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Abstract 

The paper describes measurement of RF transport electromagnetic properties of CVD graphene 

over the DC to 110 MHz frequency range at room temperature. Graphene on Si/SiO2 substrate 

was mounted in a shielded four terminal-pair (4TP) adaptor which enabled direct connection to 

a calibrated precision impedance analyser for measurements. Good agreement is observed for 

the DC four-probe resistance and the 4TP resistance at 40 Hz, both yielding R ≈ 104 Ω. In 

general the apparent graphene channel electromagnetic properties are found to be strongly 

influenced by quantum contact effects, such as resistance and capacitance, particularly at DC 

and low frequencies f < 1 MHz. A phenomenological lumped-parameter equivalent circuit 

model is presented which matches the frequency response of the graphene 4TP impedance 

device over approximately seven decades of the frequency range of the applied transport 

alternating current. Based on this model, the intrinsic graphene channel resistance is found to 

be RG = 2.2 Ω or sheet resistance of 3.85 Ω / □, which is frequency independent, with each 

contact impedance being RC = 51.6 Ω and CC = 1.2 nF. These results suggest that our RF 4TP 

method may be more accurate and reliable than the conventional DC four-probe method for 

measuring the intrinsic sheet resistance of single-atom thick materials such as graphene. This 

may be significant for the production and optimisation of graphene for solar-cells and touch-

screen displays where sheet resistance (combined with its optical transparency) figures-of-

merit play an important role, particularly in comparison with the values of the current material 

of choice, indium tin oxide (ITO), for such applications. 
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1. Introduction 

Graphene, an atomically thin two-dimensional allotrope of carbon [1], has recently been found to 

show a number of physical properties, such as high carrier mobility [1-3], ambipolar field-effect [1-5], 

high current carrying capacity [4] and thermal conductivity [6], which are promising for numerous 

applications, particularly for nanoelectronics and optoelectronics [7-11]. To date, majority of the effort 

on nanoelectronics has been focused on DC transport properties of graphene, based on field-effect    

transistors [12-15], and optical properties of mono and multilayer graphene [16-22]. Although 

graphene is a promising material for high-frequency applications such as RF transistors [23-26], low-

noise amplifiers [27], mixers [28] and frequency doublers [28,29], only a few investigations into the 

high-frequency transport properties of graphene have been reported [30-33]. Furthermore, given that 

graphene serves as the channel material in radio-frequency (RF) transistors, significant effort has been 

devoted to characterization and modeling of RF transistors [24-26, 34-37], rather than characterizing 

the building block material itself at RF [38,39]. Here, we report on the RF electromagnetic transport 

properties of monolayer chemical vapour deposition (CVD) graphene carrying transport direct current 

(DC) and alternating current (AC) with frequencies ranging from 40 Hz to 110 MHz.   

   For some electronic applications of graphene there are three regions of the electromagnetic spectrum 

which are of key importance for characterising the material properties; DC, RF (covering power 

frequencies to 300 MHz) and microwaves (covering 0.3-300 GHz). Measurements of graphene at DC 

are potentially the most precise and relatively easy to implement (such as 2-probe and 4-probe) under 

variety of applied conditions, such as temperature, magnetic field etc. for elucidating the material or 
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device properties [1-5]. However, DC measurements are limited in providing any information on the 

dynamic properties of a material or device. In particular, quantum contact effects at DC often mask the 

intrinsic properties which can readily be extracted using RF or microwave measurements. For the 

latter there are two types of workhorse instruments which enable precise and traceable measurements; 

impedance analysers (IAs) for RF measurements and vector network analysers (VNAs) for microwave 

measurements. Although VNAs offer broadband measurements up to 110 GHz, their accuracy is 

limited and depending on the frequency range of operation, it can vary from 1-10%. In contrast, the 

IAs are limited in frequency range, typically 40 Hz to 110 MHz, but can be highly precise and 

accurate if they are first calibrated using impedance standards of known frequency response [40,41]. 

