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Theoretical modelling of a new hybrid wave energy converter in regular waves 1 

Abstract: A novel hybrid wave energy converter (WEC) consisting of a floating oscillating water 2 

column (OWC) and several oscillating floats hinged around is proposed. Both water oscillation of 3 

the OWC and the wave-induced relative rotation of each float around the OWC are employed to 4 

extract wave power. To carry out the hydrodynamic analysis of the hybrid WEC, a theoretical 5 

model based on potential flow theory, separation of variables method and eigen-function matching 6 

method is presented. Hydrodynamic interaction between the OWC and the floats oscillating 7 

independently in surge, sway, heave, roll, pitch and yaw modes is considered. To verify the 8 

correctness of the theoretical hydrodynamic model, a specific example is computed and a 9 

numerical code based on a boundary element method is also employed as a comparison. The 10 

theoretical results are found in good agreement with ones obtained by using different approaches. 11 

The theoretical hydrodynamic model is then adopted to evaluate the dynamic response and power 12 

absorption of the hybrid WEC in frequency domain. Additionally, the corresponding isolated 13 

OWC and hinged floats are computed, respectively, and compared to demonstrate how to interact 14 

beneficially between the OWC and the floats in terms of q-factor. Effect of the geometry of both 15 

the OWC and the floats, and the spacing distance between them on power exploration of the 16 

hybrid WEC is investigated. The results reveal that the hybrid WEC holds a wider bandwidth of 17 

frequency response with a higher maximum power capture factor compared with those of the 18 

isolated OWC and hinged floats. 19 

Keywords: Wave power; Theoretical hydrodynamic model; Oscillating water column; Floats; 20 

Power take-off system  21 

1. Introduction 22 

Ocean wave is a kind of renewable resource and it is estimated that the worldwide ocean 23 

waves contain power resource as much as 2TW (Thorpe, 1999). Seeking energy from waves not 24 

only helps solve the problems of scarcity of electricity and pure water for the people in coastal 25 

regions and remote islands (Babarit et al., 2012; Davies, 2005), but also contributes to improving 26 

the earth climate and environment. Since 1970s, over one thousand concepts of wave energy 27 

conversion have been proposed in Japan, North America and Europe (Clément et al., 2002; Drew 28 

et al., 2009). Reviews of wave energy converter (WEC) technologies can be found in Clément et 29 

al. (2002), Falnes (2007), Drew et al. (2009), Falcão (2010), López et al. (2013), Lehmann et al. 30 

(2017). Among the large number of WECs, oscillating water columns (OWCs) and nodding WECs 31 

are two of the main types. 32 

The OWC is mainly composed of a chamber with an opening to the sea below the water 33 

surface. Water column inside the chamber oscillates due to wave excitation, and meanwhile the air 34 

above the water column in the chamber passes through a turbine to generate electricity. Specific 35 

reviews on OWCs can be found in Heath (2012), Falcão and Henriques (2016). Numerical analysis 36 

and tank tests have been widely used to study the hydrodynamic performance of OWCs (Sheng et 37 

al., 2014; Sheng and Lewis, 2017; He and Huang, 2014; He and Huang, 2017). In numerical studies 38 

of an OWC, it involves a crucial aspect for modelling of the free-surface elevation of a 39 

“moonpool” suffering from dynamic air pressure inside the OWC chamber. Regarding to this 40 
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problem, one may think of the internal water surface as an imaginary, weightless, rigid piston 1 

(disk), which is considered as an extremely thin cylinder oscillating up and down (Sheng et al., 2 

2014). Another alternative method is to model the internal water column as a full cylinder of the 3 

same length of the water column (Sheng et al., 2014; Penalba et al., 2017a). Although both of the 4 

methods have been widely used and have also shown good approximate results for low 5 

frequencies when the wavelength is very long compared with the horizontal length of the OWC 6 

chamber, these methods do not correctly model the hydrodynamics, because the dynamic air 7 

pressure boundary condition for the internal water surface is not exactly satisfied (Evans, 1982; 8 

Falnes, 2002). As a comparison, for some specific OWC devices with simple structures such as 9 

two-dimensional OWCs with vertical walls and three-dimensional circular cylindrical OWCs, the 10 

theoretical solutions based on the surface pressure distribution model are possible and are more 11 

correct (Evans and Porter, 1995; Mavrakos and Konispoliatis, 2012). Evans and Porter (1997) 12 

investigated the hydrodynamic properties of a vertical thin-walled cylindrical OWC in the open 13 

sea analytically. Later, the cases of the vertical cylindrical OWC at the tip of a breakwater, along a 14 

straight coast and at a coastal corner were also studied by Martins-rivas and Mei (2009a, 2009b) 15 

and Lovas et al. (2010). More recently, Konispoliatis and Mavrakos (2016) developed a theoretical 16 

model for dealing with the hydrodynamic analysis of an array of free-floating OWCs and 17 

demonstrated that the radiated waves from each OWC were influenced by the spacing distance 18 

between the OWCs. 19 

The nodding WEC is a device that possess one or more floats hinged on an offshore structure 20 

or coastline, and captures wave power by utilizing the rotation of these floats. One of the most 21 

famous nodding WECs is the Salter’s Duck, which was proposed by Stephen Salter at the 22 

University of Edinburgh (Salter, 1974). An asymmetrical cross section of the float in Salter’s Duck 23 

was developed to increase the power absorption from incident waves. Experimental study on 24 

Salter’s Duck in a narrow tank shown that the power absorption efficiency could be more than 25 

90% (Cruz, 2008). Cruz and Salter (2006) investigated the influences of both the position of the 26 

axis of rotation and the submergence ratio on power absorption of a modified version of the 27 

Salter’s Duck by using a commercial boundary element method package. It was shown that the 28 

capture width strongly depended on the position of the axis. Recently, Wu et al. (2017) 29 

investigated the power extraction by an array of Salter’s Ducks using numerical method. It was 30 

revealed that the array with Ducks of smaller width performed better in extracting wave power. 31 

SDE wave power device, developed by S.D.E. Ltd in Israel, is another nodding WEC, which 32 

consists of a flat float hinged on the coastal line. Rotation of the flat float around the hinged point 33 

can be used to generate hydraulic pressure, which is then transformed into electricity (Clément et 34 

al., 2002). However, SDE WEC suffers the tidal range problem, leading to an efficiency decline 35 

with the change of water level. This disadvantage might be overcome by introducing a unique 36 

rotating device between the float and the coastal line (Yang, et al., 2017). Wavestar can be seen as 37 

another example of nodding WECs, which is composed of a platform and multiple nodding 38 

cylindrical vertically axisymmetric floats hinged around (Nambiar et al., 2015). While, the 39 

supporting platform is generally required for an offshore nodding WEC, such as Wavestar, 40 

constituting an important part of construction cost and system complexity. 41 

For these two kinds of devices as previously reviewed, the OWC wave energy converter has 42 

a proven very high reliability and easy maintenance (Heath 2012) whereas the nodding WECs 43 

have been proven with high wave energy capture ratios (Cruz, 2008; Serman and Mei, 1980), 44 
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converting wave energy efficiently from the high frequency and steep waves. We make full use of 1 

the advantages of these two types of devices, and presented a novel hybrid WEC consisting of a 2 

floating OWC moored to the sea bed and several oscillating floats hinged around. Apart from 3 

capturing power with the turbine of the OWC, a hydraulic power take-off (PTO) system is also 4 

installed between each float and the OWC, therefore the wave-induced relative rotation of each 5 

float around the hinge on the OWC can also be employed to extract wave power. Due to the 6 

physical connection of the oscillating floats on the OWC, no more mooring system or a special 7 

supporting platform for these floats is required and this could obviously reduce both structure 8 

complexity and construction cost. It is expected that, with an optimized dimension, interaction 9 

between the OWC and the multiple floats can obviously increase the power extraction of the 10 

hybrid WEC.  11 

Although power take-off of OWC WECs and nodding WECs has been widely studied, to the 12 

authors’ knowledge, power absorption by a hybrid WEC consisting of both OWC and nodding 13 

WECs has never been conducted. The OWC and the multiple floats of the hybrid WEC could 14 

possess regular configuration, thus the theoretical method might be applied in carrying out the first 15 

step study on wave diffraction and radiation problems of the WEC. Similar theoretical models 16 

have been presented by Siddorn and Eatock Taylor (2008) for an array of truncated cylinders, and 17 

Konispoliatis and Mavrakos (2016) for multiple floating OWCs, respectively, nevertheless neither 18 

of these models can be used to deal with the interaction between OWC and multiple floats. More 19 

recently, Göteman (2017) proposed a theoretical model for a truncated float and a truncated 20 

cylinder with moonpool rather than an OWC. It means that the hydrodynamic properties due to the 21 

oscillating air pressure inside the chamber, which play significant roles in affecting power 22 

absorption of OWC, cannot be considered using her model. Additionally, floats were strictly 23 

restrained to only move in heave mode (Göteman, 2017). To study the hydrodynamic 24 

characteristics of this hybrid WEC, a theoretical hydrodynamic model based on potential flow 25 

theory, separation of variables method and eigen-function matching method is presented in this 26 

article, which considers hydrodynamic interaction between the OWC and the floats oscillating 27 

independently in different modes. As the second step work, we consider a hybrid WEC, in which 28 

the OWC chamber is assumed to be stationary. Response and power absorption of the hybrid 29 

