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Analytical study on wave power extraction from a hybrid wave 1 

energy converter 2 

Abstract: In this paper, a hybrid wave energy converter (WEC) is proposed, consisting of a fixed 3 

inverted flume with long length and a bottom hole, and a long floating cube hinged with the 4 

flume. The inverted flume and the long floating cube works as an oscillating water column 5 

(OWC) and a rotational float, respectively, to capture power from incident waves. To study the 6 

performance of this hybrid WEC, analytical solution of the wave diffraction/radiation problems, 7 

considering the hydrodynamic interaction between the OWC and the float, is derived based on 8 

linear potential flow theory and eigen-function expansion matching method in the two-9 

dimensional Cartesian coordinate systems. The corresponding hydrodynamic coefficients, such as 10 

wave excitation forces, added mass and wave radiation damping, are also obtained, which can be 11 

further used in evaluation of the maximum theoretical power absorption of the hybrid WEC. 12 

Results are compared with a parallel study of an isolated OWC and an isolated float. 13 

Additionally, analytical study on power capture capability of the device for various geometrical 14 

parameters is then carried out.  15 

Keywords: Linear potential flow theory, Analytical model, Wave power extraction, Oscillating 16 

Water Column, Hinged float 17 

1. Introduction 18 

Oscillating water column (OWC) has been recognized as one of the most effective concepts of 19 
wave energy conversion, which mainly consists of a partially submerged rigid chamber and 20 
exploits wave power by driving an air turbine using the oscillating motion of the inner free water 21 
surface (Heath, 2012; Malara and Arena, 2013; Deng et al., 2014; He and Huang, 2017; Chen et 22 
al., 2017). To understand and improve wave power extraction by OWC devices, experimental, 23 
numerical, and analytical methods have been widely employed and many different design of 24 
OWC devices have been proposed as well. 25 
Experimental tests present a straightforward way to study the performance of OWC devices. For 26 
the case where the OWC is very long in the horizontal co-ordinate compared to the wave length, 27 
wave diffraction and radiation from the OWC can be concerned with a two-dimensional problem. 28 
Sarmento (1992) carried out wave flume experiments on two-dimensional OWC devices and 29 
found a good agreement between the experimental data and the prediction values from linear 30 
theory. Morris-Thomas et al. (2007) experimentally studied a shore based oscillating OWC 31 
device, and found that the increase in front wall submergence reduced the power capture 32 
efficiency in short waves. He et al. (2013, 2017) considered the integration of OWC devices with 33 
a floating breakwater, which was experimentally found to be a promising way to widen the 34 
frequency range for power extraction. Due to the constraints of laboratory facilities, funding and 35 
time in conducting experimental studies of OWC devices, numerical and analytical methods were 36 
preferred by many researchers. 37 
Numerical studies on OWC devices are commonly performed by using BEM (Boundary Element 38 
Method) models and RANS (Reynolds-Averaged Navier-Stokes equations) models, which are 39 
based on potential flow theory and viscous fluid theory, respectively. Sheng et al. (2014) used an 40 
imaginary “piston” to replace part of the water at the internal water surface in the OWC chamber 41 
and solved the hydrodynamic problems from the device itself and the imaginary “piston” by using 42 
a commercial BEM model. Appropriate representation of the “imaginary” piston was found very 43 
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important, when the hydrodynamic parameters were to be transformed from frequency-domain to 1 
time domain for a further analysis. Rezanejad et al. (2013, 2015) adopted BEM method to analyse 2 
the efficiency of a two-dimensional nearshore multiple OWC devices placed over flat bottom and 3 
stepped bottom, respectively. Ning et al. (2015, 2017) applied a fully nonlinear numerical wave 4 
flume based on higher-order BEM in simulating of both one-chamber and dual-chamber OWC 5 
devices. Numerical results indicated that the surface elevations in the two sub-chambers are 6 
strongly dependent on the wave conditions. Compared with BEM models, the RANS models are 7 
capable to handle problems with very strong nonlinearity induced by turbulence, viscous, vortex 8 
shedding and wave breaking. Elhanafi et al. (2016, 2017) used a fully nonlinear 2D RANS model 9 
to carry out analysis of onshore and offshore OWC devices, respectively. Frequency response of 10 
the overall hydrodynamic efficiency showed a single-peaked curve and it was revealed that 11 
increase of the submergence of lips was beneficial to the energy extraction in long waves, 12 
whereas went against power absorption for short waves. Other numerical investigations on OWC 13 
devices with implementation of RANS models can be found in Zhang et al. (2012), López et al. 14 
(2014, 2016), Iturrioz et al. (2015). However, as the RANS model utilized in the above-15 
mentioned numerical simulations normally requires a much more computational power, its 16 
employment is limited to a certain extent in some ways. 17 
For the OWCs in regular shapes, the analytical method, which is generally based on potential 18 
flow theory and eigen-function expansions, can be a good alternative option, especially in their 19 
pre-feasibility study and even their feasibility study, and can be used to provide insights and 20 
important information rapidly at relatively low costs.  21 
As early as 1980s, Evans (1982) presented theoretical results of wave-power absorption by a two-22 
dimensional system of uniform oscillatory surface pressure distributions based on the linearized 23 
hydrodynamic theory. Later, Falnes and McIver (1985) applied analytical method to study the 24 
power absorption by an OWC, which is composed of two vertical barriers with unequal length, 25 
oscillating in the surge mode. It was shown that all of the incident wave power can be captured by 26 
the system with optimum values of the complex oscillation amplitudes. Sarmento and Falcão 27 
(1985) developed an analytical analysis for an OWC device in which the immersed part of the 28 
OWC was assumed of shallow draught. Evans and Porter (1995) described an accurate model 29 
using matched eigen-function expansions and a Galerkin method to compute the hydrodynamic 30 
coefficients associated with an OWC device consisting of a thin vertical surface-piercing barrier 31 
next to a vertical wall. This method has been widely used in solving the hydrodynamic problems 32 
of the OWC based on thin barrier assumption. It was found that the OWC with a larger chamber 33 
width had a smaller wave frequency at which resonance occurs. Rezanejad et al. (2013) studied 34 
the performance of a dual-chamber OWC device which consists of two vertical thin barriers in 35 
front of a vertical wall. It was revealed that the draft of the outside chamber was a dominant 36 
parameter determining the basic resonance frequency of power extraction. Later, the dual-37 
chamber OWC with vertical thin barriers placed over stepped bottom was also analysed 38 
(Rezanejad et al., 2015). Noad and Porter (2017) considered a simplified model of a shallow-39 
draughted multiple-chamber OWC which is comprised of a series of open bottomed chambers 40 
each enclosing an internal free surface. It was identified that variations in chamber sizing were 41 
advantageous, with larger chambers positioned to the aft, not only dividing the power capture 42 
more evenly between the chambers, but also leading to a broader-banded response. As another 43 
development of the simple OWC, the U-OWC device utilizing a small vertical U-duct for 44 
connecting the air pocket to the open wave field was introduced and its performance was 45 
analytically investigated by Boccotti (2007) and Malara and Arena (2013). While due to either 46 
“thin barrier” or “shallow draught barrier” assumptions, the analytical models proposed so far are 47 
not valid in dealing with a more common situation, where the thickness and draught of the OWC 48 
chamber cannot be ignored. Although Zheng and Zhang (2016) have recently developed an 49 
analytical model for diffraction and radiation problems of multiple floats, in which any two 50 
adjacent floats might be seen as the fore and aft walls of OWC with arbitrary thickness, the 51 
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radiation problem due to pressure oscillation inside the OWC chamber has not been taken into 1 
account. 2 
This paper extends the previously mentioned traditional offshore OWC concept, discussed by 3 
Elhanafi et al. (2017), by considering a long oscillating floating cube hinged onto the OWC. The 4 
aim is to enhance the performance of overall wave energy absorption. Apart from harnessing 5 
power by the air turbine at the top of the OWC, rotation of the float (the long oscillating floating 6 
cube) relative to the OWC can also be adopted to drive a cylinder installed between the OWC and 7 
float, extracting wave power. Therefore, the device might be named as a hybrid wave energy 8 
converter (WEC). On the one hand, due to the physical connection of the oscillating float onto the 9 
OWC, no mooring system is required for the float and the costs of construction could be reduced. 10 
On the other hand, it is believed that, with an optimized dimension, power extraction of the 11 
hybrid WEC can be obviously improved for a large range of wave frequencies due to the 12 
hydrodynamic interaction between the OWC and oscillating float. To study the hydrodynamic 13 
performance of the hybrid WEC, the previously mentioned analytical model for the diffraction 14 
and radiation problem from multiple floats, discussed by Zheng and Zhang (2016) is extended by 15 
considering the radiation due to pressure oscillation between two adjacent floats, and then 16 
employed to carry out a geometric parametric study of the hybrid WEC. Results are compared 17 
with a parallel study of an isolated OWC and an isolated float.  18 
The rest of the paper is organized as follows. Section 2 describes the analytical model used in the 19 