Impedance analysers (sometimes also referred to as inductance-capacitance-resistance, or LCR meters) 

are in widespread use in industry ranging from electronic component manufacturers and 

telecommunications to biomedical and defence as well as research and development laboratories to 

academia. They are regarded as workhorse instruments because of their wide range of impedance 

measurement capabilities, covering LCR parameters in the 40 Hz to 110 MHz part of the 

electromagnetic spectrum. High accuracy impedance analysers are also useful in metrology 

laboratories for comparison of impedance standards, such as inductance, capacitance and resistance 

standards [42]. They are particularly useful for making one-to-one comparison measurements of 

standards, with nominally the same impedance, where substitution techniques [43] may be applied to 

reduce the measurement uncertainty of a device-under-test (DUT).  

   Here, we demonstrate that using a precision four terminal-pair (4TP) impedance analyser with a 

high-frequency calculable resistance standard (HF-CRS) to calibrate the IA, the intrinsic properties of 

CVD graphene can be extracted accurately up to 110 MHz for the first time. The results could impact 

future applications of graphene in electronic devices by enabling optimisation of the production 

processes, device design, theory, modelling and indeed accurate characterisation. In addition, our 

results also demonstrate that the conventional DC four-probe (4P) sheet resistance measurement 

method [44] may not be appropriate for accurately determining the intrinsic properties of graphene due 

to the presence of quantum contact resistance which is always present between a metal and a single-

atom thick material. This may be important in applications such as solar cells, touch-screen displays 

etc. where the combined properties of a material’s sheet resistance and optical transparency are the 

two key figures of merit which require optimisation [11].   

 

2. Design and Fabrication of the Graphene 4TP Impedance Device 

Figure 1 shows the design outline and fabricated graphene four terminal-pair (G-4TP) impedance 

device. Monolayer graphene, confirmed using Raman spectroscopy [45], was placed on a high 

resistivity (10 kΩ-cm) Si/SiO2 substrate to reduce the effects of parasitic impedances and substrate 

losses at high-frequencies. The length and width of the graphene channel is ~ 35 μm between the 

source-drain or current contacts. Three narrower potential contacts are also patterned on both sides of 

the graphene channel using photolithography, as shown in Fig. 1. All contacts consist of a 2nm Cr 

adhesion layer and 80 nm thick Au layer. For a 4TP measurement only potential contacts 1 and 4 as 

well as the current contacts are used, whilst the other potential contacts remained open circuited.        

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Graphene 4TP impedance device on a Si/SiO2 substrate 

for measurements at frequencies up to 110 MHz. The dashed  

outline illustrates location of CVD graphene. 
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3. DC Characterisation of the Graphene 4TP Impedance Device 

Figure 2 shows the two-probe (2P) and four-probe (4P) DC IV-characteristics of the graphene 4TP 

impedance device. As expected, the ISD versus VSD is linear and the corresponding 2P resistance 

between the current contacts is found to be R2P ≈ 378 Ω. Similarly, the 4P resistance between the 

potential contacts (1 and 4), with a channel length of l = 20 μm and width w = 35 μm, is found to be 

R4P ≈ 104 Ω, at zero back-gate potential. The corresponding sheet resistance (in units of Ω / □) for a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

two-dimensional material [44] is given by   PS RlwR 4/   and for our device we find 

/182DC
SR □ at DC and a channel conductivity of   heRS /142 21




 , where e is the electronic 

charge and h the Planck’s constant. After the DC IV-characterisation, the G-4TP impedance device 

was mounted in a shielded adaptor (illustrated in Fig. 3(a)) to enable direct connection with an Agilent 

4294A four terminal-pair impedance analyser for measurements up to 110 MHz. The direct connection 

of the graphene device to the IA is important for two key reasons; firstly this avoids use of coaxial 

cables to connect the device to IA thereby enabling accurate measurements which would otherwise 

require cable corrections [43], and secondly the IA is calibrated using a HF-CRS which also makes 

direct 4TP connections with the IA (further details of this are given in Section 4.0). As the 4TP 

adaptor requires high and low current contacts and two high and low potential contacts (1 and 4, 

respectively), the remaining potential contacts were left open circuited during RF measurements. At 

microwave frequencies these open circuit leads may give rise to resonances and parasitic effects, 

however at the lower ~100 MHz frequencies, these are found to have negligible effect on the measured 

transport properties of our graphene 4TP impedance device. The definition of a 4TP impedance was 

first devised by Cutkosky in 1964 [46]. It is possible to rewrite the 4TP definition for a general linear 

network as shown in Fig. 3(a), such that 
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where V and I are the voltages and currents at the four respective ports and  Zij ≡ Vi/Ij , so that Ij≠k = 0 

with 1 ≤ (i, j, k) ≤ 4, such that for a linear reciprocal 4TP network Zij = Zji are the two terminal-pair 