WEC are calculated based on the parameters obtained from the theoretical hydrodynamic model. 30 

Power absorption by the isolated OWC and the isolated hinged floats are also calculated as a 31 

comparison. Additionally, effect of spacing distance between the OWC and the floats on the 32 

assessment of wave power extraction is studied. 33 

The rest of this paper is organized as follows. The governing equations and boundary 34 

conditions for wave diffraction and wave radiation problems are given in Section 2. Expressions 35 

and solutions to both diffracted potentials and radiated potentials together with wave excitation 36 

volume flux/forces and hydrodynamic coefficients are presented in Section 3. Power absorptions 37 

by a hybrid WEC, an isolated OWC and an array of hinged floats are derived in Section 4. Results 38 

and discussion are provided in Section 5. Conclusions are summarized in Section 6. 39 

2. Mathematical model for wave diffraction and radiation 40 

Figure 1 gives one typical configuration of the novel hybrid WEC, in which a circular 41 

cylindrical floating OWC and several truncated cylindrical floats are involved. Each float is 42 

hinged on the OWC by a rigid arm with a hydraulic float PTO installed between the OWC and the 43 

rigid arm. There are some mooring lines connecting the bottom of the OWC to anchors on the sea 44 
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bed. When waves pass through the hybrid WEC, both the turbine in OWC and the float PTO 1 

capture power from waves. 2 

 3 
Fig. 1. Sketch of a hybrid WEC under investigation 4 

 5 

To study the hydrodynamic characteristics of the hybrid WEC, wave diffraction and wave 6 

radiation problems from a cylindrical float with a moonpool (OWC) labelled n=0 and N truncated 7 

cylindrical floats labelled n=1,2, …, N moving independently are considered, as shown in Fig. 2. 8 

To obtain a more general solution, we assume all the floats with differing radii and draught 9 

labelled as Rn and dn, respectively, in which subscript n denotes Float n, and they are arbitrarily 10 

deployed on the free surface of a layer of liquid of finite depth h. Float 0 is used for representing 11 

the cylindrical float with a moonpool (OWC). The inner radius of the OWC is denoted as Ri. 12 

A general Cartesian coordinate system Oxyz is adopted with the Oxy plane at the location of 13 

the mean water surface, and the Oz axis at the central axis of the OWC pointing upward. Specify 14 

the Ox axis arbitrarily, the OWC and truncated floats are subjected to a monochromatic incident 15 

wave train of small amplitude A and frequency ω propagating in the direction  relative to the 16 

positive Ox axis. Additionally, local cylindrical coordinate systems Ornθn (n=0, 1, 2, … , N) 17 

centered on the origin of the OWC and each float, respectively, are defined, as illustrated in Fig. 2. 18 

The rotation center of Float n is (rn=0, z=zn) (n=0, 1, 2, …, N), which is used as the reference point 19 

to calculate the wave excitation forces and hydrodynamic coefficients in relation with rotary 20 

modes. Position of origin of Float n can be written in terms of Cartesian coordinate system Oxyz 21 

as (xn, yn). 22 

For the purpose of analysis, the fluid is divided as follows (see Fig. 2b): a) fluid domain 23 

beneath the OWC and Float n, which are denoted as Region 0 (i.e., Ri≤r0≤R0, -h≤z≤-d0) and 24 

Region n (i.e., rn≤Rn, -h≤z≤-dn, n=1,2, …, N), respectively; b) fluid domain at the interior region 25 

of the OWC and the rest of fluid outside, which are denoted as Region N+1 (i.e., r0≤Ri, -h≤z≤0) 26 
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and Region N+2 (i.e., rn≥Rn, -h≤z≤0), respectively. 1 

 2 

 3 

Fig. 2. Definition sketch: a) plan view; b) bird view. 4 

Assuming the fluid to be isotropic and incompressible inviscid, the wave amplitude to be 5 

very small, the effect of the turbine in OWC, air compressibility in the chamber and the float PTO 6 

to be all linear, linear potential flow theory is adopted. Because of the linearity of the problem, the 7 

total spatial velocity potential   can be decomposed into the incident wave spatial potential 8 

I , the diffracted wave spatial potential 
D  and the radiated wave spatial potential as follows 9 

 
 

6
0,

I D , R R

0 1

N
n i

n i

n i

p     
 

    , (1) 10 

where ,n i  is the velocity complex amplitude of Float n (n=0,1,2,…, N) oscillating in Mode i 11 

(i=1~6, which represent surge, sway, heave, roll, pitch, and yaw, respectively); 
,

R

n i is the spatial 12 
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velocity potential due to unit amplitude velocity oscillation of Float n oscillating in Mode i; p is 1 

the complex air pressure amplitude inside the OWC chamber;  0

R  is the spatial velocity 2 

potential due to unit air pressure oscillation inside the OWC chamber. 3 

I , 
D , 

,

R

n i , and 
 0

R  all satisfy the Laplace equation and the boundary condition on the 4 

impermeable rigid horizontal sea bed. Moreover, 
D , 

,

R

n i , and 
 0

R  must satisfy a radiation 5 

condition at infinite distance (Zheng and Zhang, 2015). 6 

Generally, the velocity spatial potential for the undisturbed incident waves with amplitude A 7 

and frequency ω propagating in the direction  relative to the positive Ox axis is well known and 8 

it can be written as: 9 

 
 

 
 i cos sin

I

coshi
e

cosh

k x y
k z hgA

kh

 





   

  , (2a) 10 

  
 

 
   i cos sin ii

I

coshi
, , e i e e

cosh

n n n
k x y mm m

n n m n

m

k z hgA
r z J kr

kh

   



 



   
   , (2b) 11 

where Eq.(2a) is written in general Cartesian coordinate system Oxyz and Eq.(2b) is in local 12 

cylindrical coordinate systems Ornθn; k is the wave number, which satisfies the dispersion relation 13 

ω2=gktanh(kh); g is the acceleration of gravity; i is the imaginary unit. 14 

The free-surface boundary condition and the body-boundary condition that D , 
,

R

n i , and 15 

 0

R  should satisfy are given as follows: 16 

Wave diffracted potentials: 17 

 

2

D
D 0

z g

 



 


,   0z  , n nr R  and 0 ir R  (3) 18 

 D I

z z

  
 

 
,   nz d   and ,0 in n nR r R    (4) 19 

 
D I

n nr r

  
 

 
,   0nd z   , n nr R  and inr R  when n=0 (5) 20 

Wave radiated potentials due to the oscillation of Float n (n=0,1,2,3,…N) in Mode i: 21 

 

, 2
,R

R 0
n i

n i

z g

 



 


,   0z  , j jr R  and 0 ir R  (6) 22 

  
,

R
, 3, 4, 5,sin cos

n i

n j i i n n i n nr r
z


     


  


,   jz d   and ,0 ij j jR r R    (7) 23 

     
,

R
, 1, 2, 4, 5,cos sin sin cos

n i

n j i n i n i n n i n n

j

z z z z
r


        


     


, 24 

 0jd z   , j jr R  and ijr R  when j=0  (8) 25 
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Wave radiated potential due to the OWC air pressure oscillation: 1 

 

 
 

0 2
0R

R 0
z g

 



 


,   0z  , j jr R  (9a) 2 

 

 
 

0 2
0R

R

i

z g g

  





 


,   0z  , 0 ir R  (9b) 3 

 
 0

R 0
z





,   jz d   and ,0 ij j jR r R    (10) 4 

 

 0

R 0
jr





,   0jd z   , j jr R  and ijr R  when j=0. (11) 5 

3 Theoretical solution to diffracted and radiated potentials 6 

3.1 Diffracted/radiated spatial potentials in subdomains 7 

In fluid subdomain Region j, the spatial potentials D , 
,

R

n i  (n=0, 1, 2, …, N), and 
 0

R  8 

can be written in a unified format as j

 , in which χ=’D’,’(n,i)’, and ’(0)’ represent the 9 

corresponding wave diffracted potential, the radiated potential due to the motion of Float n in i-th 10 

mode and the radiated potential due to the air pressure oscillation inside OWC chamber, 11 

respectively. In different regions, applying the method of separation, the diffracted/radiated spatial 12 

potentials can be expressed by a complex Fourier series as follows: 13 

1) In Region j (j=0, 1, 2, 3, …, N) 14 
 

 
 
 

 
 

 
, , i,0

,p , , ,

1 , ,

, , cos e
2

j

, j
m j l j m j l j mm , j , j

j j j j m l m l j l

m l m j l j m j l j

I r K rD
r z A C z h

I R K R


   

