of palaeoecology to provide long-term
insights. It does, however, highlight the need for continued
rigour in the discipline and widespread acknowledgement of
the importance of understanding what proxy data can and
cannot tell us. A major focus for the future then will remain
in characterizing the uncertainties between target variable and
proxy source to make robust ecological and evolutionary
inferences (e.g. Jackson 2012; Fig. 5).
The questions selected also hint at cross-cutting themes that

have the potential to influence palaeoecological research in
future. The move from site-specific descriptions towards
addressing global-scale issues, for example, is reliant on
upscaling and comparing multiple records. This will require
efficient data management techniques that are able to compare
and correlate multiple proxies. A second cross-cutting theme
involves disentangling the synergistic effects of multiple vari-
ables (e.g. fire, human impact, faunal composition). We now
realize that ecosystems represent complex systems, experienc-
ing chaotic fluctuations and alternative stable states, and these
dynamics partially explain the unpredictable ecosystem
responses following an extrinsic forcing. Finally, there are a
number of questions that highlight the importance of biotic
interactions. Better characterization of these in palaeoecologi-
cal records may also improve our understanding of commu-
nity dynamics in complex systems.
In summary, the 50 questions identified and discussed in

this paper highlight the potential for palaeoecology to address
both empirical and applied research questions related to eco-
logical science and global change. These questions demon-
strate the critical importance of historical context in
understanding the Earth system, and whilst we do not claim
that they are definitive, they outline key areas in the future
palaeoecological research agenda.
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