hydrodynamic simulations. Section 3 presents the validation of the analytical model. Results and 20 

discussions are provided in Section 4. Conclusions are summarized in Section 5. 21 

 22 

2. Analytical model 23 

2.1. Problem description 24 

The hybrid WEC proposed is mainly composed of a fixed OWC chamber and a float, as shown in 25 

Fig. 1. The float is connected to the fore wall of the OWC through a rigid arm. As ocean waves 26 

pass through the hybrid WEC, the OWC can be used to drive an air turbine and a motor installed 27 

at the top of the OWC chamber to capture wave power. Additionally, the wave-induced rotation 28 

of the float around the hinge can be employed to drive a hydraulic cylinder installed between the 29 

rigid arm and the OWC to exploit wave power as well. 30 

It is assumed that the monochromatic incident waves of small amplitude A and frequency ω 31 

propagate perpendicularly to the WEC and the length of the hybrid WEC along the crest line of 32 

these incident waves is much larger than wave length. Therefore, wave diffraction/radiation 33 

problems of this WEC can be treated as two-dimensional ones. As given in Fig. 1, a Cartesian 34 

coordinate (x, z) system with its original point O located at the point of intersection of the mean 35 

water surface and the front wall of the float is used to formulate the hydrodynamic problem of the 36 

hybrid WEC, in which x and z denote the incident wave propagation and the upward direction, 37 

respectively. The width of the float, the thickness of the fore wall and aft wall of OWC chamber 38 

are denoted as a1, a2 and a3, respectively. The draft of the float, the submergence of the fore wall 39 

and aft wall of OWC chamber are denoted as d1, d2 and d3, respectively. a represents the water 40 

column width inside the OWC chamber; d denotes the height of the hinge relative to the mean 41 

water surface; D represents the distance between the float center and the fore wall of OWC. The 42 

water area is considered with a constant depth of h. As shown in Fig.1, if we choose the hinge 43 
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point as a reference point of the float motion, the floater has only one degree of freedom, i.e. pitch 1 

rotation relative to the hinge point. In such situation, the excitation pitch moment and the 2 

hydrodynamic coefficients in rotation mode of the float are strongly dependent on the height of 3 

the hinge relative to the mean water surface, i.e. d. In this paper, the center of gravity of the float 4 

(x0, z0) is used as the reference point to calculate the motion response of the float. Hence surge, 5 

heave and pitch modes should all be considered in solving wave diffraction and radiation 6 

problems. The mechanical relation between the surge/heave and pitch modes induced by the 7 

hinge constraint can be further taken into account in evaluating motion response of the WEC 8 

without resolving hydrodynamic problem for different d. 9 

 10 

 11 

Fig. 1. Definition sketch of the hybrid WEC 12 

In common with the assumptions that have been adopted by Zheng and Zhang (2016), in this 13 

paper, the fluid is considered isotropic and incompressible inviscid, the time-harmonic flow is 14 

irrotational, and the deformation of both float and OWC chamber are neglected.  15 

With the employment of linear potential flow theory, the fluid motion can be expressed by the 16 

velocity potential   iRe , e tΦ x z      , where Φ  is a complex spatial velocity potential 17 

satisfying the Laplace equation; i is the imaginary unit and t is the time. 18 

Φ  can be decomposed into an incident wave spatial potential IΦ , a diffracted wave spatial 19 

potential DΦ  and four radiated wave spatial potential 
 
R

L
Φ : 20 

    
3

4

I D R R

1

L

L

L

Φ Φ Φ A Φ pΦ


    , (1) 21 

where LA  is the complex amplitude of the float velocity oscillation in mode L (L=1, 2, 3, which 22 

represent surge, heave and pitch, respectively); 
 
R

L
Φ (L=1, 2, 3) is the spatial velocity potential 23 

due to unit amplitude velocity oscillation of the float in mode L; p is the complex air pressure 24 
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amplitude inside the OWC chamber; 
 4

RΦ  is the spatial velocity potential due to unit air pressure 1 

oscillation inside the OWC chamber. 2 

Expression of IΦ , the dominate equation and the boundary conditions that DΦ  and 
 
R

L
Φ (L=1, 2, 3 

3) should satisfy can all be found in our previous paper (Zheng and Zhang, 2016). Compared with 4 

 
R

L
Φ (L=1, 2, 3), due to the existence of air pressure oscillation inside the OWC chamber, the only 5 

different boundary condition for 
 4

RΦ  happens on the free water surface in the OWC chamber, 6 

where 
 4

RΦ  should satisfy 7 

 
 

 
4 2

4R
R

iΦ
Φ

z g g

 




 


, (2) 8 

in which ρ is the water density and g is the gravity acceleration. 9 

2.2. Formulation of the wave diffraction/radiation problem 10 

To solve the wave diffraction and radiation problems, the fluid domain is divided into 7 11 

subdomains denoted as Ωj (j=1, 2, …, 7) as shown in Fig. 2. 12 

 13 

Fig. 2  Sketch of the subdomains of water domain 14 

Utilizing the method of separation of variables, the analytical expressions for unknown 15 

diffracted/radiated spatial potential in each subdomain can be obtained as follows (Zheng and 16 