 
   

 

 

 

  
             

 

15 

 (12) 16 

where 17 

 

,0 ,0

,0

,0 ,0

1 ln , 0

, 0

j, j , j

m m

j
, j

m m m

j j, j , j

m m

j j

r
A C m

R
D

r r
A C m

R R

 



 



   
     

     
 
    

        
    

 (13) 18 

Im is the modified Bessel function of first kind and order m; Km is the modified Bessel function of 19 

second kind and order m; ,

, j

m lA
 and ,

, j

m lC 
 are unknown coefficients to be solved in Section 3.2, 20 

in which ,

, j

m lC 
 vanishes for j>0, i.e., the regions beneath of the floats; ,j l  is the l-th eigenvalue 21 

in Region j (j=0, 1, 2, …, N) which is given by  22 

 ,

π
j l

j

l

h d
 


， l=0, 1, 2, 3,… (14) 23 
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,pj

  is a particular solution, which for χ=’D’, ,pj

 =-
I ; for χ=’(0)’, ,pj

  vanishes; for 1 

χ=’(n,i)’, ,pj

  can be expressed in coordinate system of Float j as 2 

 
 

 
 

 
 

 
 

2, 2

,
2, 3R, ,p

2, 3

0, 1,2,6

2 , 3
4

sin
4 , 4

8

cos
4 , 5

8

n j

j

j

n i
n j jj

j j

j

n j j

j j

j

i

z h r i
h d

r z h r i
h d

r r z h i
h d



 

 



    

  



     
  



   
 

 (15) 3 

2) Region N+1 4 

  
   

   

   

   
0

1 1

,0 0 0 , 0 i

1 0 0 1,p

1i 0 i

, , e
0 0

,N ,N

m m m l m l l m

N N

m lm m l l

D J kr Z z D I k r Z z
r z

J kR Z I k R Z

 

   
  

 

 

 
   

  
   (16) 5 

where 
1

,

,N

m lD 
 is the coefficient to be solved in Section 3.2; Jm is the Bessel function of order m; 6 

lk  is the eigenvalue which is given by (Falnes, 2002)  7 

  2 tanl lk g k h   ,     l=1,2, 3, … (17) 8 

    0.5

0 0 coshZ z N k z h     ;    0.5 cosl l lZ z N k z h     ;  (18) 9 

 
 

0

sinh 21
1

2 2

kh
N

kh

 
  

 
;  

 sin 21
1

2 2

l

l

l

k h
N

k h

 
  

 
; (19) 10 

1,pN

   is a particular solution, which for χ=’(0)’,  1,p iN

    ; whereas for χ=’D’ 11 

and ’(n,i)’, 1,pN

   vanishes. 12 

 13 

3) Region N+2 14 

The diffracted/radiated spatial potential in Region N+2, can be decomposed into the 15 

summation of N+1 cylindrical spatial potentials at the exterior domain as follows: 16 

 
,e

2

0

N

N j

j

  



 . (20) 17 

Diffracted spatial potential 
,e

j

  represents the wave travelling outwards from Float j and 18 

can be written in terms of following well-known eigen-function expansion in its own coordinate 19 

system: 20 
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  
 
 

 

 

 
 

 

 
i0,e , ,

,0 ,

10

, , e
0 0

j
m j m l j mlj j

j j j m m l

m l lm j m l j

H kr K k rZ z Z z
r z B B

Z ZH kR K k R

   
 

 

 
  
  

  , (21) 1 

where Hm is the Hankel function of first kind of order m; 
,

,

n

m lB
 are unknown coefficients to be 2 

solved in Section 3.2;  3 

Graf’s addition theorem for Bessel functions (Abramowitz and Stegun, 1964) is adopted here, 4 

thus 2N

   can be expressed in the polar coordinates Ojrjjz as (Zheng and Zhang, 2015): 5 

 

 
 

 

 

 
 

 

 

 
 

 
       

 
 

 

2

i0

,0 ,

10

i i,0 0

0 0

,

, ,

e
0 0

1 e e
0

0

j

j j jj j

N j j

m j m l j ml, j , j

m m l

m l lm j m l j

, jN
m mm mm

m m jj m j

j m mm j
j j

, j

m l l

m

lm l j

r z

H kr K k rZ z Z z
B B

Z ZH kR K k R

B Z z
H kR J kr

ZH kR

B Z z
K

ZK k R



 


  



 

 



 

 

 
  

  
   








 
  
  


 





 

  

     i i

1

e ej j jj j
m m m

m l jj m l j

l m

k R I k r
   

 
 

 

 





 

, j jjr R   (22) 6 

3.2 Method of computation for unknown coefficients 7 

Expressions of the diffracted and radiated spatial potentials as given in Eqs. (12)~(22) in 8 

Sections 3.1 satisfy all the boundary conditions as shown in Eqs. (3) ~ (11) given in Section 2, 9 

except those on the interfaces of each two adjacent subdomains rn=Rn and r0=Ri. The conditions of 10 

continuity for pressure and normal velocity at rn=Rn and r0=Ri can be used to determine the 11 

unknown coefficients in Eqs. (12)~(22) for both diffracted and radiated spatial potentials. 12 

The continuity conditions for the spatial potentials are given as follows: 13 

1）Continuity of pressure at the boundary rj=Rj (j=0, 1, 2, …N): 14 

    2 , , , , , ,N j j j j j j j jr z r z h z d r R           .   (23) 15 

2）Continuity of pressure at the boundary r0=Ri: 16 

    1 0 0 0 0 0 0 0 i, , , , , ,N r z r z h z d r R           .   (24) 17 

3）Continuity of normal velocity at the boundary rj=Rj (j=0, 1, 2, …N): 18 

For jh z d    , 19 

 
   2 , , , ,N j j j j j

j j

r z r z

r r

     


 
.  (25a) 20 

For 0jd z   , 21 
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 

 
 

     

 

I

2

, 1, 2,

4, 5,

, ,
, ' 0 '

, ,
cos sin

sin cos , ' , '

0, ' '

j j

j

N j j

n j i n i n

j

i n n i n n

r z

r
r z

r
z z z z n i

n



 


 
    

    





 
 


 

   
 

     




.1 

 (25b) 2 

4）Continuity of normal velocity at the boundary r0=Ri: 3 

For 0h z d     4 

 
   1 0 0 0 0 0

0 0

, , , ,N r z r z

r r

     


 
.  (26a) 5 

For 0 0d z    6 

 
 

 
 

     

 

I 0 0

0

1 0 0
,0 1, 2,

0

4, 5,

, ,
, ' 0 '

, ,
cos sin

sin cos , ' , '

0, ' '

N
n i n i n

i n n i n n

r z

r

r z

r
z z z z n i

n



 


 
    

    






 


    

 
    

 

.(26b) 7 

Upon substituting the diffracted and radiated spatial potentials in Eqs. (12)~(22) into Eqs. 8 

(23)~(26), utilizing the orthogonal properties of the functions cosmθ, sinmθ, and Zl(z) (Zheng and 9 

Zhang, 2015; 2016), and making some rearrangements, the diffracted spatial potentials and the 10 

radiated ones in each subdomain can be obtained by solving a matrix equation, in which the 11 

infinite series are truncated by choosing (2M+1) terms (m=-M, …, 0, …, M) for eimθ functions and 12 

L0+1 terms (l=0, 1, 2, … L0) for Zl(z) and cos[βj,l(z+h)] functions. The brief derivation and the 13 

final complicated formulas for calculation of these unknown coefficients for wave diffraction as 14 

an example are given in Appendix A. 15 

3.3 Wave excitation volume flux/forces 16 

Wave excitation volume flux is the upward flux at the water surface inside the OWC chamber 17 

due to the contributions of undisturbed incident wave and the diffracted wave when the dynamic 18 

air pressure is zero. Expression of the wave excitation volume flux can be written as 19 

 0 i

eRe e tF  
 

, where, with utilization of Eq.(2) and Eq.(16), 20 

 

   
 

   

 

 

 

i i

2
2π 2πI D, 10

e 0 0 0 I D, 1 0 0 0
0 0 0 0 0

0

D 1 D 12
0,0 1 i 0, 1 i1 ii

10 0 i 0 i

d d d d

2π i

R RN

N
z

z

,N ,N

l l

l l l

F r r r r
z g

D J kR D I k RJ kRR gA

g k k J kR k I k R

  
   












 



 
  



 
    

  

   



. (27) 21 

Wave excitation forces are the forces due to the incident wave acting on structures which are 22 

stationary. It can be computed from the incident wave potential and the diffracted potential. Mode 23 
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j of the generalized excitation force on Float n is , i

eRe en j tF    , where 1 

  ,

e I Di d
n

n j

j
S

F n s     , (28) 2 

in which Sn is the wet surface of Float n (n=0,2,3,…N); nj represents the generalized normal with 3 

n1=nx, n2=ny, n3=nz, n4=-(z-zn)ny+ynz, n5=(z-zn)nx-(x-xn)nz, n6=-ynx+(x-xn)ny, x y zn n i n j n k    4 

is the unit normal vector pointing into the fluid domain at the considered float surface. 5 