(2TP) impedance parmeters. Thus, the four terminal-pair impedance is given by : 
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Figure 2. DC two-probe (source-drain)) and four-probe (using potential contacts 

1 and 4) IV-characteristics of the graphene 4TP impedance device. The 2P 

resistance is found to be ≈ 378 Ω whereas the 4P resistance is found to be 

≈ 104 Ω, at zero back-gate potential.   
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Also shown in Fig. 3(b) is the RF equivalent circuit phenomenological lumped-parameter model of the 

graphene 4TP impedance device. The significance and suitability of this circuit model for the G-4TP 

impedance device is discussed in Section 5.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Calibration of the 4TP Impedance Analyser 

The IA was first calibrated using one of our 100 Ω high-frequency calculable resistance standards 

[40], since the G-4TP impedance device had a DC value of R4P ≈ 104 Ω. The IA instruments use 

number of range resistors internally, such as 100 Ω and 1 kΩ etc., against which a DUT is measured in 

a comparison bridge. It is these range resistors which require calibration against a standard of known 

frequency response over the broad frequency range of the IA. The schematic layout of the 4TP coaxial 

HF-CRS is shown in Fig. 4 [40]. These types of standards were specifically developed to calibrate and 

to verify the correct operation of IAs and LCR meters from DC to 110 MHz (and to enable robust 

comparison of such instruments from different commercial suppliers). The frequency response of the 

HF-CRS can be calculated from first principles based on Maxwell’s equations and the full analytical 

derivation of the expressions for frequency-dependent resistance, inductance and capacitance are given 

in [43]. The 4TP impedance of the standard is given by: 
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where R is the measured DC resistance of the standard, f 2 , inductance L = 0.19 μH and 

capacitance C = 2.1 pF are the calculated values of the standard based on the dimensions and 

geometry of the standard. Figure 5 shows the measured apparent resistance and reactance of the 100 Ω 

HF-CRS, using Agilent 4294A, up to 110 MHz. Good agreement is observed between the measured 

and calculated frequency response of the HF-CRS, for both resistance and reactance, up to 110 MHz, 

confirming accurate calibration of the range resistors (to ~1% for f < 100 MHz, and ~5% for 

f  > 100 MHz). An instrument artefact occurs at 15 MHz, as shown in the measured apparent 

resistance and reactance data. This is due to the instrument switching between its two internal bridge 

measurement systems (which the manufacturer refers to as auto-balancing and I-V bridges) covering 

the frequency ranges above and below 15 MHz, respectively. 

 

 

 

 

       
                            (a)                                                                  (b) 
         

Figure 3. Four terminal-pair definition of impedance Z or device-under-test mounted in a shielded adaptor 

(a) and the RF equivalent circuit phenomenological lumped-parameter model of the graphene 4TP 

impedance device consisting of contact impedances and channel resistance RG (b). Ports labelled 1-4 in 

both diagrams are often also referred to as high-current (HC), high-potential (HP), low-potential (LP) and 

low-current (LC), respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Characterisation of the CVD Graphene 4TP Impedance Device  

Figure 6 shows the measured and modelled frequency response of the graphene 4TP impedance device 

from 40 Hz to 110 MHz (with zero back-gate potential) at room temperature. At 40 Hz the measured 

4TP resistance of ≈ 105 Ω is in good agreement with the 4P DC measured resistance of ≈ 104 Ω. At 

higher-frequencies, the apparent resistance and reactance show good agreement with the model of 

Fig. 3(b), using least-squares fitting parameters RG = 2.2 Ω, RC = 51.6 Ω and CC = 1.2 nF. The 

measurement results shown in Fig. 6 and the equivalent circuit model of Fig. 3(b) suggest that any 

inductive or capacitive components for the graphene channel are negligible for this device of 

l = 20 μm channel length and upper operational frequency of 110 MHz. It is worth noting that the 

intrinsic resistance, although its present from DC to 110 MHz, it can only be observed for f > 1MHz 

which is also simultaneously accompanied by the apparent reactance tending to approximately zero 