Zhang, 2016; Falnes, 2002): 17 

Wave diffraction problem 18 

In regions 1, 2m+1, 2m and 7, the diffracted potentials may be expressed, respectively, as 19 
follows: 20 

  D

D,1 1,

1

e j x

j j

j

Φ A Z z






   in 
1 . (3) 21 
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For m=1, 2, 1 

    D D

D,2 1 2 1, 2 1,

1

e ej jx x

m m j m j j

j

Φ A B Z z
 




  



    in 
2 1m . (4) 2 

For m=1, 2, 3, 3 

    , ,D D D D

D,2 I 2 ,1 2 ,1 2 , 2 , ,

2

e e cosm j m jx x

m m m m j m j m j

j

Φ Φ A x B A B z h
 








           in 
2m . (5) 4 

  D

D,7 7,

1

e j x

j j

j

Φ A Z z







   in 
7 . (6) 5 

D

1, jA , 
D

2 1,m jA  , 
D

2 1,m jB  , 
D

2 ,m jA , 
D

2 ,m jB  and 
D

7, jA  as given in Eqs. (3)~(6) are unknown coefficients to 6 

be determined; Eq. (4) represents a general wave solution for the velocity potential in a uniform 7 

fluid of constant depth (Falnes, 2002); βm,j and λj are the eigenvalues of the j-th wave modes in 8 

subdomain 2m, and subdomains 1 and 2, respectively, given as: 9 

 
1 ik   ,  j=1, (7) 10 

  2 tanj jg h    ,  j=2, 3, 4, …, (8) 11 

 
 

,

1 π
m j

m

j

h d






,  j=2, 3, 4, …, (9) 12 

    0.5 cosj j jZ z N h z     ,  
 sin 21

1
2 2

j

j

j

h
N

h





 
  

  

, (10) 13 

in which k is the wave number satisfying  2 tanhgk kh  . 14 

Wave radiation problem 15 

In regions 1, 2m+1, 2m and 7, the radiated potentials can be expressed, respectively, as follows: 16 

      R,1 1,

1

e j xL L

j j

j

Φ A Z z






   in 
1 . (11) 17 

For m=1,2, 18 

          ,4 ,2

R,2 1 2 1, 2 1,

1

i
e ej jx xL L L L m

m m j m j j

j

Φ A B Z z
   






  



     in 2 1m . (12) 19 

For m=1, 2, 3, 20 
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             , ,p,

R,2 R,2 2 ,1 2 ,1 2 , 2 , ,

2

e e cosm j m jx xL L L L LL

m m m m m j m j m j

j

Φ Φ A x B A B z h
 








          in 
2m .(13) 1 

      R,7 7,

1

e j xL L

j j

j

Φ A Z z







   in 
7 . (14) 2 

In Eqs.(7)~(10), 
 
1,

L

jA , 
 
2 1,

L

m jA  , 
 
2 1,

L

m jB  , 
 
2 ,

L

m jA , 
 
2 ,

L

m jB  and 
 
7,

L

jA  are unknown coefficients to be 3 

determined; ,i j  denotes the Kronecker delta, and 
p,

R,2

L

mΦ  represents a special solution of 
 
R,2

L

mΦ  4 

expressed as 5 

 
 

 

     

 

2 3
2 2

0 0
p,

R,2 ,1 2, 3,

1

3

2 2

L

m m L L

m m

z h x x x xz h x
Φ

h d h d
  

 
     

  
  

 

. (15) 6 

2.3. Solution to diffracted/radiated potentials 7 

At either the interface between two adjacent subdomains or the fluid-structure interface, the 8 

motions of the structures and fluids is fully coupled by pressures or/and velocities normal to the 9 

interfaces. The continuity conditions at these interfaces for DΦ  has been previously given in 10 

Zheng and Zhang (2016). To shorten the paper length, here only the continuity conditions for 11 

 
R

L
Φ (L=1, 2, 3, 4) are presented as follows: 12 

 

     
 

 

,1 1, 0 3, L,

R,2 1

R,2

L,

, 0

,

m L L m mL

m
L

m

m m

z z x x d z
Φ

Φx x x h z d
x

  


         
       



, (16) 13 

 

     
 

 

,1 1, 0 3, R,

R,2 1

R,2

R,

, 0

,

m L L m mL

m
L

m

m m

z z x x d z
Φ

Φx x x h z d
x

  


         
       



, (17) 14 

 
     R,2 1 R,2 L, ,
L L

m m m mΦ Φ x x h z d       , (18) 15 

 
     R,2 R,2 1 R, ,
L L

m m m mΦ Φ x x h z d      , (19) 16 

where L,mx  and R,mx  represent the horizontal positions of the left and right edges of subdomain 17 

Ω2m, respectively. 18 
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Upon substituting Eqs (3–6) for 
DΦ  in different subdomains into the continuity conditions for 1 

wave diffraction and Eqs.(11-14) for 
 
R

L
Φ  in different subdomains into Eqs.(16-19), utilizing the 2 

orthogonality relations of the integration of eigen-functions over the vertical dimension (Zheng 3 

and Zhang, 2016) and taking the first M terms in the infinite series, a linear system of 12M 4 

complex equations for either 
DΦ  or 

 
R

L
Φ  with the same number of unknown coefficients are 5 

obtained. The unknown coefficients can be easily evaluated by solving a 12M-order linear matrix 6 

equation. 7 

2.4. Hydrodynamic coefficients due to wave diffraction/radiation 8 

2.4.1 Direct Method (DM) for solving hydrodynamic coefficients 9 

wave diffraction 10 

For fixed structures, the hydrodynamic forces acting on them called wave excitation forces are 11 

induced by both the undisturbed incident wave and the diffracted wave. The wave excitation 12 

force loading on the float in mode L (L=1, 2, 3) can be written as 
  i

eRe e
L tF 

, in which from 13 

the view of the definition of “wave excitation force”, 
 

e

L
F  is expressed as 14 

 
   

1
e I Di d

L

L
S

F n s     , (20) 15 

where S1 is the wetted surface of the float; nL is the component in mode L of the generalized 16 

normal vector.  17 

Similarly, the upward flux at the water surface inside the OWC chamber due to the contributions 18 

of undisturbed incident wave and the diffracted wave, so-called the excitation volume flow, can 19 

be written as 20 

 
   L,3

R,2

4 I D

e 0 d
x

z
x

Φ Φ
F x

z


 


 . (21) 21 

wave radiation 22 

Radiation force acting on the float in mode i (i=1, 2, 3) can be treated as one that is induced by 23 

the oscillations of both the float and the OWC written as 
  i

RRe e
i tF 

, in which 24 

 

     

   