After inserting the theoretical expressions for the diffracted potentials as derived in Section 6 

3.1 into Eq. (28), the wave excitation force exerting on Float n (n=0,2,3,…N) in different mode 7 

can be calculated directly. 8 

3.4 Hydrodynamic coefficients 9 

When the water column inside the chamber or the floats oscillate in the absence of an 10 

incident wave, the radiated wave reacts with an upward flux at the water surface inside the OWC 11 

chamber, so-called radiation volume flux, and forces on the floats, so-called radiation forces. The 12 

complex amplitudes of radiation volume flux due unit amplitude velocity oscillation of Float n 13 

(n=0,1,2,3,…N) oscillating in Mode i can be written into imaginary and real parts as: 14 

 

   

   

 

   

 
   

i i

, 2
2π 2π0 ,R

R, , 0 0 0 R, 1 0 0 0
0 0 0 0 0

0

, 1 , 12
0 00,0 1 i 0, 1 ii
, ,

10 0 i 0 i

d d d d

2π
i

n i
R R n i

n i N
z

z

n i ,N n i ,N

l l

n i n i

l l l

F r r r r
z g

D J kR D I k RR
a c

g k J kR k I k R

 
  









 




 



 
    

  

   



 (29) 15 

where the hydrodynamic coefficients  0

,n ia  and 
 0

,n ic  are real and dependent on frequency ω, 16 

representing the hydrodynamic coupling between the floats and the oscillating pressure 17 

distribution of the air inside the OWC chamber. 18 

Similarly, the complex amplitudes of radiation force exerting on Float n’ (n’=0,1,2,3,…, N) 19 

in Mode i’ due to unit amplitude velocity oscillation of Float n (n=0,1,2,3,…, N) oscillating in 20 

Mode i can be written in terms of hydrodynamic coefficients 
,

,

n i

n ia
 

 and 
,

,

n i

n ic
 

 as: 21 

 
 , , , ,

R, , R , ,i d i
n

n i n i n i n i

n i i n i n i
S

F n s a c  


     

    , (30) 22 

where the hydrodynamic coefficients 
,

,

n i

n ia
 

 and 
,

,

n i

n ic
 

 are so-called added mass and radiation 23 

damping, respectively, representing the hydrodynamic coupling between the floats. 24 

Similar expressions may be obtained for the complex amplitudes of radiation volume and the 25 

complex amplitude of radiation force exerting on Float n’ (n’=0,1,2,3,…, N) in Mode i’ due to unit 26 

air pressure oscillation inside the OWC chamber, and the corresponding hydrodynamic 27 

coefficients are denoted as  0

0a ,  0

0c , and 
,

0

n ia
 

, 
,

0

n ic
 

, respectively. 28 

The method for calculating the hydrodynamic coefficients as given in Eqs. (29) and (30) is 29 

straightforward based on the definitions of radiation volume flux and radiation forces. To 30 

distinguish this method with the others proposed below in Section 3.5, we call it “direct method”. 31 
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3.5 Hydrodynamic coefficients in terms of Far-Field Coefficients and wave excitation 1 

volume flux/forces 2 

 0

0c  can be derived in terms of the radiated potential at infinity, the so-called Far-Field 3 

Coefficients.  4 

For the wave radiated potential due to air pressure oscillation 
 0

R  and its complex 5 

conjugate 
 0

R

, both of them satisfy the Laplace equation within the fluid domain which is 6 

contained inside a closed surface composed of the internal water surface inside the OWC chamber, 7 

the free water surface external to the chamber and floats, the sum of all wet surfaces of OWC 8 

chamber and floats, the sea bed, and an envisaged vertical cylinder with a quite large radius. 9 

Hence Green’s theorem is applicable to 
 0

R  and 
 0

R

, 10 

 

 
 

 
 

 
 

 
 

 
 

 
 

in

0 0
0 0R R

R R

0 0 0 0
0 0 0 0R R R R

R R R R

d

d d

0

S

S S

s
n n

s s
z z r r

 
 

   
   






 
 

  
    

      
               





  , (31) 11 

where S represents the closed surface; S∞ denotes the envisaged vertical cylinder with a extremely 12 

large radius r0=Rf; Sin denotes the internal water surface above the OWC. Note that the integrand 13 

vanishes on the sea bed, wet surfaces of fixed structures including OWC and floats, and free water 14 

surface, thus the integrand at these boundaries is not included in the second line of Eq.(31). 15 

After inserting Eq. (9b) into Eq. (31), we have 16 

 

 
 

 

in

0 0
0R R

RRe d Im d 0
S S

s s
z r

 
 




 

 
   , (32) 17 

Hence 
 0

0c  can be expressed by the radiated potential at extremely large distance as 18 

 
 

 
 

 

in

0 0
0 0R,0 R

0 RRe d Im d
S

S

c s s
z r

 
 



 
   

   . (33) 19 

Using Graf’s addition theorem to transform the diffracted potential in the outer (r0>R0j) 20 

regions in terms of the cylindrical coordinate systems Or0θ0, and applying the asymptotic forms of 21 

mH  and mH   as shown in Eq.(34), 22 

  
π π

i
2 42

e ,
π

m
x

mH x x
x

 
  

   , (34a) 23 

    
π π

i
2 42

i e i ,
π

m
x

m mH x H x x
x

 
  

     , (34b) 24 

we find that Eq. (33) becomes the expression of 
 0

0c  in terms of the Far-Field Coefficients as: 25 
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 
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 
 
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  
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, (35) 1 

It is known that there is a Haskind relation between wave diffraction and radiation problems 2 

(Falnes, 2002), and therefore the hydrodynamic coefficients, such as 
 0

0c , 
,

,

n i

n ic
 

 and 
 0

,n ia , 
,

0

n ia , 3 

can be written in terms of wave excitation volume flux and wave excitation forces as: 4 

 
         
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0 e e2 0
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c F F
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, , ,

, e e2 0
g

d
8π

n i n i n i

n i

k
c F F

gv A
  



      , (37) 6 

 
       

2π0 0 ,

, e e2 0
g

i
d

8π

n i

n i

k
a F F

gv A
  



  , (38a) 7 

      
2π 0, ,

0 e e2 0
g

i
d

8π

n i n ik
a F F

gv A
  




  , (38b) 8 

where vg is the wave group velocity expressed as 9 

 
 

g

2
1

2 sinh 2

kh
v

k kh

  
  

  
. (39) 10 

4. Wave power extraction 11 

In this section, wave power extraction by the hybrid WEC is derived based on the 12 

coefficients obtained from the previous theoretical hydrodynamic model. Consider a hybrid WEC 13 

consisting of an OWC and N floats each hinged around by a rigid arm, as shown in Figure 1, the 14 

OWC chamber is assumed to be stationary here. Additionally, the density of each float is assumed 15 

half of the water density for a uniform distribution of the mass. Therefore, the centre of each float 16 

mass coincides well with the float geometry centre and they are all half submerged in still water. 17 

Figure 3 gives plan view of the connection between the OWC and Float n (n=1, 2,…, N) in a 18 

more general hybrid WEC case. O0xyz is the coordinate system of the OWC with O0xy at the 19 

location of the mean water surface, the O0z axis at the central axis of the OWC pointing upward 20 

and the O0x axis pointing an arbitrary specified horizontal direction. Onxnynzn (n=1, 2,…, N) is the 21 

local coordinate system of Float n with Onxnyn at the location of the mean water surface, the Onzn 22 

axis at the central axis of Float n pointing upward and the Onxn in parallel with O0x. The hinge for 23 

restricting Foat n is located hn above the mean water surface. OHnXnYnZn denotes the local 24 

coordinate system of the hinge for Float n with OHn at the hinge location, OHnXn and OHnZn 25 

pointing toward Float n horizontally and upward, respectively. The horizontal distance between 26 
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OHn and On is denoted as Dn. The relative angle between OHnXn and O0x is denoted as α0n (see 1 

Fig.3). 2 

 3 

Fig. 3. Schematic of the connection between the OWC and Float n (plan view). 4 

The force vector exerting on Float n in the local coordinate system Onxnyn, denoted as 
 n

f , 5 

can be transformed into the corresponding rigid arm force vector in the OHnXnYnZn, denoted as 6 

 n
F , by using 

     
F

n n n
TF f , where 

 
F

n
T  is the force transfer matrix and it is written as: 7 

 
 

0 0

0 0

F

0 0 0 0

0 0 0 0

0 0

cos sin 0 0 0 0

sin cos 0 0 0 0

0 0 1 0 0 0

sin cos 0 cos sin 0

cos sin sin cos 0

sin cos 0 0 0 1

n n

n n

n

n n n n n n

n n n n n n n

n n n n

h h

h h D

D D

 