Ohms. The relatively small differences between the measured apparent resistance and reactance with 

the simulated values, based on the model of Fig. 3(b), may be due to the slight differences between the 

contact impedances at the potential contacts (due to their small but finite width of ~ 5 μm). The 

relatively complex frequency-dependent response of G-4TP in Fig. 6, for both resistance and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Schematic of the coaxial 4TP high-frequency calculable resistance standard  

(with permission from IEEE [40]).  
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Figure 5. Measurement of the 4TP HF-CRS on Agilent 4294A at frequencies up to 110 MHz. 

The solid and dashed lines are the calculated response of the HF-CRS based on equation (3) 

[43]. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Measured and modelled apparent resistance and reactance of the graphene 4TP impedance device from 

40 Hz to 110 MHz. The solid line is the model of Fig. 3(b) with fitting parameters RG = 2.2 Ω, RC = 51.6 Ω and 

CC = 1.2 nF.    

 

reactance, demonstrates that the quantum contact resistance and capacitance have a strong influence 

on the apparent electromagnetic behaviour of the graphene channel. In addition, the DC and low-

frequency (f < 1MHz) measurements, suggest approximately two orders-of-magnitude higher apparent 

channel resistance of ≈ 100 Ω whereas the actual intrinsic value of the channel resistance is found to 

be ≈ 2 Ω. Therefore the sheet resistance of the channel based on RF measurements (covering 

approximately seven decades of the frequency range) is found to be / 85.3 RF
SR □ , lowest 

measured value to date to the best of our knowledge, in contrast with /182DC
SR □ measured using 

the DC 4-probe method. This result suggests that the conventional DC 4-probe method for measuring 

sheet resistance may not be appropriate for single-atom thick materials such as graphene and instead 

our RF 4-probe method may be more accurate and reliable. Since sheet resistance, combined with the 

optical transparency of graphene, are the two key figures-of-merit, which are often used to optimise 

the production processes of graphene (in order to make quantitative comparisons with ITO which at 

present is the material of choice in numerous applications), it appears our proposed RF 4-probe 

method could make small but significant contributions in the eventual applications of graphene in 

solar-cells and touch-screen displays [11]. Clearly, further work is needed on a variety of other 

geometries and configurations of graphene 4TP impedance devices, as well as exfoliated graphene, in 

addition to the results reported here for CVD graphene. This would be useful towards developing a 

comprehensive model of the intrinsic RF electromagnetic properties of graphene, enable robust 

comparisons with theoretical models, and therefore may contribute to the practical applications of 

graphene in RF electronics, solar-cells and displays in the near future.    

 

6. Conclusion 

The RF transport electromagnetic properties of CVD graphene have been measured from DC to 

110 MHz at room temperature using a calibrated precision 4TP impedance analyser. The 4TP low-

frequency AC and four-terminal DC resistance of graphene are found to be approximately the same 

within 1 %. In general the response of the graphene 4TP impedance device was found to be strongly 

dependent on the quantum contact impedances at the potential leads. A lumped parameter equivalent 

circuit model was used to fit the measured data for apparent resistance and reactance which yielded an 

intrinsic, frequency independent, graphene channel resistance of  RG = 2.2 Ω or sheet resistance of 

/ 85.3 RF
SR □ and contact impedance parameters of RC = 51.6 Ω and CC = 1.2 nF for each potential 

port. The intrinsic channel resistance is found to be in sharp contrast with the measured four-probe DC 

and 4TP low-frequency resistance value of ≈ 104 Ω or sheet resistance of /182DC
SR □. This 

suggests conventional DC sheet resistance method may not be sufficiently accurate for single-atom 

thick materials such as graphene, and instead our RF 4TP method may be more suitable. This could 

improve the accuracy and reliability of sheet resistance measurements, yielding intrinsic graphene 
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resistance which is free of contact influences. Furthermore, since the measured sheet resistance values 

are often used as a figure-of-merit for numerous applications, such as solar-cells and touch-screen 

displays particularly in comparison with ITO, the RF 4TP method could also impact graphene 

production and optimisation.          
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