1

1

3
4

R R R

1

4 4

R , ,

1 1

i d

i d i

i L

L i
S

L

L

L i L i L i L
S

L L

F A Φ pΦ n s

A Φ n s A a c



 



 

 
   

 

   



 

, (22) 25 

where 4A p ,   
1

, RRe d
L

i L i
S

a Φ n s   , and   
1

, RIm d
L

i L i
S

c Φ n s   . 26 
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Similarly, the upward flux at the water surface inside the OWC chamber due to the radiated 1 

waves induced by the oscillations of both the float and the OWC can be written as 2 

 

 

 

      

         

 

L,3

R,2

L,3

R,2

L,3 R,2 L,3 R,2

4

R
4 1

R 0

2 4

5, 5,

1 1

2 4 5, 5,

1 1

4

4, 4,

1

d

e e 0 d

e e e e 0

i

j j

j j j j

L

L
x

L
z

x

x x xL L

L j j j
x

L j

x x x xL L

j j j

L

L j j

L L L

L

A Φ

F x
z

A A B Z x
g

A B Z
A

g

A a c

 

   















 

 


 








 

   
 

 




 

 



, (23) 3 

in which 4 

 

         L,3 R,2 L,3 R,2

5, 5,

4,

1

e e e e 0
Im

j j j jx x x xL L

j j j

L

j j

A B Z
a

g

   





 




    
  

 
 
 

 , (24) 5 

 

         L,3 R,2 L,3 R,2
2

5, 5,

4,

1

e e e e 0
Re

j j j jx x x xL L

j j j

L

j j

A B Z
c

g

   





 




    
   

 
 
 

 . (25) 6 

Therefore, 
   

4

R , ,

1

i
i

L i L i L

L

F A a c


   is valid for i=1, 2, 3, 4. 7 

2.4.2 Indirect method for solving hydrodynamic coefficients 8 

wave diffraction 9 

In fact, apart from using the direct method as mentioned in Section 2.4.1, the generalized 10 

excitation forces may also be expressed in terms of the radiated wave’s far-field coefficients 11 

using the Haskind Relation (HR). The excitation force (or the excitation volume flow) acting on a 12 

body (or an OWC) that experiences a plane wave propagating from a certain direction is related 13 

to the body’s (or the OWC’s) ability to radiate a wave into just that direction (Falnes, 2002). The 14 

generalized wave excitation force after using the HR can be derived as: 15 

 
 

   

 

4,

1,1

e

1

2i 1

0

LL

L gAkhA
F

Z


 

 , (26) 16 

Detail derivation of Eq.(26) is given in Appendix A. 17 
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wave radiation 1 

Similar to the expression of the generalized excitation forces using the Haskind Relation, 2 

reciprocity relations exist for the radiation damping matrix (Falnes, 2002). By using the 3 

reciprocity relations, some of the wave radiation damping and added mass can be written in terms 4 

of the radiated wave’s Far-Field Coefficients (FFC) as follows: 5 

 
            , 7,1 7,1 1,1 1,1 1,2,3; 1,2,3 , 4
i L i L

i Lc kh A A A A i L i L        , (27) 6 

 
            , 7,1 7,1 1,1 1,1i 1,2,3; 4 , 4; 1,2,3
i L i L

i L kh A A A A i L i L         , (28) 7 

where the superscript * denotes complex-conjugate. 8 

2.5. Power absorption of the hybrid WEC 9 

After solving the wave diffraction/radiation problem and obtaining the hydrodynamic 10 

coefficients, the response of the hybrid WEC in frequency domain can be calculated using the 11 

following dynamic motion equation: 12 

 
    T

ea PTO d PTO s J

J J

i i            
    

      

M M M C C K A

0A 0

FX

F
, (29) 13 

where M is the mass matrix; Ma and Cd are the added mass matrix and radiation damping matrix, 14 

respectively; MPTO and CPTO are the mass matrix and damping matrix, respectively, induced by 15 

the PTO system; Ks is the hydrostatic restoring matrix; AJ is the constraint matrix due to the 16 

hinge restriction to the float; the superscript T denotes transpose;
T

1 2 3 4A A A A 
 X =  17 

represents the velocity response vector of the hybrid WEC to be determined; FJ denotes the hinge 18 

force vector; Fe is the generalized wave excitation force vector. 19 

 J

1 0 0

0 1 0

d

D

 
  

 
A , 

0

m

m

I

 
 
 
 
 
 

M , 

1

3 2
s 1 1 1

0

12 2

0

a

g a a d

 
 
 

  
 

 
  

K , 20 

PTO

1

2

0

0

c

c

 
 
 
 
 
 

C , 
PTO

0

2

0

0

0

0

a

V

c 

 
 
 
 
 
 
  

M , (30) 21 

in which m is the mass of the float; I is the rotary inertia of the float relative to the centre of mass; 22 

c1 and c2 represent the linear damping of the hydraulic cylinder and the OWC turbine PTO 23 

system, respectively; V0 is the air chamber volume; ca is the sound velocity in air; ρ0 is the static 24 
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air density. In subsequent computations, ρ/ρ0=800, ca =340m/s and the air chamber volume is 1 

V0=2a2 unless otherwise specified. 2 

Wave power is absorbed by the damping in both the float PTO system and the OWC PTO system. 3 

After solving Eq.(29), X  is obtained and the average power that the hybrid WEC captures from 4 

regular waves can be written as 5 

  
2 2

1 3 2 4

1

2
P c A c A  . (31) 6 

The power absorption efficiency is calculated as: 7 

 
20.5 g

P

gA c



 , (32) 8 

where 
 

2
1

2 sinh 2
g

kh
c

k kh

  
  

 
. 9 

2.6. Optimization of power absorption 10 

The power absorption capability of a WEC is a particular subject of interest. As described above, 11 

although surge, heave and pitch modes of the float are all included in the float motion, only the 12 

pitch motion, together with the oscillation of water column, are used to drive PTO systems. 13 

Thanks to the mechanical relation between the surge, heave and pitch modes of the float induced 14 

by the hinge constraints, Eq. (29) can be reduced to the solution of a 2-order algebraic matrix 15 

equation with the employment of matrix blocking method as follows. 16 

Matrix    a PTO d PTO si i        M M M C C K  can be partitioned into four blocks S11, 17 

S12, S21, and S22 whose sizes are all 2×2. The hinge force vector FJ can be expressed in terms of 18 
wave excitation forces loading on the float in surge and heave modes, and the velocity response 19 
of both the float in pitch mode and the air pressure inside the chamber as 20 

 

 

 
 

 

 
 

1 1

e eT 3 3

J 11 12 11 T 122 2
4 4e e

F FA A

A AF F

              
            

              

A
S S S A S

I
F , (33) 21 

where T

0

0

d

D

 
  
 

A . 22 

In addition, FJ, 3A , 4A ,  3

eF  and  4

eF  should also satisfy the following relation: 23 

    
 

 

3

eT T T3 3

21 22 T J 21 T 22 T J 4
4 4 e

FA A

A A F

           
          