 

   

   

 

 
 


 
 

  
 

    
 
  

T . (40) 8 

In fact, the transfer matrix 
 
F

n
T  can also be used to obtain the displacement vector of Float 9 

n in the local coordinate system Onxnyn, denoted as
 n

x , from the corresponding rigid arm 10 

displacement vector in the OHnXnYnZn , denoted as
 n

X , by 
     

F

n n n
Tx X . 11 

4.1 Power take-off by the hybrid WEC 12 

Assuming the chamber air to be compressible and its motion isentropic, then the effect of the 13 

linear air turbine and air compressibility in the chamber are linear as well, which can be 14 

characterized as a damping and added mass, respectively (Lovas et al. 2010; Martins-rivas and 15 

Mei, 2009a). After obtaining the wave excitation volume flux/forces, hydrodynamic coefficients 16 

and transforming these coefficients from the local coordinate system of Float n into the local 17 

coordinate system of the n-th hinge for Float n, the response of the hybrid WEC in frequency 18 

domain can be evaluated by using the dynamic motion matrix equation: 19 

 20 

   T T T T

J F a F J PTO J F d F J PTO s J F ei + i       
 

A T M T A M M A T C T A C K A TX F ,.21 

 (41) 22 

where Fe is the wave excitation volume flux/force vector; Ma and Cd are the matrices of 23 
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hydrodynamic mass and damping, respectively; M and Ks are the WEC mass matrix and restoring 1 

stiffness matrix, respectively; MPTO and CPTO are the mass and damping matrices of the PTO 2 

system, respectively, in which the terms regarding to OWC come from (Lovas et al. 2010; 3 

Martins-rivas and Mei, 2009a) and they are given based on the assumption that the mass flux 4 

through the turbines is proportional to the chamber air pressure; TF is the transfer matrix that is 5 

composed of 
 
F

n
T ; AJ is a constraint matrix that can be used to reduce the matrix order from 6 

6N+1 to N+1; 
T

0 1 2 NX X X X  X =  is the velocity vector of the hybrid WEC, in 7 

which 0X =p is the complex air pressure amplitude inside the OWC chamber, nX  represents 8 

the rotary velocity of Float n relative to the OWC. Among these matrices, Fe, Ma and Cd are 9 

obtained from the theoretical hydrodynamic model built in Sections 2 and 3. Expressions of M, Ks, 10 

MPTO, CPTO, TF and AJ, are given as follows: 11 

   

1

2

1 1

0

N N N

I

I

I
  

 
 
 
 
 
 
  

M ,    
2

2 2 2 2 2π
3 4 π

12

n n
n n n n n n n

R d
I R d R d D h


    , 12 

   

1

s 2

1 1

0

N N N

K

g K

K



  

 
 
 
 
 
 
  

K , 
4 2

2 2 2π
π π

4 2

n n
n n n n

R d
K R D R   , 13 

 14 
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 
 
 
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 
 
  

C , 15 
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   

J

1 6 1

1

N N  

 
 
 
 
 
 
  

R

A R

R

,   0 0 0 0 1 0R , 1 

where cn represents the damping coefficient in the PTO system of the OWC (n=0) and Float n 2 

(n=1, 2, …, N), ca is the sound velocity in air, ρ0 is the static air density, V0 is the air chamber 3 

volume. Following the previous study carried out by Lovas et al. (2010), Martins-rivas and Mei 4 

(2009a), ρ/ρ0=1000, ca=340 m/s and 2

0 i 0πV R d  are employed in subsequent computations, 5 

although these adopted value might be unrealistic for atmospheric pressure at sea level. 6 

The average power that the hybrid WEC captures from regular waves can be written as:  7 

 PTO

1

2
P  CX X . (42) 8 

The average wave energy capture width ratio (or capture factor) η is calculated as: 9 

 

in2π

kP

P
  , (43) 10 

where Pin represents the incoming wave power per unit width of the wave front given by: 11 

 
 

2

in

2
1

8 2 sinh 2

gH kh
P

k kh

   
  

 
, (44) 12 

in which H represent the wave height of incident waves. 13 

As Ricci et al. (2007) reported, no significant improvement can be obtained by individually 14 

optimizing the PTO coefficients of each device in an array. Thus in the cases studied in the present 15 

paper, the PTO damping (cn) is the same for all the hinged floats.  16 

The dimensionless quantities of the PTO damping of the OWC and the hinged floats (c0 and 17 

c1) are defined by: 18 

 0
0

gc
c

h gh


 , 1

1 4

c
c

h gh
 . (45) 19 

As the PTO damping of both the OWC and the hinged floats (c0 and c1) change from 0 to +∞, 20 

there will be an optimized combination of damping coefficients, denoted as (
 0

optc and 
 1

optc ), to 21 

maximize the power absorbed by the hybrid WEC. The maximum absorbed power and the 22 

corresponding maximum power capture factor are denoted as maxP  and max , respectively. 23 

In the case of WEC arrays, a parameter named q-factor, which denotes the ratio of the powers 24 

absorbed by the array in whole and by the isolated device in summary, is generally used to 25 

measure the effect of hydrodynamic interactions between the devices (Borgarino et al., 2012; 26 

Babarit, 2013; Penalba et al., 2017b). q-factor can also be employed as a reference value to assess 27 

the performance of the hybrid WEC. For the hybrid WEC, the definition of the q-factor is 28 

modified as the maximum power absorbed by the hybrid WEC dividing the sum of the maximum 29 
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power absorptions of the isolated OWC and the array of hinged floats in absence of the OWC. 1 

When q>1, the maximum power absorption of the hybrid WEC is larger than that of an isolated 2 

OWC together with that of the hinged floats, and it means that the interaction between the OWC 3 

and the floats has positive effects. On the contrary, when q<1, the interaction is negative. 4 

4.2 Power take-off by an isolated OWC 5 

For an isolated OWC, as shown in Fig. 4, assuming the OWC chamber is stationary due to 6 

the restricts by the mooring lines, response of the dynamic air pressure in frequency domain can 7 

be easily evaluated by using the one degree motion equation: 8 

      0

a PTO d PTO ei m m c c p F       , (46) 9 

where ω am  and dc  are so-called the radiation susceptance and the radiation conductance of the 10 

isolated OWC, respectively; PTOm =  2

0 a 0V c   and PTOc  are the mass and damping induced 11 

by the PTO system; p  and 
 0

eF  represent the dynamic air pressure and excitation volume flux 12 

of the OWC separately. The hydrodynamic coefficients of the isolated OWC, i.e. am , dc  and 13 

 0

eF  can also be calculated using the theoretical hydrodynamic model built in Sections 2 and 3 14 

when the number of floats N=0 is implemented. 15 

 16 

Fig. 4. Sketch of an isolated OWC device 17 

After solving Eq. (46), the average power absorbed by the OWC, denoting as P , can be 18 

expressed as: 19 

 

 

   

2
0

PTO e

PTO 2 22

a PTO d PTO

1 1

2 2

c F
P p c p

m m c c

 
  

. (47) 20 
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There is a maximum of absorbed power when 
PTO/ 0P c   , which occurs if 1 

  
22 2

opt d a PTOc c m m   , (48) 2 

for which the corresponding maximum absorbed power is 3 

 

 

 

2
0

e

max
22 2

d d a PTO

1

4

F
P

c c m m


  
. (49) 4 

4.3 Power take-off by an array of hinged floats 5 

As shown in Fig. 5, after removing the OWC from the hybrid WEC, the rest N floats can also 6 

be used to extract wave power if they are hinged on N legs standing on the seabed. 7 

 8 

Fig. 5. Sketch of an array of four hinged floats 9 

Similar to Eq.(41), response equation of the N floats, as shown in Fig.5, in frequency domain 10 

can be written as: 11 

    T T T T

J F a F J J F d F J PTO s floats J F e
ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆi + i      

 
A T M T A M A T C T A C K A TX F ,(50) 12 

in which eF̂  is the wave excitation force vector; aM̂  and dĈ  are the matrices of added-mass 13 

and wave radiation damping, respectively; M̂  and sK̂  are mass matrix and restoring stiffness 14 

matrix, respectively, of the N floats; PTOĈ  is the damping matrices of the PTO system, 15 

respectively; FT̂  is the transfer matrix; JÂ  is a constraint matrix to reduce the matrix order 16 

from 6N to N; 
T

floats 1 2 NX X X  X =  is the velocity vector of the N floats. eF̂ , aM̂  17 
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and dĈ  can be obtained with the implement of the theoretical hydrodynamic model proposed by 1 

Siddorn and Eatock Taylor (2008). 2 

In the absence of the OWC, the power absorbed by the hinged floats, as shown in Fig. 5, can 3 

be written as: 4 

 PTO
floats PTO floats floats floats

ˆ1 ˆˆ
2 2

c
P   CX X X X , (51) 5 

where the second equality sign is valid when the PTO damping of each float is all the same as, 6 