           

A
S S A S A S A

I
F F . (34) 24 
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Submitting Eqs. (33-34) into Eq. (29) and making some rearrangements gives 1 

  
 

 

 

 

3 1

e eT T T3

T 11 T T 12 21 T 22 T4 2
4 e e

F FA

A F F

         
         

         

A S A A S S A S A , (35) 2 

in which the PTO damping coefficients (c1 and c2) can be easily separated, and Eq. (35) can be 3 

rewritten into a 2-order linear matrix equation: 4 

 
0 1 0 03

0 0 2 04

A c B EA

C D c FA

      
    

      
, (36) 5 

where the subscript “0” of A0~F0 means that these parameters are independent of c1 and c2. 6 

After expressing 3A  and 4A  in terms of A0~F0, c1 and c2, and submitting them into Eq. (31), we 7 

have the new expression of P as a two variable explicit function 8 

  
   2 2

1 1 2 2 2 3 2 4 1 5 1 6

1 2 2 2 2 2 2 2

1 2 7 1 2 8 1 2 9 1 10 2 11 1 2 12 1 13 2 14

1
,

2

c u c u c u c u c u c u
P c c

c c u c c u c c u c u c u c c u c u c u

    


       
, (37) 9 

where u1~u14 are expressed in terms of A0~F0: 
2

1 0u E ,   2 0 0 0 0 02Reu E D E B F    ,  10 

2

3 0 0 0 0u D E B F  ,  
2

4 0u F ,   5 0 0 0 0 02Reu F A F C E    ,  
2

6 0 0 0 0u A F C E  ,   7 02Reu D ,  11 

 8 02Reu A ,  
2

9 0u D ,  
2

10 0u A ,   11 0 0 0 0 0 02Reu A D B C A D   ,  12 

 12 0 0 0 0 02Reu D A D B C    ,   13 0 0 0 0 02Reu A A D B C    ,  
2

14 0 0 0 0u A D B C  . 13 

The frequency dependent maximum of absorbed power, denoted as P0 (ω), can be achieved 14 

when 1 0P c    and 2 0P c   . While for some rare cases, the maximum value of P may 15 

occur at either c1 or c2 being 0 or +∞. 16 

For c2=0, 3 1

2

9 1 12 1 14

1

2

u c
P

u c u c u


 
 and the maximum absorbed power, denoted as P1, occurs if 17 

1 14 9c u u , for which we have 3 14 9

1

14 12 14 9

1

2 2

u u u
P

u u u u



; 18 

For c1=0, 6 2

2

10 2 13 2 14

1

2

u c
P

u c u c u


 
 and the maximum absorbed power, denoted as P2, occurs if 19 

2 14 10c u u , for which we have 6 14 10

2

14 13 14 10

1

2 2

u u u
P

u u u u



; 20 
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For c2=+∞, 1 1

2

1 8 1 10

1

2

u c
P

c u c u


 
 and the maximum absorbed power, denoted as P3, occurs if 1 

1 10c u , for which we have 1 10

3

10 8 10

1

2 2

u u
P

u u u



; 2 

For c1=+∞, 4 2

2

2 7 2 9

1

2

u c
P

c u c u


 
 and the maximum absorbed power, denoted as P4, occurs if 3 

2 9c u , for which we have 4 9

4

9 7 9

1

2 2

u u
P

u u u



. 4 

In summary, the maximum absorbed power by the hybrid WEC, denoted as Pmax is 5 

  max 0 1 2 3 4max , , , ,P P P P P P . (38) 6 

The maximum power absorption efficiency for Pmax can be calculated in a similar way as given in 7 

Eq. (32), which is notated by max . The corresponding optimized PTO damping for the float and 8 

the OWC are notated by opt,1c  and opt,2c , respectively. 9 

2.7. Wave reflection and transmission coefficients 10 

The spatial velocity potential in the distance far away from the hybrid WEC can be written as: 11 

  
 

 
   

4
1 i iD R,

1 1,1 1,1

11

i i
,0 e 0 e

0

Lkx kxL

L

Z zg
Φ x A Z A A A

Z g




 





  
      

  
 , (39) 12 

  
 

 
   

4
1 i iD R,

1 7,1 7,1

11

i i
,0 e 0 e

0

Lkx kxL

L

Z zg
Φ x A Z A A A

Z g




 





  
     

  
 . (40) 13 

Therefore, the wave reflection coefficient and the wave transmission coefficient of the WEC, 14 

denoted as R and T, respectively, can be calculated as: 15 

    
4

D R,

0 1,1 1,1

1

0
L L

L

R Z A A A
gA





 
  

 
 , (41) 16 

    
4

D R,

0 7,1 7,1

1

i
1 0

L L

L

T Z A A A
gA





 
   

 
 . (42) 17 

3. Model validation 18 

To validate the solutions of wave diffraction and radiation problems in the analytical model as 19 

described in Section 2, wave excitation forces/volume flux, added mass and radiation damping 20 

are all evaluated by using both direct method and indirect method. By checking these results of 21 
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the certain hydrodynamic parameters using different methods, the solutions of wave diffraction 1 

and radiation problems can be validated if good agreements are satisfied. What is more, 2 

hydrodynamic performance of an OWC consisting of two vertical thin barriers with unequal 3 

length is also evaluated and is compared with published results (Falnes and McIver, 1985). The 4 

theoretical maximum power absorption of the hybrid WEC, wave reflection and transmission 5 

coefficients can be validated by comparing with the results from trial-and-error method and by 6 

checking the energy conservation identity, respectively. 7 

The excitation forces/volume flux and hydrodynamic coefficients together with both float PTO 8 

damping and OWC PTO damping are normalized as follows: 9 
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x gh
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 ,  
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opt 3

c
c

h gh
 ,  

 2 opt,2

opt

gc
c
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
 . 12 

Figure 3 gives the results of wave excitation forces/volume flux for the hybrid WEC with 13 

a1/h=0.1, a2/h= a3/h=0.005, d1/h=0.025, d2/h=0.1, d3/h=0.15, D/h=0.15, a/h=0.1. The 14 

corresponding wave damping and added mass are illustrated in Figs. 4 and 5, respectively. 15 
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 1 

     2 

  3 

Fig. 3 Wave excitation forces/volume flux for a1/h=0.1, a2/h= a3/h=0.005, d1/h=0.025, d2/h=0.1, 4 

d3/h=0.15, D/h=0.15, a/h=0.1: (a) Dimensionless magnitudes of surge and heave wave excitation 5 

forces acting on the float; (b) Phases of surge and heave wave excitation forces acting on the 6 

float; (c) Dimensionless magnitudes of pitch wave excitation force acting on the float and wave 7 

excitation volume flux of the OWC; (d) Phases of pitch wave excitation force acting on the float 8 

and wave excitation volume flux of the OWC. 9 
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     1 

   2 

Fig. 4 Wave radiation damping for a1/h=0.1, a2/h= a3/h=0.005, d1/h=0.025, d2/h=0.1, d3/h=0.15, 3 

D/h=0.15, a/h=0.1: (a) Wave radiation damping of the float in surge mode due to the oscillation 4 

of the float in surge and heave modes; (b) Wave radiation damping of the float in surge and heave 5 

modes due to the oscillation of the float in pitch mode; (c) Wave radiation damping of the float in 6 

heave and pitch modes due to the oscillation of the float in heave and pitch modes, respectively; 7 

(d) Wave radiation damping of the OWC due to the air pressure oscillation inside the OWC 8 

chamber. 9 

     10 
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Fig. 5 Added mass for a1/h=0.1, a2/h= a3/h=0.005, d1/h=0.025, d2/h=0.1, d3/h=0.15, D/h=0.15, 1 

a/h=0.1: (a) Added mass of the float in surge and heave modes due to the air pressure oscillation 2 

inside the OWC chamber; (b) Added mass of the float in pitch mode due to the air pressure 3 

oscillation inside the OWC chamber. 4 

As shown in Figs. 3~5, results of the wave excitation forces/volume flux, wave damping and 5 

added mass of the hybrid WEC by using direct and indirect methods agree perfectly with each 6 

other. 7 

Previously, Falnes and McIver (1985) used to study the power absorption by an OWC, which is 8 

composed of two vertical thin barriers with unequal length. Here, after setting the float width, 9 

float submergence depth and thickness of both fore wall and aft wall of OWC chamber to rather 10 

small values, the hybrid WEC looks rather similar with the device studied by Falnes and McIver 11 

(1985). The obtained results of wave excitation volume flux and the corresponding hydrodynamic 12 

coefficients for a1/h=a2/h=a3/h=0.001, d1/h=0.001, d2/h=0.15, d3/h=0.25, D/h=0.001, a/h=0.1 are 13 

compared with those from Falnes and McIver (1985) in Figs. 6 and 7. 14 

    15 

Fig. 6 Dimensionaless excitation volume flux versus ka for the chosen geometrical parameters: 16 

d2/h=0.15, d3/h=0.25, a/h=0.1. (a) Amplitude; (b) Phase. (Normalizing principle adopted by 17 

Falnes and McIver (1985) is applied to the present figure) 18 

 19 
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   1 

Fig. 7 Dimensionaless radiation damping and added mass versus ka for the chosen geometrical 2 

parameters: d2/h=0.15, d3/h=0.25, a/h=0.1. (a) Radiation damping coefficient; (b) Added mass 3 

coefficient. (Normalizing principle adopted by Falnes and McIver (1985) is applied to the present 4 

figure) 5 

The good agreement between the obtained results and those from Falnes and McIver (1985) is 6 

also obtained as plotted in Figs. 6 and 7. It can be learnt from Figs. 3~7 that the present analytical 7 

model performs quite well in solving wave diffraction and radiation problems of the hybrid WEC. 8 

Figure 8a illustrates the comparison between the analytical results of the maximum power 9 

absorption efficiency and the numerical ones using trial-and-error method for a1/h=0.1, a2/h= 10 

a3/h=0.005, d1/h=0.025, d2/h=0.1, d3/h=0.15, D/h=0.15, a/h=0.1, d/h=0.05. The trial-and-error 11 

method is adopted for searching the maximum efficiency in the frame of 
 1

c [0, 0.025] and 12 

 2
c [0, 8.0]. The corresponding optimized float PTO damping and OWC PTO damping are 13 

also given in Fig.8b. Analytical and numerical results of max , 
 1

optc  and 
 2

optc  are found to be in 14 

very good agreement for different wave conditions. 15 

  16 
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Fig.8 Variation of 
max , 

 1

optc  and 
 2

optc  with kh for a1/h=0.1, a2/h= a3/h=0.005, d1/h=0.025, 1 

d2/h=0.1, d3/h=0.15, D/h=0.15, a/h=0.1, d/h=0.05: (a) 
max ; (b) 

 1

optc  and 
 2

optc . 2 

Figure 9 shows the results of  , R, T and 
2 2R T    varying with kh for a1/h=0.1, a2/h= 3 

a3/h=0.005, d1/h=0.025, d2/h=0.1, d3/h=0.15, D/h=0.15, a/h=0.1, d/h=0.05, 
 1

c =0.001 and 
 2

c4 

=0.5. The energy conservation relationship 2 2R T   =1 is satisfied perfectly, which indirectly 5 

validates the present analytical model as well. 6 

 7 

Fig.9 Variation of  , R, T and 2 2R T    with kh for a1/h=0.1, a2/h= a3/h=0.005, d1/h=0.025, 8 

d2/h=0.1, d3/h=0.15, D/h=0.15, a/h=0.1, d/h=0.05, 
 1

c =0.001 and 
 2

c =0.5. 9 

Although the hybrid WEC can be used as a kind of floating breakwaters by reducing amplitude of 10 

the wave transmitted far behind the device, in the following sections, the study is mainly focused 11 

on the performance in wave power exploitation. 12 

4. Model Application 13 

4.1. Comparison between the hybrid WEC and the isolated float and OWC 14 

To study the influence of the hydrodynamic interaction between the float and the OWC on power 15 

absorption of the hybrid WEC, the wave power absorbed by the isolated float and OWC working 16 

in open sea, as show in Fig. 10, are also evaluated, respectively, as a comparison with that of the 17 

hybrid WEC. 18 
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   1 

Fig. 10 Sketches of the isolated OWC and the isolated hinged float: (a) isolated float; (b) isolated 2 

OWC 3 

The wave excitation forces and hydrodynamic coefficients of an isolated float (as shown in 4 

Fig.10a) can be evaluated using the analytical model proposed by Zheng et al. (2014). Analytical 5 

solution of wave diffraction and radiation by the isolated OWC (as shown in Fig.10b) can be 6 

derived base on the study carried out by Zheng and Zhang (2016). As both the oscillating motion 7 

of the isolated float and that of the isolated OWC can be treated as an oscillating system with only 8 

one degree of freedom, the maximized absorbed power and the corresponding optimal PTO 9 

damping for each situation can be calculated quite easily by solving a partial differential equation 10 

of single degree of freedom (Falnes, 2002). 11 

Figure 11 illustrates the frequency response comparison of the maximum power capture 12 

efficiency of the hybrid WEC and those of the hinged float and the OWC when they are 13 

independently deployed for a1/h=0.1, a2/h= a3/h=0.005, d1/h=0.025, d2/h=0.1, d3/h=0.15, 14 

D/h=0.15, a/h=0.1, d/h=0.05. For kh<10, the maximum power capture efficiency of the hinged 15 

float, 
 1

max , is no more than 0.3. While as kh increases from 0 to 10, the maximum efficiency of 16 

the isolated OWC, 
 2

max , first increases and then decreases after reaching the peak value of 0.87 at 17 

kh=6.0 with a narrow bandwidth. 
 2

max >0.8 only occurs at 5.7<kh<6.4. After combining these 18 

segments together, i.e., the hybrid WEC, the power extraction capacity is significantly improved. 19 