PTO
ˆ

nc c  (n=1,2, ……, N). The maximum power absorption, maxP̂ , and the corresponding 7 

optimal PTO damping, optĉ , can be obtained using trial-and-error method. 8 

For any specified hybrid WEC, once maxP , maxP  and maxP̂  are obtained, the q-factor can 9 

be then calculated as: 10 

 max

max max
ˆ

P
q

P P



. (52) 11 

5 Results and discussion 12 

5.1 Validation of the theoretical hydrodynamic model 13 

To validate the above-derived theoretical hydrodynamic model for diffracted and radiated 14 

spatial potentials as given in Sections 2 and 3, wave excitation volume flux of the OWC, wave 15 

excitation forces exerting on different floats and hydrodynamic coefficients are calculated by 16 

using the present theoretical method and a numerical computational fluid dynamics model based 17 

on the boundary element method package of ANSYS AQWA. The numerical CFD analysis only 18 

deals with the homogeneous boundary for free water surface and it works well in solving wave 19 

diffraction problem from the hybrid WEC, while the boundary condition at internal water surface 20 

of the OWC due to dynamic air pressure is inhomogeneous, hence hydrodynamic coefficients 21 

related to the radiation induced by OWC air pressure oscillation cannot be directly obtained with 22 

numerical method. Apart from numerical method, the different theoretical approaches for 23 

evaluating hydrodynamic coefficients can also be used to check the validity of the present 24 

theoretical hydrodynamic model. 25 

We consider four truncated floats with different radius and draft employed around an OWC, 26 

as illustrated in Fig. 6. All of these structures are half submerged in the water. Table 1 gives a list 27 

of the dimensions of the OWC and floats. In addition, the water depth h is 20m; the inner radius of 28 

the OWC Ri=4.0m; the sea water density ρ=1025kg/m3; wave incoming direction β=π/8; the 29 

acceleration of gravity g =9.81 m/s2. The reference rotation center of each float is set to (0, 0) in 30 

their own local cylindrical coordinate systems. 31 

Table 1 Basic parameters of the OWC and floats as shown in Fig. 6. (Units: m) 32 

 

OWC Float 1 Float 2 Float 3 Float 4 

Centre position, (xn, yn) (0, 0) (-7.0, 7.0) (7.0, -7.0) (-7.0, -7.0) (7.0, 7.0) 

Radius, Rn 5.0  1.0  1.0  2.0  1.5  

draft, dn 3.0  2.0  1.0  2.5  1.0  
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 1 

Fig. 6. The case consisting of an OWC and four floats around. 2 

The dimensionless quantities of the wave excitation volume flux/forces and hydrodynamic 3 

coefficients are defined by: 4 
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where j=2 for i =1~3; whereas j=3 for i =4~5. 6 
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where j=3 for (i, i’)=(1~3, 1~3); j=4 for (i, i’)=(1~3, 4~5) and (4~5, 1~3); whereas j=5 for (i, 8 

i’)=(4~5, 4~5). 9 
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where j=2 for i =1~3; whereas j=3 for i =4~5.  11 

In our theoretical computations for the case as given in Fig.6 and Table 1 , to obtain 12 

converged results using the eigen-series analysis described above, we found it necessary to take 13 

M=12, L0=20 through theoretical experiments. Theoretical and numerical results for the case are 14 

presented below. 15 

Wave diffraction problem 16 

Figure 7 shows variation of the computed wave excitation volume flux of the OWC in terms 17 

of amplitude and phase with wave number for β=π/8. As given in Fig. 7a, the theoretical results 18 
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and the numerical ones for 
 0

eF  generally agree quite well with each other, and there is one 1 

maximum of 
 0

eF  at kR0=1.0 in the computed range of kR0, which is associated with the 2 

fundamental resonance inside the OWC chamber. The agreement between the theoretical and 3 

numerical results can also be found for 
 0

e , as shown in Fig. 7b, especially when kR0<6.0. For 4 

kR0>6.0, wave excitation volume flux of the OWC is too small (
 0

eF <0.005) thus the differences 5 

between the results of 
 0

e  using different methods could be reasonably induced by error 6 

amplification. Due to the small value of 
 0

eF  (
 0

eF <0.005) for kR0>6.0, the corresponding value 7 

of 
 0

e  affects the hydrodynamic problem quite little. 8 

   9 

Fig. 7. Wave excitation volume flux of the OWC for β=π/8. a) 
 0

eF ; b) 
 0

e . 10 

Figures 8 and 9 illustrate the wave excitation forces exerting on Float 0 (OWC) and Floats 11 

1~4, respectively, in surge, sway and heave for β=π/8. The theoretical results agree quite well with 12 

the numerical ones in terms of both the amplitude and the phase of wave excitation forces. As 13 

given in Fig.8, there are sharp changes of the surge and heave excitation forces exerting on the 14 

OWC, which occur at kR0=2.4 and 1.0, respectively. Because of the larger scale of Float 3 in both 15 

radius and draft compared with the other floats, for most wave conditions as shown in Fig. 9, the 16 

wave excitation forces exerting on Float 3 in surge, sway and heave hold the largest value. As 17 

wave number kR0→0, the heave wave excitation force exerting on Float n, 
,3 2

e π gn

nF R A , 18 

resulting in 
,3 2 2

e 0πn

nF R R . Thus 
,3

e

nF =0.126, 0.126, 0.503 and 0.283, respectively, at kR0→0 19 

for Floats 1~4, which can be seen from Fig.9e as well. It can also be observed from Figs. 9b, 9d 20 

and 9f that the phase of wave excitation forces exerting on Float 3 and Float 4 changes more 21 

rapidly with kR0 than those for Float 1 and Float 2. This might be explained by the fact that the 22 

incident and diffracted waves act on the float simultaneously, and minor change in the incident 23 

wave frequency will lead to a larger phase difference between those two waves for a larger 24 
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spacing distance along wave propagating direction. As wave incident angle β=π/8, thus the 1 

spacing distance between Floats 1 (and Float 2) and the OWC projected to the wave propagating 2 

direction is smaller than that for Float 3 (and Float 4), therefore a smaller frequency oscillation of 3 

the 
,

e

n i -kR0 curve is obtained for Floats 1 (and Float 2). Figure 9 also shows that, due to the 4 

OWC resonance at kR0=1.0, sharp changes of the wave excitation forces occur around kR0=1.0 for 5 

all the floats. 6 

   7 
Fig. 8. Wave excitation forces exerting on Float 0 (OWC) in surge, sway and heave modes for 8 

β=π/8. a) 
0,

e

iF ; b) 
0,

e

i . solid line: theoretical results for surge mode; dash line: theoretical results 9 

for sway mode; dot line: theoretical results for heave mode. 10 

   11 

   12 
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   1 
Fig. 9. Wave excitation forces exerting on Floats 1~4 in surge, sway and heave modes for β=π/8. a) 2 

,1

e

nF ; b) 
,1

e

n ; c) 
,2

e

nF ; d) 
,2

e

n ; e) 
,3

e

nF ; f) 
,3

e

n . solid line: theoretical results for Float 1; dash 3 

line: theoretical results for Float 2; dot line: theoretical results for Float 3; dash dot line: 4 

theoretical results for Float 4. 5 

The agreement of the present theoretical results of both 
 0

eF  and 
,

e

n jF  with those obtained 6 

by numerical method illustrates that the diffraction problem is solved correctly. 7 

Wave radiation problem 8 

To verify the correctness of the expressions for the radiated potentials, here, hydrodynamic 9 

coefficients of the OWC due to the oscillating air pressure inside the OWC chamber, 10 

hydrodynamic coefficients of the float due to the oscillation of itself and the other floats, and 11 

hydrodynamic coefficients due to hydrodynamic interaction between the OWC and floats are all 12 

computed using different methods, and these results are also compared with each other obtained 13 

by using different method. 14 

Figure 10 gives the results of hydrodynamic coefficients of the OWC due to the oscillating 15 

air pressure inside the OWC chamber. It can be learnt from Fig.10a that the 
 0

0a -kR0 curve shapes 16 

like the letter N and 
 0

0a  rapidly changes sign around the resonance frequency kR0=1.0. The 17 

theoretical results of 
 0

0c  by adopting three different approaches as presented in Sections 3.4 and 18 

3.5, i.e., direct method, expressions in terms of Far Field Coefficient and those based on Haskind 19 

Relation, are plotted in Fig.10b, which agree quite well with each other. A sharp peak of 
 0

0c  20 

with the value of 22.5 occurs at kR0=1.0. 21 
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   1 
Fig. 10. Hydrodynamic coefficients of the OWC due to the oscillating air pressure inside the 2 

OWC chamber. a) 
 0

0a ; b) 
 0

0c . 3 

Figures 11 and 12 present both theoretical and numerical results of the hydrodynamic 4 

coefficients of Float 0 (OWC) and Float 1 due to the oscillation of themselves. The results for 5 

hydrodynamic coefficients obtained by using the present theoretical method and the numerical 6 

method agree well with each other. 7 

   8 

   9 
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   1 

Fig. 11. Hydrodynamic coefficients of Float 0 (OWC) due to its oscillation. a) 0,1

0,ia ; b) 0,1

0,ic ; c) 2 

0,2

0,ia ; d) 0,2

0,ic ; e) 0,3

0,ia ; f) 0,3

0,ic . solid line, dash line and dot line: theoretical results. 3 

   4 

   5 
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   1 

Fig. 12. Hydrodynamic coefficients of Float 1 due to its oscillation. a) 1,1

1,ia ; b) 1,1

1,ic ; c) 1,2

1,ia ; d) 2 

1,2

1,ic ; e) 1,3

1,ia ; f) 1,3

1,ic . solid line, dash line and dot line: theoretical results. 3 

Hydrodynamic coefficients of one float due to the oscillation of another float reflect the 4 

hydrodynamic interaction between these floats. Figure 13 shows these coefficients due to the 5 

hydrodynamic interaction between Float 1 and Float 3. The present theoretical method and the 6 

numerical method give the same results. Additionally, the relations 
, ,

, ,

n i n i

n i n ia a
 

   and 
, ,

, ,

n i n i

n i n ic c
 

  , 7 

so-called reciprocity relations (Falnes, 2002), are also satisfied very well as plotted in both Fig.12 8 

and Fig.13. 9 

   10 

   11 



28 
 

Fig. 13. Hydrodynamic coefficients due to hydrodynamic interaction between Float 1 and Float 3. 1 

a) 1,

3,

i

ia ; b) 1,

3,

i

ic ; c) 3,

1,

i

ia ; d) 3,

1,

i

ic . dash line, dot line and solid line: theoretical results. 2 

Figure 14 shows the hydrodynamic coefficients induced by the hydrodynamic interaction 3 

between the OWC and Float 1. Both direct method and the expressions based on Haskind relation 4 

are employed to calculate 
 0

,n ia  and 
 

,

0

n ia , giving the same results as plotted in Figs. 14a and 14c 5 

for 
 0

1, ja  and 
 
1,

0

ja , respectively. The corresponding 
 0

1, jc  and 
 
1,

0

jc  are illustrated in Figs. 14b 6 

and 14d. In common with the results of 
 0

eF  and 
,

e

n jF  as shown in Figs. 7, 8 and 9, sharp 7 

changes in 
 0

1, ja , 
 
1,

0

ja , 
 0

1, jc  and 
 
1,

0

jc  also occur around kR0=1.0. While different from the 8 

reciprocity relations of the coefficients due to the hydrodynamic coupling between floats, the 9 

coefficients taking account of hydrodynamic interaction between the OWC and floats should 10 

satisfy 
 

 
0 ,

, 0

n i

n ia a   and 
 

 
0 ,

, 0

n i

n ic c   (Falnes, 2002), which can also be observed from Fig. 14. 11 

   12 

   13 
Fig. 14. Hydrodynamic coefficients due to hydrodynamic interaction between the OWC and Float 14 

1. a) 
 0

1, ja ; b) 
 0

1, jc ; c)  
1,

0

ja ; d)  
1,

0

jc . 15 

5.2 Comparison between the hybrid WEC and the isolated OWC and hinged floats 16 

In this section, wave extraction of the hybrid WEC is calculated based on the coefficients 17 
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obtained from the validated theoretical hydrodynamic model. To recognize the difference in the 1 

maximum power capture factor among the hybrid WEC composed of a OWC and several hinged 2 

floats, its corresponding OWC and hinged floats which run in isolation, respectively, a comparison 3 

between them is carried out. The OWC and these hinged floats which run in isolation are 4 

hereinafter called the isolated OWC and hinged floats, respectively. In subsequent computations, 5 

wave power extraction by the hybrid WEC consisting of an OWC and four floats (N=4) hinged 6 

around is investigated. There are many geometric parameters affecting power absorption of the 7 

hybrid WEC. To reduce the number of these parameters, here, it is assumed that the following 8 

relations among these parameters are satisfied, 2 3

0 0 3 320R d h , Ri=0.8R0, 
2 3 2000j jR d h , 9 

Dj=2Rj, hj=2dj. Thus the hybrid WEC scales in terms of non-dimensional parameters can be 10 

determined once d0/h and d1/h are known. The incident waves are considered with propagation 11 

direction in x-axis direction as given in Fig.1. Figure 15 gives variation of the maximum power 12 

capture factors of the isolated OWC and the hinged floats, respectively, with d0/h and d1/h for 13 

wave condition kh=3.2. As d1/h has no effect on power absorption of the isolated OWC, its 14 

maximum power capture factor ( max ) is plotted as a curve (as shown in Fig.15a), rather than a 15 

contour as given in Fig.15b for the hinged floats. 16 

It can be seen from Fig.15a that, as d0/h increases from 0.05, max  first decreases from 0.12 17 

and leads to the valley value of 0.086 at d0/h=0.13. As d0/h further increases, max  rises and then 18 

decreases after reaching the peak value of 0.158 which occurs at d0/h=0.22. As studied by Falnes 19 

(2002), the maximum power capture factor of the axisymmetric OWC is 1/(2π) when both 20 

“optimum phase condition” and “optimum amplitude condition” are satisfied simultaneously, in 21 

another words, PTO damping and PTO added mass are instantaneously optimized. The peak value 22 

of max , as plotted in Fig. 15a, satisfies 0.158≈1/(2π), meaning that resonance happens for the 23 

isolated OWC with d0/h=0.22 at kh=3.2. 24 

The contour of the maximum power capture factor ( max̂ ) of the isolated hinged floats, as 25 

given in Fig.15b, shows that, for kh=3.2, max̂  is more sensitive to d1/h than d0/h. For any 26 

specified d0/h, a peak of max̂  occurs when d1/h is around 0.08. When d1/h=0.01, a larger d0/h 27 

plays a positive role in improving power absorption. While for d1/h=0.08, on the contrary, small 28 

value of d0/h, i.e. large spacing distance between the legs as shown in Fig.5, is welcome in 29 

maximizing power exploitation. The peak value of max̂  is 0.52 with d0/h=0.05 and d1/h=0.078. 30 
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    1 

Fig. 15. Maximum power capture factor ( max  and max̂ ) of the isolated OWC and the isolated 2 

hinged floats for 2 3

0 0 3 320R d h , Ri=0.8R0, 
2 3 2000j jR d h , Dj=2Rj, hj=2dj and kh=3.2: (a) 3 

variation of max  with d0/h; (b) variation of max̂  with d0/h and d1/h. 4 

To demonstrate the difference in the maximum power capture factor between the hybrid 5 

WEC and the isolated OWC and hinged floats, and to understand whether the OWC and hinged 6 

floats in the hybrid WEC interact beneficially or counteract each other in terms of q-factor, a wide 7 

range of d0/h and d1/h are examined. For the hybrid WEC, i.e. combining the isolated OWC and 8 

the isolated hinged floats together and considering the hydrodynamic interaction between them, 9 

the maximum power capture factor (ηmax) and q-factor for kh=3.2 are plotted in Fig.16. Thanks to 10 

the hydrodynamic coupling, the peak value of the maximum power capture factor of the hybrid 11 

WEC can be 0.63 when d0/h=0.05 and d1/h=0.078, obviously larger than those for the isolated 12 

OWC (0.158) and hinged floats (0.52). ηmax>0.5 can be obtained at the range of d0/h<0.12 and 13 

0.076<d1/h<0.080. Different from the distribution of the maximum power capture factor, as shown 14 

in Fig.16b, the q-factor larger than 1.5 occurs at the area of d0/h>0.26 and 0.076<d1/h<0.080, and 15 

the maximum q-factor is 1.79, occuring at d0/h=0.5 and d1/h=0.078. For the hybrid WEC with 16 

d0/h>0.25 and d1/h<0.09, generally q>1.0 can be achieved, which means hydrodynamic coupling 17 

plays a constructive effect on power absorption for kh=3.2. While for d0/h>0.32 and d1/h>0.12, 18 

q-factor could be less than 0.7, resulting in a destructive effect on power extraction. Although the 19 

areas corresponding to the largest value of ηmax and q-factor, respectively, do not coincide, q>0.9 is 20 

satisfied in the contour area ηmax >0.5, where q>1.0 is even valid for some subdomains. 21 

 22 
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    1 

Fig. 16.  Maximum power capture factor ( max ) and q-factor of the hybrid WEC for 2 