For 7.1<kh<8.0, almost all the incident power can be captured when the PTO damping 20 

coefficients are optimized. What is better, the frequency bandwidth for 
max >0.8 is 4.6<kh<8.7, 21 

much wider than that of the isolated OWC. It is very interesting to find that if the hinged float in 22 

the absence of the OWC and the OWC in the absence of the hinged float are considered, 23 

respectively, the efficiency of both of them (
   1 2

max max  ) is smaller than the efficiency of the 24 

hybrid WEC (
max ) for 1.4<kh<5.1 and 6.7<kh<9.0, as shown in Fig.11. And the frequency 25 

bandwidth of 
max  of the hybrid WEC is larger than those of both the isolated hinged float and 26 

isolated OWC (
   1 2

max max  ) for 50%  . This means that the hydrodynamic interaction between 27 

the float and the OWC plays a positive effect on both the power absorption for some range of 28 
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wave conditions and frequency response width of the hybrid WEC. Although the peak value of 1 

max  of the hybrid WEC is smaller than that of both the isolated hinged float and isolated OWC, 2 

it is believed that the hybrid WEC can be used to a wider range of wave conditions with a rather 3 

high power absorption efficiency. In the random waves with more incident power distributed at 4 

1.4<kh<5.1 and 6.7<kh<9.0, output power of the hybrid WEC could be larger than the sum of 5 

output power of both the isolated hinged float and isolated OWC. 6 

 7 

Fig. 11  Variation of 
max , 

 1

max  and 
 2

max  with kh for a1/h=0.1, a2/h= a3/h=0.005, d1/h=0.025, 8 

d2/h=0.1, d3/h=0.15, D/h=0.15, a/h=0.1, d/h=0.05. 9 

4.2. Impact analysis on power absorption by multiple parameters 10 

4.2.1 Effect of OWC chamber width 11 

Figure 12 shows the frequency response of 
max  for various OWC chamber widths (a/h). Due to 12 

the existence of the hinged float, the 
max -kh curve of the hybrid WEC could hold more peaks 13 

with some specified structural dimensions (as given in Fig. 12), rather than merely one single 14 

peak for an isolated stationary offshore OWC (Elhanafi et al., 2017). For kh<5.0, the larger a/h is, 15 

the larger 
max  by the hybrid WEC can be achieved whereas when 6.0<kh<6.5 a/h shows the 16 

opposite effect on 
max . It is noted that once a/h is doubled from 0.05 to 0.10, the maximum 17 

increase in 
max  can reach 40%. However, the influence of a/h on 

max  is not obvious for long 18 

wave length and short wave length, such as kh<2.5 and kh>7.5. As OWC chamber width (a/h) 19 

increases from 0.05 to 0.15, the value of kh, where the second peak of 
max -kh curve occurs, 20 

decreases from 6.7 to 5.3.  21 



23 
 

 1 

Fig. 12  Variation of 
max  for various OWC chamber width (a/h) with a1/h=0.05, a2/h= 2 

a3/h=0.005, d1/h=0.05, d2/h=0.1, d3/h=0.15, D/h=0.1, d/h=0.1. 3 

4.2.2 Effect of submergence of the OWC side walls 4 

The frequency response of 
max  for various submergences of the OWC fore wall (d2/h) is plotted 5 

in Fig. 13. It shows that, for kh<4.0, a larger value of d2/h is welcome for capturing power from 6 

waves. This result is consistent with the corresponding numerical one for an offshore stationary 7 

OWC, that the energy extraction in long waves can be improved with the increase of the 8 

submergence of lips (Elhanafi et al., 2017). Compared to the other device with a larger d2/h, the 9 

hybrid WEC with the smallest d2/h (=0.05) has the least power capture capacity for all the wave 10 

conditions studied (kh<10). However, increasing d2/h will not play a positive effect on power 11 

absorption for all kh. For example, when kh=5.8, the corresponding 
max  is 0.8 for d2/h=0.10, 12 

which is obviously larger than those for d2/h=0.05, 0.15, and 0.20. 13 

 14 

Fig. 13  Variation of 
max  for various submergence of the OWC side walls (d2/h) with a1/h=0.05, 15 

a2/h= a3/h=0.005, d1/h=0.05, d3/h=d2/h+0.05, a/h=0.1, D/h=0.1, d/h=0.1. 16 
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4.2.3 Effect of float width 1 

As another vital parameter affecting power absorption of the hybrid WEC, influence of float 2 

width (a1/h) is illustrated in Fig. 14. It can be learned that the first and second peaks of the 
max -3 

kh curve, occurring at 1.0<kh<4.0 and 4.4<kh<7.2, respectively, both are quite sensitive to a1/h. 4 

The larger a1/h is, the larger the first peak value of 
max  and the corresponding kh are, whereas 5 

the larger a1/h is, the smaller the second peak value of 
max  and the corresponding kh are. While 6 

for 4.4<kh<7.2, more power can be absorbed by the hybrid WEC with a smaller a1/h. Thus, 7 

within kh∈[1.0, 7.2] in which the water depth is specifically given, for waves with a smaller 8 

wave length (or high wave frequency) there is a demand to deploy a hybrid WEC device with a 9 

smaller a1/h to realize more power absorption whereas for waves with a larger wave length there 10 

is a demand to deploy a hybrid WEC device generally with a larger a1/h, which is mainly due to 11 

its larger peak value of power absorption efficiency and wider response width. 12 

 13 

Fig. 14  Variation of 
max  for various float width (a1/h) with a2/h= a3/h=0.005, d1/h=0.05, 14 

d2/h=0.1, d3/h=0.15, a/h=0.1, D/h=0.1, d/h=0.1. 15 

4.3.4 Effect of float draft 16 

Figure 15 shows the variation of 
max  with kh for various float draft (d1/h) ranging from 0.025 to 17 

0.1. For d1/h=0.025, as kh increases from 0 to 10, 
max  first increases and then tends to be stable 18 

after reaching 0.95 at kh=5.4. As a comparison, the 
max -kh curves representing the rest cases 19 

with a larger d1/h are quite different from that for d1/h=0.025. A sharp peak happens at 0<kh<3.0 20 

for d1/h=0.050, 0.075, and 0.100, respectively. The hybrid WEC with a larger d1/h means a 21 

smaller first resonant frequency of the float, therefore the sharp peak moves toward the left side 22 

of the kh axis. It can be seen that for waves with long wave length, there is a need of a larger d1/h 23 

to match waves so as to acquire a larger 
max , but this is at the expense of narrowing the 24 

frequency response width. Therefore, for waves with long wave length and a certain frequency 25 

width, even though the natural frequency of the device matches the waves to obtain the peak 26 

value of 
max , the total power absorbed by the WEC is still quite limited due to a narrower 27 

frequency response bandwidth. It can be seen clearly that, for waves with short wave length (or 28 
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high wave frequency) and a certain frequency width, wave energy is converted efficiently, and 1 

the smaller the float draft (d1/h) is, generally the larger the total power absorbed is. 2 