2 3

0 0 3 320R d h , Ri=0.8R0, 
2 3 2000j jR d h , Dj=2Rj, hj=2dj and kh=3.2: (a) contour of ηmax; (b) 3 

contour of q-factor. 4 

 5 

Apart from the comparison between the isolated OWC and hinged floats and the hybrid WEC 6 

carried out for a certain wave condition (kh=3.2), the case with d0/h=0.15, d1/h=0.08 is also taken 7 

as an example to study the frequency responses of the maximum power absorption, which are 8 

plotted in Fig. 17. The peak of the maximum power capture factor of the isolated OWC ( max ) 9 

happens at kh=3.8, reaching 0.158. For the four hinged floats, the peak value of max̂  is 0.378 10 

when kh=3.0. Compared with the isolated OWC and hinged floats, the hybrid WEC holds a wider 11 

bandwidth of frequency response with a larger maximum power capture factor, as shown in 12 

Fig.17a. The corresponding q-factor response (as plotted in Fig.17b) shows that q>0.9 can be 13 

satisfied for all the wave conditions except for 3.1<kh <4.5. What is better, two peaks of q-factor, 14 

one is q=1.3 at kh=2.9, the other is q=2.3 at kh=8.9, are obtained. For any wave conditions with 15 

kh>4.9, q>1 is achieved, i.e., the hydrodynamic coupling between the OWC and the floats in the 16 

hybrid WEC plays a constructive effect on overall power absorption. Therefore, it is believed that 17 

the hybrid WEC could perform much better in realistic wave climates in terms of power extraction 18 

compared with those for the isolated OWC and hinged floats. 19 

 20 
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   1 

Fig. 17.  Frequency response of the maximum power capture factor ( max , max̂  and max ) of 2 

the isolated OWC, the isolated hinged floats, the hybrid WEC and the q-factor for 3 

2 3

0 0 3 320R d h , Ri=0.8R0, 2 3 2000j jR d h , Dj=2Rj, hj=2dj, d0/h=0.15, d1/h=0.08. (a) max , 4 

max̂  and ηmax; (b) q-factor . 5 

5.3 Spacing distance between the OWC and the floats 6 

To investigate the effect of the spacing distance between the OWC and the floats on power 7 

absorption, four cases of the hybrid WEC with Dj=2Rj, 3Rj , 4Rj and 5Rj, respectively, are studied. 8 

Results of the frequency response of ηmax, together with the power capture factor of the OWC and 9 

each float of the hybrid WEC are plotted in Fig. 18. Since the incident waves propagate along 10 

x-axis and y=0 is a plane of symmetry of the hybrid WEC, power capture factors of Float 2 and 11 

Float 4 denoted as  2

max and  4

max , respectively, as shown in Fig.18, are all the same for any 12 

specified wave conditions. It can be seen from Fig. 18 that the larger Dj is, the bigger kh is which 13 

corresponds to the peak value of ηmax. The peak value of ηmax and the corresponding kh for Dj=2Rj, 14 

3Rj , 4Rj and 5Rj are (0.455, 2.9), (0.658, 4.4), (0.516, 5.3) and (0.556, 7.2), respectively. The peak 15 

of the  3

max –kh curve happens at the same kh when the peak of ηmax occurs. In long waves 16 

(kh<2.0), the power absorbed by the OWC is far larger than the power extracted by any of the 17 

floats. While in short waves (kh>8.0), the power is mainly captured by the floats of the hybrid 18 

WEC rather than the OWC and the power absorbed by the OWC is much smaller than the power 19 

absorbed by the float which extracted the least power in the floats. 20 

For Dj=2Rj and Dj=3Rj, as shown in Figs. 18a and 18b, it should be noted that there are 21 

almost no power being absorbed by the OWC and most of the power are captured by the floats 22 

when ηmax reaches the peaks. Meanwhile, the power extracted by Float 3, the windward one, is 23 

nearly always larger than that of any other three floats, which might be attributed to the 24 

constructive effect of the wave reflected by the OWC for these specified dimension parameters. 25 

While for Dj=4Rj and Dj=5Rj, as shown in Figs. 18c and 18d, Floats 2 and 4, i.e., the side floats, 26 

turn to capture more power than any other three floats for a wide range of wave frequencies.  27 
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   1 

   2 
Fig. 18.  Frequency response of the maximum power capture factor (ηmax) of the hybrid WEC 3 

with different spacing distance between the OWC and the floats for 2 3

0 0 3 320R d h , Ri=0.8R0, 4 

2 3 2000j jR d h , hj=2dj, d0/h=0.15, d1/h=0.08. (a) Dj=2Rj; (b) Dj=3Rj;.(c) Dj=4Rj; (d) Dj=5Rj. 5 

6 Conclusions 6 

A novel hybrid WEC consisting of a floating OWC moored at the sea bed and several floats 7 

hinged around is presented. To study hydrodynamic performance of the hybrid WEC, a theoretical 8 

hydrodynamic model is developed to solve the wave diffraction and radiation problems from a 9 

cylindrical OWC and several truncated floats oscillating independently in surge, sway, heave, roll, 10 

pitch and yaw modes based on the linear wave theory. Wave excitation volume flux/forces and 11 

hydrodynamic coefficients are evaluated by using the diffracted and near field radiated potentials, 12 

respectively. Moreover, some hydrodynamic coefficients are also obtained with other two 13 

approaches, one is in terms of the Far-Field Coefficients and the other is by wave excitation 14 

volume flux/forces.  15 

To testify the validity of this theoretical hydrodynamic model, numerical computations with 16 

the use of a boundary element method commercial code are also carried out, and the theoretical 17 

results by applying three different approaches and the numerical ones are compared with each 18 

other. The theoretical results are found in good agreement with ones obtained by using different 19 

approaches. 20 

The validated theoretical hydrodynamic model is finally used to learn the power extraction 21 

by a hybrid WEC consisting of an OWC and four floats hinged around. The results reveal that: 22 
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1) Due to the hydrodynamic coupling, the peak value of the maximum power capture factor of 1 

the hybrid WEC can be 0.63 for 2 3

0 0 3 320R d h , Ri=0.8R0, 
2 3 2000j jR d h , Dj=2Rj, hj=2dj and 2 

kh=3.2, obviously larger than those for the isolated OWC (0.158) and the isolated hinged floats 3 

(0.52). 4 

2) Compared with the isolated OWC and hinged floats, the hybrid WEC holds a wider 5 

bandwidth of frequency response with a higher maximum power capture factor. 6 

3) In long waves, the power absorbed by the OWC is far larger than the power extracted by any 7 

of the floats. While in short waves, the power is mainly captured by the floats in the hybrid WEC 8 

rather than the OWC. 9 

4) As spacing distance between the OWC and the floats increases from 2Rj to 5Rj, the peak of 10 

the maximum power capture factor (ηmax) of the hybrid WEC occurs at a higher wave frequency. 11 

Apart from improving power capture ability of the isolated OWC and hinged floats by 12 

combining them together, apparently the hybrid WEC has an advantage in reducing construction 13 

costs. 14 

The present paper only presents a fundamental study of the hybrid WEC in regular waves. 15 

Effect of the multiple parameters, such as wave incident direction and float number, and the 16 

performance of the hybrid WEC in realistic wave climates deserve further investigation in the near 17 

future. The study carried out in this paper is based on the linearised hydrodynamic theory for an 18 

ideal irrotational fluid. Since the viscous effect is not taken into consideration, wave power 19 

absorption may be overestimated by using the potential flow theory. The viscous effect on the 20 

hybrid WEC might be investigated by using physical experiments in the future. 21 
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Appendix A. Derivation process of the formulas and calculation for the unknown coefficients of 26 

diffracted potentials 27 

Substitute the diffracted spatial potentials in Eqs. (12)~(22) and wave incident potential given 28 

in Eq.(2b) into Eqs. (23)~(24), then after multiplying both sides by  
i

,e cosj

j z h





    and 29 

integrating for  0,2πj   and , jz h d     , we get: 30 
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where 33 
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Similarly, substitute the diffracted spatial potentials in Eqs. (12)~(22) and wave incident 4 

potential given in Eq.(2b) into Eqs. (25)~(26), after multiplying both sides by  
i

e j Z z





 and 5 

integrating for  0,2πj   and  ,0z h  , we have: 6 
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where 10 
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2(N+2)(2M+1)(L0+1) complex linear equations with an equal number of unknown coefficients can 6 

be obtained from Eqs.(A1), (A2), (A6) and (A7) after truncation of eimθ (m=-M, …, 0, …, M), Zl(z) 7 

and cos[βj,l(z+h)] (l=0, 1, 2, … L0)  functions. Therefore, the unknown coefficients can be easily 8 

calculated by solving the complex 2(N+2)(2M+1)(L0+1) order linear matrix equation. 9 

For the radiated spatial potentials due to float oscillation and those due to air pressure 10 

oscillation inside the OWC, similar expressions can also be derived. Note Eqs.(A1), (A2), (A6) 11 

and those for radiated spatial potentials share the same 2(N+2)(2M+1)(L0+1) order linear complex 12 

coefficient matrix, hence wave diffraction and wave radiation problems can be solved 13 

simultaneously. 14 
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