 3 

Fig. 15  Variation of 
max  for various float draft (d1/h) with a1/h=0.05, a2/h= a3/h=0.005, 4 

d2/h=0.1, d3/h=0.15, a/h=0.1, D/h=0.1, d/h=0.1. 5 

4.3.5 Effect of the distance between float center and OWC 6 

The distance between float center and OWC (D/h) plays an important role in affecting the 7 

hydrodynamic interaction between the float and the OWC. Effect of D/h on the maximum power 8 

absorption efficiency can be found in Fig. 16. As D/h increases from 0.075 to 0.2 with the step of 9 

0.025, the first peak value of 
max -kh curve increases proportionally from 0.48 to 0.88, and its 10 

corresponding kh also increases from 1.5 to 5.3. Therefore, for a smaller wave frequency there is 11 

a demand to deploy a hybrid WEC with a smaller D/h in order to achieve the maximum power 12 

absorption efficiency. Conversely, a hybrid WEC with a larger D/h need be deployed. It has to be 13 

noted that the smaller D/h is, the smaller the frequency response bandwidth of the hybrid WEC is.  14 

 15 

Fig. 16  Variation of 
max  for various distance between float center and OWC (D/h=0.1) with 16 

a1/h=0.05, a2/h= a3/h=0.005, d1/h=0.05, d2/h=0.1, d3/h=0.15, a/h=0.1, d/h=0.1. 17 
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4.3.6 Effect of vertical hinge position of the rigid arm 1 

Although the vertical hinge position of the rigid arm (d/h) does not affect the basic hydrodynamic 2 

coefficients of the hybrid WEC as calculated in the analytical model, it has a significant influence 3 

on the rotary stiffness and inertia of the hinged float. Hence the motion response and power 4 

absorption can also be changed by varying d/h, as shown in Fig. 17. As d/h increases from 0.005 5 

to 0.125, the rotary inertia of the float relative to the hinge position increases as well, resulting in 6 

a smaller resonant frequency together with a smaller first peak value of 
max . 7 

 8 

Fig. 17  Variation of 
max  for various vertical hinge position of the rigid arm (d/h) with 9 

a1/h=0.05, a2/h= a3/h=0.005, d1/h=0.05, d2/h=0.1, d3/h=0.15, a/h=0.1, D/h=0.1. 10 

5. Conclusions 11 

We propose a hybrid WEC device consisting of a fixed inverted flume with long length and a 12 

bottom hole, and a long floating cube hinged with the flume. An analytical model is developed 13 

for the power extraction of the device based on linear potential flow theory and eigen-function 14 

matching method in the two-dimensional Cartesian coordinate system. 15 

The wave excitation forces/volume flux, added mass and wave damping are all calculated by the 16 

analytical model using different approaches. Additionally, hydrodynamic performance of an 17 

OWC consisting of two vertical thin barriers with unequal length is also evaluated and is 18 

compared with published results (Falnes and McIver, 1985). The good agreement of these results 19 

between each other shows that the present analytical model is correct. In addition, the analytical 20 

results of the maximum power absorbed by the device is compared with those using trial-and-21 

error method. Energy conservation relationship is also checked to indirectly validate the present 22 

analytical model. 23 

The validated analytical model is then adopted to carry out the study on power capture capability 24 

of the device with different geometrical dimension. For some specified dimensions, results are 25 

also compared with a parallel study of an isolated OWC and an isolated float. Results reveal that: 26 

the power extraction capacity can be significantly improved for a wide range of wave conditions 27 

after combining the isolated OWC and the isolated float together. The hydrodynamic interaction 28 
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between the float and the OWC plays a positive effect on power absorption of the hybrid WEC 1 

for some certain wave conditions.  2 

It is found that the influence of device geometry on the power absorption can be significant and 3 

varies considerably, depending on wave length. For 3.0<kh<4.0, the hybrid WEC with a larger 4 

water column width inside the OWC chamber, a larger submergence of the side walls of the 5 

OWC chamber, a larger float width, while a smaller float draft is welcome in absorbing more 6 

power from incident waves. As kh increase from 0 towards 5.0, there is generally a peak value of 7 

max -kh curve, which turns larger for the hybrid WEC with a larger water column width inside 8 

the OWC chamber, a larger submergence of the side walls of the OWC chamber, a larger float 9 

width, a larger distance between the float center and the fore wall of OWC, a smaller float draft 10 

and a smaller height of the hinge relative to the mean water surface. 11 

The analytical model proposed in this paper can be applied to study the wave attenuation by the 12 

floating breakwaters consisting of a float and an OWC. The wave power absorption obtained by 13 

using the potential flow theory in this paper may be overestimated without consideration of water 14 

viscous effect. Such viscous effect on the hybrid WEC device might be investigated by using 15 

physical experiments in the future. The present work concentrates on analysis of the performance 16 

of a two-dimensional hybrid WEC. Analytical study on the power extraction of a three-17 

dimensional hybrid WEC will be reported elsewhere. 18 
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Appendix A. Expression of the generalized excitation forces in 23 

terms of the radiated wave’s far-field coefficients 24 

Since 
 
R

L
Φ  (L=1, 2, 3) is the spatial velocity potential due to unit amplitude velocity oscillation of 25 

the float in mode L, the component in mode L of the generalized normal vector nL can be written 26 

as 27 
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therefore, Eq. (20) can be rewritten as 29 
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According to Green’s theorem (Falnes, 2002), we have 31 



28 
 

 

 
 

 
 

1

R D R D
D R D Rd d 0

L L
L L

S S

Φ Φ
Φ s Φ s

n n n n

 
   



      
             

  , (A3) 1 

where S±∞ represents the boundaries at infinite, i.e., x=±∞. 2 

Hence, together with employment of the boundary condition of wave diffraction at wetted 3 

surface, i.e., 
D In n      , we have 4 
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which is one way of formulating the so-called Haskind relation. 6 

If we reuse Green’s theorem, wave excitation forces can be written as 7 
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The incident wave potential is generally given as: 9 
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After inserting Eqs. (11) ,(14) and (A6) into Eq.(A5), 11 
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For the excitation volume flux 
 4

eF , using the free surface boundary conditions of incident and 13 

diffracted potentials, its expression as given in Eq. (21) can be written as: 14 
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With the employment of the free surface boundary condition of 
 4

RΦ  inside the OWC chamber, 1 

i.e., Eq. (2), and Green’s theorem to 
DΦ  and 

 4

RΦ  in a similar way as given in Eq. (A3), we have  2 
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For the unit normal at either water surface or wetted surface of structures in this paper is defined 4 

pointing into the fluid region, thus for the mean water level inside the chamber, z n     . 5 

Using z n      at the mean water level and applying Green’s theorem to IΦ  and 
 4

RΦ , we 6 

have 7 
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